Consistency restrictions on maximal electric-field strength in quantum field theory.
Gavrilov, S P; Gitman, D M
2008-09-26
Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.
NASA Astrophysics Data System (ADS)
Raghunathan, A. V.; Aluru, N. R.
2007-07-01
A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.
Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...
2017-05-10
Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.
Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick
2017-05-01
We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.
Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear
2014-04-01
for producing a plasma column (in black). An insulated wire traverses the plasma and car - ries a pulsed current in x-direction. The unmagnetized ions... electric field which together with the B field around the wire causes an electron ExB drift. The ions are unmagnetized. A radial space charge electric field...by the self-consistent currents passing through the grid. These currents, consisting of electron and ion flows, are controlled by the electrical
Tripolar electric field Structure in guide field magnetic reconnection
NASA Astrophysics Data System (ADS)
Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua
2018-03-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Nonlinearity in the High-Electric-Field Piezoelectricity of Epitaxial BiFeO3 on SrTiO3
2012-02-10
Nonlinearity in the high- electric -field piezoelectricity of epitaxial BiFeO3 on SrTiO3 Pice Chen,1 Rebecca J. Sichel-Tissot,1,a) Ji Young Jo,1,b...field linear response in electric fields higher than 150 MV/m. Time-resolved synchrotron x-ray microdiffraction reveals a low-field piezoelectric...decreases throughout the high- electric -field regime, accompanied by increased diffuse scattering, consistent with lattice softening lattice near a field
Tunable terahertz optical properties of graphene in dc electric fields
NASA Astrophysics Data System (ADS)
Dong, H. M.; Huang, F.; Xu, W.
2018-03-01
We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.
Turbulence-induced anomalous electron diffusion in the plume of the VASIMR VX-200
NASA Astrophysics Data System (ADS)
Olsen, Christopher; Ballenger, Maxwell; Squire, Jared; Longmier, Benjamin; Carter, Mark; Glover, Tim
2012-10-01
The separation of electrons from magnetic nozzles is critical to the function of the VASIMR engine and is of general importance to the field of electric propulsion. Separation of electrons by means of anomalous cross field diffusion is considered. Plume measurements using spectral analysis of custom high frequency probes characterizes the nature of oscillating electric fields in the expanding magnetic nozzle. The oscillating electric field results in frequency dependent density variations that can lead to anomalously high transport in the absence of collisions mimicking collisional transport. The spatial structure of the fluctuating fields is consistent with turbulence caused by separation of energetic (> 100 eV) non-magnetized ions and low energy magnetized electrons via the modified two-stream instability (MTSI) and generalized lower hybrid drift instability (GLHDI). Electric fields as high as 300 V/m are observed at frequencies up to an order of magnitude above the lower hybrid frequency. The electric field fluctuations dissipate with increasing axial distance consistent with changes in ion flux streamlines as plasma detachment occurs.
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.
1997-01-01
The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.; Bécoulet, A.; Colas, L.
1999-09-01
Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecoul, S.; Heuraux, S.; Koch, R.
1999-09-20
Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.
Electric field with bipolar structure during magnetic reconnection without a guide field
NASA Astrophysics Data System (ADS)
Guo, Jun
2014-05-01
We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.
Electric field prediction for a human body-electric machine system.
Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia
2004-01-01
A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.
NASA Technical Reports Server (NTRS)
Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.
1993-01-01
The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
NASA Technical Reports Server (NTRS)
Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.
1993-01-01
The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.
Xu, X Q
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Field and energy relations in continuum electrodynamics.
Crenshaw, Michael E
2005-09-01
The bare, or fundamental, electric and magnetic fields in a linear medium are identified. Through the energy relations for the bare fields, the electric permittivity is shown to combine the effects of the enhanced energy density and the polarization reaction field. The macroscopic Maxwell equations are modified to be consistent with the constitutive relations for the bare fields.
Direct comparison between satellite electric field measurements and the visual aurora
NASA Technical Reports Server (NTRS)
Swift, D. W.; Gurnett, D. A.
1973-01-01
Electric field data from two passes of the Injun 5 satellite, one corresponding to magnetically quiet conditions and one corresponding to substorm conditions, are compared with simultaneous all-sky-camera data from College, Alaska. In each case, a significant deviation of the electric field from the expected V x B field (where V is the satellite velocity) was evident and a distinct electric field reversal could be identified. In the region of substantial electric field equatorward of the electric field reversal a diffuse auroral arc was observed during the magnetically quiet pass and auroral patches were observed during the substorm pass. The motion of the auroral patches was consistent with the general direction and magnitude of the E x B drift computed from the satellite electric field measurements. In the substorm case the electric field reversal occurred very near a discrete auroral arc at the poleward side of the diffuse arcs and patches. Comparison of the quiet time and substorm cases suggests that the convection electric field penetrates deeper into the magnetosphere during a substorm.
Reception and learning of electric fields in bees
Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf
2013-01-01
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603
Reception and learning of electric fields in bees.
Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf
2013-05-22
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.
NASA Astrophysics Data System (ADS)
De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério
2014-05-01
This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.
IMP 8. Volume 1: EM field experiment
NASA Technical Reports Server (NTRS)
1980-01-01
The electromagnetic fields experiment on IMP-J used two electric dipole antennas and a triaxial search coil magnetic antenna to sense the electric and magnetic field of plasma waves in space. The electric dipole antennas consisted of a fine wire, 0.021 inches in diameter, with a nominal extended tip-to-tip length of 400 ft. The outermost 50 ft. of each element was conducting and the rest of the antenna was covered with an insulating coating. The search coil antennas each consisted of a high mu core with two separate windings of 40,000 turns each to sense ac magnetic fields. The search coils had a length of 18 inches tip-to-tip and are mounted on the end of a boom. The axes of the x prime and y prime search coil antennas were parallel to the x prime and y prime electric antenna axes.
Klepper, C C; Isler, R C; Hillairet, J; Martin, E H; Colas, L; Ekedahl, A; Goniche, M; Harris, J H; Hillis, D L; Panayotis, S; Pegourié, B; Lotte, Ph; Colledani, G; Martin, V
2013-05-24
Fully dynamic Stark effect visible spectroscopy was used for the first time to directly measure the local rf electric field in the boundary plasma near a high-power antenna in high-performance, magnetically confined, fusion energy experiment. The measurement was performed in the superconducting tokamak Tore Supra, in the near field of a 1–3 MW, lower-hybrid, 3.7 GHz wave-launch antenna, and combined with modeling of neutral atom transport to estimate the local rf electric field amplitude (as low as 1–2 kV/cm) and direction in this region. The measurement was then shown to be consistent with the predicted values from a 2D full-wave propagation model. Notably the measurement confirmed that the electric field direction deviates substantially from the direction in which it is launched by the waveguides as it penetrates only a few cm radially inward into the plasma from the waveguides, consistent with the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Piezostrain tuning exchange bias mediated by electric field in composite heterostructure
NASA Astrophysics Data System (ADS)
Li, Pingping; Zhou, Cai; Wang, Wenqiang; Cao, Cuimei; Yao, Jinli; Jiang, Changjun
2017-12-01
The change of unidirectional anisotropy and uniaxial anisotropy field turned by piezostrain in an IrMn/Co/Ta/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure with an exchange bias was investigated by ferromagnetic resonance at room temperature. The curve of the magnetic resonance field versus the electric fields showed an asymmetric butterfly-like behavior, which was consistent with the result of strain versus electric field curves. This butterfly-like behavior can be attributed to the piezostrain effect. Specifically, the non-volatile uniaxial anisotropy field and unidirectional anisotropy field behavior under different electric fields induced by piezostrain effect were obtained. Our result is crucial for further application of future multiferroic devices.
An oppositely charged insect exclusion screen with gap-free multiple electric fields
NASA Astrophysics Data System (ADS)
Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi
2012-12-01
An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.
Electric field measurements during the Condor critical velocity experiment
NASA Technical Reports Server (NTRS)
Kelley, M. C.; Pfaff, R. F.; Haerendel, G.
1986-01-01
The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.
Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Menzel, Raymond L.; Roberge, Wayne G.
2013-10-01
We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.
Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.
2013-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.
MEANS AND METHOD FOR PRODUCING A VACUUM
Otavka, M.A.
1960-08-01
A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.
Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field
NASA Astrophysics Data System (ADS)
Todd, Paul; Raghavarao, Karumanchi S. M. S.
1999-11-01
Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.
New Heating Mechanism of Asteroids in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Menzel, Raymond L.; Roberge, W. G.
2013-10-01
Heating of asteroids in the early solar system has been mainly attributed to two mechanisms: the decay of short-lived radionuclides and the unipolar induction mechanism originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, unipolar induction heating is the result of the dissipation of current inside the body driven by a “motional electric field”, which appears in the asteroid’s reference frame when it is immersed in a fully-ionized, magnetized T-Tauri solar wind. However we point out a subtle conceptual error in the way that the electric field is calculated. Strictly speaking, the motional electric field used by Sonett et al. is the electric field in the free-streaming plasma far from the asteroid. For realistic assumptions about the plasma density in protoplanetary disks, the interaction between the plasma and asteroid cause the formation of a shear layer, in which the motional electric field decreases and even vanishes at the asteroid surface. We reexamine and improve the induction heating mechanism by: (1) correcting this conceptual error by using non-ideal multifluid MHD to self consistently calculate the velocity, magnetic, and electric fields in and around the shear layer; and (2) considering more realistic environments and scenarios that are consistent with current theories about protoplanetary disks. We present solutions for two highly idealized flows, which demonstrate that the electric field inside the asteroid is actually produced by magnetic field gradients in the shear layer, and can either vanish or be comparable to the fields predicted by Sonett et al. depending on the flow geometry. We term this new mechanism “electrodynamic heating”, calculate its possible upper limits, and compare them to heating generated by the decay of short-lived radionuclides.
NASA Astrophysics Data System (ADS)
Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.
2015-12-01
The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.
Interplanetary magnetic field effects on high latitude ionospheric convection
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1985-01-01
Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.
REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu
2013-10-20
We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less
On the Debye-Hückel effect of electric screening
NASA Astrophysics Data System (ADS)
Campos, L. M. B. C.; Lau, F. J. P.
2014-07-01
The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.
On the Debye–Hückel effect of electric screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, L. M. B. C.; Lau, F. J. P.
2014-07-15
The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less
Horizontal electric fields from lightning return strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, E.M.; Uman, M.A.; Johnson, J.
1985-01-01
Measurements are presented of simultaneous horizontal and vertical electric fields from both close and distant lightning return strokes. The data were obtained during summer 1984 at the Kennedy Space Center, Florida, using an electrically isolated spherical antenna having a system bandwidth of 3 Hz to 5 MHz. Lightning signals were obtained from flashes at distances from a few to 100 kilometers. Since the horizontal electric field is in part determined by the local ground conductivity, that parameter was measured as a function of depth. The horizontal fields from lightning return strokes had typically 1/50 the peak amplitude of the verticalmore » fields and waveshapes which were consistant with available theory, as expressed by the ''wavetilt'' formula.« less
Critical electric field for maximum tunability in nonlinear dielectrics
NASA Astrophysics Data System (ADS)
Akdogan, E. K.; Safari, A.
2006-09-01
The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.
Electromagnetic coupling of spins and pseudospins in bilayer graphene
NASA Astrophysics Data System (ADS)
Winkler, R.; Zülicke, U.
2015-03-01
We present a theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the electric field has a counterpart where the analogous component of the magnetic field couples to exactly the same quantities. For example, a purely electric spin splitting appears as the magneto-electric analogue of the magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Although they seem counterintuitive, our findings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We have obtained numerical values of prefactors for relevant terms. NSF Grant DMR-1310199 and Marsden Fund Contract No. VUW0719.
The Spin-Plane Double Probe Electric Field Instrument for MMS
NASA Astrophysics Data System (ADS)
Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.
2016-03-01
The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.
Electron drift velocity and mobility in graphene
NASA Astrophysics Data System (ADS)
Dong, Hai-Ming; Duan, Yi-Feng; Huang, Fei; Liu, Jin-Long
2018-04-01
We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La 2/3 Sr 1/3 MnO 3 (LSMO) films epitaxially deposited on [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 -(PbTiO 3 ) 0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥ ) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner-Wohlfarth model and first principle calculation with the electric field varying from -10 to 10 kV cm -1 . Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
NASA Astrophysics Data System (ADS)
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
Self-consistent electrostatic potential due to trapped plasma in the magnetosphere
NASA Technical Reports Server (NTRS)
Miller, Ronald H.; Khazanov, George V.
1993-01-01
A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).
Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2015-11-28
We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.
Electrical conductivity of a methane-air burning plasma under the action of weak electric fields
NASA Astrophysics Data System (ADS)
Colonna, G.; Pietanza, L. D.; D'Angola, A.; Laricchiuta, A.; Di Vita, A.
2017-02-01
This paper focuses on the calculation of the electrical conductivity of a methane-air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.
Budkov, Yu A; Kolesnikov, A L
2016-11-01
We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.
NASA Astrophysics Data System (ADS)
Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.
2017-12-01
The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.
Biological studies of swine exposed to 60-Hz electric fields. Volume 7. Neurology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-12-01
Neurophysiological responses in three generations of miniature swine chronically exposed to a 30-kV/m, 60-Hz electric field have been assessed in a series of screening experiments. Results are presented from experiments on peripheral nerve function in parental (F/sub 0/) female swine at 100 days of gestation, and from experiments on synaptic transmission in first- and second-generation (F/sub 1/ and F/sub 2/) progeny at 6 weeks of age, all following chronic exposure to a 60-Hz electric field. In the several measures of peripheral nerve function examined, only two showed consistent differences between exposed and sham-exposed animals: C-fiber (but not B-fiber) conduction velocitymore » was decreased in nerve preparations from exposed swine, and recovery, as measured by the increase in amplitude of the compound action potential, was consistently, although not statistically, less in B- and C-fibers from exposed animals when compared to values for the sham-exposed controls. Although changes (increases or decreases) in various parameters of synaptic transmission were observed between exposed and sham-exposed groups, the differences were not consistent across experiments or generations. Only one measure of synaptic function showed a consistent difference throughout the studies: the conduction velocities of B and C components of the postsynaptic compound action potential were increased following electric-field exposure (statistically significant only in B-fibers of the F/sub 2/ generations). 7 refs., 60 figs., 17 tabs.« less
ERIC Educational Resources Information Center
Saglam, Murat
2010-01-01
This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…
A high-performance electric field detector for space missions
NASA Astrophysics Data System (ADS)
Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.
2018-04-01
We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.
Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generallymore » consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab.« less
Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa
2011-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.
Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.
Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel
2015-09-01
We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.
Control of magnetism in Co by an electric field
NASA Astrophysics Data System (ADS)
Chiba, D.; Ono, T.
2013-05-01
In this paper, we review the recent experimental developments on electric-field switching of ferromagnetism in ultra-thin Co films. The application of an electric field changes the electron density at the surface of the Co film, which results in modulation of its Curie temperature. A capacitor structure consisting of a gate electrode, a solid-state dielectric insulator and a Co bottom electrode is used to observe the effect. To obtain a larger change in the electron density, we also fabricated an electric double-layer capacitor structure using an ionic liquid. A large change in the Curie temperature of ∼100 K across room temperature is achieved with this structure. The application of the electric field influences not only the Curie temperature but also the domain-wall motion. A change in the velocity of a domain wall prepared in a Co micro-wire of more than one order of magnitude is observed. Possible mechanisms to explain the above-mentioned electric-field effects in Co ultra-thin films are discussed.
Plasma rotation by electric and magnetic fields in a discharge cylinder
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Hong, S. H.
1977-01-01
A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.
Agudelo, Carlos; Packirisamy, Muthukumaran; Geitmann, Anja
2016-01-01
Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies—consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions. PMID:26804186
Methods and apparatus for controlling dispersions of nanoparticles
Lavrentovich, Oleg D; Golovin, Andrii B
2014-10-21
Electrically reconfigurable metamaterial with spatially varied refractive index is proposed for applications such as optical devices and lenses. The apparatus and method comprises a metamaterial in which the refractive indices are modified in space and time by applying one or more electric fields. The metamaterials are electrically controllable and reconfigurable, and consist of metal (gold, silver, etc.) particles of different shapes, such as rods, with dimension much smaller than the wavelength of light, dispersed in a dielectric medium. The metamaterial is controlled by applying a non-uniform electric field that causes two effects: (1) It aligns the metallic anisometric particles with respect to the direction of the applied electric field and (2) It redistributes particles in space, making their local concentration position dependent.
Phase transition studies of BiMnO3: Mean field theory approximations
NASA Astrophysics Data System (ADS)
Priya K. B, Lakshmi; Natesan, Baskaran
2015-06-01
We studied the phase transition and magneto-electric coupling effect of BiMnO3 by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO3, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO3.
Electro-aerodynamic field aided needleless electrospinning.
Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong
2018-06-08
Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h -1 ), by 350% in comparison to the setup without auxiliary field (1.0 g h -1 ), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10-30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.
Electro-aerodynamic field aided needleless electrospinning
NASA Astrophysics Data System (ADS)
Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong
2018-06-01
Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h‑1), by 350% in comparison to the setup without auxiliary field (1.0 g h‑1), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10–30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.
2009-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of plasma sheet penetration to the development of the storm-time ring current.
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.
2010-12-01
In tenuous space plasma environment, photoelectrons emitted due to solar illumination produce a high-density photoelectron cloud localized in the vicinity of a spacecraft body and an electric field sensor. The photoelectron current emitted from the sensor has also received considerable attention because it becomes a primary factor in determining floating potentials of the sunlit spacecraft and sensor bodies. Considering the fact that asymmetric photoelectron distribution between sunlit and sunless sides of the spacecraft occasionally causes a spurious sunward electric field, we require quantitative evaluation of the photoelectron distribution around the spacecraft and its influence on electric field measurements by means of a numerical approach. In the current study, we applied the Particle-in-Cell plasma simulation to the analysis of the photoelectron environment around spacecraft. By using the PIC modeling, we can self-consistently consider the plasma kinetics. This enables us to simulate the formation of the photoelectron cloud as well as the spacecraft and sensor charging in a self-consistent manner. We report the progress of an analysis on photoelectron environment around MEFISTO, which is an electric field instrument for the BepiColombo/MMO spacecraft to Mercury’s magnetosphere. The photoelectron guard electrode is a key technology for ensuring an optimum photoelectron environment. We show some simulation results on the guard electrode effects on surrounding photoelectrons and discuss a guard operation condition for producing the optimum photoelectron environment. We also deal with another important issue, that is, how the guard electrode can mitigate an undesirable influence of an asymmetric photoelectron distribution on electric field measurements.
Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T
2012-06-06
Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.
Electric field induced sheeting and breakup of dielectric liquid jets
NASA Astrophysics Data System (ADS)
Khoshnevis, Ahmad; Tsai, Scott S. H.; Esmaeilzadeh, Esmaeil
2014-01-01
We report experimental observations of the controlled deformation of a dielectric liquid jet subjected to a local high-voltage electrostatic field in the direction normal to the jet. The jet deforms to the shape of an elliptic cylinder upon application of a normal electrostatic field. As the applied electric field strength is increased, the elliptic cylindrical jet deforms permanently into a flat sheet, and eventually breaks-up into droplets. We interpret this observation—the stretch of the jet is in the normal direction to the applied electric field—qualitatively using the Taylor-Melcher leaky dielectric theory, and develop a simple scaling model that predicts the critical electric field strength for the jet-to-sheet transition. Our model shows a good agreement with experimental results, and has a form that is consistent with the classical drop deformation criterion in the Taylor-Melcher theory. Finally, we statistically analyze the resultant droplets from sheet breakup, and find that increasing the applied electric field strength improves droplet uniformity and reduces droplet size.
Energy regeneration model of self-consistent field of electron beams into electric power*
NASA Astrophysics Data System (ADS)
Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.
2016-04-01
We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-07-01
In this paper a self-consistent numerical approach to study the temperature and bias dependent characteristics of mid-infrared (mid-IR) quantum cascade lasers (QCLs) is presented which integrates a number of quantum mechanical models. The field-dependent laser parameters including the nonradiative scattering times, the detuning and energy levels, the escape activation energy, the backfilling excitation energy and dipole moment of the optical transition are calculated for a wide range of applied electric fields by a self-consistent solution of Schrodinger-Poisson equations. A detailed analysis of performance of the obtained structure is carried out within a self-consistent solution of the subband population rate equations coupled with carrier coherent transport equations through the sequential resonant tunneling, by taking into account the temperature and bias dependency of the relevant parameters. Furthermore, the heat transfer equation is included in order to calculate the carrier temperature inside the active region levels. This leads to a compact predictive model to analyze the temperature and electric field dependent characteristics of the mid-IR QCLs such as the light-current (L-I), electric field-current (F-I) and core temperature-electric field (T-F) curves. For a typical mid-IR QCL, a good agreement was found between the simulated temperature-dependent L-I characteristic and experimental data, which confirms validity of the model. It is found that the main characteristics of the device such as output power and turn-on delay time are degraded by interplay between the temperature and Stark effects.
Ferrick, Adam; Wang, Mei; Woehl, Taylor J
2018-05-29
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen
2016-04-28
We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg
The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less
Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg; ...
2018-04-15
The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less
Runaway electron behavior in the Frascati Tokamak Upgrade (FTU)
NASA Astrophysics Data System (ADS)
Popovic, Zana; Martin-Solis, Jose Ramon; Esposito, Basilio; Marocco, Daniele; Causa, Federica; Buratti, Paolo; Boncagni, Luca; Carnevale, Daniele; Gospodarczyk, Mateusz
2016-10-01
Several recent experiments in the FTU tokamak are dedicated to the study of runaway electrons (RE), both in the flattop and disruption phases of the discharge. Experiments have been carried out to evaluate the threshold electric field for RE generation during the flattop of ohmic discharges. The measured threshold electric field during RE electron generation and suppression experiments for a wide range of plasma parameters is found to be 2-5 times larger than predicted by the relativistic collisional theory, ER = nee3ln Λ/4 πɛ02 mec2, and is consistent with an increase of the critical field due to the RE synchrotron radiation. Runaway evolution has been numerically simulated using a test particle model including toroidal electric field acceleration, collisions and synchrotron radiation losses. Estimates of RE energy distribution are consistent with the measurements of two recently installed RE diagnostics: HXR-camera and RE Imaging and Spectroscopy (REIS) system. Supported by MINECO (Spain), Projects ENE2012-31753.
A study of the electric field in an open magnetospheric model
NASA Technical Reports Server (NTRS)
Stern, D. P.
1973-01-01
Recently, Svalgaard and Heppner reported two separate features of the polar electromagnetic field that correlate with the dawn-dusk component of the interplanetary magnetic field. This work attempts to explain these findings in terms of properties of the open magnetosphere. The topology and qualitative properties of the open magnetosphere are first studied by means of a simple model, consisting of a dipole in a constant field. Many such properties are found to depend on the separation line, a curve connecting neutral points and separating different field line regimes. In the simple model it turns out that the electric field in the central polar cap tends to point from dawn to dusk for a wide variety of external fields, but, near the boundary of the polar cap, electric equipotentials are deformed into crescents.
Electrophoretic mobilities of counterions and a polymer in cylindrical pores
Singh, Sunil P.; Muthukumar, M.
2014-01-01
We have simulated the transport properties of a uniformly charged flexible polymer chain and its counterions confined inside cylindrical nanopores under an external electric field. The hydrodynamic interaction is treated by describing the solvent molecules explicitly with the multiparticle collision dynamics method. The chain consisting of charged monomers and the counterions interact electrostatically with themselves and with the external electric field. We find rich behavior of the counterions around the polymer under confinement in the presence of the external electric field. The mobility of the counterions is heterogeneous depending on their location relative to the polymer. The adsorption isotherm of the counterions on the polymer depends nonlinearly on the electric field. As a result, the effective charge of the polymer exhibits a sigmoidal dependence on the electric field. This in turn leads to a nascent nonlinearity in the chain stretching and electrophoretic mobility of the polymer in terms of their dependence on the electric field. The product of the electric field and the effective polymer charge is found to be the key variable to unify our simulation data for various polymer lengths. Chain extension and the electrophoretic mobility show sigmoidal dependence on the electric field, with crossovers from the linear response regime to the nonlinear regime and then to the saturation regime. The mobility of adsorbed counterions is nonmonotonic with the electric field. For weaker and moderate fields, the adsorbed counterions move with the polymer and at higher fields they move opposite to the polymer's direction. We find that the effective charge and the mobility of the polymer decrease with a decrease in the pore radius. PMID:25240366
A three-station lightning detection system
NASA Technical Reports Server (NTRS)
Ruhnke, L. H.
1972-01-01
A three-station network is described which senses magnetic and electric fields of lightning. Directional and distance information derived from the data are used to redundantly determine lightning position. This redundancy is used to correct consistent propagation errors. A comparison is made of the relative accuracy of VLF direction finders with a newer method to determine distance to and location of lightning by the ratio of magnetic-to-electric field as observed at 400 Hz. It was found that VLF direction finders can determine lightning positions with only one-half the accuracy of the method that uses the ratio of magnetic-to-electric field.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Phase transition studies of BiMnO{sub 3}: Mean field theory approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmi Priya, K. B.; Natesan, Baskaran, E-mail: nbaski@nitt.edu
We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports.more » Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.« less
IMAGING CSEM DATA IN THE PRESENCE OF ELECTRICAL ANISOTROPY (Invited)
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Carazzone, J. J.
2009-12-01
Formation anisotropy should be incorporated into the analysis of controlled source electromagnetic (CSEM) data because failure to do so can produce serious artifacts in the resulting resistivity images for certain data configurations of interest. This finding is demonstrated in model and case studies. Sensitivity to horizontal resistivity will be strongest in the broadside electric field data where detectors are offset from the tow line. Sensitivity to the vertical resistivity is strongest for over flight data where the transmitting antenna passes directly over the detecting antenna. Consequently, consistent treatment of both over flight and broadside electric field measurements requires an anisotropic modeling assumption. To produce a consistent resistivity model for such data we employ a 3D CSEM imaging algorithm that treats transverse anisotropy. Here we demonstrate the anisotropic imaging process on model and field data sets from the North Sea and offshore Brazil. We also verify that isotropic imaging of over flight data alone produces an image generally consistent with the vertical resistivity. However, superior data fits are obtained when the same over flight data are analyzed assuming an anisotropic resistivity model.
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less
NASA Astrophysics Data System (ADS)
Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed
2015-05-01
This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.
Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo
2015-10-09
We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.
Gene delivery in conjunction with gold nanoparticle and tumor treating electric field
NASA Astrophysics Data System (ADS)
Tiwari, Pawan K.; Soo Lee, Yeon
2013-08-01
The advances in electrotherapy to treat the diseased biological cell instigate its extension in gene therapy through the delivery of gene into the nucleus. The objective of this study is to investigate the application of moderate intensity alternating electric field, also known as tumor treating electric field on a carrier system consisting of a charged gene complex conjugated to the surface of a gold nanoparticle. The gene delivery mechanism relies on the magnitude and direction of the induced electric field inside the cytoplasm in presence of carrier system. The induced electric field strength is significant in breaking the gene complex-gold nanoparticle bonding, and exerting an electric force pushing the charged gene into the nucleus. The electric force orientation is dependent on the aspect ratio (AR) of the gold nanoparticle and a relationship between them is studied via Maxwell two-dimensional (2D) finite element simulation analyzer. The development of charge density on the surface of carrier system and the required electric field strength to break the bonding are investigated utilizing the Gouy-Chapman-Grahame-Stern (GCGS) theoretical model. A carrier system having the aspect ratio of the gold nanoparticle in the range 1 < AR ≤ 5 and AR = 1 are substantial delivering cationic and anionic genes into the nucleus, respectively.
NASA Astrophysics Data System (ADS)
Anderson, Benjamin; Kuzyk, Mark G.
2014-03-01
All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013), 10.1039/c3py00263b]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain.
NASA Astrophysics Data System (ADS)
Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.
2016-12-01
Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the measurements to the high salinity frac stages. Data inversion is presently ongoing.
Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing
NASA Astrophysics Data System (ADS)
van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe
2016-09-01
Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.
Electrorheological suspensions of laponite in oil: rheometry studies.
Parmar, K P S; Méheust, Y; Schjelderupsen, Børge; Fossum, J O
2008-03-04
We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.
Electrodynamics of the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Ledvina, S. A.; Brecht, S. H.
2017-12-01
The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.
Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehghan, Ashkan; Shi, An-Chang; Schick, M.
We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates.more » In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.« less
2014-01-01
Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes. Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer duration than the QRS wave in the same lead. The proposed interpretation is applied to bundle branch blocks, fascicular (hemi-) blocks and changes during heart muscle ischemia. PMID:24506945
Remote sensing of mesospheric electric fields using MF radars
NASA Astrophysics Data System (ADS)
Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.
2004-07-01
Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been revealed. The probability of the absence of local large mesospheric electric fields amounts to approximately 25% for Ukraine and approximately 30% for Canada. A comparison of the Ukrainian and Canadian data indicates the possible existence of a latitudinal dependence in mean large mesospheric electric field features. Hence, the large electric fields are an additional source of electron heating that must be taken into account in studying a disturbed lower ionosphere and radio wave propagation within it.
Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun
NASA Astrophysics Data System (ADS)
Fursyak, Yu. A.; Abramenko, V. I.
2017-12-01
Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.
Electric-field control of spin waves in multiferroic BiFeO3: Theory
NASA Astrophysics Data System (ADS)
de Sousa, Rogério; Rovillain, P.; Gallais, Y.; Sacuto, A.; Méasson, M. A.; Colson, D.; Forget, A.; Bibes, M.; Barthélémy, A.; Cazayous, M.
2011-03-01
Our recent experiment demonstrated gigantic (30%) electric-field tuning of magnon frequencies in multiferroic BiFeO3. We demonstrate that the origin of this effect is related to two linear magnetoelectric interactions that couple the component of electric field perpendicular to the ferroelectric vector to a quadratic form of the Néel vector. We calculate the magnon spectra due to each of these interactions and show that only one of them is consistent with experimental data. At high electric fields, this interaction induces a phase transition to a homogeneous state, and the multi-magnon spectra will fuse into two magnon frequencies. We discuss the possible microscopic mechanisms responsible for this novel interaction and the prospect for applications in magnonics. We acknowledge support from NSERC-Discovery (Canada) and the Agence Nationale pour la Recherche (France).
Calculations of low-frequency radio emission by cosmic-ray-induced particle showers
NASA Astrophysics Data System (ADS)
García-Fernández, Daniel; Revenu, Benoît; Charrier, Didier; Dallier, Richard; Escudie, Antony; Martin, Lilian
2018-05-01
The radio technique for the detection of high-energy cosmic rays consists in measuring the electric field created by the particle showers created inside a medium by the primary cosmic ray. The electric field is then used to infer the properties of the primary particle. Nowadays, the radio technique is a standard, well-established technique. While most current experiments measure the field at frequencies above 20 MHz, several experiments have reported a large emission at low frequencies, below 10 MHz. The EXTASIS experiment aims at measuring again and understanding this low-frequency electric field. Since at low frequencies the standard far-field approximation for the calculation of the electric field does not necessarily hold, in order to comprehend the low-frequency emission we need to go beyond the far-field approximation. We present in this work a formula for the electric field created by a particle track inside a dielectric medium that is valid for all frequencies. We then implement this formula in the SELFAS Monte Carlo code and calculate the low-frequency electric field of the extensive air shower (EAS). We also study the electric field of a special case of the transition radiation mechanism when the EAS particles cross the air-soil boundary. We introduce the sudden death pulse, the direct emission caused by the coherent deceleration of the shower front at the boundary, as a first approximation to the whole electric field for the air-soil transition, and study its properties. We show that at frequencies larger than 20 MHz and distances larger than 100 m, the standard far-field approximation for the horizontal polarizations of the field is always accurate at the 1% level.
NASA Technical Reports Server (NTRS)
Smirnov, B. I.; Orlova, T. S.; Kaufmann, H.-J.
1995-01-01
Effect of an electrostatic field in the electrode-insulator-superconductor system on the current-voltage characteristics of high-T(sub c) ceramics with various composition and different preparation technology has been studied at 77 K. Ceramics of Y-Ba-Cu-O (123) and Bi-Pb-Sr-Ca-Cu-O (2223) systems and also ones doped by Ag have been used. Electric field strength has been up to 140 MV/m. It has been shown that there are reversible changes in the critical current I(sub c) and in the conductivity in electric field at the currents somewhat more than I(sub c) at T is less than T(sub c), while at T is greater than T(sub c) the noticeable electric field effect has not been found. These effects are qualitatively similar in both ceramic systems. High negative and positive gate voltages result in an increase of the conductivity. The electric field effect is modified by magnetic field H. The field effect decreases with increasing magnetic field and disappears at H is greater than 30 Oe. In Y-Ba-Cu-O/Ag (10 wt. percent) ceramics the field effect is practically absent. It may be supposed that in the ceramics the field-induced effect is consistent with weak links at grain boundaries.
Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film
NASA Astrophysics Data System (ADS)
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-03-01
Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.
Quantum confined stark effect on the binding energy of exciton in type II quantum heterostructure
NASA Astrophysics Data System (ADS)
Suseel, Rahul K.; Mathew, Vincent
2018-05-01
In this work, we have investigated the effect of external electric field on the strongly confined excitonic properties of CdTe/CdSe/CdTe/CdSe type-II quantum dot heterostructures. Within the effective mass approximation, we solved the Poisson-Schrodinger equations of the exciton in nanostructure using relaxation method in a self-consistent iterative manner. We changed both the external electric field and core radius of the quantum dot, to study the behavior of binding energy of exciton. Our studies show that the external electric field destroys the positional flipped state of exciton by modifying the confining potentials of electron and hole.
Field emission properties of SiO2-wrapped CNT field emitter.
Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin
2018-01-05
Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.
Field emission properties of SiO2-wrapped CNT field emitter
NASA Astrophysics Data System (ADS)
Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin
2018-01-01
Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.
Field-induced dielectric response saturation in $o$ -TaS 3
Ma, Yongchang; Lu, Cuimin; Wang, Xuewei; ...
2016-08-03
The temperature and electric field dependent conductivity spectra of o-TaS 3 sample with 10 μm 2 in cross section were measured. Besides the classical electric threshold E T₋Cl, we observed another novel threshold E T₋N at a larger electric field, where an S-shaped I-V relation revealed. The appearance of E T₋N may be due to the establishment of coherence among small charge-density- wave domains. Under a stable field E > E T-N, a sharp dispersion emerged below kHz. At a fixed temperature, the scattering rate of the charged condensate was extremely small and decreased with increasing field. With decreasing temperature,more » the scattering Fröhlic-mode conductivity would be consistent with the meta-stable state.« less
NASA Astrophysics Data System (ADS)
Ling, C. C.; Shek, Y. F.; Huang, A. P.; Fung, S.; Beling, C. D.
1999-02-01
Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au-semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region's net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ~95+/-35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.
NASA Astrophysics Data System (ADS)
Hashimoto, K. K.; Kikuchi, T.; Nagatsuma, T.; Tomizawa, I.
2016-12-01
During the stormtime Pc5 magnetic pulsations on 31 October 2003, we detected large amplitude oscillations in the ionospheric electric field with the HF Doppler sounders at midlatitude for 10 hours from 11 to 21 LT. Similar oscillations were recorded on the magnetometer data at high-to-equatorial latitudes with significant amplitude enhancement at the dayside equator. We deduced the equatorial electrojet (EEJ) by subtracting the low latitude Pc5 from the equatorial Pc5 and found that the midlatitude electric field (EF) is well correlated with the EEJ with correlation coefficients (0.80-0.95) and that the EEJ to EF ratio reached maximum at 11 LT and dramatically decreased until 18 LT in a function of cos0.6(solar zenith angle). With these observations, we suggest that the midlatitude electric field (EF) is associated with the DP2 type ionospheric currents transmitted from high latitude to the equator. It is to be noted that the EF is well correlated with the EEJ during the night after 18 LT, indicating that the Pc5 electric field is so strong as to drive equatorial electrojet in the nighttime ionosphere. Using the electric field measured by ROCSAT-1/IPEI, we confirmed that the Pc5 electric field in the mid- and low-latitude ionosphere is comparable to or even stronger than those observed by the HF Doppler sounders. High correlations between the ground- and satellite-based observations over 15 minutes indicate that the Pc5 electric field distribute uniform over 6500 km along the ROCSAT orbit which is consistent with the large-scale DP2 electric field.
London, S J; Bowman, J D; Sobel, E; Thomas, D C; Garabrant, D H; Pearce, N; Bernstein, L; Peters, J M
1994-07-01
To address the hypotheses that electrical workers are exposed to higher magnetic fields and are at higher risk of leukemia than nonelectrical workers, we performed a registry-based case-control study among men aged 20-64 years with known occupation who were diagnosed with cancer in Los Angeles County between 1972 and 1990. Controls were men with cancers other than those of the central nervous system or leukemia. Magnetic field measurements on workers in each electrical occupation and in a random sample of occupations presumed to be nonelectrical were used to estimate magnetic field exposures for each occupation. Among men in electrical occupations, 121 leukemias were diagnosed. With the exception of electrical engineers, magnetic field exposures were higher among workers in electrical occupations than in nonelectrical occupations. A weakly positive trend in leukemia risk across average occupational magnetic field exposure was observed (odds ratio [OR] per 10 milligauss increase in average magnetic field = 1.2, 95% confidence interval [CI] 1.0-1.5). A slightly stronger association was observed for chronic myloid leukemia, although only 28 cases occurred among electrical workers (OR 10 milligauss increase = 1.6, 95% CI = 1.2-2.0). The results were not materially altered by adjustment for exposure to several agents known or suspected to cause leukemia. Although not conclusive, these results are consistent with findings from studies based on job title alone that electrical workers may be at slightly increased risk of leukemia.
NASA Technical Reports Server (NTRS)
Campbell, W. H.; Zimmerman, J. E.
1979-01-01
The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.
Wahlstrand, J K; Zhang, H; Choi, S B; Sipe, J E; Cundiff, S T
2011-11-07
A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.
Electric-field-stimulated protein mechanics
Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama
2017-01-01
The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.
2015-12-28
Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less
Nonlinear waves in electron-positron-ion plasmas including charge separation
NASA Astrophysics Data System (ADS)
Mugemana, A.; Moolla, S.; Lazarus, I. J.
2017-02-01
Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.
NASA Astrophysics Data System (ADS)
Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.
2012-12-01
The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose the dynamics of the E-field associated with blue and gigantic jets.
NASA Astrophysics Data System (ADS)
Berčič, L.; Behar, E.; Nilsson, H.; Nicolaou, G.; Wieser, G. Stenberg; Wieser, M.; Goetz, C.
2018-06-01
Aims: Cometary ions are constantly produced in the coma, and once produced they are accelerated and eventually escape the coma. We describe and interpret the dynamics of the cometary ion flow, of an intermediate active comet, very close to the nucleus and in the terminator plane. Methods: We analysed in situ ion and magnetic field measurements, and characterise the velocity distribution functions (mostly using plasma moments). We propose a statistical approach over a period of one month. Results: On average, two populations were observed, separated in phase space. The motion of the first is governed by its interaction with the solar wind farther upstream, while the second one is accelerated in the inner coma and displays characteristics compatible with an ambipolar electric field. Both populations display a consistent anti-sunward velocity component. Conclusions: Cometary ions born in different regions of the coma are seen close to the nucleus of comet 67P/Churyumov-Gerasimenko with distinct motions governed in one case by the solar wind electric field and in the other case by the position relative to the nucleus. A consistent anti-sunward component is observed for all cometary ions. An asymmetry is found in the average cometary ion density in a solar wind electric field reference frame, with higher density in the negative (south) electric field hemisphere. There is no corresponding signature in the average magnetic field strength.
Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge
Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...
2013-05-08
Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less
Nano-funnels as electro-osmotic ``tweezers and pistons''
NASA Astrophysics Data System (ADS)
Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael
2014-03-01
An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.
NASA Astrophysics Data System (ADS)
Parkinson, M. L.; Dyson, P. L.; Monselesan, D. P.; Morris, R. J.
1998-03-01
Measurements of the occurrence of sporadic E (Es)-layers and F-region electric fields were obtained with a modern, HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E, 81°S CGM latitude) during the late austral summer of 1995/96. The occurrence of Es-layers was inferred from the presence of appropriate traces in normal swept-frequency ionograms, and the electric fields were inferred from F-region ``drift-mode'' velocities assuming that the plasma convection velocities given by E × B/B2 were measured, on average, by the interferometer. The theory of formation of high-latitude Es-layers predicts that electric fields directed toward the south west (SW) should be particularly effective at producing thin layers in the southern hemisphere. Our measurements made at a true polar cap station are consistent with this expectation, and are contrasted with observations made by incoherent scatter radars in the northern hemisphere, which also show the importance of SW electric fields, whereas the same theory predicts that NW electric fields should be important at northern latitudes. We reconcile the interhemispheric differences with simple calculations of ion convergence driven by the electric fields specified by the IZMIRAN electrodynamic model (IZMEM) in both hemispheres. The importance of the interplanetary magnetic field in the control of high-latitude Es formation is emphasised as an important adjunct to space weather modelling and forecasting.
Electric field dependent local structure of (KxNa1-x) 0.5B i0.5Ti O3
NASA Astrophysics Data System (ADS)
Goetzee-Barral, A. J.; Usher, T.-M.; Stevenson, T. J.; Jones, J. L.; Levin, I.; Brown, A. P.; Bell, A. J.
2017-07-01
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (KxNa1-x) 0.5B i0.5Ti O3 , as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x =0.15 , 0.18 and at the morphotropic phase boundary composition x =0.20 . X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks in the 3-4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from <110 > to <112 > -type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x . Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. The combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.; ...
2017-07-31
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Bai, Yang; He, Hui-Min; Li, Ying; ...
2015-02-19
Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less
Multi-point observations of large-amplitude electric fields during substorms obtained by THEMIS
NASA Astrophysics Data System (ADS)
Ogasawara, K.; Kasaba, Y.; Nishimura, Y.; Hori, T.; Takada, T.; Miyashita, Y.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.
2009-12-01
Large-amplitude electric fields over 100 mV/m have been observed around the equatorial magnetosphere. These electric fields may contribute to energy transport and particle acceleration in the magnetosphere [e.g., Wygant et al., 2000, 2002], and seem to be related to fast plasma flows with a size of a few Re [Nakamura et al., 2001]. In order to understand their macroscopic characteristics and the effects to magnetic activities, it is important to observe both fields and particles simultaneously at multiple locations within several Re. Five THEMIS probes can frequently provide such chances. In this paper, we show the several events with large-amplitude electric fields during substorms obtained by THEMIS. One of the events is found in 05:50-06:00 UT on 11 March 2008, when TH-D (Xsm=-10.7 Re, Ysm=4.8 Re) and TH-E (Xsm=-10.3 Re, Ysm=5.6 Re) observed intense electric fields. At 05:54 UT, THEMIS GBO-s clearly showed the auroral onset signature. The great intensification was near the SNKQ station, and this structure moved westward with the speed of ~6 km/s. It corresponds to ~200 km/s, as mapped to the TH-D/E location. The footprints of TH-A (Xsm=-6.8 Re, Ysm=-0.4 Re), D, and E were close to the site of the aurora. The location of TH-D was beside that of TH-E, and TH-A was located earthward and eastward from the former two. The enhanced electric fields observed by TH-D and E were associated with magnetic dipolarization and earthward high-speed plasma flow. They were also associated with the depletion of electron density estimated by the spacecraft potential. These features are consistent with the model of plasma bubbles [e.g., Pontius and Wolf, 1990]. The Y components of plasma flows were 200-300 km/s, roughly consistent with the westward auroral motion as mapped to the equatorial magnetosphere. Also, we found that Poynting flux of low frequency was efficient to illuminate the auroral emissions. This fact suggests that electromagnetic energy is transported to the ionosphere. On the other hand, TH-A also observed the large-amplitude electric field greater than TH-D/E. However, TH-A did not detect the high-speed plasma flow nor the depletion of the electron density. In the drift electric field, VxB, estimated from particle and magnetic field observations, TH-D and E detected intense fields, but TH-A found almost zero. This result shows a difference in the role of the electric fields in location of TH-D/E and TH-A. We will show the possible contribution from other factors, such as pressure gradient, current system, and the ionospheric conductivity.
Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.
2014-05-01
Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.
Nonlinear electric field structures in the inner magnetosphere
Malaspina, D. M.; Andersson, L.; Ergun, R. E.; ...
2014-08-28
Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less
NASA Astrophysics Data System (ADS)
Cheng, Hongbo; Ouyang, Jun; Kanno, Isaku
2017-07-01
Epitaxial Pb(Zr0.53Ti0.47)O3 films were grown on (001) Pt/(001) MgO via rf-magnetron sputtering. Switching dynamics of 90° and 180° domains under bi-polar electric fields were probed by using small-field e31 ,f measurements in which the evolution of the transverse piezoelectric response with the bias voltage represents a set of fingerprints of the evolving domain structure. Furthermore, the asymmetric e31 ,f-V curves revealed a strong built-in electric field, which was verified by the standard polarization-electric field hysteresis measurement. Finally, X-ray 2θ-scan patterns under DC bias voltages were collected for the piezoelectric specimen. The domain switching sequence indicated by the XRD results is consistent with that revealed by the e31 ,f measurement.
Effect of radio frequency waves of electromagnetic field on the tubulin.
Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi
2013-09-01
Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.
NASA Astrophysics Data System (ADS)
Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H.
2015-10-01
An electric field screen is a physical device used to exclude pest insects from greenhouses and warehouses to protect crop production and storage. The screen consists of iron insulated conductor wires (ICWs) arrayed in parallel and linked to each other, an electrostatic DC voltage generator used to supply a negative charge to the ICWs, and an earthed stainless net placed on one side of the ICW layer. The ICW was negatively charged to polarize the earthed net to create a positive charge on the ICW side surface, and an electric field formed between the opposite charges of the ICW and earthed net. The current study focused on the ability of the screen to repel insects reaching the screen net. This repulsion was a result of the insect's behaviour, i.e., the insects were deterred from entering the electric field of the screen. In fact, when the screen was negatively charged with the appropriate voltages, the insects placed their antennae inside the screen and then flew away without entering. Obviously, the insects recognized the electric field using their antennae and thereby avoided entering. Using a wide range of insects and spiders belonging to different taxonomic groups, we confirmed that the avoidance response to the electric field was common in these animals.
Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing
2017-11-08
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).
Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2016-08-01
Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.
NASA Astrophysics Data System (ADS)
Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi
2016-09-01
To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.
Application of Wave Distribution Function Method to the ERG/PWE Data
NASA Astrophysics Data System (ADS)
Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.
2017-12-01
The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.
Electrochemistry and the Earth's Core-Mantle Boundary
NASA Astrophysics Data System (ADS)
Kavner, A.; Walker, D.
2001-12-01
The Earth's core-mantle boundary consists of a highly heterogeneous metal-oxide interface subjected to high temperatures, pressures, and additionally, to the presence of a temporally- and spatially-varying electrical field generated by the outer core dynamo. An understanding of the core-mantle boundary should include the nature of its electrical behavior, its electrically induced chemical partitioning, and any resultant core-mantle dynamic coupling. To this end, we have developed a method to measure the electrical behavior of metal-silicate interfaces at high pressures (15-25 kbar) and temperatures (1300-1400° C) in a piston-cylinder apparatus. Platinum electrical leads are placed at each end of the sample, which consists of a layer of iron and/or iron alloy below a layer of silicate. The sample is enclosed in a sintered MgO chamber which is then surrounded by a metal Faraday cage, allowing the sample to be electrically insulated from the AC field of the graphite heater. The platinum electric leads are threaded through the thermocouple tube and connected with an HP4284A LCR meter to measure AC impedance, or to a DC power supply to apply a field such that either the silicate or the metal end is the anode (+). AC impedance measurements performed in-situ on samples consisting of Fe, Fe-Ni-S, and a basalt-olivine mixture in series show that conductivity is strongly dependent on the electrical polarization of the silicate relative to the sulfide. When the silicate is positively charged (silicate is the anode) and when there is no applied charge, the probe-to-probe resistance displays semiconductor behavior, with conductivity ( ~10-2 S/cm) strongly thermally activated. However, when the electrical polarity is reversed, and the sulfide is the anode, the electrical conductivity between the two probes increases dramatically (to ~1 S/cm) over timescales of minutes. If the polarity is removed or reversed, the conductivity returns to its original values over similar timescales. A second set of experiments examined the behavior of iron-silicate interfaces subjected to electric fields of 1-10 V, applied for times ranging from several minutes to several days. The samples were quenched from high temperatures, mounted, and examined using both light and electron microscopy. When the iron/iron-sulfide end is charged positively (+1-2 V) with respect to the silicate, oxides form around the platinum electrode embedded within the iron metal, suggesting the reaction Fe->Fe+2+2e- occurs in the metal. When the electric field is reversed, the silicate and MgO surrounding the + electrode turns red, implying the reaction Fe+2\\rightarrowFe^{+3}+e^{-}$ occurs at the silicate (anode end) of the sample. The richness of electrical and electrically activated chemical behavior observed at metal-silicate interfaces may be relevant to the Earth's core mantle boundary.
Fischer, Heidi; Kheifets, Leeka; Huss, Anke; Peters, Tracy L; Vermeulen, Roel; Ye, Weimin; Fang, Fang; Wiebert, Pernilla; Vergara, Ximena P; Feychting, Maria
2015-11-01
Amyotrophic lateral sclerosis (ALS) has been consistently related to "electric occupations," but associations with magnetic field levels were generally weaker than those with electrical occupations. Exposure to electric shock has been suggested as a possible explanation. Furthermore, studies were generally based on mortality or prevalence of ALS, and studies often had limited statistical power. Using two electric shock and three magnetic field job-exposure matrices, we evaluated the relationship of occupational magnetic fields, electric shocks, electric occupations, and incident ALS in a large population-based nested case-control study in Sweden. Subanalyses, specified a priori, were performed for subjects by gender and by age (less than and more than 65 years). Overall, we did not observe any associations between occupational magnetic field or electric shock exposure and ALS. For individuals less than 65 years old, high electric shock exposure was associated with an odds ratio (OR) of 1.22 (95% confidence interval [CI] = 1.03, 1.43). The corresponding result for the age group 65 years or older was OR = 0.92 (95% CI = 0.81, 1.05). Results were similar regardless which job exposure matrices, exposure definitions, or cutpoints were used. For electric occupations, ORs were close to unity, regardless of age. For welders, no association was observed overall, although for welders <65 years the OR was 1.52 (95% CI = 1.05, 2.21). In this very large population-based study based on incident ALS case subjects, we did not confirm previous observations of higher risk of ALS in electrical occupations, and provided only weak support for associations between electric shocks and ALS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.C.
This bibliography covers the field of electrical discharges in vacuum, comprising both electrical breakdown in vacuum and vacuum arcs. A brief review section lists some review papers which would be helpful to the novice in this field. The bulk of the paper consists of bibliographic listings, arranged by year of publication and within each year, alphabetically by first author. An author index refers one to all papers authored or coauthored by a particular person. There are 2450 papers listed through December 1980.
Chain of Dirac spectrum loops of nodes in crossed magnetic and electric fields
NASA Astrophysics Data System (ADS)
Gavrilenko, V. I.; Perov, A. A.; Protogenov, A. P.; Turkevich, R. V.; Chulkov, E. V.
2018-03-01
New semimetal systems along with Dirac and Weyl semimetals contain compounds, in which the energy of electron excitations vanishes not at nodes but on lines. A higher dimension of the degeneracy space changes many physical properties. We consider a chain of loops consisting of Dirac spectrum nodes in nonsymmorphic crystalline compounds placed in external mutually perpendicular magnetic and electric fields. An exact solution for the spectrum is obtained under the assumption of particle-hole symmetry. An analysis of this spectrum shows the existence of a line of critical values of the magnetic and electric fields, at which a quantum phase transition to a gapless state occurs. The use of the obtained spectrum allows also predicting a number of new oscillation and resonance effects in the field of magneto-optical phenomena.
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Déjardin, Pierre-Michel; Kalmykov, Yuri P.
2017-09-01
Analytical formulas for the electric birefringence response of interacting polar and anisotropically polarizable molecules due to a uniform alternating electric field are derived using Berne's forced rotational diffusion model [B. J. Berne, J. Chem. Phys. 62, 1154 (1975)] in the nonlinear version described by Warchol and Vaughan [J. Chem. Phys. 71, 502 (1979)]. It is found for noninteracting molecules that the signal consists of a frequency-dependent DC component superimposed on an oscillatory part with a frequency twice that of the AC driving field. However, unlike noninteracting molecules, the AC part strongly deviates from its dilute counterpart. This suggests a possible way of motivating new experimental studies of intermolecular interactions involving electro-optical methods and complementary nonlinear dielectric relaxation experiments.
Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.;
2016-01-01
In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
Fano resonances in heterogeneous dimers of silicon and gold nanospheres
NASA Astrophysics Data System (ADS)
Zhao, Qian; Yang, Zhong-Jian; He, Jun
2018-06-01
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.
Formation of Electrostatic Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2001-01-01
In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.
NASA Technical Reports Server (NTRS)
Birn, Joachim; Hesse, Michael
1994-01-01
The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.
Yoon, Yong-Joong; Kim, Wan-Chin; Park, No-Cheol; Park, Kyoung-Su; Park, Young-Pil
2009-07-01
We analyzed the behavior of the electric field in a focal plane consisting of a solid immersion lens (SIL), an air gap, and a measurement sample for radially polarized illumination in SIL-based near-field optics with an annular aperture. The analysis was based on the Debye diffraction integral and multiple beam interference. For SIL-based near-field optics whose NA is higher than unity, radially polarized light generates a smaller beam spot on the bottom surface of a SIL than circularly polarized light; however, the beam spot on the measurement sample is broadened with a more dominant transverse electric field. By introducing an annular aperture technique, it is possible to decrease the effects of the transverse electric field, and therefore the size of the beam spot on the measurement sample can be small. This analysis could have various applications in near-field optical storage, near-field microscopy, lithography at ultrahigh resolution, and other applications that use SILs for high resolution.
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Electric field measurements across the harang discontinuity. [of the auroral zone
NASA Technical Reports Server (NTRS)
Maynard, N. C.
1974-01-01
The Harang discontinuity, the area separating the positive and negative bay regions in the midnight sector of the auroral zone, is a focal point for changes in behavior of many phenomena. Through this region the electric field rotates through the west from a basically northward field in the positive bay region to a basically southward field in the negative bay region, appearing as a reversal in a single axis measurement; 32 of these reversals have been identified in the OGO-6 data from November and December, 1969. The discontinuity is dynamic in nature, moving southward and steepening its latitudinal profile as magnetic activity is increased. As activity decreases it relaxes poleward and spreads out in latitudinal width. It occurs over several hours of magnetic local time. The boundary in the electric field data is consistent with the reversal of ground magnetic disturbances from a positive to negative bay condition. The discontinuity is present in the electric field data both during substorms and during quiet times and appears to define a pattern on which other effects can occur.
Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao
2016-01-01
According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method. PMID:27294936
Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao
2016-06-10
According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method.
Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Six, N. Frank (Technical Monitor)
2002-01-01
Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.
An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field
NASA Astrophysics Data System (ADS)
Booterbaugh, A. P.; Lachhab, A.
2011-12-01
In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench and in the field.
Chin, Thomas K; Lee, Felix Y; McKinley, Ian M; Goljahi, Sam; Lynch, Christopher S; Pilon, Laurent
2012-11-01
This paper reports on direct thermal to electrical energy conversion by performing the Olsen cycle on 9.5/65/35 lead lanthanum zirconate titanate (PLZT). The Olsen cycle consists of two isothermal and two isoelectric field processes in the electric displacement versus electric field diagram. It was performed by alternatively dipping the material in hot and cold dielectric fluid baths under specified electric fields. The effects of applied electric field, sample thickness, electrode material, operating temperature, and cycle frequency on the energy and power densities were investigated. A maximum energy density of 637 ± 20 J/L/cycle was achieved at 0.054 Hz with a 250-μm-thick sample featuring Pt electrodes and coated with a silicone conformal coating. The operating temperatures varied between 3°C and 140°C and the electric field was cycled between 0.2 and 6.0 MV/m. A maximum power density of 55 ± 8 W/L was obtained at 0.125 Hz under the same operating temperatures and electric fields. The dielectric strength of the material, and therefore the energy and power densities generated, increased when the sample thickness decreased from 500 to 250 μm. Furthermore, the electrode material was found to have no significant effect on the energy and power densities for samples subject to the same operating temperatures and electric fields. However, samples with electrode material possessing thermal expansion coefficients similar to that of PLZT were capable of withstanding larger temperature swings. Finally, a fatigue test showed that the power generation gradually degraded when the sample was subject to repeated thermoelectrical loading.
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
Electric field enhanced hydrogen storage on polarizable materials substrates
Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.
2010-01-01
Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C.; Hecht, J. H.; Evans, J. S.; Boyd, A. J.
2016-12-01
We investigate how scattering of electrons by waves and of ions by field-line curvature in the inner magnetosphere affect precipitating energy flux distributions and how the precipitating particles modify the ionospheric conductivity and electric potentials during magnetic storms. We examine how particle precipitation in the evening sector affects the development of the Sub-Auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector as well as the electric field in the morning sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating particle distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are employed. Our description for the rate of ion scattering is more simplistic. We assume that the ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. We compare simulated trapped and precipitating electron/ion flux distributions with measurements from Van Allen Probes/MagEIS, POES and DMSP, respectively, to validate the particle loss models. DMSP observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons and ions on the SAPS and the inner magnetospheric electric field through the data-model comparisons.
Vertical electron transport in van der Waals heterostructures with graphene layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 111005; Otsuji, T.
We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equationmore » which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.« less
NASA Astrophysics Data System (ADS)
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
Biological proton pumping in an oscillating electric field.
Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard
2009-12-31
Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi
2016-06-08
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Wang, Yujue; Lian, Ziyang; Yao, Mingge; Wang, Ji; Hu, Hongping
2013-10-01
A power harvester with adjustable frequency, which consists of a hinged-hinged piezoelectric bimorph and a concentrated mass, is studied by the precise electric field method (PEFM), taking into account a distribution of the electric field over the thickness. Usually, using the equivalent electric field method (EEFM), the electric field is approximated as a constant value in the piezoelectric layer. Charge on the upper electrode (UEC) of the bimorph is often assumed as output charge. However, different output charge can be obtained by integrating on electric displacement over the electrode with different thickness coordinates. Therefore, an average charge (AC) on thickness is often assumed as the output value. This method is denoted EEFM AC. The flexural vibration of the bimorph is calculated by the three methods and their results are compared. Numerical results illustrate that EEFM UEC overestimates resonant frequency, output power, and efficiency. EEFM AC can accurately calculate the output power and efficiency, but underestimates resonant frequency. The performance of the harvester, which depends on concentrated mass weight, position, and circuit load, is analyzed using PEFM. The resonant frequency can be modulated 924 Hz by moving the concentrated mass along the bimorph. This feature suggests that the natural frequency of the harvester can be adjusted conveniently to adapt to frequency fluctuation of the ambient vibration.
NASA Astrophysics Data System (ADS)
Kivelson, M.; Jia, X.
2013-12-01
In previous work we demonstrated that a magnetohydrodynamic (MHD) simulation of Saturn's magnetosphere in which periodicity is imposed by rotating vortical flows in the ionosphere reproduces many reported periodically varying properties of the system. Here we shall show that previously unreported features of the MHD simulation of Saturn's magnetosphere illuminate additional measured properties of the system. By averaging over a rotation period, we identify a global electric field whose magnitude is a few tenths of a mV/m (see Figure 1). The electric field intensity decreases with radial distance in the middle magnetosphere, consistent with drift speeds v=E/B of a few km/s towards the morning side and relatively independent of radial distance. The electric field within 10 RS in the equatorial plane is oriented from post-noon to post-midnight, in excellent agreement with observations [e.g., Thomsen et al., 2012; Andriopoulou et al., 2012, 2013; Wilson et al., 2013]. By following the electric field over a full rotation phase we identify oscillatory behavior whose magnitude is consistent with the reported fluctuations of measured electric fields. Of particular interest is the nature of the fast mode perturbations that produce periodic displacement of the magnetopause and flapping of the current sheet. Figure (2) shows the total perturbation pressure (the sum of magnetic and thermal pressure) in the equatorial plane at a rotation phase for which the ionospheric flow near noon is equatorward. By following the perturbations over a full rotation period, we demonstrate properties of the fast mode wave launched by the rotating flow structures and thereby characterize the 'cam' signal originally proposed by Espinosa et al. [2003].
NASA Astrophysics Data System (ADS)
Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.
2016-09-01
Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d = 0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d = 10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.
Electrohydrodynamics of a particle-covered drop
NASA Astrophysics Data System (ADS)
Ouriemi, Malika; Vlahovska, Petia
2014-11-01
We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.
Effects of electric field on micro-scale flame properties of biobutanol fuel
Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong
2016-01-01
With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C. L.; Sazykin, S. Y.; Wolf, R.; Hecht, J. H.; Walterscheid, R. L.; Boyd, A. J.; Turner, D. L.
2015-12-01
We investigate how scattering of electrons by waves in the plasma sheet and plasmasphere affects precipitating energy flux distributions and how the precipitating electrons modify the ionospheric conductivity and electric potentials during the large 17 March 2013 magnetic storm. Of particular interest is how electron precipitation in the evening sector affects the development of the Sub-auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating electron distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. We compare simulated trapped and precipitating electron flux distributions with measurements from Van Allen Probes/MagEIS, POES/TED and MEPED, respectively, to validate the electron loss model. Ground-based (SuperDARN) and in-situ (Van Allen Probes/EFW) observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons on the SAPS and inner magnetospheric electric field through the data-model comparisons.
NASA Astrophysics Data System (ADS)
Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.
2012-10-01
A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.
Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++
NASA Astrophysics Data System (ADS)
Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.
2018-07-01
The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.
A Population Synthesis Study of Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Stanbro, M.; Dwyer, J. R.; Mailyan, B. G.; Roberts, O.
2017-12-01
In astrophysics, population synthesis models are tools used to determine what mix of stars could be consistent with the observations, e.g. how the intrinsic mass-to-light ratio changes by the measurement process. A similar technique could be used to understand the production of TGFs. The models used for this type of population study probe the conditions of electron acceleration inside the high electric field regions of thunderstorms, i.e. acceleration length, electric field strength, and beaming angles. In this work, we use a Monte Carlo code to generate bremsstrahlung photons from relativistic electrons that are accelerated by a large-scale RREA thunderstorm electric field. The code simulates the propagation of photons through the atmosphere at various source altitudes, where they interact with air via Compton scattering, pair production, and photoelectric absorption. We then show the differences in the hardness ratio at spacecraft altitude between these different simulations and compare them with TGF data from Fermi-GBM. Such comparisons can lead to constraints that can be applied to popular TGF beaming models, and help determine whether the population presented in this study is consistent or not with reality.
NASA Astrophysics Data System (ADS)
Li, L. L.; Partoens, B.; Peeters, F. M.
2018-04-01
By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
NASA Astrophysics Data System (ADS)
Grant-Jacob, James A.; Zin Oo, Swe; Carpignano, Francesca; Boden, Stuart A.; Brocklesby, William S.; Charlton, Martin D. B.; Melvin, Tracy
2016-02-01
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy
2016-02-12
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.
Chu, Ying-Hao; Martin, Lane W; Holcomb, Mikel B; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X; Ramesh, R
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO(3). The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO(3) film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co(0.9)Fe(0.1)) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
NASA Astrophysics Data System (ADS)
Chu, Ying-Hao; Martin, Lane W.; Holcomb, Mikel B.; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X.; Ramesh, R.
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO3. The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO3 film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co0.9Fe0.1) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ
NASA Astrophysics Data System (ADS)
Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gao, W.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; D'Alessandro, F.; ARGO-YBJ Collaboration
2018-02-01
A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities (m =1 , 2, 3, and ≥4 ) have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e., accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we found that this peculiar behavior can be well described by the presence of an electric field in a layer of thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates the secondary shower particles of opposite charge, modifying the number of particles with energy exceeding the detector threshold. These results, for the first time to our knowledge, give a consistent explanation for the origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray detectors during thunderstorms.
NASA Astrophysics Data System (ADS)
Lizarralde, Daniel; Chave, Alan; Hirth, Greg; Schultz, Adam
1995-09-01
We present results of a long-period magnetotelluric (MT) investigation of the electrical structure beneath the eastern North Pacific. The electric field data consist of ˜2 years of continuously recorded voltages across an unpowered, ˜4000-km-long submarine telephone cable (HAW-1) extending from Point Arena, California, to Oahu, Hawaii. The electric field measurements are coherent to some degree with magnetic field measurements from Honolulu Observatory at periods of 0.1 to 45 days. This coherence is enhanced at long periods over that observed with point electric field sensors due to horizontal averaging of the motional electric fields of spatial scale smaller than the cable length, significantly diminishing their effect. Robust, controlled leverage MT response estimates and their jacknife confidence limits are computed for the HAW-1 to Honolulu data. An equivalent scalar MT response obtained from Honolulu magnetic variations data is used to correct the HAW-1 MT response for static shift and to extend the MT response estimate to periods of 100 days. The composite response function satisfies necessary and sufficient conditions for consistency with a one-dimensional conductivity structure and is most sensitive to structure between 150 and 1000 km. Inversion of the MT response reveals a conductive zone (0.05-0.1 S/m) between 150 and 400 km depth and a positive gradient below 500 km; these observations are consistent with previous MT studies in the North Pacific. This upper mantle conductivity is too high to be explained by solid-state conduction in dry olivine using reasonable mantle geotherms. Calculations based on measurements of hydrogen solubility and diffusivity in olivine indicate that H+ dissolved in olivine, possibly combined with a lattice preferred orientation consistent with measured seismic anisotropy, provide sufficient conductivity enhancement to explain the inversion results. The high conductivity may also be explained by the presence of gravitationally stable partial melt. Comparison of the HAW-1 results with long-period MT studies conducted on land reveals differences in upper mantle conductivity between different tectonic regimes. In particular, the upper mantle beneath the Pacific Ocean is considerably more conductive than that beneath the Canadian shield and similar in conductivity to that beneath the Basin and Range.
Critical scaling analysis for displacive-type organic ferroelectrics around ferroelectric transition
NASA Astrophysics Data System (ADS)
Ding, L. J.
2017-04-01
The critical scaling properties of displacive-type organic ferroelectrics, in which the ferroelectric-paraelectric transition is induced by spin-Peierls instability, are investigated by Green's function theory through the modified Arrott plot, critical isothermal and electrocaloric effect (ECE) analysis around the transition temperature TC. It is shown that the electric entropy change - ΔS follows a power-law dependence of electric field E : - ΔS ∼En with n satisfying the Franco equation n(TC) = 1 +(β - 1) /(β + γ) = 0.618, wherein the obtained critical exponents β = 0.440 and γ = 1.030 are not only corroborated by Kouvel-Fisher method, but also confirm the Widom critical relation δ = 1 + γ / β. The self-consistency and reliability of the obtained critical exponents are further verified by the scaling equations. Additionally, a universal curve of - ΔS is constructed with rescaling temperature and electric field, so that one can extrapolate the ECE in a certain temperature and electric field range, which would be helpful in designing controlled electric refrigeration devices.
Small-amplitude oscillations of electrostatically levitated drops
NASA Astrophysics Data System (ADS)
Feng, J. Q.; Beard, K. V.
1990-07-01
The nature of axisymmetric oscillations of electrostatically levitated drops is examined using an analytical method of multiple-parameter perturbations. The solution for the quiescent equilibrium shape exhibits both stretching of the drop surface along the direction of the externally applied electric field and asymmetry about the drop's equatorial plane. In the presence of electric and gravitational fields, small-amplitude oscillations of charged drops differ from the linear modes first analyzed by Rayleigh. The oscillatory response at each frequency consists of several Legendre polynomials rather than just one, and the characteristic frequency for each axisymmetric mode decreases from that calculated by Rayleigh as the electric field strength increases. This lowering of the characteristic frequencies is enhanced by the net electric charge required for levitation against gravity. Since the contributions of the various forces appear explicitly in the analytic solutions, physical insight is readily gained into their causative role in drop behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013
2016-01-28
We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less
Performance optimization in electric field gradient focusing.
Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L
2009-01-02
Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).
NASA Astrophysics Data System (ADS)
Zhou, Cai; Wang, Fenglong; Dunzhu, Gesang; Yao, Jinli; Jiang, Changjun
2016-11-01
Non-volatile electric field-based control of magnetic anisotropy in Co2FeAl/ Pb(Mg1/3Nb2/3)O3-PbTiO3 (CFA/PMN-PT) heterostructures is investigated at room temperature. The remnant magnetization response under different electric fields shows a asymmetric butterfly-like behavior; specifically, this behavior is consistent with the asymmetric butterfly-like piezostrain versus applied electric field curve. Thus electric field-induced non-volatile 90° magnetic easy axis rotation can be attributed to the piezostrain effect. Further, the result measured by rotating-angle ferromagnetic resonance demonstrates piezostrain-mediated non-volatile 90° magnetic easy axis rotation at the initial state and the two remnant polarization states after application of the poling fields of 10 and -10 kV cm-1 turned off. The angular dependence of magnetic damping also indicates a 90° phase shift at the above mentioned three different states. Additionally, the piezostrain-mediated non-volatile stable magnetization reversal in the two directions of easy and hard magnetization axes are observed under positive and negative pulsed electric fields, which can be used to improve the performance of low-loss multiple-state memory devices.
NASA Astrophysics Data System (ADS)
Krishnaveni, T.; Renganathan, T.; Picardo, J. R.; Pushpavanam, S.
2017-09-01
We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.
Krishnaveni, T; Renganathan, T; Picardo, J R; Pushpavanam, S
2017-09-01
We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.
A model for particle confinement in a toroidal plasma subject to strong radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.
1977-01-01
The approach adopted in the NASA Lewis Bumpy Torus experiment is to confine and heat a toroidal plasma by the simultaneous application of strong dc magnetic fields and electric fields. Strong radial electric fields (about 1 kV/cm) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 trillion particles per cu cm, for which the particle containment time is 2.5 msec. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.
Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
NASA Astrophysics Data System (ADS)
Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.
2018-02-01
The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.
Co-Investigator Proposal for Enstrophy - - Filamentation of Auroral Currents
NASA Technical Reports Server (NTRS)
Kintner, Paul M.
2000-01-01
Cornell University provided three instruments for the Enstrophy experiment: an electric field meter, a plasma wave receiver, and a magnetometer for measuring FAC. The electric field meter consisted of a 6 m Weitzmann boom system with analog signal processing and 12 bit ADC, which yielded one electric field component instantaneously and a two dimensional electric field every half spin. The plasma wave receiver used the same sensing system with the addition of pre-amplifiers in the spheres to sense plasma waves up to and including the electron Langmuir frequency. Signal processing employed a variety of continuous and snap shot techniques depending on the frequency range and band width. The science magnetometer provided by Cornell University was a Billingsly design fluxgate previously used on spacecraft missions but without radiation hardening. The magnetometer was mounted on a one meter, stiff aluminum "flop-down" boom. The Enstrophy payload was launched on february 11, 1999. Because of a design flaw in the event timers, the magnetometer boom was deployed before the payload despun. As a result the magnetometer separated mechanically from the boom but maintained electrical connection. This was confirmed by the calculation of the scalar magnetic field from all three vector components of the magnetic field. However, the individual vector values had no scientific value. The electric field and plasma wave instrumentation worked as designed. The data from these instruments was provided to the University of New Hampshire and to the Principal Investigator, as proposed.
ERIC Educational Resources Information Center
Forsyth Technical Inst., Winston-Salem, NC.
This vocational physics individualized student instructional module on thermometers consists of the three units: Temperature and heat, expansion thermometers, and electrical thermometers. Designed with a laboratory orientation, experiments are included on linear expansion; making a bimetallic thermometer, a liquid-in-gas thermometer, and a gas…
NASA Technical Reports Server (NTRS)
Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.
2009-01-01
Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Segura, A.
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Bonilla, L L; Carretero, M; Segura, A
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Substorm Birkeland currents and Cowling channels in the ionosphere
NASA Astrophysics Data System (ADS)
Fujii, R.
2016-12-01
Field-aligned current (FAC) connects electromagnetically the ionosphere with the magnetosphere and plays important roles on dynamics and energetics in the magnetosphere and the ionosphere. In particular, connections between FACs in the ionosphere give important information on various current sources in the magnetosphere and the linkage between them, although the connection between FACs in the ionosphere does not straightforwardly give that in the magnetosphere. FACs in the ionosphere are closed to each other through ionospheric currents determined with the electric field and the Hall and Pedersen conductivities. The electric field and the conductivities are not independently distributed, but rather they are harmonized with each other spatially and temporarily in a physically consistent manner to give a certain FAC. In particular, the divergence of the Hall current due to the inhomogeneity of the Hall conductivity either flows in/out to the magnetosphere as a secondary FAC or accumulates excess charges that produce a secondary electric field. This electric field drives a current circuit connecting the Hall current with the Pedersen current; a Cowling channel current circuit. The FAC (the electric field) we observe is the sum of the primary and secondary FACs (electric fields). The talk will present characteristics of FACs and associated electric field and auroras during substorms, and the ionospheric current closures between the FACs. A statistical study has shown that the majority of region 1 currents are connected to their adjacent region 2 or region 0 currents, indicating the Pedersen current closure rather than the Hall current closure is dominant. On the other hand, the Pedersen currents associated with surge and substorm-related auroras often are connected to the Hall currents, forming a Cowling channel current circuit within the ionosphere.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.
2010-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.
Direct Simulation of Extinction in a Slab of Spherical Particles
NASA Technical Reports Server (NTRS)
Mackowski, D.W.; Mishchenko, Michael I.
2013-01-01
The exact multiple sphere superposition method is used to calculate the coherent and incoherent contributions to the ensemble-averaged electric field amplitude and Poynting vector in systems of randomly positioned nonabsorbing spherical particles. The target systems consist of cylindrical volumes, with radius several times larger than length, containing spheres with positional configurations generated by a Monte Carlo sampling method. Spatially dependent values for coherent electric field amplitude, coherent energy flux, and diffuse energy flux, are calculated by averaging of exact local field and flux values over multiple configurations and over spatially independent directions for fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal exponential attenuation of the coherent field and the coherent energy flux inside the particulate layer and thereby further corroborate the general methodology of the microphysical radiative transfer theory. An effective medium model based on plane wave transmission and reflection by a plane layer is used to model the dependence of the coherent electric field on particle packing density. The effective attenuation coefficient of the random medium, computed from the direct simulations, is found to agree closely with effective medium theories and with measurements. In addition, the simulation results reveal the presence of a counter-propagating component to the coherent field, which arises due to the internal reflection of the main coherent field component by the target boundary. The characteristics of the diffuse flux are compared to, and found to be consistent with, a model based on the diffusion approximation of the radiative transfer theory.
NASA Astrophysics Data System (ADS)
Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.
2011-12-01
Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Shear flow of one-component polarizable fluid in a strong electric field
NASA Astrophysics Data System (ADS)
Sun, J. M.; Tao, R.
1996-04-01
A shear flow of one-component polarizable fluid in a strong electric field has a structural transition at a critical shear stress. When the shear stress is increased from zero up to the critical shear stress, the flow (in the x direction) has a flowing-chain (FC) structure, consisting of tilted or broken chains along the field (z direction). At the critical shear stress, the FC structure gives way to a flowing-hexagonal-layered (FHL) structure, consisting of several two-dimensional layers which are parallel to the x-z plane. Within one layer, particles form strings in the flow direction. Strings are constantly sliding over particles in strings right beneath. The effective viscosity drops dramatically at the structural change. As the shear stress reduces, the FHL structure persists even under a stress-free state if the thermal fluctuation is very weak. This structure change in the charging and discharging process produces a large hysteresis.
Observations of double layer-like and soliton-like structures in the ionosphere
NASA Technical Reports Server (NTRS)
Boehm, M. H.; Carlson, C. W.; Mcfadden, J.; Mozer, F. S.
1984-01-01
Two types of large electric field signatures, individual pulses and pulse trains, were observed on a sounding rocket launched into the afternoon auroral zone on January 21, 1982. The typical electric fields in the individual pulses were 50 mV/m or larger, aligned mostly parallel to B, and the corresponding potentials were at leat 100 mV (kT approximately 0.3 eV). A lower limit of 15 km/sec can be set on the velocity of these structures, indicating that they were not ion acoustic double layers. The pulse trains, each consisting of on the order of 100 pulses, were observed in close association with intense plasma frequency waves. This correlation is consistent with the interpretation of these trains as Langmuir solitons. The pulse trains correlate better with the intensity of the field-aligned currents than with the energetic electron flux.
Biological proton pumping in an oscillating electric field
Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard
2010-01-01
Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that the proton pumping efficiency and the electronic currents in steady state both depend significantly and distinctly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant kinetic modes that show reaction steps consistent with an electron-gated pumping mechanism. PMID:20366348
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim; Joseph, Ilon
2015-11-01
Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).
Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo
2014-07-21
This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.
2016-06-15
The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.R.; Smith, H.D.; Orr, J.L.
Experiments conducted with laboratory rodents indicate that exposure to 60 Hz electric fields or magnetic fields can suppress nocturnal melatonin concentrations in pineal gland and blood. In three experiments employing three field-exposed and three sham-exposed nonhuman primates, each implanted with an indwelling venous cannula to allow repeated blood sampling, the authors studied the effects of either 6 kV/m and 50 {micro}T (0.5 G) or 30 kV/m and 100 {micro}T (1.0 G) on serum melatonin patterns. The fields were ramped on and off slowly, so that no transients occurred. Extensive quality control for the melatonin assay, computerized control and monitoring ofmore » field intensities, and consistent exposure protocols were used. No changes in nocturnal serum melatonin concentration resulted from 6 weeks of day-time exposure with slow field onset/offset and a highly regular exposure protocol. These results indicate that, under the conditions tested, day-time exposure to 60 Hz electric and magnetic fields in combination does not result in melatonin suppression in primates.« less
Probing-models for interdigitated electrode systems with ferroelectric thin films
NASA Astrophysics Data System (ADS)
Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul
2018-05-01
In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.
Modeling Electric Field Influences on Plasmaspheric Refilling
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Kozyra, J. U.; Khazanov, G. V.; Craven, Paul D.
1998-01-01
We have a new model of ion transport that we have applied to the problem of plasmaspheric flux tube refilling after a geomagnetic disturbance. This model solves the Fokker-Planck kinetic equation by applying discrete difference numerical schemes to the various operators. Features of the model include a time-varying ionospheric source, self-consistent Coulomb collisions, field-aligned electric field, hot plasma interactions, and ion cyclotron wave heating. We see refilling rates similar to those of earlier observations and models, except when the electric field is included. In this case, the refilling rates can be quite different that previously predicted. Depending on the populations included and the values of relevant parameters, trap zone densities can increase or decrease. In particular, the inclusion of hot populations near the equatorial region (specifically warm pancake distributions and ring current ions) can dramatically alter the refilling rate. Results are compared with observations as well as previous hydrodynamic and kinetic particle model simulations.
En route to surface-bound electric field-driven molecular motors.
Jian, Huahua; Tour, James M
2003-06-27
Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.
NASA Astrophysics Data System (ADS)
Biagi, C. J.; Cummins, K. L.
2015-12-01
The growing possibility of inexpensive airborne observations of electric fields using one or more small UAVs increases the importance of understanding what can be determined about cloud electrification and associated electric fields outside cloud boundaries. If important information can be inferred from carefully selected flight paths outside of a cloud, then the aircraft and its instrumentation will be much cheaper to develop and much safer to operate. These facts have led us to revisit this long-standing topic using quasi-static, finite-element modeling inside and outside arbitrarily shaped clouds with a variety of internal charge distributions. In particular, we examine the effect of screening layers on electric fields outside of electrified clouds by comparing modeling results for charged clouds having electrical conductivities that are both equal to and lower than the surrounding clear air. The comparisons indicate that the spatial structure of the electric field is approximately the same regardless of the difference in the conductivities between the cloud and clear air and the formation of a screening layer, even for altitude-dependent electrical conductivities. This result is consistent with the numerical modeling results reported by Driscoll et al [1992]. The similarity of the spatial structure of the electric field outside of clouds with and without a screening layer suggests that "bulk" properties related to cloud electrification might be determined using measurements of the electric field at multiple locations in space outside the cloud, particularly at altitude. Finally, for this somewhat simplified model, the reduction in electric field magnitude outside the cloud due to the presence of a screening layer exhibits a simple dependence on the difference in conductivity between the cloud and clear air. These results are particularly relevant for studying clouds that are not producing lightning, such as developing thunderstorms and decaying anvils associated with mature storm systems.Driscoll K.T., R.J. Blakeslee, M.E. Baginski, 1992, A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms, J. Geophys. Res., 97, D11, pp 11535-11551.
Modeling and simulation of deformation of hydrogels responding to electric stimulus.
Li, Hua; Luo, Rongmo; Lam, K Y
2007-01-01
A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.
Equatorial measurement of SAID electric fields and relation with the plasmapause location
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Wygant, J.; Ono, T.; Iizima, M.; Kumamoto, A.; Brautigam, D.; Rich, F.
2007-12-01
In order to investigate the equatorial source of subauroral ion drifts (SAID) and its association with the plasmapause position, multi-spacecraft measurements of SAID are presented using the CRRES, Akebono, and DMSP. Direct measurement of the convection electric field and plasmapause density close to the equator is measured by the electric field instrument onboard the CRRES satellite, and the plasmasheet electrons and low energy part of the ring current ions are measured by the low energy plasma instrument. The CRRES satellite is on the dusk inner magnetosphere, and the DMSP-F8 and Akebono satellites are approximately on the same field line. Associated with a substorm onset at 16:40 UT on February 20, 1991, the DMSP-F8 satellite at 19 MLT measures SAID with a maximum westward velocity of 1,500 m/s. The CRRES satellite is on outbound in the inner magnetosphere at ~21 MLT and ~5 RE at the onset of the substorm. It measures increase of DC electric field with 0.4 mV/m in the plasmasphere just after the substorm onset. Thirty minutes later, injection of ring current ions are observed in the plasmasphere with Bz decrease. After the crossing of the plasmapause, the electric field increases to 0.8 mV/m. At the same time, the spacecraft enters the plasmasheet, and the DC electric field disappears. The same time sequence is also identified in other SAID events detected on the dusk inner magnetosphere. The above CRRES measurement indicates that DC electric field is intensified in a narrow region between the ring current and electron plasmasheet after the onset of the substorm. Although the E*B drift points sunward in this region, this region with enhanced electric field is filled with plasmaspheric plasma without abrupt density change. The position where the convection electric field is equal to the corotation electric field locates inside the plasmapause. The plasmapause coincides with inner edge of the plasmasheet. This association suggests that the plasmaspheric plasma is depleted by the plasmasheet electrons, possibly by the enhanced E*B drift earthward of the plasmasheet. During the SAID event on 16:40 UT on February 20, 1991, the Akebono satellite was approximately on the same field line of the CRRES satellite (21 MLT and 5 RE) 40 minutes later the substorm onset. It measures enhancement of electric field with 2 mV/m between L=5 and 6. The inner edge of the electric field corresponds to the inner edge of ring current ions, and the outer edge coincides with the plasmasheet electrons. This signature of the electric field intensification in the charge-separated region is in accordance with the CRRES measurement. This study has clarified that the equatorial source of SAID electric fields is charge separation of ring current ions and plasmasheet electrons by electric field associated with substorms. This is consistent with the theoretical study by Southwood and Wolf [1978] and low-altitude measurements by Anderson et al. [2001] by that the charge separation provides current and voltage sources and the electric field is increased by the low conductance of the subauroral ionosphere.
Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole
ERIC Educational Resources Information Center
Leung, P. T.
2008-01-01
The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…
Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo.
Henshaw, Joshua W; Zaharoff, David A; Mossop, Brian J; Yuan, Fan
2007-11-01
Local pulsed electric field application is a method for improving non-viral gene delivery. Mechanisms of the improvement include electroporation and electrophoresis. To understand how electrophoresis affects pDNA delivery in vivo, we quantified the magnitude of electric field-induced interstitial transport of pDNA in 4T1 and B16.F10 tumors implanted in mouse dorsal skin-fold chambers. Four different electric pulse sequences were used in this study, each consisted of 10 identical pulses that were 100 or 400 V/cm in strength and 20 or 50 ms in duration. The interval between consecutive pulses was 1 s. The largest distance of transport was obtained with the 400 V/cm and 50 ms pulse, and was 0.23 and 0.22 microm/pulse in 4T1 and B16.F10 tumors, respectively. There were no significant differences in transport distances between 4T1 and B16.F10 tumors. Results from in vivo mapping and numerical simulations revealed an approximately uniform intratumoral electric field that was predominantly in the direction of the applied field. The data in the study suggested that interstitial transport of pDNA induced by a sequence of ten electric pulses was ineffective for macroscopic delivery of genes in tumors. However, the induced transport was more efficient than passive diffusion.
Contact discontinuities in a cold collision-free two-beam plasma
NASA Technical Reports Server (NTRS)
Kirkland, K. B.; Sonnerup, B. U. O.
1982-01-01
The structure of contact discontinuities in a collision-free plasma is examined using a model of a plasma which consists of two oppositely directed cold ion beams and a background of cold massless electrons such that exact charge neutrality is maintained and that the electric field is zero. The basic equations describing self-consistent equilibria are obtained for the more general situation where a net flow across the layer takes place and where the magnetic field has two nonzero tangential components but where the electric field remains zero. These equations are then specialized to the case of no net plasma flow where one of the tangential components is zero, and four different classes of sheets are obtained, all having thickness the order of the ion inertial length. The first class is for layers separating two identical plasma and magnetic field regions, the second is for an infinite array of parallel layers producing an undulated magnetic field, the third is for layers containing trapped ions in closed orbits which separate two vacuum regions with uniform identical magnetic fields, and the fourth is for layers which reflect a single plasma beam, leaving a vacuum with a reversed and compressed tangential field on the other side.
NASA Technical Reports Server (NTRS)
Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.;
2012-01-01
We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.
NASA Technical Reports Server (NTRS)
Soula, Serge; Chauzy, Serge
1991-01-01
During the Florida 89 experiment at Kennedy Space Center, a new system was used in order to obtain the vertical distribution of the electric field underneath thunderstorms. It consists of a standard shutter field mill at ground level and five other field sensors suspended from a cable fastened to a tethered balloon located at an altitude of about 1000 meters. It also includes a reception station for telemetered information transmitted by sensors, a processing system in order to store data, and real time display on a screen to show the simultaneous field variations at each level along with the instantaneous electric field profile. The first results obtained show the great importance of the electric field vertical distribution. The field detected at a height of 600m reaches 65 kV/m while that at the surface does not exceed 5 kV/m. The field intensity in altitude is a better criterion for determining the right moment to launch a rocket devoted to flash triggering. Using Gauss's law, the simultaneous field variations at several levels are used in order to evaluate charge densities. Average values close to 1nC.m(-3) are calculated in layers up to 600 m. The calculation of different average charge densities leads to the characterization of the layer between cloud and ground just before the leader propagation in the case of cloud to ground flash.
Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G
2017-01-11
We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.
Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field
NASA Astrophysics Data System (ADS)
Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli
2017-08-01
Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi
2016-01-01
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature. PMID:27271984
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; ...
2016-06-08
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O 3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO 3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier loweringmore » by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.« less
Generalized noise terms for the quantized fluctuational electrodynamics
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani
2017-03-01
The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.
Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.
Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S
2016-06-10
The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.
The latitudinal structure of Pc 5 waves in space - Magnetic and electric field observations
NASA Technical Reports Server (NTRS)
Singer, H. J.; Kivelson, M. G.
1979-01-01
The occurrence frequency and spatial structure of Pc 5 magnetic pulsations in the dawnside of the plasma trough have been studied using data from the Ogo 5 satellite. The wave magnetic fields were obtained from the University of California, Los Angeles, flux-gate magnetometer measurements, and one component of the wave electric field was inferred from oscillations of the ion flux measured by the Lockheed light ion mass spectrometer. During portions of seven of the 19 passes comprising the survey, Pc 5 oscillations were observed in the ion flux but not in the magnetic field, and in each case the satellite was within 10 deg of the geomagnetic equator. Above 10 deg latitude, transverse magnetic and electric oscillations were both observed. The results are consistent with the model of a standing Alfven wave along a resonant field line with the geomagnetic equator as a node of the magnetic perturbation, that is, an odd mode.
NASA Astrophysics Data System (ADS)
Dong, Shuai; Wang, Xiaojie
2018-03-01
Conductive polymer composites (CPCs) consist of multi-walled carbon nanotubes (MWCNTs), a few carbonyl iron particles (CIPs) and polydimethylsiloxane (PDMS) are fabricated under a moderate magnetic field. The alignment of CIPs will change the structure of MWCNT network, and consequently the electrical properties of CPCs. The volume fraction of CIPs is fixed at 0.08 vol% at which CIPs will not directly participate in electric conduction. The electrical resistivity of CPCs and the changes of resistance versus strain are evaluated at various MWCNT volume fractions. The testing results show that a percolation threshold as low as 0.19 vol% is obtained due to the effect of aligned CIPs, comparing with 0.39 vol% of isotropic MWCNT/CIP/PDMS (prepared without magnetic field). Meanwhile, the anisotropic structure reduces the electrical resistivity by more than 80% when the MWCNT volume fractions is over the percolation threshold.
NASA Astrophysics Data System (ADS)
Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua
2017-08-01
Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.
NASA Technical Reports Server (NTRS)
Harker, K. J.
1975-01-01
The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.
Control of the electromagnetic drag using fluctuating light fields
NASA Astrophysics Data System (ADS)
Pastor, Víctor J. López; Marqués, Manuel I.
2018-05-01
An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.
Achieving bifunctional cloak via combination of passive and active schemes
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji
2016-11-01
In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
NASA Astrophysics Data System (ADS)
Hinterreiter, J.; Veronig, A. M.; Thalmann, J. K.; Tschernitz, J.; Pötzi, W.
2018-03-01
A statistical study of the chromospheric ribbon evolution in Hα two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s-1). The local reconnection electric field of confined (cc=0.50 ±0.02) and eruptive (cc=0.77 ±0.03) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.
Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-01-01
Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C
2015-05-01
Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.
Effect of pulsed electric field on the rheological and colour properties of soy milk.
Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K
2011-12-01
The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.
Magnetic ordering-induced multiferroic behavior in [CH 3NH 3][Co(HCOO) 3] metal-organic framework.
Gomez-Aguirre, Lilian Claudia; Zapf, Vivien S.; Pato-Doldan, Breogan; ...
2015-12-30
Here, we present the first example of magnetic ordering-induced multiferroic behavior in a metal–organic framework magnet. This compound is [CH 3NH 3][Co(HCOO) 3] with a perovskite-like structure. The A-site [CH 3NH 3] + cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii–Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is appliedmore » along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.« less
NASA Astrophysics Data System (ADS)
Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.
2014-10-01
In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.
Controlled alignment of carbon nanofibers in a large-scale synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Whealton, J. H.; Raridon, R. J.
2002-06-01
Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the electric field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the electric field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.
Thermo-electric transport in gauge/gravity models with momentum dissipation
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele
2014-09-01
We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.
NASA Astrophysics Data System (ADS)
Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue
2017-04-01
In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.
NASA Astrophysics Data System (ADS)
Pan, Yanqiao; Huang, YongAn; Guo, Lei; Ding, Yajiang; Yin, Zhouping
2015-04-01
It is critical and challenging to achieve the individual jetting ability and high consistency in multi-nozzle electrohydrodynamic jet printing (E-jet printing). We proposed multi-level voltage method (MVM) to implement the addressable E-jet printing using multiple parallel nozzles with high consistency. The fabricated multi-nozzle printhead for MVM consists of three parts: PMMA holder, stainless steel capillaries (27G, outer diameter 400 μm) and FR-4 extractor layer. The key of MVM is to control the maximum meniscus electric field on each nozzle. The individual jetting control can be implemented when the rings under the jetting nozzles are 0 kV and the other rings are 0.5 kV. The onset electric field for each nozzle is ˜3.4 kV/mm by numerical simulation. Furthermore, a series of printing experiments are performed to show the advantage of MVM in printing consistency than the "one-voltage method" and "improved E-jet method", by combination with finite element analyses. The good dimension consistency (274μm, 276μm, 280μm) and position consistency of the droplet array on the hydrophobic Si substrate verified the enhancements. It shows that MVM is an effective technique to implement the addressable E-jet printing with multiple parallel nozzles in high consistency.
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Lin, Shih-Yin; Singh, Chandralekha
2017-12-01
Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students' representational consistency. Students in calculus-based introductory physics were given a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution in which they were asked to write a mathematical expression for the electric field in various regions and then plot the electric field. In study 1, we found that students had great difficulty in plotting the electric field as a function of the distance from the center of the sphere consistent with the mathematical expressions in various regions, and interviews with students suggested possible reasons which may account for this difficulty. Therefore, in study 2, we designed two scaffolding interventions with levels of support which built on each other (i.e., the second scaffolding level built on the first) in order to help students plot their expressions consistently and compared the performance of students provided with scaffolding with a comparison group which was not given any scaffolding support. Analysis of student performance with different levels of scaffolding reveals that scaffolding from an expert perspective beyond a certain level may sometimes hinder student performance and students may not even discern the relevance of the additional support. We provide possible interpretations for these findings based on in-depth, think-aloud student interviews.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
NASA Astrophysics Data System (ADS)
Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J.; Miranda, Pedro C.
2015-09-01
Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm-1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm-1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.
Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2015-09-21
Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm(-1). Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm(-1), independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.
Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2015-01-01
Tumor Treating Fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1 - 3 V/cm. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V/cm, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields. PMID:26350296
Electrodynamic properties and height of atmospheric convective boundary layer
NASA Astrophysics Data System (ADS)
Anisimov, S. V.; Galichenko, S. V.; Mareev, E. A.
2017-09-01
We consider the relations between the mixed layer height and atmospheric electric parameters affected by convective mixing. Vertical turbulent transport of radon, its progeny and electrically charged particles is described under Lagrangian stochastic framework, which is the next step to develop a consistent model for the formation of electrical conditions in the atmospheric boundary layer. Using the data from detailed and complex measurements of vertical profiles of the temperature and turbulence statistics as input, we calculated non-stationary vertical profiles of radon and its daughter products concentrations, atmospheric electric conductivity and intensity of electric field in the convective boundary layer from the morning transition through early afternoon quasi-stationary conditions. These profiles demonstrate substantial variability due to the changing turbulent regime in the evolving boundary layer. We obtained quantitative estimates of the atmospheric electric field variability range essentially related to the sunrise and convection development. It is shown that the local change in the electrical conductivity is the only factor that can change the intensity of electric field at the earth's surface more than twice during the transition from night to day. The established relations between electric and turbulent parameters of the boundary layer indicate that the effect of sunrise is more pronounced in the case when development of convection is accompanied by an increase in aerosol concentration and, hence, a decrease in local conductivity.
NASA Technical Reports Server (NTRS)
Goodrich, C. C.; Scudder, J. D.
1984-01-01
The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.
Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.
2017-01-01
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654
NASA Technical Reports Server (NTRS)
Liemohn, Michael W.; Ridley, Aaron J.; Kozyra, Janet U.; Gallagher, Dennis L.; Thomsen, Michelle F.; Henderson, Michael G.; Denton, Michael H.; Brandt, Pontus C.; Goldstein, Jerry
2006-01-01
The storm-time inner magnetospheric electric field morphology and dynamics are assessed by comparing numerical modeling results of the plasmasphere and ring current with many in situ and remote sensing data sets. Two magnetic storms are analyzed, April 22,2001 and October 21-23,2001, which are the events selected for the Geospace Environment Modeling (GEM) Inner Magnetosphere/Storms (IM/S) Assessment Challenge (IMSAC). The IMSAC seeks to quantify the accuracy of inner magnetospheric models as well as synthesize our understanding of this region. For each storm, the ring current-atmosphere interaction model (RAM) and the dynamic global core plasma model (DGCPM) were run together with various settings for the large-scale convection electric field and the nightside ionospheric conductance. DGCPM plasmaspheric parameters were compared with IMAGE-EUV plasmapause extractions and LANL-MPA plume locations and velocities. RAM parameters were compared with Dst*, LANL-MPA fluxes and moments, IMAGE-MENA images, and IMAGE-HENA images. Both qualitative and quantitative comparisons were made to determine the electric field morphology that allows the model results to best fit the plasma data at various times during these events. The simulations with self-consistent electric fields were, in general, better than those with prescribed field choices. This indicates that the time-dependent modulation of the inner magnetospheric electric fields by the nightside ionosphere is quite significant for accurate determination of these fields (and their effects). It was determined that a shielded Volland-Stern field description driven by the 3-hour Kp index yields accurate results much of the time, but can be quite inconsistent. The modified Mcllwain field description clearly lagged in overall accuracy compared to the other fields, but matched some data sets (like Dst*) quite well. The rankings between the simulations varied depending on the storm and the individual data sets, indicating that each field description did well for some place, time, and energy range during the events, as well as doing less well in other places, times, and energies. Several unresolved issues regarding the storm-time inner magnetospheric electric field are discussed.
NASA Astrophysics Data System (ADS)
Pommier, A.; Tarits, P.; Hautot, S.; Pichavant, M.; Scaillet, B.; Gaillard, F.
2010-07-01
A model of the electrical resistivity of Mt. Vesuvius has been elaborated to investigate the present structure of the volcanic edifice. The model is based on electrical conductivity measurements in the laboratory, on geophysical information, in particular, magnetotelluric (MT) data, and on petrological and geochemical constraints. Both 1-D and 3-D simulations explored the effect of depth, volume and resistivity of either one or two reservoirs in the structure. For each configuration tested, modeled MT transfer functions were compared to field transfer functions from field magnetotelluric studies. The field electrical data are reproduced with a shallow and very conductive layer (˜0.5 km depth, 1.2 km thick, 5 ohm.m resistive) that most likely corresponds to a saline brine present beneath the volcano. Our results are also compatible with the presence of cooling magma batches at shallow depths (<3-4 km depth). The presence of a deeper body at ˜8 km depth, as suggested by seismic studies, is consistent with the observed field transfer functions if such a body has an electrical resistivity > ˜100 ohm.m. According to a petro-physical conductivity model, such a resistivity value is in agreement either with a low-temperature, crystal-rich magma chamber or with a small quantity of hotter magma interconnected in the resistive surrounding carbonates. However, the low quality of MT field data at long periods prevent from placing strong constraints on a potential deep magma reservoir. A comparison with seismic velocity values tends to support the second hypothesis. Our findings would be consistent with a deep structure (8-10 km depth) made of a tephriphonolitic magma at 1000°C, containing 3.5 wt%H2O, 30 vol.% crystals, and interconnected in carbonates in proportions ˜45% melt -55% carbonates.
Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2008-01-01
An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.
Designing a Wien Filter Model with General Particle Tracer
NASA Astrophysics Data System (ADS)
Mitchell, John; Hofler, Alicia
2017-09-01
The Continuous Electron Beam Accelerator Facility injector employs a beamline component called a Wien filter which is typically used to select charged particles of a certain velocity. The Wien filter is also used to rotate the polarization of a beam for parity violation experiments. The Wien filter consists of perpendicular electric and magnetic fields. The electric field changes the spin orientation, but also imposes a transverse kick which is compensated for by the magnetic field. The focus of this project was to create a simulation of the Wien filter using General Particle Tracer. The results from these simulations were vetted against machine data to analyze the accuracy of the Wien model. Due to the close agreement between simulation and experiment, the data suggest that the Wien filter model is accurate. The model allows a user to input either the desired electric or magnetic field of the Wien filter along with the beam energy as parameters, and is able to calculate the perpendicular field strength required to keep the beam on axis. The updated model will aid in future diagnostic tests of any beamline component downstream of the Wien filter, and allow users to easily calculate the electric and magnetic fields needed for the filter to function properly. Funding support provided by DOE Office of Science's Student Undergraduate Laboratory Internship program.
Calculations of the Electric Fields in Liquid Solutions
Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.
2014-01-01
The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155
Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid
NASA Astrophysics Data System (ADS)
Timko, M.; Kopčanský, P.; Marton, K.; Tomčo, L.; Koneracká, M.
2010-01-01
The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 106 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Imaging local electric fields produced upon synchrotron X-ray exposure
Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...
2014-12-31
Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less
Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian
2018-05-09
Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.
Design of belt conveyor electric control device based on CC-link bus
NASA Astrophysics Data System (ADS)
Chen, Goufen; Zhan, Minhua; Li, Jiehua
2016-01-01
In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.
Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A
2014-12-01
Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.
NASA Astrophysics Data System (ADS)
Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A.
2014-12-01
Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.
Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks
Paz-Soldan, Carlos; Cooper, Christopher M.; Aleynikov, Pavel; ...
2017-06-22
Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature andmore » reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation ofHXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.« less
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.
2017-04-01
Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
Characterizing Electric Field Exposed P3HT Thin Films Using Polarized-Light Spectroscopies
Bhattacharjee, Ujjal; Elshobaki, Moneim; Santra, Kalyan; ...
2016-06-23
P3HT (poly (3-hexylthiophene)) has been widely used as a donor in the active layer in organic photovoltaic devices. Although moderately high-power conversion efficiencies have been achieved with P3HT-based devices, structural details, such as the orientation of polymer units and the extent of H- and J-aggregation are not yet fully understood; and different measures have been taken to control the ordering in the material. One such measure, which we have exploited, is to apply an electric field from a Van de Graaff generator. We used fluorescence (to measure anisotropy instead of polarization, which is more commonly measured) and Raman spectroscopy tomore » characterize the order of P3HT molecules in thin films resulting from the field. We determine preferential orientations of the units in a thin film, consistent with observed hole mobility in thin-film-transistors, and observe that the apparent H-coupling strength changes when the films are exposed to oriented electrical fields during drying.« less
Electron avalanche structure determined by random walk theory
NASA Technical Reports Server (NTRS)
Englert, G. W.
1973-01-01
A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.
NASA Technical Reports Server (NTRS)
Marcum, H.; Moore, R.
1990-01-01
Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.
Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2016-08-15
The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less
Pyroelectricity as a possible mechanism for cell membrane permeabilization.
García-Sánchez, Tomás; Muscat, Adeline; Leray, Isabelle; Mir, Lluis M
2018-02-01
The effects of pyroelectricity on cell membrane permeability had never been explored. Pyroelectricity consists in the generation of an electric field in the surface of some materials when a change in temperature is produced. In the present study, tourmaline microparticles, which are known to display pyroelectrical properties, were subjected to different changes in temperature upon exposure to cells in order to induce an electric field at their surface. Then, the changes in the permeability of the cell membrane to a cytotoxic agent (bleomycin) were assessed by a cloning efficacy test. An increase in the permeability of the cell membrane was only detected when tourmaline was subjected to a change in temperature. This suggests that the apparition of an induced pyroelectrical electric field on the material could actually be involved in the observed enhancement of the cell membrane permeability as a result of cell electropermeabilization. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos
2017-05-01
Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.
Molecular-like hierarchical self-assembly of monolayers of mixtures of particles
Singh, P.; Hossain, M.; Gurupatham, S. K.; Shah, K.; Amah, E.; Ju, D.; Janjua, M.; Nudurupati, S.; Fischer, I.
2014-01-01
We present a technique that uses an externally applied electric field to self-assemble monolayers of mixtures of particles into molecular-like hierarchical arrangements on fluid-liquid interfaces. The arrangements consist of composite particles (analogous to molecules) which are arranged in a pattern. The structure of a composite particle depends on factors such as the relative sizes of the particles and their polarizabilities, and the electric field intensity. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles form a ring around it. The number of particles in the ring and the spacing between the composite particles depend on their polarizabilities and the electric field intensity. Approximately same sized particles form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate. PMID:25510331
Ohtsuki, Takashi; Nabeta, Tomoyuki; Nakanishi, Hiromoto; Kawahata, Hirohisa; Ogihara, Toshio; Morishita, Ryuichi; Aoki, Motokuni
2017-01-01
Background: Sleep disorder is a common health problem in modern days. Estab-lishment of safe, non-invasive, convenient and effective treatment is anticipated in the field of complementary and alternative medicine. Objective: We designed a protocol for a randomized controlled trial to investigate the effect of Electric Field (EF) exposure on sleep disorder. Methods: Nineteen college students with sleep disorder, defined as a score of 8 or higher on the Pitzburg Sleep Quality Index, were divided into two groups; EF intervention and sham treatment. EF exposure (50-Hz, 18 kV) was performed for 30 minutes a day for five con-secutive days. Subjective parameters were obtained by an OSA sleep inventory MA version consisting of five factors, and objective parameters were measured using a sleep-scan. Results: Significant improvement in scores of three factors (sleepiness on rising, refreshing and sleep length) was observed after 5 days of EF exposure intervention, as compared to both before intervention and after 5 days of sham treatment. Moreover, improvement rati-os for these three factors were significantly higher in the EF group than in the sham treat-ment group. Analysis of the sleep-scan demonstrated a high improvement ratio for duration of nocturnal awakening in the EF group. Conclusion: The beneficial effect of electric field therapy on sleep disorder in college stu-dents is considered to be beyond a placebo effect. This study raises the therapeutic possibil-ity of electric field exposure.
Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR
NASA Astrophysics Data System (ADS)
Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.
2012-12-01
The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.
Dressed Wilson loops as dual condensates in response to magnetic and electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruckmann, Falk; Endroedi, Gergely
2011-10-01
We introduce dressed Wilson loops as a novel confinement observable. It consists of closed planar loops of arbitrary geometry but fixed area, and its expectation values decay with the latter. The construction of dressed Wilson loops is based on chiral condensates in response to magnetic and electric fields, thus linking different physical concepts. We present results for generalized condensates and dressed Wilson loops on dynamical lattice configurations and confirm the agreement with conventional Wilson loops in the limit of large probe mass. We comment on the renormalization of dressed Wilson loops.
World's simplest electric train
NASA Astrophysics Data System (ADS)
Criado, C.; Alamo, N.
2016-01-01
We analyze the physics of the "world's simplest electric train." The "train" consists of a AA battery with a strong magnet on each end that moves through a helical coil of copper wire. The motion of the train results from the interaction between the magnetic field created by the current in the wire and the magnetic field of the magnets. We calculate the force of this interaction and the terminal velocity of the train due to eddy currents and friction. Our calculations provide a good illustration of Faraday's and Lenz's laws, as well as of the concepts of the Lorentz force and eddy currents.
Optical Control of Internal Electric Fields in Band Gap-Graded InGaN Nanowires
NASA Astrophysics Data System (ADS)
Erhard, N.; Sarwar, A. T. M. Golam; Yang, F.; McComb, D. W.; Myers, R. C.; Holleitner, A. W.
2015-01-01
InGaN nanowires are suitable building blocks for many future optoelectronic devices. We show that a linear grading of the indium content along the nanowire axis from GaN to InN introduces an internal electric field evoking a photocurrent. Consistent with quantitative band structure simulations we observe a sign change in the measured photocurrent as a function of photon flux. This negative differential photocurrent opens the path to a new type of nanowire-based photodetector. We demonstrate that the photocurrent response of the nanowires is as fast as 1.5 ps.
The study of surface acoustic wave charge transfer device
NASA Technical Reports Server (NTRS)
Papanicolaou, N.; Lin, H. C.
1978-01-01
A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.
NASA Astrophysics Data System (ADS)
Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John
2018-05-01
On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umair Siddiqui, M., E-mail: musiddiqui@wisc.edu; Hershkowitz, Noah
2014-02-15
A hot (T{sub e} ≈ 10 eV) electron population is observed in the core of a 3 mTorr argon helicon plasma source at 500 W RF power and 900 G uniform axial magnetic field strength, 12 cm from the edge of the helicon antenna. A double layer-like structure consisting of a localized axial electric field of approximately 8 V/cm over 1–2 cm is observed adjacent to the hot electron population. The potential step generated by the electric field is shown to be large enough to trap the hot electrons. To our knowledge this is the first observation of these structures in the core of amore » helicon discharge.« less
Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia
2015-06-01
A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2017-01-01
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell–Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration. PMID:28973890
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Electrically tunable metasurface based on Mie-type dielectric resonators.
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-21
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
Electrically tunable metasurface based on Mie-type dielectric resonators
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-01-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861
Electrically tunable metasurface based on Mie-type dielectric resonators
NASA Astrophysics Data System (ADS)
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
Microscopic resolution broadband dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Watson, P.; Prance, R. J.
2011-08-01
Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.
Gatenby, Robert A; Frieden, B Roy
2010-08-11
Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length. Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions. This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanping; Chen, Jiangshan; Huang, Jinying
2014-06-14
The electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp{sub 2}) are investigated by impedance spectroscopy over a frequency range of 10 Hz to 13 MHz. The Cole-Cole plots demonstrate that the Bepp{sub 2}-based device can be represented by a single parallel resistance R{sub p} and capacitance C{sub p} network with a series resistance R{sub s}. The current-voltage characteristics and the variation of R{sub p} with applied bias voltage indicate the electron conduction of space-charge-limited current with exponential trap distributions in Bepp{sub 2}. It can be seen that the electron mobility exhibits strong field-dependence in low electric field region and almost saturate in highmore » electric field region. It is experimentally found that Bepp{sub 2} shows dispersion transport and becomes weak as the electric field increases. The activation energy is determined to be 0.043 eV by temperature-dependent conductivity, which is consistent with the result obtained from the temperature-dependent current density characteristics. The electron mobility reaches the orders of 10{sup −6}–10{sup −5} cm{sup 2} V{sup −1} s{sup −1}, depending on the electric field.« less
Tutorial: Physics and modeling of Hall thrusters
NASA Astrophysics Data System (ADS)
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.
García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel
2015-01-01
The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low.
On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics
NASA Technical Reports Server (NTRS)
Zheng, Y.; Zaharia, S. G.; Fok, M. H.
2010-01-01
Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.
Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor
2014-08-01
The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.
The magnetic field of gastrointestinal smooth muscle activity
NASA Astrophysics Data System (ADS)
Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John
1997-11-01
The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.
An, Ran; Massa, Katherine
2014-01-01
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position. PMID:25553200
Electrophoresis in strong electric fields.
Barany, Sandor
2009-01-01
Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a function of the electric field strength, particle size, electrolyte concentration and the adsorbed polymer amount. It has been shown that the electrophoretic velocity of the particles/cells increases with field strength linearly up to about 100 and 200 V/cm (for cells) without and with adsorbed polymers both in pure water and in electrolyte solutions. In line with the theoretical predictions, in stronger fields substantial non-linear effects were recorded (V(ef)~E(3)). The ef velocity of unipolar ion-type conducting (ion-exchanger particles and fibres), electron-type conducting (magnesium and Mg/Al alloy) and semiconductor particles (graphite, activated carbon, pyrite, molybdenite) increases significantly with the electric field (V(ef)~E(2)) and the particle's size but is almost independent of the ionic strength. These trends are inconsistent with Smoluchowski's equation for dielectric particles, but are consistent with the Dukhin-Mishchuk theory of superfast electrophoresis.
Synchronization modulation of Na/K pumps on Xenopus oocytes
NASA Astrophysics Data System (ADS)
Liang, Pengfei; Mast, Jason; Chen, Wei
We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.
Electric currents in the subsolar region of the Venus lower ionosphere
NASA Technical Reports Server (NTRS)
Cole, K. D.; Hoegy, W. R.
1994-01-01
The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.
2015-08-15
The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less
Lower Hybrid Solitary Structures
NASA Technical Reports Server (NTRS)
Schuck, Peter W.
2011-01-01
Lower hybrid solitary structures (LHSS) have been observed by sounding rockets in the auroral ionosphere for over a decade and a half. LHSS are spatial structures embedded in space plasmas containing ambient whistler mode hiss. They are characterized by a density depletion of a few percent to several tens of percent in which electric fields near, both above and below, the lower hybrid resonance are more intense than the background fields by a factor of three to five. LHSS have dimensions across the magnetic field of a few to many thermal ion gyroradii, usually 10-100 meters and a density profile that is Gaussian and consistent with cylindrical symmetry. Along the magnetic field the dimensions are estimated to be several kilometers to several hundred kilometers. Electric field interferometry reveals that the phase fronts of LHSS electric fields rotate azimuthally within the density depletions; right-hand above the lower hybrid resonance and left-hand below the lower hybrid resonance [Pincon et al., 1997; Schuck et al., 1998; Bonnell et al., 1998; Tjulin et al., 2003; Schuck et al., 2003]. The description of this phenomena was driven by the observations the Cornell University sounding rocket program headed by the late Paul Kintner.
NASA Astrophysics Data System (ADS)
Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.
2017-12-01
The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.
Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film
NASA Astrophysics Data System (ADS)
Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping
2018-04-01
Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.
Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars
NASA Astrophysics Data System (ADS)
Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.
2015-01-01
Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Qimp . Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).
Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars.
Horowitz, C J; Berry, D K; Briggs, C M; Caplan, M E; Cumming, A; Schneider, A S
2015-01-23
Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Q_{imp}. Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Q_{imp}, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).
NASA Technical Reports Server (NTRS)
Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.
1993-01-01
The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).
Nonequilibrium simulations of model ionomers in an oscillating electric field
Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; ...
2016-07-25
Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less
Nonequilibrium simulations of model ionomers in an oscillating electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.
Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
NASA Technical Reports Server (NTRS)
Taguchi, S.; Sugiura, M.; Winningham, J. D.; Slavin, J. A.
1993-01-01
The magnetic field and plasma data from 47 passes of DE-2 are used to study the IMF By-dependent distribution of field-aligned currents in the cleft region. It is proposed that the low-latitude cleft current (LCC) region is not an extension of the region 1 or region 2 current system and that a pair of LCCs and high-latitude cleft currents (HCCs) constitutes the cleft field-aligned current regime. The proposed pair of cleft field-aligned currents is explained with a qualitative model in which this pair of currents is generated on open field lines that have just been reconnected on the dayside magnetopause. The electric fields are transmitted along the field lines to the ionosphere, creating a poleward electric field and a pair of field-aligned currents when By is positive; the pair of field-aligned currents consists of a downward current at lower latitudes and an upward current at higher latitudes. In the By negative case, the model explains the reversal of the field-aligned current direction in the LCC and HCC regions.
Hinterreiter, J; Veronig, A M; Thalmann, J K; Tschernitz, J; Pötzi, W
2018-01-01
A statistical study of the chromospheric ribbon evolution in H[Formula: see text] two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the H[Formula: see text] and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. H[Formula: see text] filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s -1 ). The local reconnection electric field of confined ([Formula: see text]) and eruptive ([Formula: see text]) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections. The online version of this article (10.1007/s11207-018-1253-1) contains supplementary material, which is available to authorized users.
Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry
NASA Technical Reports Server (NTRS)
Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh
2010-01-01
Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.
ELF magnetic fields in electric and gasoline-powered vehicles.
Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R
2013-02-01
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.
2017-12-01
We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.
NASA Astrophysics Data System (ADS)
Li, Lei; Spreitzer, Matjaž; Suvorov, Danilo; Chen, Xiang Ming
2016-08-01
The tunable dielectric properties of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics were investigated, and high relative tunability of 49% was obtained at 25 °C under a low bias electric field of 50 kV/cm. Abrupt changes and a significant hysteresis in dielectric constant and dielectric loss against bias electric field were observed, which are very different from the previously reported antiferroelectric materials. The unique dielectric tunability is attributed to the square-shaped double hysteresis loop and indicates the possible applications in some special tunable devices, such as an electrically-controlled switch. Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 ceramics also exhibit unique dielectric tunability at -5 °C. Abrupt changes in dielectric constant and dielectric loss were observed when the bias electric field increased to 31 kV/cm for the fresh sample, which is similar to the antiferroelectric-like dielectric tunability at 25 °C. However, the dielectric tunability was ferroelectric-like in the following measurement. This response is consistent with the hysteresis loop and can be explained by the electric field-assisted irreversible antiferroelectric-ferroelectric phase transition.
Schmidt, Rita; Webb, Andrew
2016-01-01
Electrical Properties Tomography (EPT) using MRI is a technique that has been developed to provide a new contrast mechanism for in vivo imaging. Currently the most common method relies on the solution of the homogeneous Helmholtz equation, which has limitations in accurate estimation at tissue interfaces. A new method proposed in this work combines a Maxwell's integral equation representation of the problem, and the use of high permittivity materials (HPM) to control the RF field, in order to reconstruct the electrical properties image. The magnetic field is represented by an integral equation considering each point as a contrast source. This equation can be solved in an inverse method. In this study we use a reference simulation or scout scan of a uniform phantom to provide an initial estimate for the inverse solution, which allows the estimation of the complex permittivity within a single iteration. Incorporating two setups with and without the HPM improves the reconstructed result, especially with respect to the very low electric field in the center of the sample. Electromagnetic simulations of the brain were performed at 3T to generate the B1(+) field maps and reconstruct the electric properties images. The standard deviations of the relative permittivity and conductivity were within 14% and 18%, respectively for a volume consisting of white matter, gray matter and cerebellum. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Martin, E. H.; Klepper, C. C.; Isler, R. C.; Goniche, M.; Caughman, J. B. O.
2014-10-01
Recently, the RF electric field vector (ELH) in front of a lower hybrid (LH) launcher, operating at 3.7 GHz, at the low field side of the Tore Supra tokamak was determined by spectroscopic analysis of passive Dβ spectral emission from the near-antenna plasma. The ELH was determined by globally minimizing the χ associated with the experimental and theoretical spectral line profile. The theoretical profile is calculated from a non-perturbative solution to the Schrödinger equation, which includes the magnetic and dynamic electric field vectors. The magnitude, the direction, and the scaling with LH power of the measured ELH were fairly consistent with those calculated from a full-wave LH model. In addition to ELH the inboard and an outboard neutral flow was determined from the Doppler shifts associated with the Dα and Dβ spectral profiles. It was found that excitation of the LH wave induced both an inboard and outboard co-current neutral flow, which is linearly dependent on injected power; preliminary results indicate ICRH decreases the LH wave-induced co-current neutral flow. Neutral flow velocities are consistent with measurements of ion flow velocities obtained by charge exchange recombination spectroscopy. Work supported by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC., and by the European Communities under the contract of Assoc. EURATOM-CEA and within the framework of the EFDA.
NASA Astrophysics Data System (ADS)
Green, J. A.; Gray, M. D.; Robishaw, T.; Caswell, J. L.; McClure-Griffiths, N. M.
2014-06-01
Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).
Electromagnetic properties of material coated surfaces
NASA Technical Reports Server (NTRS)
Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.
1989-01-01
The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.
Electron distribution function in a laser plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Stoll, I.
1983-01-01
An accurate analytic solution of the Vlasov equation in the one-dimensional case is given for plasma electrons in the potential electric field of a monochromatic high-frequency wave of arbitrary amplitude and spatial modulation allowing for a self-consistent field. The phase velocity of the plasma waves is assumed to be appreciably higher than the electron thermal velocity (the case of nonresonant diffusion).
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L; Biermann, Klaus; Grahn, Holger T
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs/Al_{0.45}Ga_{0.55}As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice
NASA Astrophysics Data System (ADS)
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
The structure of the plasma sheet-lobe boundary in the Earth's magnetotail
NASA Technical Reports Server (NTRS)
Orsini, S.; Candidi, M.; Formisano, V.; Balsiger, H.; Ghielmetti, A.; Ogilvie, K. W.
1982-01-01
The structure of the magnetotail plasma sheet-plasma lobe boundary was studied by observing the properties of tailward flowing O+ ion beams, detected by the ISEE 2 plasma experiment inside the boundary during three time periods. The computed value of the north-south electric field component as well as the O+ parameters are shown to change at the boundary. The results are related to other observations made in this region. The O+ parameters and the Ez component behavior are shown to be consistent with that expected from the topology of the electric field lines in the tail as mapped from the ionosphere.
Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.
2014-01-01
The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330
Local ion direction of motion and electron flow in a magnetically insulated diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maron, Y.; Litwin, C.
Ion motion in the acceleration region of a magnetically insulated ion diode and electron flux to the anode are studied locally. Two classes of slowly growing ion deflections are observed, indicating the presence of transverse electric fields in the diode gap. A simple model, which treates the diode as an emitting surface perturbed away from planarity, is offered to infer profiles of the electric field. These profiles are consistent with the observation that one of the ion-deflection classes is associated with a significant fraction of the increases of the electron flux to the anode. The inferred growth rates of themore » perturbations suggest that the observed ion deflections are caused by a nonuniform expansion of the anode plasma. The transverse electric fields associated with the perturbations constitute a significant (as much as 20%) fraction of the diode accelerating field. Short duration ion deflections accompanied by intense electron bursts to the anode are also observed. The data suggest that these deflections and the electron bursts originate at processes in the cathode plasma.« less
Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments
NASA Technical Reports Server (NTRS)
Newman, Timothy S.
2003-01-01
Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.
NASA Astrophysics Data System (ADS)
Paasch, G.; Gobsch, G.; Schulze, D.; Handschack, S.
1989-04-01
For the quasi two-dimensional (Q2D) electron gas important experimental information is obtained from magnetotransport measurements with a perpendicular magnetic field. The energy spectrum consists of series of Landau levels for each electric subband. There still exist several open questions if two or more electric Subbands are populated. Results are presented here for this situation. The usual procedure for interpreting Shubnikov-de Haas (SdH) measurements for the case of several populated subbands is analyzed (connection with the saw-tooth like Fermi energy as a function of the magnetic field). The transverse magnetoresistance is calculated for the Q2D electron gas in InSb-bicrystals and at InGaAs-InP heterojunctions. All details of the experimental curves can be explained including an anomalous behaviour of the quantum Hall effect (QHE) in the second system. Basic assumptions of the theory are the broadening of the Landau levels and in addition a background of localized states in the second case. The dependence of the electronic structure on the perpendicular magnetic field is discussed qualitatively. First results of magnetic field dependent self-consistent calculations for inversion layers are presented. It is shown for the first time that this magnetic field dependence causes qualitative changes of the Landau level spectrum.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; ...
2017-09-26
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
NASA Astrophysics Data System (ADS)
Wolde, Seyoum; Lao, Yan-Feng; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S.
2017-06-01
We report experimental results showing how the noise in a Quantum-Dot Infrared photodetector (QDIP) and Quantum Dot-in-a-well (DWELL) varies with the electric field and temperature. At lower temperatures (below ˜100 K), the noise current of both types of detectors is dominated by generation-recombination (G-R) noise which is consistent with a mechanism of fluctuations driven by the electric field and thermal noise. The noise gain, capture probability, and carrier life time for bound-to-continuum or quasi-bound transitions in DWELL and QDIP structures are discussed. The capture probability of DWELL is found to be more than two times higher than the corresponding QDIP. Based on the analysis, structural parameters such as the numbers of active layers, the surface density of QDs, and the carrier capture or relaxation rate, type of material, and electric field are some of the optimization parameters identified to improve the gain of devices.
Reduced Limit on the Permanent Electric Dipole Moment of ^{199}Hg.
Graner, B; Chen, Y; Lindahl, E G; Heckel, B R
2016-04-22
This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ^{199}Hg atoms. Fused silica vapor cells containing enriched ^{199}Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ^{199}Hg EDM d_{Hg}=(-2.20±2.75_{stat}±1.48_{syst})×10^{-30}e cm. We use this result to place a new upper limit on the ^{199}Hg EDM |d_{Hg}|<7.4×10^{-30}e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.
Transitional behavior of different energy protons based on Van Allen Probes observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Bortnik, Jacob; Chen, Lunjin
Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H +) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamicsmore » under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.« less
Transitional behavior of different energy protons based on Van Allen Probes observations
Yue, Chao; Bortnik, Jacob; Chen, Lunjin; ...
2016-12-09
Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H +) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamicsmore » under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.« less
Approximations useful for the prediction of electrostatic discharges for simple electrode geometries
NASA Technical Reports Server (NTRS)
Edmonds, L.
1986-01-01
The report provides approximations for estimating the capacitance and the ratio of electric field strength to potential for a certain class of electrode geometries. The geometry consists of an electrode near a grounded plane, with the electrode being a surface of revolution about the perpendicular to the plane. Some examples which show the accuracy of the capacitance estimate and the accuracy of the estimate of electric field over potential can be found in the appendix. When it is possible to estimate the potential of the electrode, knowing the ratio of electric field to potential will help to determine if an electrostatic discharge is likely to occur. Knowing the capacitance will help to determine the strength of the discharge (the energy released by it) if it does occur. A brief discussion of discharge mechanisms is given. The medium between the electrode and the grounded plane may be a neutral gas, a vacuum, or an unchanged homogeneous isotropic dielectric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center
2016-03-21
Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less
NASA Astrophysics Data System (ADS)
Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun
2012-03-01
The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.
Er Effect of Low Molecular Liquid Crystal on One-Sided Patterned Electrodes
NASA Astrophysics Data System (ADS)
Kikuchi, Takehito; Inoue, Akio; Furusho, Junji; Kawamuki, Ryohei
Several kinds of ER fluids (ERF) have been developed and have been applied to some mechatronics devices and processing technologies. In many conventional applications of ERFs, these devices consist of bilateral electrodes to apply electric field in ERF. However, the electric field of several kV/mm may be necessary to generate an ER effect sufficiently for practical purposes. The gap between a pair of electrodes should be, therefore, maintained narrowly and exactly for fears of short-circuit. At the same time, this electrode system also requires an interconnection on driving parts. To improve these disadvantages, we proposed "one-sided patterned electrode" (OSPE) systems in previous works. In this report, we confirmed the flow characteristics of low molecular liquid crystal (LMLC) on OSPE. Next, we also confirmed the different characteristics depending on the pattern type. Depending on results of electro-static analysis, we conclude that such a difference may results from the directors of LC molecules derived by electric field.
NASA Astrophysics Data System (ADS)
Zhao, Changhao; Hou, Dong; Chung, Ching-Chang; Yu, Yingying; Liu, Wenfeng; Li, Shengtao; Jones, Jacob L.
2017-11-01
The local structural behavior of PbZr0.5Ti0.5O3 (PZT 50/50) ceramics during application of an electric field was investigated using pair distribution function (PDF) analysis. In situ synchrotron total scattering was conducted, and the PDFs were calculated from the Fourier transform of the total scattering data. The PDF refinement of the zero-field data suggests a local-structure model with [001] Ti-displacement and negligible Zr-displacement. The directional PDFs at different field amplitudes indicate the bond-length distribution of the nearest Pb-B (B = Zr/Ti) pair changes significantly with the field. The radial distribution functions (RDFs) of a model for polarization rotation were calculated. The calculated and the experimental RDFs are consistent. This result suggests the changes in Pb-B bond-length distribution could be dominantly caused by polarization rotation. Peak fitting of the experimental RDFs was also conducted. The peak position trends with increasing field are mostly in agreement with the calculation result of the polarization rotation model. The area ratio of the peaks in the experimental RDFs also changed with field amplitude, indicating that Zr atoms have a detectable displacement driven by the electric field. Our study provides an experimental observation of the behaviors of PZT 50/50 under field at a local scale which supports the polarization rotation mechanism.
Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai
2018-03-01
In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.
Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics
NASA Astrophysics Data System (ADS)
Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.
2014-12-01
Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.
Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe
NASA Technical Reports Server (NTRS)
Faelthammar, Carl-Gunne
1986-01-01
As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.
A SiC LDMOS with electric field modulation by a step compound drift region
NASA Astrophysics Data System (ADS)
Bao, Meng-tian; Wang, Ying; Yu, Cheng-hao; Cao, Fei
2018-07-01
In this paper, we propose a SiC LDMOS structure with a step compound drift region (SC-LDMOS). The proposed device has a compound drift region which consists of an n-type top layer, a step p-type middle layer and an n-type bottom layer. The step p-type middle layer can introduce two new electric field peaks and uniform the distribution of the electric field in the n-type top layer, which can modulate the surface electric field and improve the breakdown voltage of the proposed structure. In addition, the n-type bottom layer is applied under the heavy doping p-type middle layer,which contributes to realize the charge balance. Furthermore, it can also increase the doping concentration of the n-type top layer, which can decrease the on resistance of the proposed device. As a simulated result, the proposed device obtain a high BV of 976 V and a low Rsp,on of 7.74 mΩ·cm2. Compared with the conventional single REUSRF LDMOS and triple RESURF LDMOS, BV of proposed device is enhanced by 42.5% and 14.7%, respectively and Rsp,on is reduced by 37.3% and 30.9%, respectively. Meanwhile, the switching delays of the proposed device are significantly shorter than the conventional triple RESURF LDMOS.
NASA Astrophysics Data System (ADS)
Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team
2013-03-01
Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.
Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields
El-Khoury, Patrick Z.; Gong, Yu; Abellan, Patricia; ...
2015-03-05
We report tip-enhanced Raman scattering experiments in which topographic and local electric field images are recorded simultaneously. We employ a Raman-active 4,4’-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope to map the topography and image electric fields localized at nanometric (20 and 5 nm-wide) slits lithographically etched in silver. Bi-modal imaging is feasible by virtue of the recorded scanning probe position-dependent frequency-resolved optical response, which can be sub-divided into two components. The first is a 500-2250 cm-1 Raman-shifted signal, characteristic of DMS. The molecular response reports on topography through intensity contrast in the absence/presence of a plasmonic junction formedmore » between the scanning probe and patterned silver surface. Here, we demonstrate that sub-15 nm spatial resolution is attainable using a 30 nm DMS-coated gold tip. The second response consists of two correlated sub-500 cm-1 signals arising from mirror-like reflections of (i) the incident laser, and (ii) the Raman scattered response of an underlying glass support (at 100-500 cm-1) off the gold tip. We show that both the low-wavenumber signals trace the local electric fields in the vicinity of the nanometric slits.« less
Quantization of charged fields in the presence of critical potential steps
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2016-02-01
QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.
NASA Astrophysics Data System (ADS)
Fukushima, Kenji; Hidaka, Yoshimasa
2018-04-01
We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .
Fukushima, Kenji; Hidaka, Yoshimasa
2018-04-20
We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σ_{H}. For the longitudinal conductivity σ_{∥}, we need to solve kinetic equations. Then, we numerically find that σ_{∥} has only a mild dependence on μ and the quark mass m_{q}. Moreover, σ_{∥} first decreases and then linearly increases as a function of B, leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ_{∥} at a nonzero B remains within the range of the lattice-QCD estimate at B=0.
NASA Astrophysics Data System (ADS)
Lin, Chung-Han; Doutt, D. R.; Mishra, U. K.; Merz, T. A.; Brillson, L. J.
2010-11-01
Nanoscale Kelvin probe force microscopy and depth-resolved cathodoluminescence spectroscopy reveal an electronic defect evolution inside operating AlGaN/GaN high electron mobility transistors with degradation under electric-field-induced stress. Off-state electrical stress results in micron-scale areas within the extrinsic drain expanding and decreasing in electric potential, midgap defects increasing by orders-of-magnitude at the AlGaN layer, and local Fermi levels lowering as gate-drain voltages increase above a characteristic stress threshold. The pronounced onset of defect formation, Fermi level movement, and transistor degradation at the threshold gate-drain voltage of J. A. del Alamo and J. Joh [Microelectron. Reliab. 49, 1200 (2009)] is consistent with crystal deformation and supports the inverse piezoelectric model of high electron mobility transistor degradation.
Assessing field-scale biogeophysical signatures of bioremediation over a mature crude oil spill
Slater, Lee; Ntarlagiannis, Dimitrios; Atekwana, Estella; Mewafy, Farag; Revil, Andre; Skold, Magnus; Gorby, Yuri; Day-Lewis, Frederick D.; Lane, John W.; Trost, Jared J.; Werkema, Dale D.; Delin, Geoffrey N.; Herkelrath, William N.; Rectanus, H.V.; Sirabian, R.
2011-01-01
We conducted electrical geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site (Bemidji, MN). Borehole and surface self-potential measurements do not show evidence for the existence of a biogeobattery mechanism in response to the redox gradient resulting from biodegradation of oil. The relatively small self potentials recorded are instead consistent with an electrodiffusion mechanism driven by differences in the mobility of charge carriers associated with biodegradation byproducts. Complex resistivity measurements reveal elevated electrical conductivity and interfacial polarization at the water table where oil contamination is present, extending into the unsaturated zone. This finding implies that the effect of microbial cell growth/attachment, biofilm formation, and mineral weathering accompanying hydrocarbon biodegradation on complex interfacial conductivity imparts a sufficiently large electrical signal to be measured using field-scale geophysical techniques.
NASA Astrophysics Data System (ADS)
Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.
2017-10-01
In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N, N'-bis(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage ( J- V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J- V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J- V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.
Computational Fluid Dynamics Modeling of the Operation of a Flame Ionization Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckaby, E.D.; Chorpening, B.T.; Thornton, J.D.
The sensors and controls research group at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is continuing to develop the Combustion Control and Diagnostics Sensor (CCADS) for gas turbine applications. CCADS uses the electrical conduction of the charged species generated during the combustion process to detect combustion instabilities and monitor equivalence ratio. As part of this effort, combustion models are being developed which include the interaction between the electric field and the transport of charged species. The primary combustion process is computed using a flame wrinkling model (Weller et. al. 1998) which is a component ofmore » the OpenFOAM toolkit (Jasak et. al. 2004). A sub-model for the transport of charged species is attached to this model. The formulation of the charged-species model similar that applied by Penderson and Brown (1993) for the simulation of laminar flames. The sub-model consists of an additional flux due to the electric field (drift flux) added to the equations for the charged species concentrations and the solution the electric potential from the resolved charge density. The subgrid interactions between the electric field and charged species transport have been neglected. Using the above procedure, numerical simulations are performed and the results compared with several recent CCADS experiments.« less
A generalized semikinetic (GSK) model for mesoscale auroral plasma transport
NASA Astrophysics Data System (ADS)
Brown, David Gillespie
1993-12-01
The auroral region of the Earth's ionosphere-magnetosphere system is a complex and active part of the Earth's environment. In order to study the transport of ionospheric plasma in this region, we have developed a generalized semikinetic (GSK) model which combines the tracking of ionospheric ion gyrocenters (between stochastic impulses from waves), with a generalized fluid treatment of ionospheric electrons and Liouville mapping of magnetospheric plasma components. This model has been used to simulate the effects of 'self-consistent' heating ('self consistent' in the sense that heating occurs only where the modelled plasma is unstable) due to the current-driven ion cyclotron instability in the return current regions. Our results include generation of 'conics' whose wings are drawn in towards the upsilon(parallel)-axis at higher energies (such distributions were subsequently found in recent studies of DE-1 data for this region) and an alternative formation mechanism for toroidal (or 'ring'-shaped) ion velocity-space distributions. We also present results illustrating the effects of combining large scale electric fields (generated by anisotropic magnetospheric plasma distributions) with wave heating by a presumed distribution of wave spectra. In the presence of an upwards electric field the addition of wave heating increases the density of the O(sup +) 'beam' ('ion feeder' effect), while a downwards hot plasma-induced electric field increases the time which ions spend within the heating region ('pressure cooker' effect), resulting in greater ion energization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto
An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less
The argon nuclear quadrupole moments
NASA Astrophysics Data System (ADS)
Sundholm, Dage; Pyykkö, Pekka
2018-07-01
New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.
Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals
Nogueira, Javier; Caputi, Ángel Ariel
2011-01-01
Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.
2012-01-01
The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. and are believed to cause scintillations of VHF radiowaves. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.
Forward Field Computation with OpenMEEG
Gramfort, Alexandre; Papadopoulo, Théodore; Olivi, Emmanuel; Clerc, Maureen
2011-01-01
To recover the sources giving rise to electro- and magnetoencephalography in individual measurements, realistic physiological modeling is required, and accurate numerical solutions must be computed. We present OpenMEEG, which solves the electromagnetic forward problem in the quasistatic regime, for head models with piecewise constant conductivity. The core of OpenMEEG consists of the symmetric Boundary Element Method, which is based on an extended Green Representation theorem. OpenMEEG is able to provide lead fields for four different electromagnetic forward problems: Electroencephalography (EEG), Magnetoencephalography (MEG), Electrical Impedance Tomography (EIT), and intracranial electric potentials (IPs). OpenMEEG is open source and multiplatform. It can be used from Python and Matlab in conjunction with toolboxes that solve the inverse problem; its integration within FieldTrip is operational since release 2.0. PMID:21437231
Pair-Starved Pulsar Magnetospheres
NASA Technical Reports Server (NTRS)
Muslimov, Alex G.; Harding, Alice K.
2009-01-01
We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.
The reduced basis method for the electric field integral equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less
Numerical simulation of plasma processes driven by transverse ion heating
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
NASA Astrophysics Data System (ADS)
Feraoun, A.; Zaim, A.; Kerouad, M.
2016-09-01
By using the Quantum Monte Carlo simulation; the electric properties of a nanowire, consisting of a ferroelectric core of spin-1/2 surrounded by a ferroelectric shell of spin-1/2 with ferro- or anti-ferroelectric interfacial coupling have been studied within the framework of the Transverse Ising Model (TIM). We have examined the effects of the shell coupling Js, the interfacial coupling JInt, the transverse field Ω, and the temperature T on the hysteresis behavior and on the electric properties of the system. The remanent polarization and the coercive field as a function of the transverse field and the temperature are examined. A number of characteristic behavior have been found such as the appearance of triple hysteresis loops for appropriate values of the system parameters.
NASA Astrophysics Data System (ADS)
Deng, Zhi-De
The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can inform dosage requirements in convulsive therapies. Our results indicate that the MST electric field is more focal and more confined to the superficial cortex compared to ECT. Further, the conventional ECT current amplitude is much higher than necessary for seizure induction. One of the factors important to clinical outcome is seizure expression. However, it is unknown how the induced electric field is related to seizure onset and propagation. In this work, we explore the effect of the electric field distribution on the quantitative ictal electroencephalography and current source density in ECT and MST. We further demonstrate how the ECT electrode shape, size, spacing, and current can be manipulated to yield more precise control of the induced electric field. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Next, we demonstrate how the electric field induced by transcranial magnetic stimulation (TMS) can be controlled. We present the most comprehensive comparison of TMS coil electric field penetration and focality to date. The electric field distributions of more than 50 TMS coils were simulated. We show that TMS coils differ markedly in their electric field characteristics, but they all are subject to a consistent depth-focality tradeoff. Specifically, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electric field spread. Figure-8 type coils are fundamentally more focal compared to circular type coils. Understanding the depth-focality tradeoff can help researchers and clinicians to appropriately select coils and interpret TMS studies. This work also enables the development of novel TMS coils with electronically switchable active and sham modes as well as for deep TMS. Design considerations of these coils are extensively discussed. Part II of the dissertation aims to quantify the effect of individual, sex, and age differences in head geometry and conductivity on the induced neural stimulation strength and focality of ECT and MST. Across and within ECT studies, there is marked unexplained variability in seizure threshold and clinical outcomes. It is not known to what extent the age and sex effects on seizure threshold are mediated by interindividual variation in neural excitability and/or anatomy of the head. Addressing this question, we examine the effect on ECT and MST induced field characteristics of the variability in head diameter, scalp and skull thicknesses and conductivities, as well as brain volume, in a range of values that are representative of the patient population. Variations in the local tissue properties such as scalp and skull thickness and conductivity affect the existing ECT configurations more than MST. On the other hand, the existing MST coil configurations show greater sensitivity to head diameter variation compared to ECT. Due to the high focality of MST compared to ECT, the stimulated brain volume in MST is more sensitive to variation in tissue layer thicknesses. We further demonstrate how individualization of the stimulus pulse current amplitude, which is not presently done in ECT or MST, can be used as a means of compensating for interindividual anatomical variability, which could lead to better and more consistent clinical outcomes. Part III of the dissertation aims to systemically investigate, both computationally and experimentally, the safety of TMS and ECT in patients with a deep-brain stimulation system, and propose safety guidelines for the dual-device therapy. We showed that the induction of significant voltages in the subcutaneous leads in the scalp during TMS could result in unintended and potentially dangerous levels of electrical currents in the DBS electrode contacts. When applying ECT in patients with intracranial implants, we showed that there is an increase in the electric field strength in the brain due to conduction through the burr holes, especially when the burr holes are not fitted with nonconductive caps. Safety concerns presently limit the access of patients with intracranial electronic devices to therapies involving transcranial stimulation technology, which may preclude them from obtaining appropriate medical treatments. Gaining better understanding of the interactions between transcranial and implanted stimulation devices will demarcate significant safety risks from benign interactions, and will provide recommendations for reducing risk, thus enhancing the patient's therapeutic options.
Self-consistent quasi-static parallel electric field associated with substorm growth phase
NASA Astrophysics Data System (ADS)
Le Contel, O.; Pellat, R.; Roux, A.
2000-06-01
A new approach is proposed to calculate the self-consistent parallel electric field associated with the response of a plasma to quasi-static electromagnetic perturbations (ω
NASA Technical Reports Server (NTRS)
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
Charge transport in organic multi-layer devices under electric and optical fields
NASA Astrophysics Data System (ADS)
Park, June Hyoung
2007-12-01
Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This intra-molecular interaction has two processes, transport via pi-stackings and transport via linking functional groups in the dendrons. IV characteristic spectra of the photovoltaic cells suggest that the transport route of photo-excited charges depends on wavelength of incident light on the cells. For excitation by the Soret band and the lowest Q band, a photo-excited electron can transport directly to a neighbor dendron. For excitation by high-energy Q bands, a photo-excited electron transports via the electron-accepters.
Ambilpolar Electric Field and Diffusive Cooling of Electrons in Meteor Trails
NASA Astrophysics Data System (ADS)
Pasko, V. P.; Kelley, M. C.
2017-12-01
Kelley and Price [GRL, 44, 2987, 2017] recently indicated that ambipolar electric fields may play a role in dynamics of dense plasmas generated by meteors. In the present work we discuss time dynamics of relaxation of electron temperature in meteor trails under relatively common conditions when meteor trail diffusion is not affected by the geomagnetic field (i.e., at low altitudes where both electrons and ions are not magnetized, or at higher altitudes in the plane defined by the trail and magnetic field when meteor trail is not aligned with the geomagnetic field [Ceplecha et al., Space Sci. Rev., 84, 327, 1998, and references therein]). The rate of ambipolar diffusion is a function of temperature and pressure [e.g., Hocking et al., Ann. Geophys., 34, 1119, 2016; Silber et al., Mon. Not. RAS, 469, 1869, 2017] and there is a significant spectroscopic evidence of initial plasma temperatures in meteor trails on the order 4400 deg K [Jennikens et al., Astrobiology, 4, 81, 2004]. For a representative altitude of 105 km chosen for our studies the results are consistent with previous analysis conducted in [Baggeley and Webb, J. Atm. Terr. Phys., 39, 1399, 1977; Ceplecha et al., 1998] indicating that the electron temperature remains elevated for significant time durations measured in tens of milliseconds. Our results indicate that in terms of their magnitudes the ambipolar electric fields can exceed the critical breakdown field of air, consistent with ideas expressed by Kelley and Price [GRL, 44, 2987, 2017], however, under considered conditions these fields lead to acceleration of electron cooling, with electron temperatures falling below the ambient air temperature (below 224 deg K at 105 km altitude). These effects are referred to as diffusive cooling [e.g., Rozhansky and Tsendin, Transport phenomena in partially ionized plasma, Taylor & Francis, 2001, p. 449] and represent a process in which diffusing electrons move against the force acting on them from ambipolar electric field and lose thermal energy. Under considered conditions electron heating in super elastic collisions with rotationally excited ambient molecules becomes important and we will illustrate related time scales by Monte Carlo simulations based on modeling framework of [Frost and Phelps, Phys. Rev., 127, 1621, 1962; Hake and Phelps, Phys. Rev., 158, 70, 1967].
NASA Technical Reports Server (NTRS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.;
2000-01-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.
2000-08-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
Surface Flashover of Semiconductors: A Fundamental Study
1993-06-16
surface electric fields for a number of samples with aluminum and gold contacts. Effects of processing varia- tions such as anneal method (rapid thermal...more uniform pre- breakdown surface fields. 3. Various contact materials and processing methods were used to determine effects on flashover...diffusion depths determined by this method were generally consistent with the estimated depths. 2-4 In order to characterize better the diffused layers
Electrically tunable all-dielectric optical metasurfaces based on liquid crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komar, Andrei; Fang, Zheng; Bohn, Justus
2017-02-13
We demonstrate electrical tuning of the spectral response of a Mie-resonant dielectric metasurface consisting of silicon nanodisks embedded into liquid crystals. We use the reorientation of nematic liquid crystals in a moderate applied electric field to alter the anisotropic permittivity tensor around the metasurface. By switching a control voltage ‘on’ and ‘off’ we induce a large spectral shift of the metasurface resonances, resulting in an absolute transmission modulation up to 75%. To the best of our knowledge, this is the first experimental demonstration of voltage control of a dielectric metasurface, paving the way for new types of electrically tunable metadevices,more » including dynamic displays and holograms.« less
Electric currents in E-like planetary ionospheres
NASA Technical Reports Server (NTRS)
Cole, K. D.
1990-01-01
In this paper an MHD approach is used to consider the conduction of electric current in a lightly ionized gas, taking into account the gradients of pressure in the ion and electron gases, in addition to the electric field. The coefficients of electrical conductivity are found for each driver of current. New expressions for the components of heat dissipation associated with each driver of current are developed, which are fully consistent with kinetic theory. The relationship of the results to those obtained by kinetic theory is discussed. New components of currents associated with planetary equatorial electrojets are found. A new diffusion equation for magnetic induction is found, applicable in E-like regions of planetary ionospheres, and stellar photospheres.
Combined in-situ and ground-based observations of quasi-periodic radar echoes
NASA Astrophysics Data System (ADS)
Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.
A series of combined rocket/radar investigation of the electrodynamics and neutralplasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rockets consisted of main and sub-payloads and were launched while strong quasiperiodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ionization gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neutral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measurements revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasiperiodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E density layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with the most intense shears directly below these altitudes, where the short scale electric field fluctuations were most intense. We summarize the observations from the different experiments and discuss them in the context of current theories regarding quasi-periodic echoes.
Combined In-situ and Ground-based Observations of Quasi-periodic Radar Echoes
NASA Astrophysics Data System (ADS)
Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.
A series of combined rocket/radar investigation of the electrodynamics and neutral- plasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rock- ets consisted of main and sub-payloads and were launched while strong quasi- periodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ioniza- tion gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neu- tral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measure- ments revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasi- periodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E den- sity layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with the most intense shears directly below these altitudes, where the short scale electric field fluctuations were most intense. We summarize the ob- servations from the different experiments and discuss them in the context of current theories regarding quasi-periodic echoes.
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.M. Jr.; Stormshak, F.; Thompson, J.M.
This study determined whether chronic exposure of female lambs to the electric and magnetic fields (EMF) of a high voltage transmission line can alter pineal secretion of melatonin and the normal occurrence of puberty. Twenty female Suffolk lambs were assigned randomly in equal numbers to a control and a treatment group. Treatment from 2 to 10 mo of age consisted of continuous exposure within the electrical environment of a 500-kV transmission line (mean electric field 6 kV/m, mean magnetic field 40 mG). Treated lambs were penned directly beneath the transmission line; control lambs were maintained in a pen of similarmore » construction 229 m from the line where EMF were at ambient levels (mean electric field < 10 V/m, mean magnetic field < 0.3 mG). Melatonin was analyzed by RIA in serum of blood samples collected at 0.5-3-h intervals over eight 48-h periods. To assess attainment of puberty, serum concentrations of progesterone were determined by RIA from blood samples collected twice weekly beginning at 19 wk of age. Concentrations of circulating melatonin in control and treated lambs were low during daylight hours and increased during nighttime hours. The characteristic pattern of melatonin secretion during nighttime (amplitude, phase, and duration) did not differ between control and treatment groups. Age at puberty and number of subsequent estrous cycles also did not differ between groups. These data suggest that chronic exposure of developing female sheep to 60-Hz environmental EMF does not affect the mechanisms underlying the generation of the circadian pattern of melatonin secretion or the mechanisms involved in the onset of reproductive activity.« less
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasaba, Y.; Ishisaka, K.; Kasahara, Y.; Imachi, T.; Yagitani, S.; Kojima, H.; Kurita, S.; Shoji, M.; Hori, T.; Shinbori, A.; Teramoto, M.; Miyoshi, Y.; Nakagawa, T.; Takahashi, N.; Nishimura, Y.; Matsuoka, A.; Tsuchiya, F.; Kumamoto, A.; Nomura, R.
2017-12-01
This paper summarizes the specifications and the evaluation results of Wire Probe Antenna (WPT) and Electric Field Detector (EFD), which are the key parts of Plasma Wave Experiment (PWE) aboard the Arase satellite, in their initial operations and the beginning phase of the full observations. WPT consists of the two dipole antennas as electric field sensors with 32m tip-to-tip length, with a sphere probe (6 cm diameter) attached at each end of wires (length: 15-m). They are extended orthogonally in the spin plane which is roughly perpendicular to the Sun. It enables the PWE to measure the E-field from DC to 10 MHz. This system is almost compatible to the WPT of the Plasma Wave Investigation (PWI) aboard BepiColombo Mercury Magnetospheric Orbiter, except the material of the spherical probe (ERG: Aluminium alloy, MMO: Titanium-alloy). This paper shows the extended length evaluated by the Lorentz force (spacecraft velocity x B-field) and the antenna impedance as the basic information of the E-field measurement capability of the PWE E-field receivers, with the evaluation for the possible degradation of the probe surface coated by TiAlN as BepiColombo. EFD is the 2-channel low frequency electric receiver as a part of EWO (EFD/WFC/OFA), for the measurement of 2ch electric field in the spin-plane with the sampling rate of 512 Hz (dynamic range: +-200 mV/m, +-3 V/m) and the 4ch spacecraft potential with the sampling rate of 128 Hz (dynamic range: +-100 V), respectively, with the bias control capability fed to the WPT probes. The electric field in DC - 232Hz provides the capability to detect (1) the fundamental information of the plasma dynamics and accelerations and (2) the characteristics of MHD and ion waves with their Poynting vectors with the data measured by MGF and PWE/WFC-B connected to PWE/SCM. The spacecraft potential provides the electron density information with UHR frequency. This paper also introduces the data sets and their calibration status.
NASA Astrophysics Data System (ADS)
Schmid, Gernot; Hirtl, Rene
2016-06-01
The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the current-limiting effect of the low-conductivity stratum corneum layer.
Observations of field-aligned currents, waves, and electric fields at substorm onset
NASA Technical Reports Server (NTRS)
Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.
1986-01-01
Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.
PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.
2012-02-01
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.
Kim, Hoyeon; Cheang, U. Kei
2017-01-01
In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles. PMID:29020016
Batra, Saurabh; Cakmak, Miko
2015-12-28
In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.
Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun
2017-01-01
In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.
Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1977-01-01
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.
Collective excitations in Weyl semimetals in the hydrodynamic regime
NASA Astrophysics Data System (ADS)
Sukhachov, P. O.; Gorbar, E. V.; Shovkovy, I. A.; Miransky, V. A.
2018-07-01
The spectrum of collective excitations in Weyl materials is studied by using consistent hydrodynamics. The corresponding framework includes the vortical and chiral anomaly effects, as well as the dependence on the separations between the Weyl nodes in energy b 0 and momentum . The latter are introduced via the Chern–Simons contributions to the electric current and charge densities in Maxwell’s equations. It is found that, even in the absence of a background magnetic field, certain collective excitations (e.g. the helicon-like modes and the anomalous Hall waves) are strongly affected by the chiral shift . In a background magnetic field, the existence of the distinctive longitudinal and transverse anomalous Hall waves with a linear dispersion relation is predicted. They originate from the oscillations of the electric charge density and electromagnetic fields, in which different components of the fields are connected via the anomalous Hall effect in Weyl semimetals.
Electron plasma oscillations in the Venus foreshock
NASA Technical Reports Server (NTRS)
Crawford, G. K.; Strangeway, R. J.; Russell, C. T.
1990-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.
O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus
NASA Astrophysics Data System (ADS)
Wright, Graham Scott
This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.
Convective Electrokinetic Instability With Conductivity Gradients
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan
2003-11-01
Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.
Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2018-05-01
The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.
An Overview of the Efficacy of a Next Generation Electroceutical Wound Care Device.
Kim, Hosan; Park, Soon; Housler, Greggory; Marcel, Vanessa; Cross, Sue; Izadjoo, Mina
2016-05-01
Novel approaches including nonpharmacological methodologies for prevention and control of microbial pathogens and emerging antibiotic resistance are urgently needed. Procellera is a wound care device consisting of a matrix of alternating silver (Ag) and zinc (Zn) dots held in position on a polyester substrate with a biocompatible binder. This electroceutical medical device is capable of generating a direct current voltage (0.5-0.9 Volts). Wound dressings containing metals such as Ag and/or Zn as active ingredients are being used for control of colonized and infected wounds. Reports on the presence of electric potential field across epithelium and wound current on wounding have shown that wound healing is enhanced in the presence of an external electrical field. However, majority of the electrical devices require an external power source for delivering pulsed or continuous electric power at the wound site. A microelectric potential-generating system without an external power source is an ideal treatment modality for application in both clinical and field settings. The research presented herein describes efficacy evaluation of a wireless bioelectric dressing against both planktonic and biofilm forms of wound pathogens including multidrug resistant organisms. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.
2015-07-01
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.
NASA Astrophysics Data System (ADS)
Salem, C. S.; Sundkvist, D. J.; Bale, S.
2009-12-01
Electromagnetic fluctuations in the inertial range of solar wind MHD turbulence and beyond (up to frequencies of 10Hz) have been studied for the first time using both magnetic field and electric field measurements on Cluster [Bale et al., 2005]. It has been shown that at frequencies above the spectral breakpoint at ~0.4Hz, in the dissipation range, the wave modes become dispersive and are consistent with Kinetic Alfven Waves (KAW). This interpretation, consistent with findings from recent theoretical studies, is based on the simple assumption that the measured frequency spectrum is actually a Doppler shifted wave number spectrum (ω ≈ k Vsw), commonly used in the solar wind and known as Taylor's hypothesis. While Taylor's hypothesis is valid in the inertial range of solar wind turbulence, it may break down in the dissipation range where temporal fluctuations can become important. We recently analyzed the effect of Doppler shift on KAW as well as compressional proton whistler waves [Salem et al., 2009]. The dispersive properties of the KAW and the whistler wave modes, as well as the electric to magnetic field (E/B) ratio, have been determined both analytically and numerically in the plasma and the spacecraft frame, with the goal of directly comparing those analytical/numerical estimates in the spacecraft frame with the data as measured. We revisit here Cluster electric field and magnetic field data in the solar wind using this approach. We focus our analysis on several ambient solar wind intervals with varying plasma parameters, allowing for a statistical study. We show that this technique provides an efficient diagnostics for wave-mode identification in the dissipation/dispersion range of solar wind turbulence.
Ephemeral Electric Potential and Electric Field Sensor
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2017-01-01
Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.
NASA Astrophysics Data System (ADS)
Gkioulidou, Malamati
The convection electric field resulting from the coupling of the Earth's magnetosphere with the solar wind and interplanetary magnetic field (IMF) drives plasma in the tail plasma sheet earthward. This transport and the resulting energy storage in the near Earth plasma sheet are important for setting up the conditions that lead to major space weather disturbances, such as storms and substorms. Penetration of plasma sheet particles into the near-Earth magnetosphere in response to enhanced convection is crucial to the development of the Region 2 field-aligned current system and large-scale magnetosphere-ionosphere (M-I) coupling, which results in the shielding of the convection electric field. In addition to the electric field, plasma transport is also strongly affected by the magnetic field, which is distinctly different from dipole field in the inner plasma sheet and changes with plasma pressure in maintaining force balance. The goal of this dissertation is to investigate how the plasma transport into the inner magnetosphere is affected by the interplay between plasma, electric field and magnetic field. For this purpose, we conduct simulations using the Rice Convection Model (RCM), which self-consistently calculates the electric field resulting from M-I coupling. In order to quantitatively evaluate the interplay, we improved the RCM simulations by establishing realistic plasma sheet particle sources, by incorporating it with a modified Dungey force balance magnetic field solver (RCM-Dungey runs), and by adopting more realistic electron loss rates. We found that plasma sheet particle sources strongly affect the shielding of the convection electric field, with a hotter and more tenuous plasma sheet resulting in less shielding than a colder and denser one and thus in more earthward penetration of the plasma sheet. The Harang reversal, which is closely associated with the shielding of the convection electric field and the earthward penetration of low-energy protons, is found to be located at lower latitudes and extend more dawnward for a hotter and more tenuous plasma sheet. In comparison with simulation runs under an empirical but not force balance magnetic field from the Tsyganenko 96 model, the simulation results show that transport under force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-earth region, weaker shielding of the penetration electric field and, as a result, more earthward penetration of plasma sheet protons and electrons with their inner edges being closer together and more azimuthally symmetric. To evaluate the effect of electron loss rate on ionospheric conductivity, a major contributing factor to M-I coupling, we run RCM-Dungey with a more realistic, MLT dependent electron loss rate established from observed wave activity. Comparing our results with those using a strong diffusion everywhere rate, we found that under the MLT dependent loss rate, the dawn-dusk asymmetry in the precipitating electron energy fluxes agrees better with statistical DMSP observations. The more realistic loss rate is much weaker than the strong diffusion limit in the inner magnetosphere. This allows high-energy electrons in the inner magnetosphere to remain much longer and produce substantial conductivity at lower latitudes. The higher conductivity at lower latitudes under the MLT dependent loss rate results in less efficient shielding in response to an enhanced convection electric field, and thus to deeper penetration of the ion plasma sheet into the inner magnetosphere than under the strong diffusion everywhere rate.
NASA Astrophysics Data System (ADS)
Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.
2017-12-01
This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.
Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2006-01-01
The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2004-01-01
The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Magnetic Activity Dependence of the Electric Drift Below L = 3
NASA Astrophysics Data System (ADS)
Lejosne, Solène; Mozer, F. S.
2018-05-01
More than 2 years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L = 3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the nightside. The amplitude of the slowdown is a function of L, magnetic local time, and Kp, in a pattern consistent with the storm time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L = 3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and magnetic local time. It is the first time that the signature of the ionospheric disturbance dynamo is observed in near-equatorial electric drift measurements.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.
Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L
2018-06-13
The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.
Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan
2016-05-05
Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Alexander Y.; Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu
2014-11-01
We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for severalmore » revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.« less
NASA Astrophysics Data System (ADS)
Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen
2010-03-01
Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.
NASA Astrophysics Data System (ADS)
Gunko, Yuri F.; Gunko, Natalia A.
2018-05-01
In this paper we consider the problem of determining the structure of the electric field near the surface of a flat insulated body under conditions of a deep vacuum. It is assumed that the emitted particles are electrons leaving the body surface under the influence of ionizing radiation whose velocities distribution near the surface is isotropic. It is estimated the thickness of the screening layer under conditions of stationary emission from a flat surface. The solutio of the problem of determining a stationary self-consistent electric field near the surface is found in a simple analytical form. The thickness of the screening layer is calculated from this formula.
NASA Astrophysics Data System (ADS)
Santhanam, Parthiban; Ram, Rajeev J.
2010-09-01
We present a microscopic model of the Seebeck effect based on a generalized drift-diffusion equation and use it to predict a simple relationship between the electric field within an operating thermoelectric and the scattering parameter. Our model replicates existing theoretical results and permits an intuitive spatial picture of the Seebeck effect. A similar formalism was independently developed by Cai and Mahan, but this work includes numerical results for high dopant concentrations where the thermoelectric power factor is maximized. Based on these results, we propose that measurement of the bulk electric field should constitute a measurement of the scattering parameter, the improvement of which could lead to greater thermoelectric efficiency.
NASA Astrophysics Data System (ADS)
Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.
2018-01-01
This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.
Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.
2007-01-01
Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.
Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Ning, C. Z.
2000-01-01
Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.
Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Goodrich, K. A.
Magnetic turbulence is a universal phenomenon that occurs in space plasma physics, the small-scale processes of which is not well understood. This thesis presents on observational analysis of kinetic electric field signatures associated with magnetic turbulence, in an attempt to examine its underlying microphysics. Such kinetic signatures include small-scale magnetic holes, double layers, and phase-space holes. The first and second parts of this thesis presents observations of small-scale magnetic holes, observed depressions in total magnetic field strength with spatial widths on the order of or less than the ion Larmor radius, in the near-Earth plasmasheet. Here I demonstrate electric field signatures associated small-scale magnetic holes are consistent with the presence of electron Hall currents, currents oriented perpendicularly to the magnetic field. Further investigation of these fields indicates that the Hall electron current is primarily responsible for the depletion of | B| associated with small-scale magnetic holes. I then present evidence that suggests these currents can descend to smaller spatial scales, indicating they participate in a turbulent cascade to smaller scales, a link that has not been observable suggested until now. The last part of this thesis investigates the presence of double layers and phase-space holes in a magnetically turbulent region of the terrestrial bow shock. In this part, I present evidence that these same signatures can be generated via field-aligned currents generated by strong magnetic fluctuations. I also show that double layers and phase-space holes, embedded within localized nonlinear ion acoustic waves, correlate with localized electron heating and possible ion deceleration, indicating they play a role in turbulent dissipation of kinetic to thermal energy. This thesis clearly demonstrates that energy dissipation in turbulent plasma is closely linked to the small-scale electric field environment.
Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters
Bocharov, Grigory S.; Eletskii, Alexander V.
2013-01-01
Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342
Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars
NASA Astrophysics Data System (ADS)
Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.
2015-04-01
Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).
CSP cogeneration of electricity and desalinated water at the Pentakomo field facility
NASA Astrophysics Data System (ADS)
Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.
2016-05-01
The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater desalination. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (<25 MWth) endowed with substantial storage, suitable for use in isolation or distributed in small power grids. The first major experiment to take place at the PFF concerns the development of a pilot/experimental facility for the co-generation of electricity and desalinated seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for desalination.
Properties of large electric fields in the plasma sheet at 4-7RE measured with Polar
NASA Astrophysics Data System (ADS)
Keiling, A.; Wygant, J. R.; Cattell, C.; Johnson, M.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J.; Russell, C. T.
2001-04-01
Measurements from the Polar satellite provide evidence for large electric field structures in the plasma sheet at geocentric distances of 4-7RE. These structures had amplitudes perpendicular to the ambient magnetic field that can exceed 100 mV m-1 (6 s averaged). Two years (from May 1, 1996, to April 30, 1998) of electric field data (EZ component, approximately along GSE z) were surveyed. The distribution in invariant latitude (ILAT) and magnetic local time (MLT) of large perpendicular electric field events (defined as >=20 mV m-1 for a 6-s average) delineates the statistical auroral oval with the majority of events occurring in the nightside centered around midnight and a smaller concentration around 1500 MLT. The magnitude-versus-altitude distribution of the electric fields between 4 and 7RE in the nightside could be explained by models which assume either shear Alfvén waves propagating into regions of larger background magnetic fields or electrostatic structures being mapped quasi-statically along equipotential magnetic field lines. In addition, this survey yielded 24 very large amplitude events with |E⊥|>=100mVm-1 (6 s averaged), all of which occurred in the nightside. In the spacecraft frame, the electric field structures occurred on timescales ranging from 10 to 60 s. About 85% of these events occurred in the vicinity of the outer boundary of the plasma sheet; the rest occurred in the central plasma sheet. The polarity of the electric fields was dominantly perpendicular to the nominal plasma sheet boundary. For a large fraction of events (<=50%) the ratios of electric and magnetic fields in the period range from 10 to 60 s were consistent with Alfvén waves. Large Poynting flux (up to 2.5 ergs cm-2s-1) dominantly directed downward along the background magnetic field was associated with 21 events. All 24 events occurred during geomagnetic disturbances such as magnetic substorms. A conjugate study with ground stations for 14 events (out of the 24 events) showed that these structures occurred during times of rapid changes in the H component (or X component) of magnetometer data. For most events this time corresponded to the expansion phase; two events occurred during a quick recovery of the negative H bay signature. Thus there is evidence that large electromagnetic energy transfer processes in the plasma sheet occur during the most dynamic phase of geomagnetic disturbances. From the statistical analysis it was found that Polar observed events larger than 100 mV m-1 (50 mV m-1) in the plasma sheet between 2100 and 0300 MLT with a 2-4% (15%) probability per crossing. These probabilities will be compared to the probability of substorm occurrence during Polar plasma sheet crossings.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Numerical simulation of a helical shape electric arc in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusov, R. M.; Urusova, I. R.
2016-10-01
Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.
The Generation of Lighting in the Solar Nebula
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey; Desch, S. J.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
The process that melted and formed the chondrules, mm-sized glassy beads within meteorites, has not been conclusively identified. Origin by lightning in the solar nebula is consistent with many features of chondrules, but no viable model of lightning has yet been advanced. We present a model demonstrating how lightning could be generated in the solar nebula which differs from previous models in three important aspects. First, we identify a new', powerful charging mechanism that is based on the differences in contact potentials between particles of different composition, a form of triboelectric charging. In the presence of fine silicate grains and fine iron metal grains, large silicate particles (the chondrules) can acquire charges of +10(exp 5) e. Second, we assume that the chondrule precursor particles are selectively concentrated in clumps 1 - 100 km in size by the turbulent concentration mechanism described by Cuzzi et al. (1996). The concentration of these highly charged particles into clumps, in a background of negatively charged metal grains, is what generates the strong electric fields. Third, we make refinements in the estimates of the breakdown electric field and the ionization rate. We calculate that electric fields large enough to trigger breakdown easily could have existed over regions large enough (approx. 100km) to generate very large discharges of electrical energy (approx. 10(exp 16)erg). The discharges would have been sufficiently energetic and frequent to have formed the chondrules. We place constraints on the generation of lightning and conclude that it could not be generated if the abundance of Al-26 in chondrules was as high as the level in the CAls. This conclusion is consistent with isotopic analyses of chondrules. This possibly implies that Al-26 was non-uniformly distributed in the solar nebula or that the chondrules formed several Myr after the CAIs.
Instrumentation for measuring aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1976-01-01
Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.
Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung
2018-04-30
In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.
Zabusky, N J; Deem, G S
1979-01-01
We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570
Guionet, Alexis; David, Fabienne; Zaepffel, Clément; Coustets, Mathilde; Helmi, Karim; Cheype, Cyril; Packan, Denis; Garnier, Jean-Pierre; Blanckaert, Vincent; Teissié, Justin
2015-06-01
One of the different ways to eradicate microorganisms, and particularly bacteria that might have an impact on health consists in the delivery of pulsed electric fields (PEFs). The technologies of millisecond (ms) or microsecond (μs) PEF are still well known and used for instance in the process of fruit juice sterilization. However, this concept is costly in terms of delivered energy which might be too expensive for some other industrial processes. Nanosecond pulsed electric fields (nsPEFs) might be an alternative at least for lower energetic cost. However, only few insights were available and stipulate a gain in cost and in efficiency as well. Using Escherichia coli, the impact of frequency and low rate on eradication and energy consumption by msPEF, μsPEF and nsPEF have been studied and compared. While a 1 log10 was reached with an energy cost of 100 and 158 kJ/L with micro- and millisecond PEFs respectively, nsPEF reached the reduction for similar energy consumption. The best condition was obtained for a 1 log10 deactivation in 0.5h, for energy consumption of 143 kJ/L corresponding to 0.04 W · h when the field was around 100 kV/cm. Improvement can also be expected by producing a generator capable to increase the electric field. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of electric field exposure monitoring instrumentation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, T.D.
1985-06-01
Electric field exposure monitoring instrumentation was compared and evaluated during three days of tests performed in 60-Hz electric fields. A conducting vest exposure meter and a small electric field exposure meter (EFEM) located in a shirt pocket, arm band or hard hat were compared in a series of static and dynamic tests. In some tests, the devices were worn simultaneously without interference to provide separate measures of identical exposure. Tests with stationary subjects wearing the instruments were used to measure the effects of grounding, and to establish the meter response in a standard posture for each subject. Dynamic occupational exposuremore » simulations were used to compare accumulated measurements of exposure between instruments and to compare measurements with predicted exposures. The simulations were based on analysis of the work-related behavior of substation electricians and operators. Electrician's tasks at ground level and in a bucket truck were simulated near an energized test line. A simulated substation inspection was performed in a 230 kV substation. The exposure measurements demonstrated an overall consistency between the meters. The vest demonstrated less intersubject variability and less detailed exposure characterization. Measurements with the shirt pocket EFEM were below those made with the vest and with the EFEM in other locations. Insulation provided by shoe soles appeared to be the largest factor in reducing measured exposures during the substation inspection below those predicted from the unperturbed field. Improvements in meter design and additional measurements are suggested. 11 refs., 20 figs., 28 tabs.« less
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
NASA Technical Reports Server (NTRS)
Borenstein, M.
1972-01-01
A classical model for laser action is discussed, in which an active medium consisting of anharmonic oscillators interacts with an electromagnetic field in a resonant cavity. Comparison with the case of a medium consisting of harmonic oscillators shows the significance of nonlinearities for producing self-sustained oscillations in the radiation field. A theoretical model is presented for the pressure dependence of the intensity of a gas laser, in which only velocity-changing collisions with foreign gas atoms are included. A collision model for hard sphere, repulsive interactions was derived. Collision theory was applied to a third-order expansion of the polarization in powers of the cavity electric field (weak signal theory).
Self-consistent hybrid functionals for solids: a fully-automated implementation
NASA Astrophysics Data System (ADS)
Erba, A.
2017-08-01
A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.
Strain-mediated magnetic response in La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/BaTiO3 structure
NASA Astrophysics Data System (ADS)
Swain, Anupama; Komatsu, Katsuyoshi; Itoh, Mitsuru; Taniyama, Tomoyasu; Gorige, Venkataiah
2018-05-01
Electric field controlled magnetism is an exciting area of condensed matter physics to explore the device applications at ultra-low power consumption compared to the conventional current controlled or magnetic field controlled devices. In this study, an attempt was made to demonstrate electric field controlled magnetoresistance (MR) in a tri-layer structure consisting of La0.67Sr0.33MnO3 (LSMO) (40 nm)/SrTiO3 (10 nm)/LSMO (10 nm) grown on a 500-μm-thick BaTiO3 (001) (BTO) single crystal substrate by pulsed laser deposition technique. Epitaxial growth of the trilayer structure was confirmed by x-ray diffraction measurements. Jumps observed in the temperature-dependent magnetization curve at around the structural phase transitions of BTO ensure the strain-mediated magnetoelectric coupling between LSMO and BTO layers. A significant change in MR of this structure in applied electric fields does not show any polarity dependence. The findings are related to the lattice strain-mediated magnetoelectric coupling in ferromagnetic LSMO/ferroelectric BTO heterostructures.
Thermodynamics of the Electric Field Induced Orientation of Nematic Droplet/Polymer Films
NASA Astrophysics Data System (ADS)
Drzaic, Paul S.
1989-07-01
Films consisting of micron-sized nematic liquid crystal droplets dispersed in a polymer matrix (NCAP) represent an important new class of electro-optical devices. These films strongly scatter light in the tm powered state, but achieve a high degree of clarity when an electric field is applied. In this report we describe the aspects of liquid crystal and polymer composition that control the magnitude of the electric field required to orient the nematic droplets. The droplet shape is found to be an important factor in the electro-optical response of these films. In films deposited from aqueous solutions the nematic cavities in the film are usually oblate in nature, with the short axis perpendicular to the film plane. The nematic, which adopts a bipolar configuration within the cavity, is preferentially aligned so that each droplet's symmetry axis is aligned parallel to the film plane in the rest state, but rotates to lie parallel with the field in the powered state. Capacitance data is presented which supports this picture. It is shown that the nematic droplet shape can be a major factor in determining the thermodynamics of droplet orientation.
NASA Astrophysics Data System (ADS)
Yuan, Ying; Peng, Sha; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
In this paper, we propose a new device composed of patterned sub-wavelength arrays to investigate surface plasmons (SPs) over sub-wavelength metal nano-structures. The device consists of silicon substrate and sub-wavelength patterns fabricated on a layer of aluminum film with nanometer thickness. Each sub-wavelength pattern formed in aluminum film is composed of a basic nano-square and twelve triangles for shaping single nano-pattern, which are uniformly distributed on the four sides of each square. Reflectance spectra and electric field distribution in infrared region are simulated. Numerical simulation results demonstrate that the device can efficiently lower its reflectance in infrared spectrum, and the response frequency can be controlled by only changing the device parameters such as square side length and then triangle vertex angle. Besides, the simulated electric field distribution of the device shows obviously field localization effect at the edges of aluminum film nano-structure. The electric filed around the tips of aluminum triangles is localized into sub-wavelength scale, so as to be beyond the common diffraction limitation. Our work will help to reveal the interesting properties of SPs device, and also bring new prospect of photonic device.
Photoelectron Effects on the Self-Consistent Potential in the Collisionless Polar Wind
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Liemohn, M. W.; Moore, T. E.
1997-01-01
The presence of unthermalized photoelectrons in the sunlit polar cap leads to an enhanced ambipolar potential drop and enhanced upward ion acceleration. Observations in the topside ionosphere have led to the conclusion that large-scale electrostatic potential drops exist above the spacecraft along polar magnetic field lines connected to regions of photoelectron production. A kinetic approach is used for the O(+), H(+), and photoelectron (p) distributions, while a fluid approach is used to describe the thermal electrons (e) and self-consistent electric field (E(sub II)) electrons are allowed to carry a flux that compensates for photoelectron escape, a critical assumption. Collisional processes are excluded, leading to easier escape of polar wind particles and therefore to the formation of the largest potential drop consistent with this general approach. We compute the steady state electric field enhancement and net potential drop expected in the polar wind due to the presence of photoelectrons as a function of the fractional photoelectron content and the thermal plasma characteristics. For a set of low-altitude boundary conditions typical of the polar wind ionosphere, including 0.1% photoelectron content, we found a potential drop from 500 km to 5 R(sub E) of 6.5 V and a maximum thermal electron temperature of 8800 K. The reasonable agreement of our results with the observed polar wind suggests that the assumptions of this approach are valid.
Control of bootstrap current in the pedestal region of tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.
2013-12-15
The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less
Revision of empirical electric field modeling in the inner magnetosphere using Cluster data
NASA Astrophysics Data System (ADS)
Matsui, H.; Torbert, R. B.; Spence, H. E.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.
2013-07-01
Using Cluster data from the Electron Drift (EDI) and the Electric Field and Wave (EFW) instruments, we revise our empirically-based, inner-magnetospheric electric field (UNH-IMEF) model at 2
Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...
2016-05-26
Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less
NASA Astrophysics Data System (ADS)
Lachhab, A.; Stepanik, N.; Booterbaugh, A.
2010-12-01
In the following study, an electrical resistivity device was built and used in both a laboratory setup and in the field to accurately identify the location of a septic tank and the foundation of Gustavus Adolphus (GA); a building that was burned at Susquehanna University in 1964. The entire apparatus, which costs a fraction of the price of a typical electrical resistivity device, was tested for accuracy in the laboratory prior to its use in the field. The electrical resistivity apparatus consists of a deep-cycle twelve volt battery, an AC to DC inverter and two multimeters to measure the potential and the current intensity from four linear electrodes via a wireless data transmission system. This apparatus was constructed by using basic inexpensive electrical and electronic equipments. The recorded potential and current values were used to calculate the apparent resistivity of different materials adopting the Wenner array for both investigations. Several tests were performed on the tabletop bench, producing consistent results when applied to find small bricks structures with different geometrical arrangement buried under a mixed sand-soil formation. The apparatus was also used to investigate a subsurface salty water plume in the same formation. The horizontal resistivity profile obtained over the vertical small brick wall matched the theoretical apparent resistivity of resistivity versus displacement on a vertical dike in a homogeneous material. In addition, the two-dimensional resistivity profile replicate the salty plume size conformably. Following the success on the small-scale laboratory tabletop bench, the electrical resistivity apparatus was implemented in the field to explore the foundation of GA in one location and the septic tank in another. An array of transects were performed, analyzed and plotted using MATLAB. The three dimensional contours of apparent resistivity depicted exactly the locations of the buried foundation walls, the septic tank and the leaking plume.
Electrohydrodynamics of a viscous drop with inertia.
Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
Recognition and processing of randomly fluctuating electric signals by Na,K-ATPase.
Xie, T. D.; Marszalek, P.; Chen, Y. D.; Tsong, T. Y.
1994-01-01
Previous work has shown that Na,K-ATPase of human erythrocytes can extract free energy from sinusoidal electric fields to pump cations up their respective concentration gradients. Because regularly oscillating waveform is not a feature of the transmembrane electric potential of cells, questions have been raised whether these observed effects are biologically relevant. Here we show that a random-telegraph fluctuating electric field (RTF) consisting of alternating square electric pulses with random lifetimes can also stimulate the Rb(+)-pumping mode of the Na,K-ATPase. The net RTF-stimulated, ouabain-sensitive Rb+ pumping was monitored with 86Rb+. The tracer-measured, Rb+ influx exhibited frequency and amplitude dependencies that peaked at the mean frequency of 1.0 kHz and amplitude of 20 V/cm. At 4 degrees C, the maximal pumping activity under these optimal conditions was 28 Rb+/RBC-hr, which is approximately 50% higher than that obtained with the sinusoidal electric field. These findings indicate that Na,K-ATPase can recognize an electric signal, either regularly oscillatory or randomly fluctuating, for energy coupling, with high fidelity. The use of RTF for activation also allowed a quantitative theoretical analysis of kinetics of a membrane transport model of any complexity according to the theory of electroconformational coupling (ECC) by the diagram methods. A four-state ECC model was shown to produce the amplitude and the frequency windows of the Rb(+)-pumping if the free energy of interaction of the transporter with the membrane potential was to include a nonlinear quadratic term. Kinetic constants for the ECC model have been derived. These results indicate that the ECC is a plausible mechanism for the recognition and processing of electric signals by proteins of the cell membrane. PMID:7811939
Conductivity versus Dielectric Mechanisms for Electrorheology
NASA Astrophysics Data System (ADS)
Davis, L. C.
1997-03-01
Electrorheological (ER) fluids are continuously and rapidly controllable by an electric field. Controllability of these materials permits the construction of novel intelligent systems such as semiactively controlled shock absorbers and vibration dampers, tunable composite beams and panels, and even reconfigurable Braille arrays. The eventual success of these applications depends in part on developing improved ER fluids, which requires a fundamental understanding of the physics and chemistry of these materials. ER fluids generally consist of highly polarizable colloidal particles suspended in an insulating oil. Particles are typically 1-10 microns in diameter and can be of a wide variety of materials including zeolites, barium titanate, conducting polymers, and oxide-coated metals. Electric fields of magnitude 1-5 kV/mm induce particle chaining and concomitant shear stresses of order 1 kPa. Recent experiments (J. M. Ginder and S. L. Ceccio, J. Rheol. 39, 211 (1995)) using square-wave electric-field excitation have helped to elucidate the mechanisms of ER activity. Immediately after a step-function increase of electric field, chaining occurs due to particle-particle forces arising from dielectric polarization (dipoles and higher multipoles), i.e., it is controlled by the dielectric mismatch between particles and fluid. On a longer time scale, currents flow in the fluid and in the particles so that the forces are eventually dominated by the conductivity mismatch. Characteristic times for the transition between the two regimes are 10-50 ms. Likewise, in the frequency domain, conductivity mismatch dominates the dc response of ER fluids whereas dielectric effects dominate for high frequencies. A theory of ER fluids is given including a model for non-linear effects at high electric fields.
NASA Astrophysics Data System (ADS)
Burr, Steven Reed
Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.
NASA Astrophysics Data System (ADS)
Lumme, E.; Pomoell, J.; Kilpua, E. K. J.
2017-12-01
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.
Two distinct regions of response drive differential growth in Vigna root electrotropism
NASA Technical Reports Server (NTRS)
Wolverton, C.; Mullen, J. L.; Ishikawa, H.; Evans, M. L.
2000-01-01
Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high-resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.
Line-of-sight magnetic flux imbalances caused by electric currents
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Rabin, Douglas
1995-01-01
Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.
Kinetic-scale flux rope reconnection in periodic and line-tied geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauppe, J. P.; Daughton, W.
Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less
Kinetic-scale flux rope reconnection in periodic and line-tied geometries
Sauppe, J. P.; Daughton, W.
2017-12-28
Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less
Network meta-analysis, electrical networks and graph theory.
Rücker, Gerta
2012-12-01
Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF
NASA Astrophysics Data System (ADS)
Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.
2016-03-01
We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Numerical modelling of processes that occur in the selective waste disassembly installation
NASA Astrophysics Data System (ADS)
Cherecheş, T.; Lixandru, P.; Dragnea, D.; Cherecheş, D. M.
2017-08-01
This paper is the result of the attempts of quantitative approach of some of the processes that are occurring in the selective fragmentation with high voltage pulses installation. It has been formulated a methodology which customizes the general methods for the issue of transient electric field in mixed environments. The electromagnetic processes inside the fragmentation installation, the initiation and formation of the discharge channels, the thermodynamic and mechanical effects in the process vessel are complex, transient and very quick. One of the underlying principles of the fragmentation process consists in the differentiated reaction of materials in an electric field. Generally in the process vessel there can be found together three types of materials: dielectrics, metal, electrolytes. The conductivity of dielectric materials is virtually zero. Metallic materials conduct very well through electronic conductivity. Electrolytes have a more modest conductivity since they conduct through electrochemical processes. The electrical current, in this case, is the movement of ions having sizes and the masses different from the electrons. Here, the electric current includes displacements of ions and molecules, collisions and chemical reactions. Part of the electrical field’s energy is absorbed by the electrolyte in the form of mechanical and chemical energy.
Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher; Gekelman, Walter
2012-10-01
A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.
A Substantial Plume of Escaping Planetary Ions in the MSE Northern Hemisphere Observed by MAVEN
NASA Astrophysics Data System (ADS)
Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Curry, S.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.
2015-12-01
The Mars-solar wind interaction accelerates and transports planetary ions away from Mars through a number of processes, including pick-up by the electromagnetic fields. The Mars Atmospheric and Volatile EvolutioN (MAVEN) spacecraft has frequently detected strong escaping planetary ion fluxes in both tailward and upstream solar wind motional electric field directions since the beginning of its science phase in November 2014. Our statistical study using three-month MAVEN data from November 2014 through February 2015 illustrates a substantial plume-like escaping planetary ion population organized by the upstream electric field with strong fluxes widely distributed in the northern hemisphere of the Mars-Sun-Electric-field (MSE) coordinate system, which is generally consistent with model predictions. The plume constitutes an important planetary ion escape channel from the Martian atmosphere in addition to the tailward escape. The >25eV O+ escape rate through the plume is estimated to be ~35% of the tailward escape and ~25% of the total escape. We will compare the dynamics of the plume and tailward escaping ions based on their velocity-space distributions with respect to the electromagnetic fields. We will also discuss the variations of the plume characteristics between different ion species (O+, O2+, and CO2+) and from the effect of different solar wind and interplanetary magnetic field (IMF) conditions.
NASA Astrophysics Data System (ADS)
Nugraheni, L. R.; Niasari, S. W.; Nukman, M.
2018-04-01
Geothermal manifestations located in the Tiris, Mount Lamongan, Probolinggo, consist of warm springs. These warm springs have temperature from 35° until 45°C. Tiris fault has NW-SE dominant orientation, similar to some lineaments of maars and cinder cones around Mount Lamongan. The Mount Lamongan geothermal area is situated between Bromo and Argapura volcanoes. This study aims to map the geo-electrical and geological strikes in the study area. Phase tensor analysis has been performed in this study to determine geo-electrical strike of study area. Geological field campaign has been conducted to measure geological strikes. Then, orientation of geo-electrical strike was compared to geological strike. The result presents that the regional geological strike of study area is NW-SE while the orientation of geo-electrical strike is N-S.
NASA Astrophysics Data System (ADS)
Kim, June-Young; Kim, Hyun-Chul
2018-06-01
The self-consistent chiral quark-soliton model is a relativistic pion mean-field approach in the large Nc limit, which describes both light and heavy baryons on an equal footing. In the limit of the infinitely heavy mass of the heavy quark, a heavy baryon can be regarded as Nc-1 valence quarks bound by the pion mean fields, leaving the heavy quark as a color static source. The structure of the heavy baryon in this scheme is mainly governed by the light-quark degrees of freedom. Based on this framework, we evaluate the electromagnetic form factors of the lowest-lying heavy baryons. The rotational 1 /Nc and strange current quark mass corrections in linear order are considered. We discuss the electric charge and magnetic densities of heavy baryons in comparison with those of the nucleons. The results of the electric charge radii of the positive-charged heavy baryons show explicitly that the heavy baryon is a compact object. The electric form factors are presented. The form factor of Σc++ is compared with that from a lattice QCD. We also discuss the results of the magnetic form factors. The magnetic moments of the baryon sextet with spin 1 /2 and the magnetic radii are compared with other works and the lattice data.
NASA Astrophysics Data System (ADS)
Rehman, Naveed ur; Siddiqui, Mubashir Ali
2018-05-01
This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.
Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections
NASA Technical Reports Server (NTRS)
Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)
2012-01-01
A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.
Static electric fields modify the locomotory behaviour of cockroaches.
Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L
2011-06-15
Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.
Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method
NASA Astrophysics Data System (ADS)
Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng
2017-03-01
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
Howard University Energy Expert Systems Institute Summer Program (EESI)
NASA Technical Reports Server (NTRS)
Momoh, James A.; Chuku, Arunsi; Abban, Joseph
1996-01-01
Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.
Critical analysis of partial discharge dynamics in air filled spherical voids
NASA Astrophysics Data System (ADS)
Callender, G.; Golosnoy, I. O.; Rapisarda, P.; Lewin, P. L.
2018-03-01
In this paper partial discharge (PD) is investigated inside a spherical air filled void at atmospheric pressure using a drift diffusion model. Discharge dynamics consisted of an electron avalanche transitioning into positive streamer, in agreement with earlier work on dielectric barrier discharges. Different model configurations were utilised to test many of the concepts employed in semi-analytical PD activity models, which use simplistic descriptions of the discharge dynamics. The results showed that many of these concepts may be erroneous, with significant discrepancies between the canonical reasoning and the simulation results. For example, the residual electric field, the electric field after a discharge, is significantly lower than the estimates used by classical PD activity models in the literature.
Modulation of the magnetic domain size induced by an electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ando, F.; Kakizakai, H.; Yamada, K.
2016-07-11
The electric field (EF) effect on the magnetic domain structure of a Pt/Co system was studied, where an EF was applied to the top surface of the Co layer. The width of the maze domain was significantly modified by the application of the EF at a temperature slightly below the Curie temperature. After a detailed analysis, a change in the microscopic exchange stiffness induced by the EF application was suggested to dominate the modulation of the domain width observed in the experiment. The accumulation of electrons at the surface of the Co layer resulted in an increase in the microscopicmore » exchange stiffness and the Curie temperature. The result was consistent with the recent theoretical prediction.« less
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Anderson, R. R.; Odem, D. L.
1975-01-01
This document describes the University of Iowa solar wind plasma wave experiment for the Helios missions (Experiment 5a). The objective of this experiment is the investigation of naturally occurring plasma instabilities and electromagnetic waves in the solar wind. To carry out this investigation, the experiment consists primarily of a 16-channel spectrum analyzer connected to the electric field antennas. The spectrum analyzer covers the frequency range from 20 Hz to 200 kHz and has an amplitude dynamic range which extends from .3 microvolts/m to 30 mV/m per channel. This spectrum analyzer, the antenna potential measurements, the shock alarm system and the supporting electronics are discussed in detail.
Surgical wound monitoring by MRI with a metamaterial-based implanted local coil
NASA Astrophysics Data System (ADS)
Kamel, Hanan; Syms, Richard R. A.; Kardoulaki, Evdokia M.; Rea, Marc
2018-03-01
An implantable sensor for monitoring surgical wounds after bowel reconstruction is proposed. The sensor consists of a coupled pair of 8-element magneto-inductive ring resonators, designed for mounting on a biofragmentable anastomosis ring to give a local increase in signal-to-noise ratio near an annular wound during 1H magnetic resonance imaging. Operation on an anti-symmetric spatial mode is used to avoid coupling to the B1 field during excitation, and a single wired connection is used for MRI signal output. The electrical response and field-of-view are estimated theoretically. Prototypes are constructed from flexible elements designed for operation at 1.5 T, electrical responses are characterized and local SNR enhancement is confirmed using agar gel phantoms.
Inter-conversion of Work and Heat With Plasma Electric Fields
NASA Astrophysics Data System (ADS)
Avinash, K.
2010-11-01
Thermodynamics of a model system where a group of cold charged particles locally confined in a volume VP within a warm plasma of temperature T and fixed volume V (VP<
Microelectrode for energy and current control of nanotip field electron emitters
NASA Astrophysics Data System (ADS)
Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.
2013-11-01
Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10-30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.
The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P.-A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Olsson, G.; Khotyaintsev, Y. V.; Eriksson, A.; Kletzing, C. A.; Bounds, S.; Anderson, B.; Baumjohann, W.; Steller, M.; Bromund, K.; Le, Guan; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Porter, J.; Lappalainen, K.
2016-03-01
The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (˜1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI are provided in five companion papers.
Five years of full-scale utility demonstration of pulsed energization of electric precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, S.A.; Jacobus, P.L.; Casey, P.J.
1996-11-01
In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less
NASA Astrophysics Data System (ADS)
Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.
2018-01-01
The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.
NASA Astrophysics Data System (ADS)
Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui
2017-05-01
In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.
2011-01-01
As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.
NASA Astrophysics Data System (ADS)
Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu
2018-05-01
Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.
Gate-defined quantum confinement in suspended bilayer graphene
NASA Astrophysics Data System (ADS)
Allen, M. T.; Martin, J.; Yacoby, A.
2012-07-01
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall ν=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.
A 2D electrostatic PIC code for the Mark III Hypercube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraro, R.D.; Liewer, P.C.; Decyk, V.K.
We have implemented a 2D electrostastic plasma particle in cell (PIC) simulation code on the Caltech/JPL Mark IIIfp Hypercube. The code simulates plasma effects by evolving in time the trajectories of thousands to millions of charged particles subject to their self-consistent fields. Each particle`s position and velocity is advanced in time using a leap frog method for integrating Newton`s equations of motion in electric and magnetic fields. The electric field due to these moving charged particles is calculated on a spatial grid at each time by solving Poisson`s equation in Fourier space. These two tasks represent the largest part ofmore » the computation. To obtain efficient operation on a distributed memory parallel computer, we are using the General Concurrent PIC (GCPIC) algorithm previously developed for a 1D parallel PIC code.« less
NASA Astrophysics Data System (ADS)
Challoner, Robin; Harris, Robin K.; Tossell, John A.
1997-05-01
An off-magic-angle spinning study of the nonassociated molecular solid, doubly15N-labeled 5-methyl-2-diazobenzenesulphonic acid hydrochloride (I) is reported. The validity of the off-magic-angle spinning approach under fast-spinning conditions is verified by average Hamiltonian theory. Ab initio SCF calculations were performed on the simpler molecule, C6H5N2+, to provide the shielding parameters, the dipolar coupling between the two nitrogen nuclei, and the electric field gradient existing at both the α-nitrogen and β-nitrogen sites. The calculated values are in good agreement with the shielding and effective dipolar coupling data elucidated in the present investigation, and with a previous study of the two singly15N-labeled isotopomers in which information concerning the electric field gradient at the α and β sites was deduced.
The CDRH Helix-I: a physical evaluation.
Gopal, M K; Cetas, T C
1990-01-01
The use of a resonant helical coil with predominantly axial electric fields for regional hyperthermia in the abdomen and pelvis is addressed. The Helix-I applicator, which consists of a three-turn, 36-cm-long, oval-wound helical coil measuring 60 and 43 cm along its major and minor axes, respectively, is described, and specific absorption rate (SAR) measurements for the device are reported. Measurements of the E-field are also described. Specific absorption patterns for the Helix, determined by transient temperature measurements using a gel phantom, and by E(2)-field scans using a liquid phantom, are in general agreement. The general agreement of electric power intensity distribution, inside and outside the phantom, with corresponding SAR distributions obtained from transient temperature data, ensures reliability of the distribution patterns. The E(2) contours provide a clear picture of hot and cold spots as well as the nature of the general distribution.
NASA Astrophysics Data System (ADS)
Yu, Jin; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun
2018-06-01
The electronic properties of monolayer tin dilsulfide (ML -Sn S2 ), a recently synthesized metal dichalcogenide, are studied by a combination of first-principles calculations and tight-binding (TB) approximation. An effective lattice Hamiltonian based on six hybrid s p -like orbitals with trigonal rotation symmetry are proposed to calculate the band structure and density of states for ML -Sn S2 , which demonstrates good quantitative agreement with relativistic density-functional-theory calculations in a wide energy range. We show that the proposed TB model can be easily applied to the case of an external electric field, yielding results consistent with those obtained from full Hamiltonian results. In the presence of a perpendicular magnetic field, highly degenerate equidistant Landau levels are obtained, showing typical two-dimensional electron gas behavior. Thus, the proposed TB model provides a simple way in describing properties in ML -Sn S2 .
NASA Astrophysics Data System (ADS)
Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.
2018-01-01
The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.
Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source
NASA Technical Reports Server (NTRS)
Jeong, Seong-Il; Didion, Jeffrey
2004-01-01
The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.
Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves
NASA Technical Reports Server (NTRS)
Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.
1984-01-01
Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.
Two Way Coupling RAM-SCB to the Space Weather Modeling Framework
NASA Astrophysics Data System (ADS)
Welling, D. T.; Jordanova, V. K.; Zaharia, S. G.; Toth, G.
2010-12-01
The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) has been used to successfully study inner magnetosphere dynamics during different solar wind and magnetosphere conditions. Recently, one way coupling of RAM-SCB with the Space Weather Modeling Framework (SWMF) has been achieved to replace all data or empirical inputs with those obtained through first-principles-based codes: magnetic field and plasma flux outer boundary conditions are provided by the Block Adaptive Tree Solar wind Roe-type Upwind Scheme (BATS-R-US) MHD code, convection electric field is provided by the Ridley Ionosphere Model (RIM), and ion composition is provided by the Polar Wind Outflow Model (PWOM) combined with a multi-species MHD approach. These advances, though creating a powerful inner magnetosphere virtual laboratory, neglect the important mechanisms through which the ring current feeds back into the whole system, primarily the stretching of the magnetic field lines and shielding of the convection electric field through strong region two Field Aligned Currents (FACs). In turn, changing the magnetosphere in this way changes the evolution of the ring current. To address this shortcoming, the coupling has been expanded to include feedback from RAM-SCB to the other coupled codes: region two FACs are returned to the RIM while total plasma pressure is used to nudge the MHD solution towards the RAM-SCB values. The impacts of the two way coupling are evaluated on three levels: the global magnetospheric level, focusing on the impact on the ionosphere and the shape of the magnetosphere, the regional level, examining the impact on the development of the ring current in terms of energy density, anisotropy, and plasma distribution, and the local level to compare the new results to in-situ measurements of magnetic and electric field and plasma. The results will also be compared to past simulations using the one way coupling and no coupling whatsoever. This work is the first to fully couple an anisotropic kinetic ring current code with a self-consistently calculated magnetic field to a set of global models.
Electric Field Sensor for Lightning Early Warning System
NASA Astrophysics Data System (ADS)
Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.
2017-12-01
Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.
Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip
NASA Astrophysics Data System (ADS)
Yanagisawa, Hirofumi; Zadin, Vahur; Kunze, Karsten; Hafner, Christian; Aabloo, Alvo; Kim, Dong Eon; Kling, Matthias F.; Djurabekova, Flyura; Osterwalder, Jürg; Wuensch, Walter
2016-12-01
Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise on a scale of a couple of picoseconds in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions are consistent with the experimental observations. The presented technique would be a new method to fabricate a nano-tip especially for generating coherent electron pulses. The features may also help to explain the origin of enhanced field emission, which leads to vacuum arcs, in high electric field devices such as radio-frequency particle accelerators.
Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.
Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M
2016-06-14
This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar
2017-12-01
In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.
Spectral method for the static electric potential of a charge density in a composite medium
NASA Astrophysics Data System (ADS)
Bergman, David J.; Farhi, Asaf
2018-04-01
A spectral representation for the static electric potential field in a two-constituent composite medium is presented. A theory is developed for calculating the quasistatic eigenstates of Maxwell's equations for such a composite. The local physical potential field produced in the system by a given source charge density is expanded in this set of orthogonal eigenstates for any position r. The source charges can be located anywhere, i.e., inside any of the constituents. This is shown to work even if the eigenfunctions are normalized in an infinite volume. If the microstructure consists of a cluster of separate inclusions in a uniform host medium, then the quasistatic eigenstates of all the separate isolated inclusions can be used to calculate the eigenstates of the total structure as well as the local potential field. Once the eigenstates are known for a given host and a given microstructure, then calculation of the local field only involves calculating three-dimensional integrals of known functions and solving sets of linear algebraic equations.
Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A
2014-08-01
We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.
NASA Technical Reports Server (NTRS)
Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent
2012-01-01
In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.
Apparatuses and methods for generating electric fields
Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L
2013-08-06
Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.
Introduction to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045
Application of classical models of chirality to optical rectification
NASA Astrophysics Data System (ADS)
Wang, Xiao-Ou; Gong, Li-Jing; Li, Chun-Fei
2008-08-01
Classical models of chirality are used to investigate the optical rectification effect in chiral molecular media. Calculation of the zero frequency first hyperpolarizabilities of chiral molecules with different structures is performed and applied to the derivation of a dc electric-dipole polarization. The expression of second-order nonlinear static-electric-dipole susceptibilities is obtained by theoretical derivation in the isotropic chiral thin films. The microscopic mechanism producing optical rectification is analyzed in view of this calculation. We find that optical rectification is derived from interaction between the electric field gradient (spatial dispersion) and chiral molecules in optically active liquids and solution by our calculation, which is consistent with the result given by Woźniak and Wagnière [Opt. Commun. 114, 131 (1995)]: The optical rectification depends on the fourth-order electric-dipole susceptibilities.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
NASA Astrophysics Data System (ADS)
Johnson, B. C.; Liemohn, M. W.; Fränz, M.; Ramstad, R.; Stenberg Wieser, G.; Nilsson, H.
2018-01-01
This study obtains a statistical representation of 2-15 keV heavy ions outside of the Martian-induced magnetosphere and depicts their organization by the solar wind convective electric field (
The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite
NASA Astrophysics Data System (ADS)
Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku
2018-05-01
The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our PWE observation strategy and provide some initial results.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lejosne, Solène; Mozer, F. S.
2016-12-01
The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L 2.6, as well as a slight radial transport of the order of 20 m s-1. The magnetic local time dependence of the electric drift is consistent with that of the ionosphere wind dynamo below L 2 and with that of a solar wind-driven convection electric field above L 2. A secondary longitudinal dependence of the electric field is also found. Therefore, this work also demonstrates that the instruments on board Van Allen Probes are able to perform accurate measurements of the electric drift below L 3.
Application of spark plasma sintering for fabricating Nd-Fe-B composite
NASA Astrophysics Data System (ADS)
Sivkov, A. A.; Ivashutenko, A. S.; Lomakina, A. A.
2015-10-01
Constant magnets are applied in such fields as electric equipment and electric generators with fixed rotor. Rare earth metal neodymium is well known as promising material. Production of magnets by sintering three elements (neodymium, iron and boron) is one the most promising methods. But there are difficulties in choosing the right temperature for sintering and further processing. Structure and properties of the product, consisted of rare earth metals, was analyzed. X-ray analysis of the resulting product and the finished constant magnet was performed. Vickers microhardness was obtained.
Stochastic approach and fluctuation theorem for charge transport in diodes
NASA Astrophysics Data System (ADS)
Gu, Jiayin; Gaspard, Pierre
2018-05-01
A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.
Disorder induced magnetism and electrical conduction in La doped Ca2FeMoO6 double perovskite
NASA Astrophysics Data System (ADS)
Poddar, Asok; Bhowmik, R. N.; Muthuselvam, I. Panneer
2010-11-01
We report the magnetism and electrical transport properties of La doped Ca2FeMoO6 double perovskite. Reduction in magnetic moment, nonmonotonic variation in magnetic ordering temperature (TC), increasing magnetic hardness, low temperature resistivity upturn, and loss of metallic conductivity are some of the major changes that we observed due to La doping induced disorder in double perovskite structure. The increase in magnetic disorder in La doped samples and its effect on TC is more consistent with the mean field theory. The modification in electronic band structure due to La doping is understood by establishing a correlation between the temperature dependence of electrical conductivity and thermoelectric power.
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
Breton, Marie; Amirkavei, Mooud; Mir, Lluis M
2015-10-01
Giant unilamellar vesicles (GUV) are widely used cell membrane models. GUVs have a cell-like diameter and contain the same phospholipids that constitute cell membranes. The most frequently used protocol to obtain these vesicles is termed electroformation, since key steps of this protocol consist in the application of an electric field to a phospholipid deposit. The potential oxidation of unsaturated phospholipids due to the application of an electric field has not yet been considered even though the presence of oxidized lipids in the membrane of GUVs could impact their permeability and their mechanical properties. Thanks to mass spectrometry analyses, we demonstrated that the electroformation technique can cause the oxidation of polyunsaturated phospholipids constituting the vesicles. Then, using flow cytometry, we showed that the amplitude and the duration of the electric field impact the number and the size of the vesicles. According to our results, the oxidation level of the phospholipids increases with their level of unsaturation as well as with the amplitude and the duration of the electric field. However, when the level of lipid oxidation exceeds 25 %, the diameter of the vesicles is decreased and when the level of lipid oxidation reaches 40 %, the vesicles burst or reorganize and their rate of production is reduced. In conclusion, the classical electroformation method should always be optimized, as a function of the phospholipid used, especially for producing giant liposomes of polyunsaturated phospholipids to be used as a cell membrane model.
Saturation of the Electric Field Transmitted to the Magnetosphere
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.
2010-01-01
We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.
Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene
NASA Astrophysics Data System (ADS)
Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii
2018-05-01
The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.
The physical foundation of the reconnection electric field
NASA Astrophysics Data System (ADS)
Hesse, M.; Liu, Y.-H.; Chen, L.-J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Norgren, C.; Genestreti, K. J.; Phan, T. D.; Tenfjord, P.
2018-03-01
Magnetic reconnection is a key charged particle transport and energy conversion process in environments ranging from astrophysical systems to laboratory plasmas [Yamada et al., Rev. Mod. Phys. 82, 603-664 (2010)]. Magnetic reconnection facilitates plasma transport by establishing new connections of magnetic flux tubes, and it converts, often explosively, energy stored in the magnetic field to kinetic energy of charged particles [J. L. Burch and J. F. Drake, Am. Sci. 97, 392-299 (2009)]. The intensity of the magnetic reconnection process is measured by the reconnection electric field, which regulates the rate of flux tube connectivity changes. The change of magnetic connectivity occurs in the current layer of the diffusion zone, where the plasma transport is decoupled from the transport of magnetic flux. Here we report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the reconnection electric field is essential to maintain the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. This collisionless viscosity, found in the pressure evolution equation, dominates near the x-line. These quasi-viscous terms act to increase the average thermal energy. Our predictions regarding current and thermal energy balance are readily amenable to exploration in the laboratory or by satellite missions, in particular, by NASA's Magnetospheric Multiscale mission.
[Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].
Nowak, D; Radon, K
2004-02-26
The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.
Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp
NASA Technical Reports Server (NTRS)
Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.
1979-01-01
Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.
Field emission characteristics of a small number of carbon fiber emitters
NASA Astrophysics Data System (ADS)
Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim
2016-09-01
This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.
NASA Astrophysics Data System (ADS)
Paulin-Fuentes, J. Mauricio; Sánchez-Aké, C.; Bredice, Fausto O.; Villagrán-Muniz, Mayo
2015-07-01
The self-generated electric and magnetic fields in laser induced plasmas (LIPs) in air during the first 40 ns are experimentally investigated using different electric, magnetic and optical techniques. To produce LIPs we used the second and third harmonics (532 and 355 nm) of a Nd:YAG nanosecond pulsed laser with a range of irradiance from {{10}11} to {{10}12} W \\text{c}{{\\text{m}}-2} . The variation in time of the electric field was detected using the tip of a coaxial cable, and the spontaneous magnetic field (SMF) was measured using a \\dot{B} probe. The spatial and temporal evolution of the plasma was studied using shadowgraphy and fast photography. It was observed that produced LIPs using pulses of 532 and 355 nm, generate plasmas of double core over the laser axis, while we observed that produced LIPs by pulses of 1064 nm are composed of a single core plasma. We found that the double-core plasmas have a quadrupole distribution of the charge, consisting of two oppositely directed dipoles which in turn correspond to each plasma core. The magnetic diagnostic showed an oscillating magnetic field azimuthal to the main axis of the double-plasma.
Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.
2017-12-01
Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.
NASA Technical Reports Server (NTRS)
Hastings, D. E.; Gatsonis, N. A.; Rivas, D. A.
1988-01-01
Plasma contactors have been proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. A plasma contactor is a plasma source which emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors and it is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory of the motion of the cloud across the magnetic field is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1-100 Amperes. It is shown that small ion current contactors are more efficient than large ion current contactors. This suggests that if a plasma contactor is used on an electrodynamic tether then a miltiple tether array will be more efficient than a single tether.
Singha, Kamini; Gorelick, Steven M.
2006-01-01
Two important mechanisms affect our ability to estimate solute concentrations quantitatively from the inversion of field-scale electrical resistivity tomography (ERT) data: (1) the spatially variable physical processes that govern the flow of current as well as the variation of physical properties in space and (2) the overparameterization of inverse models, which requires the imposition of a smoothing constraint (regularization) to facilitate convergence of the inverse solution. Based on analyses of field and synthetic data, we find that the ability of ERT to recover the 3D shape and magnitudes of a migrating conductive target is spatially variable. Additionally, the application of Archie's law to tomograms from field ERT data produced solute concentrations that are consistently less than 10% of point measurements collected in the field and estimated from transport modeling. Estimates of concentration from ERT using Archie's law only fit measured solute concentrations if the apparent formation factor is varied with space and time and allowed to take on unreasonably high values. Our analysis suggests that the inability to find a single petrophysical relation in space and time between concentration and electrical resistivity is largely an effect of two properties of ERT surveys: (1) decreased sensitivity of ERT to detect the target plume with increasing distance from the electrodes and (2) the smoothing imprint of regularization used in inversion.