Sample records for consistent image quality

  1. Human visual system consistent quality assessment for remote sensing image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Huang, Junyi; Liu, Shuguang; Li, Huali; Zhou, Qiming; Liu, Junchen

    2015-07-01

    Quality assessment for image fusion is essential for remote sensing application. Generally used indices require a high spatial resolution multispectral (MS) image for reference, which is not always readily available. Meanwhile, the fusion quality assessments using these indices may not be consistent with the Human Visual System (HVS). As an attempt to overcome this requirement and inconsistency, this paper proposes an HVS-consistent image fusion quality assessment index at the highest resolution without a reference MS image using Gaussian Scale Space (GSS) technology that could simulate the HVS. The spatial details and spectral information of original and fused images are first separated in GSS, and the qualities are evaluated using the proposed spatial and spectral quality index respectively. The overall quality is determined without a reference MS image by a combination of the proposed two indices. Experimental results on various remote sensing images indicate that the proposed index is more consistent with HVS evaluation compared with other widely used indices that may or may not require reference images.

  2. The Effect of Image Quality, Repeated Study, and Assessment Method on Anatomy Learning

    ERIC Educational Resources Information Center

    Fenesi, Barbara; Mackinnon, Chelsea; Cheng, Lucia; Kim, Joseph A.; Wainman, Bruce C.

    2017-01-01

    The use of two-dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low-quality and high-quality…

  3. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christianson, O; Winslow, J; Samei, E

    2014-06-15

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using opticalmore » character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image quality across CT vendors.« less

  4. The effect of image quality, repeated study, and assessment method on anatomy learning.

    PubMed

    Fenesi, Barbara; Mackinnon, Chelsea; Cheng, Lucia; Kim, Joseph A; Wainman, Bruce C

    2017-06-01

    The use of two-dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low-quality and high-quality images of the human hand and human eye. On day 0, participants learned about each anatomical specimen from paper booklets using either low-quality or high-quality images, and then completed a comprehension test using either 2D images or three-dimensional (3D) cadaveric specimens. On day 1, participants relearned each booklet, and on day 2 participants completed a final comprehension test using either 2D images or 3D cadaveric specimens. The effect of image quality on learning varied according to anatomical content, with high-quality images having a greater effect on improving learning of hand anatomy than eye anatomy (high-quality vs. low-quality for hand anatomy P = 0.018; high-quality vs. low-quality for eye anatomy P = 0.247). Also, the benefit of high-quality images on hand anatomy learning was restricted to performance on short-answer (SA) questions immediately after learning (high-quality vs. low-quality on SA questions P = 0.018), but did not apply to performance on multiple-choice (MC) questions (high-quality vs. low-quality on MC questions P = 0.109) or after participants had an additional learning opportunity (24 hours later) with anatomy content (high vs. low on SA questions P = 0.643). This study underscores the limited impact of image quality on anatomy learning, and questions whether investment in enhancing image quality of learning aids significantly promotes knowledge development. Anat Sci Educ 10: 249-261. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  5. Application of phase consistency to improve time efficiency and image quality in dual echo black-blood carotid angiography.

    PubMed

    Kholmovski, Eugene G; Parker, Dennis L

    2005-07-01

    There is a considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual echo fast spin-echo (FSE) sequences. The similarity manifests itself not only in image space as correspondence between intensities of PDw and T2w images, but also in phase space as consistency between phases of PDw and T2w images. Methods for improving the imaging efficiency and image quality of dual echo FSE sequences based on this feature have been developed. The total scan time of dual echo FSE acquisition may be reduced by as much as 25% by incorporating an estimate of the image phase from a fully sampled PDw image when reconstructing partially sampled T2w images. The quality of T2w images acquired using phased array coils may be significantly improved by using the developed noise reduction reconstruction scheme, which is based on the correspondence between the PDw and T2w image intensities and the consistency between the PDw and T2w image phases. Studies of phantom and human subject MRI data were performed to evaluate the effectiveness of the techniques.

  6. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images.

    PubMed

    Yu, Shaode; Dai, Guangzhe; Wang, Zhaoyang; Li, Leida; Wei, Xinhua; Xie, Yaoqin

    2018-05-16

    Quality assessment of medical images is highly related to the quality assurance, image interpretation and decision making. As to magnetic resonance (MR) images, signal-to-noise ratio (SNR) is routinely used as a quality indicator, while little knowledge is known of its consistency regarding different observers. In total, 192, 88, 76 and 55 brain images are acquired using T 2 * , T 1 , T 2 and contrast-enhanced T 1 (T 1 C) weighted MR imaging sequences, respectively. To each imaging protocol, the consistency of SNR measurement is verified between and within two observers, and white matter (WM) and cerebral spinal fluid (CSF) are alternately used as the tissue region of interest (TOI) for SNR measurement. The procedure is repeated on another day within 30 days. At first, overlapped voxels in TOIs are quantified with Dice index. Then, test-retest reliability is assessed in terms of intra-class correlation coefficient (ICC). After that, four models (BIQI, BLIINDS-II, BRISQUE and NIQE) primarily used for the quality assessment of natural images are borrowed to predict the quality of MR images. And in the end, the correlation between SNR values and predicted results is analyzed. To the same TOI in each MR imaging sequence, less than 6% voxels are overlapped between manual delineations. In the quality estimation of MR images, statistical analysis indicates no significant difference between observers (Wilcoxon rank sum test, p w  ≥ 0.11; paired-sample t test, p p  ≥ 0.26), and good to very good intra- and inter-observer reliability are found (ICC, p icc  ≥ 0.74). Furthermore, Pearson correlation coefficient (r p ) suggests that SNR wm correlates strongly with BIQI, BLIINDS-II and BRISQUE in T 2 * (r p  ≥ 0.78), BRISQUE and NIQE in T 1 (r p  ≥ 0.77), BLIINDS-II in T 2 (r p  ≥ 0.68) and BRISQUE and NIQE in T 1 C (r p  ≥ 0.62) weighted MR images, while SNR csf correlates strongly with BLIINDS-II in T 2 * (r p  ≥ 0.63) and in T 2 (r p  ≥ 0.64) weighted MR images. The consistency of SNR measurement is validated regarding various observers and MR imaging protocols. When SNR measurement performs as the quality indicator of MR images, BRISQUE and BLIINDS-II can be conditionally used for the automated quality estimation of human brain MR images.

  7. Multi-view 3D echocardiography compounding based on feature consistency

    NASA Astrophysics Data System (ADS)

    Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.

    2011-09-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  8. Validation of an image-based technique to assess the perceptual quality of clinical chest radiographs with an observer study

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Choudhury, Kingshuk R.; McAdams, H. Page; Foos, David H.; Samei, Ehsan

    2014-03-01

    We previously proposed a novel image-based quality assessment technique1 to assess the perceptual quality of clinical chest radiographs. In this paper, an observer study was designed and conducted to systematically validate this technique. Ten metrics were involved in the observer study, i.e., lung grey level, lung detail, lung noise, riblung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm-lung contrast, and subdiaphragm area. For each metric, three tasks were successively presented to the observers. In each task, six ROI images were randomly presented in a row and observers were asked to rank the images only based on a designated quality and disregard the other qualities. A range slider on the top of the images was used for observers to indicate the acceptable range based on the corresponding perceptual attribute. Five boardcertificated radiologists from Duke participated in this observer study on a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions. The observer data were analyzed in terms of the correlations between the observer ranking orders and the algorithmic ranking orders. Based on the collected acceptable ranges, quality consistency ranges were statistically derived. The observer study showed that, for each metric, the averaged ranking orders of the participated observers were strongly correlated with the algorithmic orders. For the lung grey level, the observer ranking orders completely accorded with the algorithmic ranking orders. The quality consistency ranges derived from this observer study were close to these derived from our previous study. The observer study indicates that the proposed image-based quality assessment technique provides a robust reflection of the perceptual image quality of the clinical chest radiographs. The derived quality consistency ranges can be used to automatically predict the acceptability of a clinical chest radiograph.

  9. PROPOSAL FOR A SIMPLE AND EFFICIENT MONTHLY QUALITY MANAGEMENT PROGRAM ASSESSING THE CONSISTENCY OF ROBOTIC IMAGE-GUIDED SMALL ANIMAL RADIATION SYSTEMS

    PubMed Central

    Brodin, N. Patrik; Guha, Chandan; Tomé, Wolfgang A.

    2015-01-01

    Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first six months experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (± 3 %) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis. PMID:26425981

  10. Proposal for a Simple and Efficient Monthly Quality Management Program Assessing the Consistency of Robotic Image-Guided Small Animal Radiation Systems.

    PubMed

    Brodin, N Patrik; Guha, Chandan; Tomé, Wolfgang A

    2015-11-01

    Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first 6-mo experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (±3%) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis.

  11. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    NASA Astrophysics Data System (ADS)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  12. WE-G-204-09: Medical Physics 2.0 in Practice: Automated QC Assessment of Clinical Chest Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, C; Willis, C; Nishino, T

    2015-06-15

    Purpose: To determine whether a proposed suite of objective image quality metrics for digital chest radiographs is useful for monitoring image quality in our clinical operation. Methods: Seventeen gridless AP Chest radiographs from a GE Optima portable digital radiography (DR) unit (Group 1), seventeen (routine) PA Chest radiographs from a GE Discovery DR unit (Group 2), and sixteen gridless (non-routine) PA Chest radiographs from the same Discovery DR unit (Group 3) were chosen for analysis. Groups were selected to represent “sub-standard” (Group 1), “standard-of-care” (Group 2), and images with a gross technical error (Group 3). Group 1 images were acquiredmore » with lower kVp (90 vs. 125), shorter source-to-image distance (127cm vs 183cm) and were expected to have lower quality than images in Group 2. Group 3 was expected to have degraded contrast versus Group 2.This evaluation was approved by the institutional Quality Improvement Assurance Board (QIAB). Images were anonymized and securely transferred to the Duke University Clinical Imaging Physics Group for analysis using software previously described{sup 1} and validated{sup 2}. Image quality for individual images was reported in terms of lung grey level(Lgl); lung noise(Ln); rib-lung contrast(RLc); rib sharpness(Rs); mediastinum detail(Md), noise(Mn), and alignment(Ma); subdiaphragm-lung contrast(SLc); and subdiaphragm area(Sa). Metrics were compared across groups. Results: Metrics agreed with published Quality Consistency Ranges with three exceptions: higher Lgl, lower RLc, and SDc. Higher bit depth (16 vs 12) accounted for higher Lgl values in our images. Values were most internally consistent for Group 2. The most sensitive metric for distinguishing between groups was Mn followed closely by Ln. The least sensitive metrics were Md and RLc. Conclusion: The software appears promising for objectively and automatically identifying substandard images in our operation. The results can be used to establish local quality consistency ranges and action limits per facility preferences.« less

  13. MO-DE-207-04: Imaging educational program on solutions to common pediatric imaging challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, R.

    This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. The educational program will begin with a detailed discussion of the optimal configuration of fluoroscopes for general pediatric procedures. Following this introduction will be a focused discussion on the utility of Dual Energy CT for imaging children. The third lecture will address the substantial challenge of obtaining consistent image post -processing in pediatric digital radiography. The fourth and final lecture will address best practices in pediatric MRI includingmore » a discussion of ancillary methods to reduce sedation and anesthesia rates. Learning Objectives: To learn techniques for optimizing radiation dose and image quality in pediatric fluoroscopy To become familiar with the unique challenges and applications of Dual Energy CT in pediatric imaging To learn solutions for consistent post-processing quality in pediatric digital radiography To understand the key components of an effective MRI safety and quality program for the pediatric practice.« less

  14. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  15. Deep supervised dictionary learning for no-reference image quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  16. Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, Vinicius O., E-mail: vinicius@radtec.com.br; Machado, Marcos A. D.; Queiroz, Cleiton C.

    2016-02-15

    Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread functionmore » and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.« less

  17. Saliency image of feature building for image quality assessment

    NASA Astrophysics Data System (ADS)

    Ju, Xinuo; Sun, Jiyin; Wang, Peng

    2011-11-01

    The purpose and method of image quality assessment are quite different for automatic target recognition (ATR) and traditional application. Local invariant feature detectors, mainly including corner detectors, blob detectors and region detectors etc., are widely applied for ATR. A saliency model of feature was proposed to evaluate feasibility of ATR in this paper. The first step consisted of computing the first-order derivatives on horizontal orientation and vertical orientation, and computing DoG maps in different scales respectively. Next, saliency images of feature were built based auto-correlation matrix in different scale. Then, saliency images of feature of different scales amalgamated. Experiment were performed on a large test set, including infrared images and optical images, and the result showed that the salient regions computed by this model were consistent with real feature regions computed by mostly local invariant feature extraction algorithms.

  18. The National Library of Medicine Pill Image Recognition Challenge: An Initial Report.

    PubMed

    Yaniv, Ziv; Faruque, Jessica; Howe, Sally; Dunn, Kathel; Sharlip, David; Bond, Andrew; Perillan, Pablo; Bodenreider, Olivier; Ackerman, Michael J; Yoo, Terry S

    2016-10-01

    In January 2016 the U.S. National Library of Medicine announced a challenge competition calling for the development and discovery of high-quality algorithms and software that rank how well consumer images of prescription pills match reference images of pills in its authoritative RxIMAGE collection. This challenge was motivated by the need to easily identify unknown prescription pills both by healthcare personnel and the general public. Potential benefits of this capability include confirmation of the pill in settings where the documentation and medication have been separated, such as in a disaster or emergency; and confirmation of a pill when the prescribed medication changes from brand to generic, or for any other reason the shape and color of the pill change. The data for the competition consisted of two types of images, high quality macro photographs, reference images, and consumer quality photographs of the quality we expect users of a proposed application to acquire. A training dataset consisting of 2000 reference images and 5000 corresponding consumer quality images acquired from 1000 pills was provided to challenge participants. A second dataset acquired from 1000 pills with similar distributions of shape and color was reserved as a segregated testing set. Challenge submissions were required to produce a ranking of the reference images, given a consumer quality image as input. Determination of the winning teams was done using the mean average precision quality metric, with the three winners obtaining mean average precision scores of 0.27, 0.09, and 0.08. In the retrieval results, the correct image was amongst the top five ranked images 43%, 12%, and 11% of the time, out of 5000 query/consumer images. This is an initial promising step towards development of an NLM software system and application-programming interface facilitating pill identification. The training dataset will continue to be freely available online at: http://pir.nlm.nih.gov/challenge/submission.html.

  19. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    PubMed

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing can significantly impact image quality when settings are left near default values.

  20. Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates.

    PubMed

    Son, Jung-Young; Saveljev, Vladmir V; Kim, Jae-Soon; Kim, Sung-Sik; Javidi, Bahram

    2004-09-10

    The viewing zone of autostereoscopic imaging systems that use lenticular, parallax-barrier, and microlens-array plates as the viewing-zone-forming optics is analyzed in order to verify the image-quality differences between different locations of the zone. The viewing zone consists of many subzones. The images seen at most of these subzones are composed of at least one image strip selected from the total number of different view images displayed. These different view images are not mixed but patched to form a complete image. This image patching deteriorates the quality of the image seen at different subzones. We attempt to quantify the quality of the image seen at these viewing subzones by taking the inverse of the number of different view images patched together at different subzones. Although the combined viewing zone can be extended to almost all of the front space of the imaging system, in reality it is limited mainly by the image quality.

  1. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  2. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  3. Development of a Hyperspectral Imaging System for Online Quality Inspection of Pickling Cucumbers

    USDA-ARS?s Scientific Manuscript database

    This paper reports on the development of a hyperspectral imaging prototype for evaluation of external and internal quality of pickling cucumbers. The prototype consisted of a two-lane round belt conveyor, two illumination sources (one for reflectance and one for transmittance), and a hyperspectral i...

  4. Development of a multichannel hyperspectral imaging probe for food property and quality assessment

    USDA-ARS?s Scientific Manuscript database

    This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910-miscrometer fiber as a point light source and 30 light receiving fibers...

  5. Enhanced visual perception through tone mapping

    NASA Astrophysics Data System (ADS)

    Harrison, Andre; Mullins, Linda L.; Raglin, Adrienne; Etienne-Cummings, Ralph

    2016-05-01

    Tone mapping operators compress high dynamic range images to improve the picture quality on a digital display when the dynamic range of the display is lower than that of the image. However, tone mapping operators have been largely designed and evaluated based on the aesthetic quality of the resulting displayed image or how perceptually similar the compressed image appears relative to the original scene. They also often require per image tuning of parameters depending on the content of the image. In military operations, however, the amount of information that can be perceived is more important than the aesthetic quality of the image and any parameter adjustment needs to be as automated as possible regardless of the content of the image. We have conducted two studies to evaluate the perceivable detail of a set of tone mapping algorithms, and we apply our findings to develop and test an automated tone mapping algorithm that demonstrates a consistent improvement in the amount of perceived detail. An automated, and thereby predictable, tone mapping method enables a consistent presentation of perceivable features, can reduce the bandwidth required to transmit the imagery, and can improve the accessibility of the data by reducing the needed expertise of the analyst(s) viewing the imagery.

  6. Image quality evaluation of full reference algorithm

    NASA Astrophysics Data System (ADS)

    He, Nannan; Xie, Kai; Li, Tong; Ye, Yushan

    2018-03-01

    Image quality evaluation is a classic research topic, the goal is to design the algorithm, given the subjective feelings consistent with the evaluation value. This paper mainly introduces several typical reference methods of Mean Squared Error(MSE), Peak Signal to Noise Rate(PSNR), Structural Similarity Image Metric(SSIM) and feature similarity(FSIM) of objective evaluation methods. The different evaluation methods are tested by Matlab, and the advantages and disadvantages of these methods are obtained by analyzing and comparing them.MSE and PSNR are simple, but they are not considered to introduce HVS characteristics into image quality evaluation. The evaluation result is not ideal. SSIM has a good correlation and simple calculation ,because it is considered to the human visual effect into image quality evaluation,However the SSIM method is based on a hypothesis,The evaluation result is limited. The FSIM method can be used for test of gray image and color image test, and the result is better. Experimental results show that the new image quality evaluation algorithm based on FSIM is more accurate.

  7. Radioactive Quality Evaluation and Cross Validation of Data from the HJ-1A/B Satellites' CCD Sensors

    PubMed Central

    Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai

    2013-01-01

    Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency. PMID:23881127

  8. Radioactive quality evaluation and cross validation of data from the HJ-1A/B satellites' CCD sensors.

    PubMed

    Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai

    2013-07-05

    Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency.

  9. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.

    PubMed

    Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai

    2013-05-01

    Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.

  10. Automatic tube potential selection with tube current modulation in coronary CT angiography: Can it achieve consistent image quality among various individuals?

    PubMed

    Wang, Xiao-Ping; Zhu, Xiao-Mei; Zhu, Yin-Su; Liu, Wang-Yan; Yang, Xiao-Han; Huang, Wei-Wei; Xu, Yi; Tang, Li-Jun

    2018-07-01

    The present study included a total of 111 consecutive patients who had undergone coronary computed tomography (CT) angiography, using a first-generation dual-source CT with automatic tube potential selection and tube current modulation. Body weight (BW) and body mass index (BMI) were recorded prior to CT examinations. Image noise and attenuation of the proximal ascending aorta (AA) and descending aorta (DA) at the middle level of the left ventricle were measured. Correlations between BW, BMI and objective image quality were evaluated using linear regression. In addition, two subgroups based on BMI (BMI ≤25 and >25 kg/m 2 ) were analyzed. Subjective image quality, image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were all compared between those. The image noise of the AA increased with the BW and BMI (BW: r=0.453, P<0.001; BMI: r=0.545, P<0.001). The CNR and SNR of the AA were inversely correlated with BW and BMI, respectively. The image noise of the DA and the CNR and SNR of the DA exhibited a similar association to those with the BW or BMI. The BMI >25 kg/m 2 group had a significant increase in image noise (33.1±6.9 vs. 27.8±4.0 HU, P<0.05) and a significant reduction in CNR and SNR, when compared with those in the BMI ≤25 kg/m 2 group (CNR: 18.9±4.3 vs. 16.1±3.7, P<0.05; SNR: 16.0±3.8 vs. 13.6±3.2, P<0.05). Patients with a BMI of ≤25 kg/m 2 had more coronary artery segments scored as excellent, compared with patients with a BMI of >25 kg/m 2 (P=0.02). In conclusion, this method is not able to achieve a consistent objective image quality across the entire patient population. The impact of BW and BMI on objective image quality was not completely eliminated. BMI-based adjustment of the tube potential may achieve a more consistent image quality compared to automatic tube potential selection, particularly in patients with a larger body habitus.

  11. Vidicon intensifier

    NASA Technical Reports Server (NTRS)

    Carpentier, R. P.; Pietrzyk, J. P.; Beyer, R. R.; Kalafut, J. S.

    1976-01-01

    Computer-designed sensor, consisting of single-stage electrostatically-focused, triode image intensifier, provides high quality imaging characterized by exceptionally low geometric distortion, low shading, and high center-and-corner modulation transfer function.

  12. CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS.

    PubMed

    Tesselaar, Erik; Dahlström, Nils; Sandborg, Michael

    2016-06-01

    The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways. Twenty images per examination were assessed by 40 radiology residents using visual grading of image criteria. The results were analysed using VGC. Inter-observer reliability was assessed. The results of the visual grading analysis were consistent with expected outcomes. The inter-observer reliability was moderate to good and correlated with perceived image quality (r(2) = 0.47). The median observation time per image or image series was within 2 min. These results suggest that the use of visual grading of image criteria to assess the quality of radiographs provides a rapid method for performing an image quality audit in a clinical environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: a review

    USDA-ARS?s Scientific Manuscript database

    New, non-destructive sensing techniques for fast and more effective quality assessment of fruits and vegetables are needed to meet the ever-increasing consumer demand for better, more consistent and safer food products. Over the past 15 years, hyperspectral imaging has emerged as a new generation of...

  14. Development of a multichannel hyperspectral imaging probe for property and quality assessment of horticultural products

    USDA-ARS?s Scientific Manuscript database

    This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910-miscrometer fiber as a point light source and 30 light receiving fibers...

  15. A potential non-invasive approach to evaluating blastocyst quality using biodynamic imaging

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Ehmke, Natalie; Machaty, Zoltan; Nolte, David

    2018-02-01

    Biodynamic imaging (BDI) is capable of capturing the intracellular dynamics of blastocysts within a relatively short time. Spectroscopic signatures of embryos in the 0.01 Hz - 1 Hz range display responses to external factors before morphology changes take place. Viability evaluation is consistent with results from other non-invasive methods. Biodynamic imaging is a potential tool for selecting high quality embryos in clinical IVF practices.

  16. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  17. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  18. Body Image Disturbance in Patients with Acne Vulgaris

    PubMed Central

    Bowe, Whitney P.; Crerand, Canice E.; Margolis, David J.; Shalita, Alan R.

    2011-01-01

    Psychosocial outcome measures, which attempt to examine acne from the patient's perspective, have become increasingly important in dermatology research. One such measure is the Body Image Disturbance Questionnaire. The authors' primary aim was to determine the validity and internal consistency of the Body Image Disturbance Questionnaire in patients with acne vulgaris. The secondary aim was to investigate the relationship between body image disturbance and quality of life. This cross-sectional investigation included 52 consecutive acne patients presenting to an outpatient dermatology clinic. Subjects completed the Body Image Disturbance Questionnaire, Skindex-16, and other body image and psychosocial functioning measures. An objective assessment of acne was performed. The Body Image Disturbance Questionnaire was internally consistent and converged with other known body image indices. Body Image Disturbance Questionnaire scores also correlated with Skindex-16 scores, confirming that quality of life and body image are related psychosocial constructs. The Body Image Disturbance Questionnaire appears to be an accurate instrument that can assess appearance-related concern and impairment in patients with acne vulgaris. Limitations include a small sample size and the cross-sectional design. PMID:21779418

  19. MO-D-213-06: Quantitative Image Quality Metrics Are for Physicists, Not Radiologists: How to Communicate to Your Radiologists Using Their Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T; Rubert, N; Ranallo, F

    Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework avoids use of the overall “look” or “feel” to dictate acquisition parameter selection. Equipment grants GE Healthcare.« less

  20. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  1. Learning to rank for blind image quality assessment.

    PubMed

    Gao, Fei; Tao, Dacheng; Gao, Xinbo; Li, Xuelong

    2015-10-01

    Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image Ia is better than that of image Ib for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.

  2. Assessment of automatic exposure control performance in digital mammography using a no-reference anisotropic quality index

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.

  3. Beam Characterization at the Neutron Radiography Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Morgan; Jeffrey King

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less

  4. TV or not TV? Does the immediacy of viewing images of a momentous news event affect the quality and stability of flashbulb memories?

    PubMed

    Schaefer, Evelyn G; Halldorson, Michael K; Dizon-Reynante, Cheryl

    2011-04-01

    The flashbulb accounts of 38 participants concerning the September 11th 2001 terrorist attack reported at both 28 hours and 6 months following the event were examined for quantity, quality, and consistency as a function of the time lapse between first learning of the event and initial viewing of media images. The flashbulb accounts of those who reported seeing images at least an hour after learning of the event differed qualitatively, but not quantitatively, from accounts of participants who reported seeing images at the same time as or within minutes of learning of the event. Delayed viewing of images resulted in less elaborate and generally less consistent accounts across the 6-month interval. The results are discussed in terms of factors affecting flashbulb memory formation and individual differences in connectedness to the event.

  5. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  6. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  7. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  8. A systematic review of the measurement properties of the Body Image Scale (BIS) in cancer patients.

    PubMed

    Melissant, Heleen C; Neijenhuijs, Koen I; Jansen, Femke; Aaronson, Neil K; Groenvold, Mogens; Holzner, Bernhard; Terwee, Caroline B; van Uden-Kraan, Cornelia F; Cuijpers, Pim; Verdonck-de Leeuw, Irma M

    2018-06-01

    Body image is acknowledged as an important aspect of health-related quality of life in cancer patients. The Body Image Scale (BIS) is a patient-reported outcome measure (PROM) to evaluate body image in cancer patients. The aim of this study was to systematically review measurement properties of the BIS among cancer patients. A search in Embase, MEDLINE, PsycINFO, and Web of Science was performed to identify studies that investigated measurement properties of the BIS (Prospero ID 42017057237). Study quality was assessed (excellent, good, fair, poor), and data were extracted and analyzed according to the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) methodology on structural validity, internal consistency, reliability, measurement error, hypothesis testing for construct validity, and responsiveness. Evidence was categorized into sufficient, insufficient, inconsistent, or indeterminate. Nine studies were included. Evidence was sufficient for structural validity (one factor solution), internal consistency (α = 0.86-0.96), and reliability (r > 0.70); indeterminate for measurement error (information on minimal important change lacked) and responsiveness (increasing body image disturbance in only one study); and inconsistent for hypothesis testing (conflicting results). Quality of the evidence was moderate to low. No studies reported on cross-cultural validity. The BIS is a PROM with good structural validity, internal consistency, and test-retest reliability, but good quality studies on the other measurement properties are needed to optimize evidence. It is recommended to include a wider variety of cancer diagnoses and treatment modalities in these future studies.

  9. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones

    NASA Astrophysics Data System (ADS)

    McCracken, Katherine E.; Angus, Scott V.; Reynolds, Kelly A.; Yoon, Jeong-Yeol

    2016-06-01

    Smartphone image-based sensing of microfluidic paper analytical devices (μPADs) offers low-cost and mobile evaluation of water quality. However, consistent quantification is a challenge due to variable environmental, paper, and lighting conditions, especially across large multi-target μPADs. Compensations must be made for variations between images to achieve reproducible results without a separate lighting enclosure. We thus developed a simple method using triple-reference point normalization and a fast-Fourier transform (FFT)-based pre-processing scheme to quantify consistent reflected light intensity signals under variable lighting and channel conditions. This technique was evaluated using various light sources, lighting angles, imaging backgrounds, and imaging heights. Further testing evaluated its handle of absorbance, quenching, and relative scattering intensity measurements from assays detecting four water contaminants - Cr(VI), total chlorine, caffeine, and E. coli K12 - at similar wavelengths using the green channel of RGB images. Between assays, this algorithm reduced error from μPAD surface inconsistencies and cross-image lighting gradients. Although the algorithm could not completely remove the anomalies arising from point shadows within channels or some non-uniform background reflections, it still afforded order-of-magnitude quantification and stable assay specificity under these conditions, offering one route toward improving smartphone quantification of μPAD assays for in-field water quality monitoring.

  10. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  11. Feature-Based Retinal Image Registration Using D-Saddle Feature

    PubMed Central

    Hasikin, Khairunnisa; A. Karim, Noor Khairiah; Ahmedy, Fatimah

    2017-01-01

    Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle) to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE) Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%), Harris-PIIFD (4%), H-M (16%), and Saddle (16%). Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman) with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle. PMID:29204257

  12. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less

  13. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  14. Enhancement of low light level images using color-plus-mono dual camera.

    PubMed

    Jung, Yong Ju

    2017-05-15

    In digital photography, the improvement of imaging quality in low light shooting is one of the users' needs. Unfortunately, conventional smartphone cameras that use a single, small image sensor cannot provide satisfactory quality in low light level images. A color-plus-mono dual camera that consists of two horizontally separate image sensors, which simultaneously captures both a color and mono image pair of the same scene, could be useful for improving the quality of low light level images. However, an incorrect image fusion between the color and mono image pair could also have negative effects, such as the introduction of severe visual artifacts in the fused images. This paper proposes a selective image fusion technique that applies an adaptive guided filter-based denoising and selective detail transfer to only those pixels deemed reliable with respect to binocular image fusion. We employ a dissimilarity measure and binocular just-noticeable-difference (BJND) analysis to identify unreliable pixels that are likely to cause visual artifacts during image fusion via joint color image denoising and detail transfer from the mono image. By constructing an experimental system of color-plus-mono camera, we demonstrate that the BJND-aware denoising and selective detail transfer is helpful in improving the image quality during low light shooting.

  15. TH-B-207B-00: Pediatric Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker willmore » review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.« less

  16. Identification of suitable fundus images using automated quality assessment methods.

    PubMed

    Şevik, Uğur; Köse, Cemal; Berber, Tolga; Erdöl, Hidayet

    2014-04-01

    Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.

  17. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  18. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  19. Simulation analysis of space remote sensing image quality degradation induced by satellite platform vibration

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Zhang, Xiaofang; Huang, Yu; Hao, Weiwei; Guo, Baiwei

    2012-11-01

    Satellite platform vibration causes the image quality to be degraded, it is necessary to study its influence on image quality. The forms of Satellite platform vibration consist of linear vibration, sinusoidal vibration and random vibration. Based on Matlab & Zemax, the simulation system has been developed for simulating impact caused by satellite platform vibration on image quality. Dynamic Data Exchange is used for the communication between Matlab and Zemax. The data of sinusoidal vibration are produced by sinusoidal curve with specific amplitude and frequency. The data of random vibration are obtained by combining sinusoidal signals with 10Hz, 100Hz and 200Hz's frequency, 100, 12, 1.9's amplitude and white noise with zero mean value. Satellite platform vibration data which produced by Matlab are added to the optical system, and its point spread function can be obtained by Zemax. Blurred image can be gained by making the convolution of PSF and the original image. The definition of the original image and the blurred image are evaluated by using average gradient values of image gray. The impact caused by the sine and random vibration of six DOFs on the image quality are respectively simulated. The simulation result reveal that the decenter of X-, Y-, Z- direction and the tilt of Z-direction have a little effect on image quality, while the tilt of X-, Y- direction make image quality seriously degraded. Thus, it can be concluded that correcting the error of satellite platform vibration by FSM is a viable and effective way.

  20. No-reference quality assessment based on visual perception

    NASA Astrophysics Data System (ADS)

    Li, Junshan; Yang, Yawei; Hu, Shuangyan; Zhang, Jiao

    2014-11-01

    The visual quality assessment of images/videos is an ongoing hot research topic, which has become more and more important for numerous image and video processing applications with the rapid development of digital imaging and communication technologies. The goal of image quality assessment (IQA) algorithms is to automatically assess the quality of images/videos in agreement with human quality judgments. Up to now, two kinds of models have been used for IQA, namely full-reference (FR) and no-reference (NR) models. For FR models, IQA algorithms interpret image quality as fidelity or similarity with a perfect image in some perceptual space. However, the reference image is not available in many practical applications, and a NR IQA approach is desired. Considering natural vision as optimized by the millions of years of evolutionary pressure, many methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychological features of the human visual system (HVS). To reach this goal, researchers try to simulate HVS with image sparsity coding and supervised machine learning, which are two main features of HVS. A typical HVS captures the scenes by sparsity coding, and uses experienced knowledge to apperceive objects. In this paper, we propose a novel IQA approach based on visual perception. Firstly, a standard model of HVS is studied and analyzed, and the sparse representation of image is accomplished with the model; and then, the mapping correlation between sparse codes and subjective quality scores is trained with the regression technique of least squaresupport vector machine (LS-SVM), which gains the regressor that can predict the image quality; the visual metric of image is predicted with the trained regressor at last. We validate the performance of proposed approach on Laboratory for Image and Video Engineering (LIVE) database, the specific contents of the type of distortions present in the database are: 227 images of JPEG2000, 233 images of JPEG, 174 images of White Noise, 174 images of Gaussian Blur, 174 images of Fast Fading. The database includes subjective differential mean opinion score (DMOS) for each image. The experimental results show that the proposed approach not only can assess many kinds of distorted images quality, but also exhibits a superior accuracy and monotonicity.

  1. Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging

    PubMed Central

    Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible. PMID:23637895

  2. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    PubMed

    Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible.

  3. Effects of task and image properties on visual-attention deployment in image-quality assessment

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  4. In-situ quality monitoring during laser brazing

    NASA Astrophysics Data System (ADS)

    Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan

    Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.

  5. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)

    PubMed Central

    Jermoumi, M.; Korideck, H.; Bhagwat, M.; Zygmanski, P.; Makrigiogos, G.M.; Berbeco, R.I.; Cormack, R.C.; Ngwa, W.

    2016-01-01

    Purpose To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). Methods and materials A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Results Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. Conclusions The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. PMID:25964129

  6. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP).

    PubMed

    Jermoumi, M; Korideck, H; Bhagwat, M; Zygmanski, P; Makrigiogos, G M; Berbeco, R I; Cormack, R C; Ngwa, W

    2015-07-01

    To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm(3)) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Landsat Image Map Production Methods at the U. S. Geological Survey

    USGS Publications Warehouse

    Kidwell, R.D.; Binnie, D.R.; Martin, S.

    1987-01-01

    To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.

  8. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  9. Effect of masking phase-only holograms on the quality of reconstructed images.

    PubMed

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  10. A source-channel coding approach to digital image protection and self-recovery.

    PubMed

    Sarreshtedari, Saeed; Akhaee, Mohammad Ali

    2015-07-01

    Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.

  11. [Evaluation method with radiographic image quality indicator for internal defects of dental casting metallic restoration].

    PubMed

    Li, Y; Zheng, G; Lin, H

    2014-12-18

    To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.

  12. A Guide to Analysing Tongue Motion from Ultrasound Images

    ERIC Educational Resources Information Center

    Stone, Maureen

    2005-01-01

    This paper is meant to be an introduction to and general reference for ultrasound imaging for new and moderately experienced users of the instrument. The paper consists of eight sections. The first explains how ultrasound works, including beam properties, scan types and machine features. The second section discusses image quality, including the…

  13. A Regression-Based Family of Measures for Full-Reference Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Oszust, Mariusz

    2016-12-01

    The advances in the development of imaging devices resulted in the need of an automatic quality evaluation of displayed visual content in a way that is consistent with human visual perception. In this paper, an approach to full-reference image quality assessment (IQA) is proposed, in which several IQA measures, representing different approaches to modelling human visual perception, are efficiently combined in order to produce objective quality evaluation of examined images, which is highly correlated with evaluation provided by human subjects. In the paper, an optimisation problem of selection of several IQA measures for creating a regression-based IQA hybrid measure, or a multimeasure, is defined and solved using a genetic algorithm. Experimental evaluation on four largest IQA benchmarks reveals that the multimeasures obtained using the proposed approach outperform state-of-the-art full-reference IQA techniques, including other recently developed fusion approaches.

  14. A new evaluation method research for fusion quality of infrared and visible images

    NASA Astrophysics Data System (ADS)

    Ge, Xingguo; Ji, Yiguo; Tao, Zhongxiang; Tian, Chunyan; Ning, Chengda

    2017-03-01

    In order to objectively evaluate the fusion effect of infrared and visible image, a fusion evaluation method for infrared and visible images based on energy-weighted average structure similarity and edge information retention value is proposed for drawbacks of existing evaluation methods. The evaluation index of this method is given, and the infrared and visible image fusion results under different algorithms and environments are made evaluation experiments on the basis of this index. The experimental results show that the objective evaluation index is consistent with the subjective evaluation results obtained from this method, which shows that the method is a practical and effective fusion image quality evaluation method.

  15. JPEG vs. JPEG 2000: an objective comparison of image encoding quality

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan

    2004-11-01

    This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.

  16. Effective Fingerprint Quality Estimation for Diverse Capture Sensors

    PubMed Central

    Xie, Shan Juan; Yoon, Sook; Shin, Jinwook; Park, Dong Sun

    2010-01-01

    Recognizing the quality of fingerprints in advance can be beneficial for improving the performance of fingerprint recognition systems. The representative features to assess the quality of fingerprint images from different types of capture sensors are known to vary. In this paper, an effective quality estimation system that can be adapted for different types of capture sensors is designed by modifying and combining a set of features including orientation certainty, local orientation quality and consistency. The proposed system extracts basic features, and generates next level features which are applicable for various types of capture sensors. The system then uses the Support Vector Machine (SVM) classifier to determine whether or not an image should be accepted as input to the recognition system. The experimental results show that the proposed method can perform better than previous methods in terms of accuracy. In the meanwhile, the proposed method has an ability to eliminate residue images from the optical and capacitive sensors, and the coarse images from thermal sensors. PMID:22163632

  17. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning.

    PubMed

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  18. MO-E-217A-01: Contrast-Enhanced Spectral Mammography - Physical Aspects and QA.

    PubMed

    Yaffe, M; Hill, M

    2012-06-01

    To describe the current state of dual energy contrast-enhanced digital mammography, to discuss those aspects of its operation that require evaluation or monitoring and to propose elements of a program for quality assurance of such systems. The principles of dual-energy contrast imaging will be discussed and tools and techniques for assessment of performance will be described. Many of the elements affecting image quality and dose performance in digital mammography (eg noise, system linearity, consistency of x-ray output and detector performance, artifacts) remain important. In addition, the ability to register images can influence the resultant image quality. The maintenance of breast compression thickness during the imaging procedure and calibration of the system to allow quantification of iodine in the breast represent new challenges to quality assurance. CESM provides a means of acquiring new information regarding tumor angiogenesis and may reveal some cancers that will not be detectable on digital mammography. It may also better demonstrate the extent of disease. The medical physicist must understand the dependence of image quality on physical factors. Implementation of a relevant QA program will be required if the promise of this new modality is to be delivered. © 2012 American Association of Physicists in Medicine.

  19. A practical method to standardise and optimise the Philips DoseRight 2.0 CT automatic exposure control system.

    PubMed

    Wood, T J; Moore, C S; Stephens, A; Saunderson, J R; Beavis, A W

    2015-09-01

    Given the increasing use of computed tomography (CT) in the UK over the last 30 years, it is essential to ensure that all imaging protocols are optimised to keep radiation doses as low as reasonably practicable, consistent with the intended clinical task. However, the complexity of modern CT equipment can make this task difficult to achieve in practice. Recent results of local patient dose audits have shown discrepancies between two Philips CT scanners that use the DoseRight 2.0 automatic exposure control (AEC) system in the 'automatic' mode of operation. The use of this system can result in drifting dose and image quality performance over time as it is designed to evolve based on operator technique. The purpose of this study was to develop a practical technique for configuring examination protocols on four CT scanners that use the DoseRight 2.0 AEC system in the 'manual' mode of operation. This method used a uniform phantom to generate reference images which form the basis for how the AEC system calculates exposure factors for any given patient. The results of this study have demonstrated excellent agreement in the configuration of the CT scanners in terms of average patient dose and image quality when using this technique. This work highlights the importance of CT protocol harmonisation in a modern Radiology department to ensure both consistent image quality and radiation dose. Following this study, the average radiation dose for a range of CT examinations has been reduced without any negative impact on clinical image quality.

  20. The practical application of signal detection theory to image quality assessment in x-ray image intensifier-TV fluoroscopy.

    PubMed

    Marshall, N W

    2001-06-01

    This paper applies a published version of signal detection theory to x-ray image intensifier fluoroscopy data and compares the results with more conventional subjective image quality measures. An eight-bit digital framestore was used to acquire temporally contiguous frames of fluoroscopy data from which the modulation transfer function (MTF(u)) and noise power spectrum were established. These parameters were then combined to give detective quantum efficiency (DQE(u)) and used in conjunction with signal detection theory to calculate contrast-detail performance. DQE(u) was found to lie between 0.1 and 0.5 for a range of fluoroscopy systems. Two separate image quality experiments were then performed in order to assess the correspondence between the objective and subjective methods. First, image quality for a given fluoroscopy system was studied as a function of doserate using objective parameters and a standard subjective contrast-detail method. Following this, the two approaches were used to assess three different fluoroscopy units. Agreement between objective and subjective methods was good; doserate changes were modelled correctly while both methods ranked the three systems consistently.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, J.

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker willmore » review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.« less

  2. Quality assessment of remote sensing image fusion using feature-based fourth-order correlation coefficient

    NASA Astrophysics Data System (ADS)

    Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-04-01

    In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.

  3. SU-F-18C-01: Minimum Detectability Analysis for Comprehensive Sized Based Optimization of Image Quality and Radiation Dose Across CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, C; Chen, B; Samei, E

    2014-06-15

    Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF),more » Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.« less

  4. Assessment of diffusion tensor image quality across sites and vendors using the American College of Radiology head phantom.

    PubMed

    Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K

    2016-05-08

    The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.

  5. Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.

    PubMed

    Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei

    2017-09-22

    The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

  6. 42 CFR 37.43 - Approval of radiographic facilities that use film.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... roentgenography of the chest. Amer J Roentgenol 117(4):771-776. (b) Each radiographic facility submitting chest... facility addressing radiation exposures, equipment maintenance, and image quality, and must conform to the... individual data, interpretations, and images) consistent with applicable statutes and regulations governing...

  7. 42 CFR 37.43 - Approval of radiographic facilities that use film.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... roentgenography of the chest. Amer J Roentgenol 117(4):771-776. (b) Each radiographic facility submitting chest... facility addressing radiation exposures, equipment maintenance, and image quality, and must conform to the... individual data, interpretations, and images) consistent with applicable statutes and regulations governing...

  8. Cartographic evaluation of ERTS orbit and attitude data

    NASA Technical Reports Server (NTRS)

    Mcewen, R. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Without the required RBV images, increased attention has been directed toward evaluating the geometric quality of MSS images. A line scan anomaly was identified and analyzed. Successive generations of images have been checked for variations in geometric distortion; it has been consistent. Some recent MSS images have about 250 m rms of relative positional accuracy although earlier images were generally over 300 m. Efforts are continuing to isolate systematic errors in MSS images but present results are inconclusive.

  9. Low-cost conversion of the Polaroid MD-4 land camera to a digital gel documentation system.

    PubMed

    Porch, Timothy G; Erpelding, John E

    2006-04-30

    A simple, inexpensive design is presented for the rapid conversion of the popular MD-4 Polaroid land camera to a high quality digital gel documentation system. Images of ethidium bromide stained DNA gels captured using the digital system were compared to images captured on Polaroid instant film. Resolution and sensitivity were enhanced using the digital system. In addition to the low cost and superior image quality of the digital system, there is also the added convenience of real-time image viewing through the swivel LCD of the digital camera, wide flexibility of gel sizes, accurate automatic focusing, variable image resolution, and consistent ease of use and quality. Images can be directly imported to a computer by using the USB port on the digital camera, further enhancing the potential of the digital system for documentation, analysis, and archiving. The system is appropriate for use as a start-up gel documentation system and for routine gel analysis.

  10. The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.

    PubMed

    Yang, Xin; Peng, Hao

    2015-03-01

    PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Patient-specific optimisation of administered activity and acquisition times for 18F-FDG PET imaging.

    PubMed

    Wickham, Fred; McMeekin, Helena; Burniston, Maria; McCool, Daniel; Pencharz, Deborah; Skillen, Annah; Wagner, Thomas

    2017-12-01

    The purpose of this study is to identify a method for optimising the administered activity and acquisition time for 18 F-FDG PET imaging, yielding images of consistent quality for patients with varying body sizes and compositions, while limiting radiation doses to patients and staff. Patients referred for FDG scans had bioimpedance measurements. They were injected with 3 MBq/kg of 18 F up to 370 MBq and scanned on a Siemens Biograph mCT at 3 or 4 min per bed position. Data were rebinned to simulate 2- and 1-min acquisitions. Subjective assessments of image quality made by an experienced physician were compared with objective measurements based on signal-to-noise ratio and noise equivalent counts (NEC). A target objective measure of image quality was identified. The activity and acquisition time required to achieve this were calculated for each subject. Multiple regression analysis was used to identify expressions for the activity and acquisition time required in terms of easily measurable patient characteristics. One hundred and eleven patients were recruited, and subjective and objective assessments of image quality were compared for 321 full and reduced time scans. NEC-per-metre was identified as the objective measure which best correlated with the subjective assessment (Spearman rank correlation coefficient 0.77) and the best discriminator for images with a subjective assessment of "definitely adequate" (area under the ROC curve 0.94). A target of 37 Mcount/m was identified. Expressions were identified in terms of patient sex, height and weight for the activity and acquisition time required to achieve this target. Including measurements of body composition in these expressions was not useful. Using these expressions would reduce the mean activity administered to this patient group by 66 MBq compared to the current protocol. Expressions have been identified for the activity and acquisition times required to achieve consistent image quality in FDG imaging with reduced patient and staff doses. These expressions might need to be adapted for other systems and reconstruction protocols.

  12. Body image and quality of life in a Spanish population

    PubMed Central

    Lobera, Ignacio Jáuregui; Ríos, Patricia Bolaños

    2011-01-01

    Purpose The aim of the current study was to analyze the psychometric properties, factor structure, and internal consistency of the Spanish version of the Body Image Quality of Life Inventory (BIQLI-SP) as well as its test–retest reliability. Further objectives were to analyze different relationships with key dimensions of psychosocial functioning (ie, self-esteem, presence of psychopathological symptoms, eating and body image-related problems, and perceived stress) and to evaluate differences in body image quality of life due to gender. Patients and methods The sample comprised 417 students without any psychiatric history, recruited from the Pablo de Olavide University and the University of Seville. There were 140 men (33.57%) and 277 women (66.43%), and the mean age was 21.62 years (standard deviation = 5.12). After obtaining informed consent from all participants, the following questionnaires were administered: BIQLI, Eating Disorder Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results The BIQLI-SP shows adequate psychometric properties, and it may be useful to determine the body image quality of life in different physical conditions. A more positive body image quality of life is associated with better self-esteem, better psychological wellbeing, and fewer eating-related dysfunctional attitudes, this being more evident among women. Conclusion The BIQLI-SP may be useful to determine the body image quality of life in different contexts with regard to dermatology, cosmetic and reconstructive surgery, and endocrinology, among others. In these fields of study, a new trend has emerged to assess body image-related quality of life. PMID:21403794

  13. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    PubMed Central

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    Background: In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle. PMID:29387672

  14. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  15. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  16. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacementmore » which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.« less

  17. Effects of a proposed quality improvement process in the proportion of the reported ultrasound findings unsupported by stored images.

    PubMed

    Schenone, Mauro; Ziebarth, Sarah; Duncan, Jose; Stokes, Lea; Hernandez, Angela

    2018-02-05

    To investigate the proportion of documented ultrasound findings that were unsupported by stored ultrasound images in the obstetric ultrasound unit, before and after the implementation of a quality improvement process consisting of a checklist and feedback. A quality improvement process was created involving utilization of a checklist and feedback from physician to sonographer. The feedback was based on findings of the physician's review of the report and images using a check list. To assess the impact of this process, two groups were compared. Group 1 consisted of 58 ultrasound reports created prior to initiation of the process. Group 2 included 65 ultrasound reports created after process implementation. Each chart was reviewed by a physician and a sonographer. Findings considered unsupported by stored images by both reviewers were used for analysis, and the proportion of unsupported findings was compared between the two groups. Results are expressed as mean ± standard error. A p value of < .05 was used to determine statistical significance. Univariate analysis of baseline characteristics and potential confounders showed no statistically significant difference between the groups. The mean proportion of unsupported findings in Group 1 was 5.1 ± 0.87, with Group 2 having a significantly lower proportion (2.6 ± 0.62) (p value = .018). Results suggest a significant decrease in the proportion of unsupported findings in ultrasound reports after quality improvement process implementation. Thus, we present a simple yet effective quality improvement process to reduce unsupported ultrasound findings.

  18. The Effect of Illumination on Stereo DTM Quality: Simulations in Support of Europa Exploration

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.

    2016-06-01

    We have investigated how the quality of stereoscopically measured topography degrades with varying illumination, in particular the ranges of incidence angles and illumination differences over which useful digital topographic models (DTMs) can be recovered. Our approach is to make high-fidelity simulated image pairs of known topography and compare DTMs from stereoanalysis of these images with the input data. Well-known rules of thumb for horizontal resolution (>3-5 pixels) and matching precision (~0.2-0.3 pixels) are generally confirmed, but the best achievable resolution at high incidence angles is ~15 pixels, probably as a result of smoothing internal to the matching algorithm. Single-pass stereo imaging of Europa is likely to yield DTMs of consistent (optimal) quality for all incidence angles ≤85°, and certainly for incidence angles between 40° and 85°. Simulations with pairs of images in which the illumination is not consistent support the utility of shadow tip distance (STD) as a measure of illumination difference, but also suggest new and simpler criteria for evaluating the suitability of stereopairs based on illumination geometry. Our study was motivated by the needs of a mission to Europa, but the approach and (to first order) the results described here are relevant to a wide range of planetary investigations.

  19. High-resolution imaging of the Pluto-Charon system with the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.

    1994-01-01

    Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.

  20. Depth image super-resolution via semi self-taught learning framework

    NASA Astrophysics Data System (ADS)

    Zhao, Furong; Cao, Zhiguo; Xiao, Yang; Zhang, Xiaodi; Xian, Ke; Li, Ruibo

    2017-06-01

    Depth images have recently attracted much attention in computer vision and high-quality 3D content for 3DTV and 3D movies. In this paper, we present a new semi self-taught learning application framework for enhancing resolution of depth maps without making use of ancillary color images data at the target resolution, or multiple aligned depth maps. Our framework consists of cascade random forests reaching from coarse to fine results. We learn the surface information and structure transformations both from a small high-quality depth exemplars and the input depth map itself across different scales. Considering that edge plays an important role in depth map quality, we optimize an effective regularized objective that calculates on output image space and input edge space in random forests. Experiments show the effectiveness and superiority of our method against other techniques with or without applying aligned RGB information

  1. System Performance Simulations of the RatCAP Awake Rat Brain Scanner

    NASA Astrophysics Data System (ADS)

    Shokouhi, S.; Vaska, P.; Schlyer, D. J.; Stoll, S. P.; Villanueva, A.; Kriplani, A.; Woody, C. L.

    2005-10-01

    The capability to create high quality images from data acquired by the Rat Conscious Animal PET tomograph (RatCAP) has been evaluated using modified versions of the PET Monte Carlo code Simulation System for Emission Tomography (SimSET). The proposed tomograph consists of lutetium oxyorthosilicate (LSO) crystals arranged in 12 4 /spl times/ 8 blocks. The effects of the RatCAPs small ring diameter (/spl sim/40 mm) and its block detector geometry on image quality for small animal studies have been investigated. Since the field of view will be almost as large as the ring diameter, radial elongation artifacts due to parallax error are expected to degrade the spatial resolution and thus the image quality at the edge of the field of view. In addition to Monte Carlo simulations, some preliminary results of experimentally acquired images in both two-dimensional (2-D) and 3-D modes are presented.

  2. White constancy method for mobile displays

    NASA Astrophysics Data System (ADS)

    Yum, Ji Young; Park, Hyun Hee; Jang, Seul Ki; Lee, Jae Hyang; Kim, Jong Ho; Yi, Ji Young; Lee, Min Woo

    2014-03-01

    In these days, consumer's needs for image quality of mobile devices are increasing as smartphone is widely used. For example, colors may be perceived differently when displayed contents under different illuminants. Displayed white in incandescent lamp is perceived as bluish, while same content in LED light is perceived as yellowish. When changed in perceived white under illuminant environment, image quality would be degraded. Objective of the proposed white constancy method is restricted to maintain consistent output colors regardless of the illuminants utilized. Human visual experiments are performed to analyze viewers'perceptual constancy. Participants are asked to choose the displayed white in a variety of illuminants. Relationship between the illuminants and the selected colors with white are modeled by mapping function based on the results of human visual experiments. White constancy values for image control are determined on the predesigned functions. Experimental results indicate that propsed method yields better image quality by keeping the display white.

  3. Assessment of the NASA-USGS Global Land Survey (GLS) Datasets

    USGS Publications Warehouse

    Gutman, Garik; Huang, Chengquan; Chander, Gyanesh; Noojipady, Praveen; Masek, Jeffery G.

    2013-01-01

    The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the global land area decadally since the early 1970s. The global mosaics are centered on 1975, 1990, 2000, 2005, and 2010, and consist of data acquired from four sensors: Enhanced Thematic Mapper Plus, Thematic Mapper, Multispectral Scanner, and Advanced Land Imager. The GLS datasets have been widely used in land-cover and land-use change studies at local, regional, and global scales. This study evaluates the GLS datasets with respect to their spatial coverage, temporal consistency, geodetic accuracy, radiometric calibration consistency, image completeness, extent of cloud contamination, and residual gaps. In general, the three latest GLS datasets are of a better quality than the GLS-1990 and GLS-1975 datasets, with most of the imagery (85%) having cloud cover of less than 10%, the acquisition years clustered much more tightly around their target years, better co-registration relative to GLS-2000, and better radiometric absolute calibration. Probably, the most significant impediment to scientific use of the datasets is the variability of image phenology (i.e., acquisition day of year). This paper provides end-users with an assessment of the quality of the GLS datasets for specific applications, and where possible, suggestions for mitigating their deficiencies.

  4. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  5. Design of a fused phantom for quantitative evaluation of brain metabolites and enhanced quality assurance testing for magnetic resonance imaging and spectroscopy.

    PubMed

    Song, Kyu-Ho; Kim, Sang-Young; Lee, Do-Wan; Jung, Jin-Young; Lee, Jung-Hoon; Baek, Hyeon-Man; Choe, Bo-Young

    2015-11-30

    Magnetic resonance imaging and spectroscopy (MRI-MRS) is a useful tool for the identification and evaluation of chemical changes in anatomical regions. Quality assurance (QA) is performed in either images or spectra using QA phantom. Therefore, consistent and uniform technical MRI-MRS QA is crucial. Here we developed an MRI-MRS fused phantom along with the inserts for metabolite quantification to simultaneously optimize QA parameters for both MRI and MRS. T1- and T2-weighted images were obtained and MRS was performed with point-resolved spectroscopy. Using the fused phantom, the results of measuring MRI factors were: geometric distortion, <2% and ± 2 mm; image intensity uniformity, 83.09 ± 1.33%; percent-signal ghosting, 0.025 ± 0.004; low-contrast object detectability, 27.85 ± 0.80. In addition, the signal-to-noise ratio of N-acetyl-aspartate was consistently high (42.00 ± 5.66). In previous studies, MR phantoms could not obtain information from both images and spectra in the MR scanner simultaneously. Here we designed and developed a phantom for accurate and consistent QA within the acceptance range. It is important to take into account variations in the QA value using the MRI-MRS phantom, when comparing to other clinical or research MR scanners. The MRI-MRS QA factors obtained simultaneously using the phantom can facilitate evaluation of both images and spectra, and provide guidelines for obtaining MRI and MRS QA factors simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    PubMed

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  7. SU-E-J-06: A Time Dependence Analysis of CBCT Image Quality and Mechanical Stability.

    PubMed

    Oves, S; Stenbeck, J; Gebreamlak, W; Alkhatib, H

    2012-06-01

    To quantify the change, if any, in flexmap correction factors and image quality with the XVI system over a course of several years and from these results, assess their clinical impact. Flexmap, a calibration procedure which corrects for imperfect gantry rotation for cone-beam CT reconstruction, and image quality tests were performed on three Elekta Synergy linacs equipped with XVI. Data was collected per month over three years. U and V values, corresponding to lateral and longitudinal shifts respectively, were acquired through the XVI software. Image quality parameters were obtained through CT imaging of the Catphan 500®. For each reconstruction, pixel values for low density polyethylene (LDPE) and polystyrene materials were recorded. For all three linacs, analysis of the flexmap showed a significant change in the U factor for both month-to-month comparisons and comparisons between machines. The V correction factor exhibited a small variation month to month, and showed a slight, gradual increase over time (0.2 +/-0.08 mm). Image quality analysis showed a near consistent decrease (5-10%) in LDPE and polystyrene. Despite this decrease in pixel values, the ratio of the two pixel values remained constant, thus a similar decreasing trend in contrast was not observed. Analysis of monthly flexmap calibration showed the general monthly change in correction shifts and their general trend over several years. For image quality, our research exhibited roughly 0.5% per month decrease in pixel values of the Catphan®. Our results imply that CBCT images obtained from XVI are not appropriate for treatment planning and despite the decrease in panel response over time, image quality with respect to contrast will remain within acceptable clinical standards. Future studies may be carried out to assess any correlation between image quality and XVI source strength. © 2012 American Association of Physicists in Medicine.

  8. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  9. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  10. TH-B-207B-01: Optimizing Pediatric CT in the Emergency Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, C.

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker willmore » review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.« less

  11. Dependence of image quality on image operator and noise for optical diffusion tomography

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Graber, Harry L.; Barbour, Randall L.

    1998-04-01

    By applying linear perturbation theory to the radiation transport equation, the inverse problem of optical diffusion tomography can be reduced to a set of linear equations, W(mu) equals R, where W is the weight function, (mu) are the cross- section perturbations to be imaged, and R is the detector readings perturbations. We have studied the dependence of image quality on added systematic error and/or random noise in W and R. Tomographic data were collected from cylindrical phantoms, with and without added inclusions, using Monte Carlo methods. Image reconstruction was accomplished using a constrained conjugate gradient descent method. Result show that accurate images containing few artifacts are obtained when W is derived from a reference states whose optical thickness matches that of the unknown teste medium. Comparable image quality was also obtained for unmatched W, but the location of the target becomes more inaccurate as the mismatch increases. Results of the noise study show that image quality is much more sensitive to noise in W than in R, and the impact of noise increase with the number of iterations. Images reconstructed after pure noise was substituted for R consistently contain large peaks clustered about the cylinder axis, which was an initially unexpected structure. In other words, random input produces a non- random output. This finding suggests that algorithms sensitive to the evolution of this feature could be developed to suppress noise effects.

  12. Image transfer by cascaded stack of photonic crystal and air layers.

    PubMed

    Shen, C; Michielsen, K; De Raedt, H

    2006-01-23

    We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and the surface termination, the image can be transfered by the stack with very little deterioration of the resolution, that is the resolution of the final image is approximately the same as the resolution of the image formed behind one single photonic crystal slab.

  13. Objectively Assessing Underwater Image Quality for the Purpose of Automated Restoration

    DTIC Science & Technology

    2007-10-01

    are accounted for and treated accordingly in the current approach. Initial results show that the metric defined provides a consistent measure to both...Image Communication 19, 163-172 (2004). 8. S. J. Erasmus, and K. C. A. Smith, "An automatic focusing and astigmatism correction system for the SEM

  14. Lonizing radiation regulations and the dental practitioner: 3. Quality assurance in dental radiography.

    PubMed

    Rout, John; Brown, Jackie

    2012-06-01

    This is the last in a series of three articles on X-ray dose reduction and covers aspects of quality assurance. The first outlined radiation physics and protection and the second the legislation relating to radiation safety. Quality assurance is an essential part of dental radiography and is required to produce images of a consistently high standard, necessary for accurate diagnosis.

  15. Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling

    PubMed Central

    Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2016-01-01

    Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464

  16. Improving resolution of MR images with an adversarial network incorporating images with different contrast.

    PubMed

    Kim, Ki Hwan; Do, Won-Joon; Park, Sung-Hong

    2018-05-04

    The routine MRI scan protocol consists of multiple pulse sequences that acquire images of varying contrast. Since high frequency contents such as edges are not significantly affected by image contrast, down-sampled images in one contrast may be improved by high resolution (HR) images acquired in another contrast, reducing the total scan time. In this study, we propose a new deep learning framework that uses HR MR images in one contrast to generate HR MR images from highly down-sampled MR images in another contrast. The proposed convolutional neural network (CNN) framework consists of two CNNs: (a) a reconstruction CNN for generating HR images from the down-sampled images using HR images acquired with a different MRI sequence and (b) a discriminator CNN for improving the perceptual quality of the generated HR images. The proposed method was evaluated using a public brain tumor database and in vivo datasets. The performance of the proposed method was assessed in tumor and no-tumor cases separately, with perceptual image quality being judged by a radiologist. To overcome the challenge of training the network with a small number of available in vivo datasets, the network was pretrained using the public database and then fine-tuned using the small number of in vivo datasets. The performance of the proposed method was also compared to that of several compressed sensing (CS) algorithms. Incorporating HR images of another contrast improved the quantitative assessments of the generated HR image in reference to ground truth. Also, incorporating a discriminator CNN yielded perceptually higher image quality. These results were verified in regions of normal tissue as well as tumors for various MRI sequences from pseudo k-space data generated from the public database. The combination of pretraining with the public database and fine-tuning with the small number of real k-space datasets enhanced the performance of CNNs in in vivo application compared to training CNNs from scratch. The proposed method outperformed the compressed sensing methods. The proposed method can be a good strategy for accelerating routine MRI scanning. © 2018 American Association of Physicists in Medicine.

  17. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    NASA Astrophysics Data System (ADS)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  18. Photoacoustic imaging optimization with raw signal deconvolution and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Chengwen; Wang, Jing; Qin, Yu; Zhan, Hongchen; Yuan, Jie; Cheng, Qian; Wang, Xueding

    2018-02-01

    Photoacoustic (PA) signal of an ideal optical absorb particle is a single N-shape wave. PA signals of a complicated biological tissue can be considered as the combination of individual N-shape waves. However, the N-shape wave basis not only complicates the subsequent work, but also results in aliasing between adjacent micro-structures, which deteriorates the quality of the final PA images. In this paper, we propose a method to improve PA image quality through signal processing method directly working on raw signals, which including deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent point spread function (PSF) which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA signals with two constraints, positive polarity and spectrum consistence. With our proposed method, the built PA images can yield more detail structural information. Micro-structures are clearly separated and revealed. To validate the effectiveness of this method, we present numerical simulations and phantom studies consist of a densely distributed point sources model and a blood vessel model. In the future, our study might hold the potential for clinical PA imaging as it can help to distinguish micro-structures from the optimized images and even measure the size of objects from deconvolved signals.

  19. Performance evaluation of objective quality metrics for HDR image compression

    NASA Astrophysics Data System (ADS)

    Valenzise, Giuseppe; De Simone, Francesca; Lauga, Paul; Dufaux, Frederic

    2014-09-01

    Due to the much larger luminance and contrast characteristics of high dynamic range (HDR) images, well-known objective quality metrics, widely used for the assessment of low dynamic range (LDR) content, cannot be directly applied to HDR images in order to predict their perceptual fidelity. To overcome this limitation, advanced fidelity metrics, such as the HDR-VDP, have been proposed to accurately predict visually significant differences. However, their complex calibration may make them difficult to use in practice. A simpler approach consists in computing arithmetic or structural fidelity metrics, such as PSNR and SSIM, on perceptually encoded luminance values but the performance of quality prediction in this case has not been clearly studied. In this paper, we aim at providing a better comprehension of the limits and the potentialities of this approach, by means of a subjective study. We compare the performance of HDR-VDP to that of PSNR and SSIM computed on perceptually encoded luminance values, when considering compressed HDR images. Our results show that these simpler metrics can be effectively employed to assess image fidelity for applications such as HDR image compression.

  20. Full-frame video stabilization with motion inpainting.

    PubMed

    Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung

    2006-07-01

    Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.

  1. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  2. A gallery of HCMM images

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A gallery of what might be called the ""Best of HCMM'' imagery is presented. These 100 images, consisting mainly of Day-VIS, Day-IR, and Night-IR scenes plus a few thermal inertia images, were selected from the collection accrued in the Missions Utilization Office (Code 902) at the Goddard Space Flight Center. They were selected because of both their pictorial quality and their information or interest content. Nearly all the images are the computer processed and contrast stretched products routinely produced by the image processing facility at GSFC. Several LANDSAT images, special HCMM images made by HCMM investigators, and maps round out the input.

  3. Comparison of a flexible versus a rigid breast compression paddle: pain experience, projected breast area, radiation dose and technical image quality.

    PubMed

    Broeders, Mireille J M; Ten Voorde, Marloes; Veldkamp, Wouter J H; van Engen, Ruben E; van Landsveld-Verhoeven, Cary; 't Jong-Gunneman, Machteld N L; de Win, Jos; Greve, Kitty Droogh-de; Paap, Ellen; den Heeten, Gerard J

    2015-03-01

    To compare pain, projected breast area, radiation dose and image quality between flexible (FP) and rigid (RP) breast compression paddles. The study was conducted in a Dutch mammographic screening unit (288 women). To compare both paddles one additional image with RP was made, consisting of either a mediolateral-oblique (MLO) or craniocaudal-view (CC). Pain experience was scored using the Numeric Rating Scale (NRS). Projected breast area was estimated using computer software. Radiation dose was estimated using the model by Dance. Image quality was reviewed by three radiologists and three radiographers. There was no difference in pain experience between both paddles (mean difference NRS: 0.08 ± 0.08, p = 0.32). Mean radiation dose was 4.5 % lower with FP (0.09 ± 0.01 p = 0.00). On MLO-images, the projected breast area was 0.79 % larger with FP. Paired evaluation of image quality indicated that FP removed fibroglandular tissue from the image area and reduced contrast in the clinically relevant retroglandular area at chest wall side. Although FP performed slightly better in the projected breast area, it moved breast tissue from the image area at chest wall side. RP showed better contrast, especially in the retroglandular area. We therefore recommend the use of RP for standard MLO and CC views.

  4. Image quality improvement in MDCT cardiac imaging via SMART-RECON method

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Cao, Ximiao; Xing, Zhanfeng; Sun, Xuguang; Hsieh, Jiang; Chen, Guang-Hong

    2017-03-01

    Coronary CT angiography (CCTA) is a challenging imaging task currently limited by the achievable temporal resolution of modern Multi-Detector CT (MDCT) scanners. In this paper, the recently proposed SMARTRECON method has been applied in MDCT-based CCTA imaging to improve the image quality without any prior knowledge of cardiac motion. After the prospective ECG-gated data acquisition from a short-scan angular span, the acquired data were sorted into several sub-sectors of view angles; each corresponds to a 1/4th of the short-scan angular range. Information of the cardiac motion was thus encoded into the data in each view angle sub-sector. The SMART-RECON algorithm was then applied to jointly reconstruct several image volumes, each of which is temporally consistent with the data acquired in the corresponding view angle sub-sector. Extensive numerical simulations were performed to validate the proposed technique and investigate the performance dependence.

  5. Machine vision based quality inspection of flat glass products

    NASA Astrophysics Data System (ADS)

    Zauner, G.; Schagerl, M.

    2014-03-01

    This application paper presents a machine vision solution for the quality inspection of flat glass products. A contact image sensor (CIS) is used to generate digital images of the glass surfaces. The presented machine vision based quality inspection at the end of the production line aims to classify five different glass defect types. The defect images are usually characterized by very little `image structure', i.e. homogeneous regions without distinct image texture. Additionally, these defect images usually consist of only a few pixels. At the same time the appearance of certain defect classes can be very diverse (e.g. water drops). We used simple state-of-the-art image features like histogram-based features (std. deviation, curtosis, skewness), geometric features (form factor/elongation, eccentricity, Hu-moments) and texture features (grey level run length matrix, co-occurrence matrix) to extract defect information. The main contribution of this work now lies in the systematic evaluation of various machine learning algorithms to identify appropriate classification approaches for this specific class of images. In this way, the following machine learning algorithms were compared: decision tree (J48), random forest, JRip rules, naive Bayes, Support Vector Machine (multi class), neural network (multilayer perceptron) and k-Nearest Neighbour. We used a representative image database of 2300 defect images and applied cross validation for evaluation purposes.

  6. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  7. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  8. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    PubMed

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  9. A quality quantitative method of silicon direct bonding based on wavelet image analysis

    NASA Astrophysics Data System (ADS)

    Tan, Xiao; Tao, Zhi; Li, Haiwang; Xu, Tiantong; Yu, Mingxing

    2018-04-01

    The rapid development of MEMS (micro-electro-mechanical systems) has received significant attention from researchers in various fields and subjects. In particular, the MEMS fabrication process is elaborate and, as such, has been the focus of extensive research inquiries. However, in MEMS fabrication, component bonding is difficult to achieve and requires a complex approach. Thus, improvements in bonding quality are relatively important objectives. A higher quality bond can only be achieved with improved measurement and testing capabilities. In particular, the traditional testing methods mainly include infrared testing, tensile testing, and strength testing, despite the fact that using these methods to measure bond quality often results in low efficiency or destructive analysis. Therefore, this paper focuses on the development of a precise, nondestructive visual testing method based on wavelet image analysis that is shown to be highly effective in practice. The process of wavelet image analysis includes wavelet image denoising, wavelet image enhancement, and contrast enhancement, and as an end result, can display an image with low background noise. In addition, because the wavelet analysis software was developed with MATLAB, it can reveal the bonding boundaries and bonding rates to precisely indicate the bond quality at all locations on the wafer. This work also presents a set of orthogonal experiments that consist of three prebonding factors, the prebonding temperature, the positive pressure value and the prebonding time, which are used to analyze the prebonding quality. This method was used to quantify the quality of silicon-to-silicon wafer bonding, yielding standard treatment quantities that could be practical for large-scale use.

  10. Evaluation of image quality in terahertz pulsed imaging using test objects.

    PubMed

    Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M

    2002-11-07

    As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.

  11. New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients

    PubMed Central

    Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju

    2014-01-01

    MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115

  12. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).

    PubMed

    McGarry, C K; Grattan, M W D; Cosgrove, V P

    2007-12-07

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.

  13. Image enhancement using the hypothesis selection filter: theory and application to JPEG decoding.

    PubMed

    Wong, Tak-Shing; Bouman, Charles A; Pollak, Ilya

    2013-03-01

    We introduce the hypothesis selection filter (HSF) as a new approach for image quality enhancement. We assume that a set of filters has been selected a priori to improve the quality of a distorted image containing regions with different characteristics. At each pixel, HSF uses a locally computed feature vector to predict the relative performance of the filters in estimating the corresponding pixel intensity in the original undistorted image. The prediction result then determines the proportion of each filter used to obtain the final processed output. In this way, the HSF serves as a framework for combining the outputs of a number of different user selected filters, each best suited for a different region of an image. We formulate our scheme in a probabilistic framework where the HSF output is obtained as the Bayesian minimum mean square error estimate of the original image. Maximum likelihood estimates of the model parameters are determined from an offline fully unsupervised training procedure that is derived from the expectation-maximization algorithm. To illustrate how to apply the HSF and to demonstrate its potential, we apply our scheme as a post-processing step to improve the decoding quality of JPEG-encoded document images. The scheme consistently improves the quality of the decoded image over a variety of image content with different characteristics. We show that our scheme results in quantitative improvements over several other state-of-the-art JPEG decoding methods.

  14. Instrument translation and initial psychometric evaluation of the Danish Body Image Quality of Life Inventory.

    PubMed

    Rasmussen, Trine Bernholdt; Berg, Selina Kikkenborg; Dixon, Jane; Moons, Philip; Konradsen, Hanne

    2016-12-01

    Negative body perception has been reported in a number of patient populations. No instrument in Danish for measuring body image-related concerns has been available. Without such an instrument, understanding of the phenomenon in Danish-speaking populations is limited. The purpose of the study was thus to translate and validate a Danish version of the Body Image Quality of Life Inventory (BIQLI), in order to obtain a valid instrument applicable for healthcare research. The study consisted of two phases: (i) instrument adaptation, including forward and back translation, expert committee comparisons and cognitive interviewing, and (ii) empirical testing of the Danish version (BIQLI-DA) with subsequent psychometric evaluation. Hypothesised correlations to other measures, including body mass index (BMI), Medical Outcome Short Form-8 (SF-8), Patient Health Questionnaire-9 (PHQ-9), General Anxiety Disorder-7 and Symptom Check List-90-Revised (SCL-90-R ® ) were tested. In addition, exploratory factor structure analysis (EFA) and internal consistency on item and scale level were performed. The adapted instrument was found to be semantically sound, yet concerns about face validity did arise through cognitive interviews. Danish college students (n = 189, 65 men, M age = 21.1 years) participated in the piloting of the BIQLI-DA. Convergent construct validity was demonstrated through associations to related constructs. Exploratory factor analysis revealed a potential subscale structure. Finally, results showed a high internal consistency (Cronbach's alpha = 0.92). Support for the validity of the BIQLI-DA might have been strengthened by repeating cognitive interviews after layout alterations, by piloting the instrument on a larger sample. This study demonstrated tentative support for the validity of the Danish Body Image Quality of Life (BIQLI-DA) and found the measure to be reliable in terms of internal consistency. Further exploration of response processes and construct validity is needed. © 2016 Nordic College of Caring Science.

  15. Limited-preparation CT colonography in frail elderly patients: a feasibility study.

    PubMed

    Keeling, Aoife N; Slattery, Michael M; Leong, Sum; McCarthy, Eoghan; Susanto, Maja; Lee, Michael J; Morrin, Martina M

    2010-05-01

    Full colonic preparation can be onerous and may be poorly tolerated in frail elderly patients. The purpose of this study was to prospectively assess the image quality and diagnostic yield of limited-preparation CT colonography (CTC) in elderly patients with suspected colorectal cancer who were deemed medically unfit or unsuitable for colonoscopy. A prospective study was performed of 67 elderly patients with reduced functional status referred for CTC. Participants were prescribed a limited bowel preparation consisting of a low-residue diet for 3 days, 1 L of 2% oral diatrizoate meglumine (Gastrografin) 24 hours before CTC, and 1 L of 2% oral Gastrografin over the 2 hours immediately before CTC. No cathartic preparation was administered. All colonic segments were graded from 1 to 5 for image quality (1, unreadable; 2, poor; 3, equivocal; 4, good; 5, excellent) and reader confidence. Clinical and conventional colonoscopy follow-up findings were documented, and all colonic and extracolonic pathologic findings were documented. Overall image quality and reader confidence in the evaluation of the colon was rated good or excellent in 84% of the colonic segments. Colonic abnormalities were identified in 12 patients (18%), including four colonic tumors, two polyps, and seven colonic strictures. Incidental extraintestinal findings were detected in 43 patients (64%), including nine patients with lesions radiologically consistent with malignancy. Limited-preparation low-dose CTC is a feasible and useful minimally invasive technique with which to evaluate the colon and exclude gross pathology (mass lesions and polyps > 1 cm) in elderly patients with diminished performance status, yielding good to excellent image quality.

  16. Human Visual System-Based Fundus Image Quality Assessment of Portable Fundus Camera Photographs.

    PubMed

    Wang, Shaoze; Jin, Kai; Lu, Haitong; Cheng, Chuming; Ye, Juan; Qian, Dahong

    2016-04-01

    Telemedicine and the medical "big data" era in ophthalmology highlight the use of non-mydriatic ocular fundus photography, which has given rise to indispensable applications of portable fundus cameras. However, in the case of portable fundus photography, non-mydriatic image quality is more vulnerable to distortions, such as uneven illumination, color distortion, blur, and low contrast. Such distortions are called generic quality distortions. This paper proposes an algorithm capable of selecting images of fair generic quality that would be especially useful to assist inexperienced individuals in collecting meaningful and interpretable data with consistency. The algorithm is based on three characteristics of the human visual system--multi-channel sensation, just noticeable blur, and the contrast sensitivity function to detect illumination and color distortion, blur, and low contrast distortion, respectively. A total of 536 retinal images, 280 from proprietary databases and 256 from public databases, were graded independently by one senior and two junior ophthalmologists, such that three partial measures of quality and generic overall quality were classified into two categories. Binary classification was implemented by the support vector machine and the decision tree, and receiver operating characteristic (ROC) curves were obtained and plotted to analyze the performance of the proposed algorithm. The experimental results revealed that the generic overall quality classification achieved a sensitivity of 87.45% at a specificity of 91.66%, with an area under the ROC curve of 0.9452, indicating the value of applying the algorithm, which is based on the human vision system, to assess the image quality of non-mydriatic photography, especially for low-cost ophthalmological telemedicine applications.

  17. Image recording requirements for earth observation applications in the next decade

    NASA Technical Reports Server (NTRS)

    Peavey, B.; Sos, J. Y.

    1975-01-01

    Future requirements for satellite-borne image recording systems are examined from the standpoints of system performance, system operation, product type, and product quality. Emphasis is on total system design while keeping in mind that the image recorder or scanner is the most crucial element which will affect the end product quality more than any other element within the system. Consideration of total system design and implementation for sustained operational usage must encompass the requirements for flexibility of input data and recording speed, pixel density, aspect ratio, and format size. To produce this type of system requires solution of challenging problems in interfacing the data source with the recorder, maintaining synchronization between the data source and the recorder, and maintaining a consistent level of quality. Film products of better quality than is currently achieved in a routine manner are needed. A 0.1 pixel geometric accuracy and 0.0001 d.u. radiometric accuracy on standard (240 mm) size format should be accepted as a goal to be reached in the near future.

  18. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities.

    PubMed

    Foo, Thomas K F; Laskaris, Evangelos; Vermilyea, Mark; Xu, Minfeng; Thompson, Paul; Conte, Gene; Van Epps, Christopher; Immer, Christopher; Lee, Seung-Kyun; Tan, Ek T; Graziani, Dominic; Mathieu, Jean-Baptise; Hardy, Christopher J; Schenck, John F; Fiveland, Eric; Stautner, Wolfgang; Ricci, Justin; Piel, Joseph; Park, Keith; Hua, Yihe; Bai, Ye; Kagan, Alex; Stanley, David; Weavers, Paul T; Gray, Erin; Shu, Yunhong; Frick, Matthew A; Campeau, Norbert G; Trzasko, Joshua; Huston, John; Bernstein, Matt A

    2018-03-13

    To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. In a comparison of anatomical imaging in 16 patients using T 2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality. © 2018 International Society for Magnetic Resonance in Medicine.

  19. A Rotatable Quality Control Phantom for Evaluating the Performance of Flat Panel Detectors in Imaging Moving Objects.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki

    2016-02-01

    As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.

  20. An exposure indicator for digital radiography: AAPM Task Group 116 (executive summary).

    PubMed

    Shepard, S Jeff; Wang, Jihong; Flynn, Michael; Gingold, Eric; Goldman, Lee; Krugh, Kerry; Leong, David L; Mah, Eugene; Ogden, Kent; Peck, Donald; Samei, Ehsan; Wang, Jihong; Willis, Charles E

    2009-07-01

    Digital radiographic imaging systems, such as those using photostimulable storage phosphor, amorphous selenium, amorphous silicon, CCD, and MOSFET technology, can produce adequate image quality over a much broader range of exposure levels than that of screen/film imaging systems. In screen/film imaging, the final image brightness and contrast are indicative of over- and underexposure. In digital imaging, brightness and contrast are often determined entirely by digital postprocessing of the acquired image data. Overexposure and underexposures are not readily recognizable. As a result, patient dose has a tendency to gradually increase over time after a department converts from screen/film-based imaging to digital radiographic imaging. The purpose of this report is to recommend a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The intent is to facilitate the production of consistent, high quality digital radiographic images at acceptable patient doses. This should be based not on image optical density or brightness but on feedback regarding the detector exposure provided and actively monitored by the imaging system. A standard beam calibration condition is recommended that is based on RQA5 but uses filtration materials that are commonly available and simple to use. Recommendations on clinical implementation of the indices to control image quality and patient dose are derived from historical tolerance limits and presented as guidelines.

  1. An exposure indicator for digital radiography: AAPM Task Group 116 (Executive Summary)

    PubMed Central

    Shepard, S. Jeff; Wang, Jihong; Flynn, Michael; Gingold, Eric; Goldman, Lee; Krugh, Kerry; Leong, David L.; Mah, Eugene; Ogden, Kent; Peck, Donald; Samei, Ehsan; Wang, Jihong; Willis, Charles E.

    2009-01-01

    Digital radiographic imaging systems, such as those using photostimulable storage phosphor, amorphous selenium, amorphous silicon, CCD, and MOSFET technology, can produce adequate image quality over a much broader range of exposure levels than that of screen/film imaging systems. In screen/film imaging, the final image brightness and contrast are indicative of over- and underexposure. In digital imaging, brightness and contrast are often determined entirely by digital postprocessing of the acquired image data. Overexposure and underexposures are not readily recognizable. As a result, patient dose has a tendency to gradually increase over time after a department converts from screen/film-based imaging to digital radiographic imaging. The purpose of this report is to recommend a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The intent is to facilitate the production of consistent, high quality digital radiographic images at acceptable patient doses. This should be based not on image optical density or brightness but on feedback regarding the detector exposure provided and actively monitored by the imaging system. A standard beam calibration condition is recommended that is based on RQA5 but uses filtration materials that are commonly available and simple to use. Recommendations on clinical implementation of the indices to control image quality and patient dose are derived from historical tolerance limits and presented as guidelines. PMID:19673189

  2. Breath-hold device for laboratory rodents undergoing imaging procedures.

    PubMed

    Rivera, Belinda; Bushman, Mark J; Beaver, Richard G; Cody, Dianna D; Price, Roger E

    2006-07-01

    The increased use in noninvasive imaging of laboratory rodents has prompted innovative techniques in animal handling. Lung imaging of rodents can be a difficult task because of tissue motion caused by breathing, which affects image quality. The use of a prototype flat-panel computed tomography unit allows the acquisition of images in as little as 2, 4, or 8 s. This short acquisition time has allowed us to improve the image quality of this instrument by performing a breath-hold during image acquisition. We designed an inexpensive and safe method for performing a constant-pressure breath-hold in intubated rodents. Initially a prototypic manual 3-way valve system, consisting of a 3-way valve, an air pressure regulator, and a manometer, was used to manually toggle between the ventilator and the constant-pressure breath-hold equipment. The success of the manual 3-way valve system prompted the design of an electronically actuated valve system. In the electronic system, the manual 3-way valve was replaced with a custom designed 3-way valve operated by an electrical solenoid. The electrical solenoid is triggered by using a hand-held push button or a foot pedal that is several feet away from the gantry of the scanner. This system has provided improved image quality and is safe for the animals, easy to use, and reliable.

  3. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    PubMed

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  4. Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI.

    PubMed

    Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una

    2018-02-01

    Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    PubMed

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (<3) on the late arterial phase, respiratory motion-resolved (extradimension [XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (<3) on the late arterial phase, motion-resolved reconstructed T1WI (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P < 0.002-0.021) and improved image quality (P < 0.0001-0.002). In comparison with previous BH-T1WI, CS-VIBE with hard gating or XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T1WI for liver MRI in patients at high risk of breath-holding failure.

  6. SU-F-J-143: Initial Assessment of Image Quality of An Integrated MR-Linac System with ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Fuller, C; Yung, J

    Purpose/Objective(s): To assess the image quality of an integrated MR-Linac system and compare with other MRI systems that are primarily used for diagnostic purposes. Materials/Methods: An ACR MRI quality control (QC) phantom was used to evaluate the image quality of a fully integrated 1.5T MRI-Linac system recently installed at our institution. This system has a new split magnet design which gives the magnetic field strength of 1.5T. All images were acquired with a set of phased-array surface coils which are designed to have minimal attention of radiation beam. The anterior coil rests on a coil holder which keeps the anteriormore » coil’s position consistent for QA purposes. The posterior coil is imbedded in the patient couch. Multiple sets of T1, T2/PD images were acquired using the protocols as prescribed by the ACR on three different dates, ranging 3 months apart. Results: The geometric distortion are within 0.5 mm in the axial scans and within 1mm in the saggital (z-direction) scans. Slice thickness accuracy, image uniformity, ghosting ratio, high contrast detectability are comparable to other 1.5T diagnostic MRI scanners. The low-contrast object detectability are lower comparatively, which is a result of using the body array coil. Additionally, the beam’s-eye-view images (oblique coronal and saggital images) have minimal geometric distortion at all linac gantry angles tested. No observable changes or drift in image quality is found from images acquired 3 month apart. Conclusion: Despite the use of a body array surface coil, the image quality is comparable to that of an 1.5T MRI scanner and is of sufficient quality to pass the ACR MRI accreditation program. The geometric distortion of the MRI system of the integrated MR-Linac is within 1mm for an object size similar to the ACR phantom, sufficient for radiation therapy treatment purpose. The authors received corporate sponsored research grants from Elekta which is the vendor for the MR-Linac evaluated in this study.« less

  7. Memory preservation made prestigious but easy

    NASA Astrophysics Data System (ADS)

    Fageth, Reiner; Debus, Christina; Sandhaus, Philipp

    2011-01-01

    Preserving memories combined with story-telling using either photo books for multiple images or high quality products such as one or a few images printed on canvas or images mounted on acryl to create high-quality wall decorations are gradually becoming more popular than classical 4*6 prints and classical silver halide posters. Digital printing via electro photography and ink jet is increasingly replacing classical silver halide technology as the dominant production technology for these kinds of products. Maintaining a consistent and comparable quality of output is becoming more challenging than using silver halide paper for both, prints and posters. This paper describes a unique approach of combining both desktop based software to initiate a compelling project and the use of online capabilities in order to finalize and optimize that project in an online environment in a community process. A comparison of the consumer behavior between online and desktop based solutions for generating photo books will be presented.

  8. A method for evaluating image quality of monochrome and color displays based on luminance by use of a commercially available color digital camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokurei, Shogo, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp; Morishita, Junji, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp

    Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signalsmore » for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors’ method based on the use of a commercially available color camera is useful to evaluate and understand the display performances of both monochrome and color LCDs in radiology departments.« less

  9. Effect of mid-scan breathing changes on quality of 4DCT using a commercial phase-based sorting algorithm.

    PubMed

    Noel, Camille E; Parikh, Parag J

    2011-05-01

    Though it is known that irregular breathing can introduce artifacts in commercial 4DCT, this has not been systematically explored. The purpose of this study is to investigate the effect of variations in basic parameters of the breathing wave on 4DCT imaging quality. A four-dimensional motion platform holding an acrylic sphere was scanned while moving in a trajectory modeled from a lung cancer patient. A bellows device was used as a respiratory surrogate, and the images were sorted by a commercial phase-based sorting algorithm. Motion during the first half of the scan was produced at a baseline trajectory with a consistent frequency and amplitude of 15 breaths per minute and 1 cm, peak to peak. The two parameters were then varied mid-scan to new frequency and amplitude values, with frequencies ranging from 7.5 to 22 bpm and amplitudes ranging from 0.5 to 1.5 cm. Image sets representing four respiratory phases were contoured. Each set was analyzed to compare centroid displacement, density homogeneity, and volumetric and geometric distortions of the imaged sphere. Undercoverage of the target ITV and overcoverage of healthy tissue was also evaluated. Changes in amplitude of 25% or more, with or without changes in frequency, consistently caused measurable distortions in shape, position, and density of the imaged sphere. Frequency changes over 50% showed a similar trend. This study suggests that basic breathing statistics can be used to quickly assess the quality of a 4DCT scan prior to image reconstruction. Such information can help give indication of the proper course of action when irregular breathing patterns are observed during CT scanning.

  10. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes.

    PubMed

    Haddock, Luis J; Kim, David Y; Mukai, Shizuo

    2013-01-01

    Purpose. We describe in detail a relatively simple technique of fundus photography in human and rabbit eyes using a smartphone, an inexpensive app for the smartphone, and instruments that are readily available in an ophthalmic practice. Methods. Fundus images were captured with a smartphone and a 20D lens with or without a Koeppe lens. By using the coaxial light source of the phone, this system works as an indirect ophthalmoscope that creates a digital image of the fundus. The application whose software allows for independent control of focus, exposure, and light intensity during video filming was used. With this app, we recorded high-definition videos of the fundus and subsequently extracted high-quality, still images from the video clip. Results. The described technique of smartphone fundus photography was able to capture excellent high-quality fundus images in both children under anesthesia and in awake adults. Excellent images were acquired with the 20D lens alone in the clinic, and the addition of the Koeppe lens in the operating room resulted in the best quality images. Successful photodocumentation of rabbit fundus was achieved in control and experimental eyes. Conclusion. The currently described system was able to take consistently high-quality fundus photographs in patients and in animals using readily available instruments that are portable with simple power sources. It is relatively simple to master, is relatively inexpensive, and can take advantage of the expanding mobile-telephone networks for telemedicine.

  11. Development of Multiple-Frequency Ultrasonic Imaging System Using Multiple Resonance Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Akiyama, Iwaki; Yoshizumi, Natsuki; Saito, Shigemi; Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-07-01

    The authors have developed a multiple frequency imaging system using a multiple resonance transducer (MRT) consisting of 1-3 composite materials with a low mechanical quality factor Q bonded together. The MRT has a structure consisting of thin and thick piezoelectric plates, two matching layers, and a backing layer. This makes it possible to obtain B-mode images of satisfactory resolution using ultrasonic pulses owing to their short duration. In this paper, the vibration property of the MRT derived through equivalent-circuit analysis is first shown. By utilizing the result, an MRT capable of transmitting ultrasonic pulses for generation of the images of biological tissues with satisfactory resolution is designed and prototyped. Setting the prototype transducer in the mechanical sector probe of commercial ultrasonic diagnosis equipment, the speckle reduction effect is demonstrated using images of various phantoms to mimic biological tissues and a human thyroid.

  12. Functional evaluation of telemedicine with super high definition images and B-ISDN.

    PubMed

    Takeda, H; Matsumura, Y; Okada, T; Kuwata, S; Komori, M; Takahashi, T; Minatom, K; Hashimoto, T; Wada, M; Fujio, Y

    1998-01-01

    In order to determine whether a super high definition (SHD) image running at a series of 2048 resolution x 2048 line x 60 frame/sec was capable of telemedicine, we established a filing system for medical images and two experiments for transmission of high quality images were performed. All images of various types, produced from one case of ischemic heart disease were digitized and registered into the filing system. Images consisted of plain chest x-ray, electrocardiogram, ultrasound cardiogram, cardiac scintigram, coronary angiogram, left ventriculogram and so on. All images were animated and totaled a number of 243. We prepared a graphic user interface (GUI) for image retrieval based on the medical events and modalities. Twenty one cardiac specialists evaluated quality of the SHD images to be somewhat poor compared to the original pictures but sufficient for making diagnoses, and effective as a tool for teaching and case study purposes. The system capability of simultaneously displaying several animated images was especially deemed effective in grasping comprehension of diagnosis. Efficient input methods and creating capacity of filing all produced images are future issue. Using B-ISDN network, the SHD file was prefetched to the servers at Kyoto University Hospital and BBCC (Bradband ISDN Business chance & Culture Creation) laboratory as an telemedicine experiment. Simultaneous video conference system, the control of image retrieval and pointing function made the teleconference successful in terms of high quality of medical images, quick response time and interactive data exchange.

  13. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  14. Monolayer-crystal streptavidin support films provide an internal standard of cryo-EM image quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Bong-Gyoon; Watson, Zoe; Cate, Jamie H. D.

    Analysis of images of biotinylated Escherichia coli 70S ribosome particles, bound to streptavidin affinity grids, demonstrates that the image-quality of particles can be predicted by the image-quality of the monolayer crystalline support film. Also, the quality of the Thon rings is a good predictor of the image-quality of particles, but only when images of the streptavidin crystals extend to relatively high resolution. When the estimated resolution of streptavidin was 5 Å or worse, for example, the ribosomal density map obtained from 22,697 particles went to only 9.5 Å, while the resolution of the map reached 4.0 Å for the samemore » number of particles, when the estimated resolution of streptavidin crystal was 4 Å or better. It thus is easy to tell which images in a data set ought to be retained for further work, based on the highest resolution seen for Bragg peaks in the computed Fourier transforms of the streptavidin component. The refined density map obtained from 57,826 particles obtained in this way extended to 3.6 Å, a marked improvement over the value of 3.9 Å obtained previously from a subset of 52,433 particles obtained from the same initial data set of 101,213 particles after 3-D classification. These results are consistent with the hypothesis that interaction with the air-water interface can damage particles when the sample becomes too thin. Finally, streptavidin monolayer crystals appear to provide a good indication of when that is the case.« less

  15. Image quality specification and maintenance for airborne SAR

    NASA Astrophysics Data System (ADS)

    Clinard, Mark S.

    2004-08-01

    Specification, verification, and maintenance of image quality over the lifecycle of an operational airborne SAR begin with the specification for the system itself. Verification of image quality-oriented specification compliance can be enhanced by including a specification requirement that a vendor provide appropriate imagery at the various phases of the system life cycle. The nature and content of the imagery appropriate for each stage of the process depends on the nature of the test, the economics of collection, and the availability of techniques to extract the desired information from the data. At the earliest lifecycle stages, Concept and Technology Development (CTD) and System Development and Demonstration (SDD), the test set could include simulated imagery to demonstrate the mathematical and engineering concepts being implemented thus allowing demonstration of compliance, in part, through simulation. For Initial Operational Test and Evaluation (IOT&E), imagery collected from precisely instrumented test ranges and targets of opportunity consisting of a priori or a posteriori ground-truthed cultural and natural features are of value to the analysis of product quality compliance. Regular monitoring of image quality is possible using operational imagery and automated metrics; more precise measurements can be performed with imagery of instrumented scenes, when available. A survey of image quality measurement techniques is presented along with a discussion of the challenges of managing an airborne SAR program with the scarce resources of time, money, and ground-truthed data. Recommendations are provided that should allow an improvement in the product quality specification and maintenance process with a minimal increase in resource demands on the customer, the vendor, the operational personnel, and the asset itself.

  16. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan

    2015-08-15

    Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less

  17. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  18. Fabrication of a grazing incidence telescope by grinding and polishing techniques on aluminum

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Green, James

    1991-01-01

    The paper describes the fabrication processes, by grinding and polishing, used in making the mirrors for a f/2.8 Wolter type-I grazing incidence telescope at Boulder (Colorado), together with testing procedure used to determine the quality of the images. All grinding and polishing is done on specially designed machine that consists of a horizontal spindle to hold and rotate the mirror and a stroke arm machine to push the various tools back and forth along the mirrors length. The progress is checked by means of the ronchi test during all grinding and polishing stages. Current measurements of the telescope's image quality give a FWHM measurement of 44 arcsec, with the goal set at 5-10 arcsec quality.

  19. Securing quality of camera-based biomedical optics

    NASA Astrophysics Data System (ADS)

    Guse, Frank; Kasper, Axel; Zinter, Bob

    2009-02-01

    As sophisticated optical imaging technologies move into clinical applications, manufacturers need to guarantee their products meet required performance criteria over long lifetimes and in very different environmental conditions. A consistent quality management marks critical components features derived from end-users requirements in a top-down approach. Careful risk analysis in the design phase defines the sample sizes for production tests, whereas first article inspection assures the reliability of the production processes. We demonstrate the application of these basic quality principles to camera-based biomedical optics for a variety of examples including molecular diagnostics, dental imaging, ophthalmology and digital radiography, covering a wide range of CCD/CMOS chip sizes and resolutions. Novel concepts in fluorescence detection and structured illumination are also highlighted.

  20. Good reasons to implement quality assurance in nationwide breast cancer screening programs in Croatia and Serbia: results from a pilot study.

    PubMed

    Ciraj-Bjelac, Olivera; Faj, Dario; Stimac, Damir; Kosutic, Dusko; Arandjic, Danijela; Brkic, Hrvoje

    2011-04-01

    The purpose of this study is to investigate the need for and the possible achievements of a comprehensive QA programme and to look at effects of simple corrective actions on image quality in Croatia and in Serbia. The paper focuses on activities related to the technical and radiological aspects of QA. The methodology consisted of two phases. The aim of the first phase was the initial assessment of mammography practice in terms of image quality, patient dose and equipment performance in selected number of mammography units in Croatia and Serbia. Subsequently, corrective actions were suggested and implemented. Then the same parameters were re-assessed. Most of the suggested corrective actions were simple, low-cost and possible to implement immediately, as these were related to working habits in mammography units, such as film processing and darkroom conditions. It has been demonstrated how simple quantitative assessment of image quality can be used for optimisation purposes. Analysis of image quality parameters as OD, gradient and contrast demonstrated general similarities between mammography practices in Croatia and Serbia. The applied methodology should be expanded to larger number of hospitals and applied on a regular basis. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Generalized watermarking attack based on watermark estimation and perceptual remodulation

    NASA Astrophysics Data System (ADS)

    Voloshynovskiy, Sviatoslav V.; Pereira, Shelby; Herrigel, Alexander; Baumgartner, Nazanin; Pun, Thierry

    2000-05-01

    Digital image watermarking has become a popular technique for authentication and copyright protection. For verifying the security and robustness of watermarking algorithms, specific attacks have to be applied to test them. In contrast to the known Stirmark attack, which degrades the quality of the image while destroying the watermark, this paper presents a new approach which is based on the estimation of a watermark and the exploitation of the properties of Human Visual System (HVS). The new attack satisfies two important requirements. First, image quality after the attack as perceived by the HVS is not worse than the quality of the stego image. Secondly, the attack uses all available prior information about the watermark and cover image statistics to perform the best watermark removal or damage. The proposed attack is based on a stochastic formulation of the watermark removal problem, considering the embedded watermark as additive noise with some probability distribution. The attack scheme consists of two main stages: (1) watermark estimation and partial removal by a filtering based on a Maximum a Posteriori (MAP) approach; (2) watermark alteration and hiding through addition of noise to the filtered image, taking into account the statistics of the embedded watermark and exploiting HVS characteristics. Experiments on a number of real world and computer generated images show the high efficiency of the proposed attack against known academic and commercial methods: the watermark is completely destroyed in all tested images without altering the image quality. The approach can be used against watermark embedding schemes that operate either in coordinate domain, or transform domains like Fourier, DCT or wavelet.

  2. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  3. Optical design of ultrashort throw liquid crystal on silicon projection system

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2017-05-01

    An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.

  4. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  5. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  6. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review.

    PubMed

    East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc

    2016-11-01

    Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations: 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  8. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image. In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.

  9. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced image quality of low-dose brain [18F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using MRI and low-dose brain [18F]FDG PET. PMID:26328979

  10. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET image and substantially enhanced image quality of low-dose brain [{sup 18}F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [{sup 18}F]FDG PET image using low-dose brain [{sup 18}F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [{sup 18}F]FDG PET can be well-predicted using MRI and low-dose brain [{sup 18}F]FDG PET.« less

  11. Development of terminology for mammographic techniques for radiological technologists.

    PubMed

    Yagahara, Ayako; Yokooka, Yuki; Tsuji, Shintaro; Nishimoto, Naoki; Uesugi, Masahito; Muto, Hiroshi; Ohba, Hisateru; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2011-07-01

    We are developing a mammographic ontology to share knowledge of the mammographic domain for radiologic technologists, with the aim of improving mammographic techniques. As a first step in constructing the ontology, we used mammography reference books to establish mammographic terminology for identifying currently available knowledge. This study proceeded in three steps: (1) determination of the domain and scope of the terminology, (2) lexical extraction, and (3) construction of hierarchical structures. We extracted terms mainly from three reference books and constructed the hierarchical structures manually. We compared features of the terms extracted from the three reference books. We constructed a terminology consisting of 440 subclasses grouped into 19 top-level classes: anatomic entity, image quality factor, findings, material, risk, breast, histological classification of breast tumors, role, foreign body, mammographic technique, physics, purpose of mammography examination, explanation of mammography examination, image development, abbreviation, quality control, equipment, interpretation, and evaluation of clinical imaging. The number of terms that occurred in the subclasses varied depending on which reference book was used. We developed a terminology of mammographic techniques for radiologic technologists consisting of 440 terms.

  12. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Resultsmore » from various data input to the method indicate significant improvements are provided in both image quality and resolution.« less

  13. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; Douglas, J.; Patterson, L.

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.« less

  14. An experimental assessment of the imaging quality of the low energy gamma-ray telescope ZEBRA

    NASA Technical Reports Server (NTRS)

    Butler, R. C.; Caroli, E.; Dicocco, G.; Natalucci, L.; Spada, G.; Spizzichino, A.; Stephen, J. B.; Carter, J. N.; Charalambous, P. M.; Dean, A. J.

    1985-01-01

    One gamma-ray detection plane of the ZEBRA telescope, consisting of nine position sensitive scintillation crystal bars designed to operate over the spectral range 0.2 to 10 MeV, has been constructed in the laboratory. A series of experimental images has been generated using a scaled down flight pattern mask in conjunction with a diverging gamma-ray beam. Point and extended sources have been imaged in order to assess quantitatively the performance of the system.

  15. Accuracy of prostate radiation therapy using a fiducial point-pair registration technique based on the computer-assisted portal imaging quality assurance program PIPSpro.

    PubMed

    Mermershtain, Wilmosh; Cohen, Yoram; Krutman, Yanai

    2003-06-01

    The aim of this study was to assess portal imaging for quality assurance of patient positioning in external beam radiotherapy. We present a retrospective study of the variability of patient position in the treatment of 34 prostate cancer patients who were treated with whole pelvic irradiation followed by arc therapy or boost field (Series I) and 25 patients treated by 'small' pelvic 4-field box technique (Series II). Weekly anteroposterior-posteranterior (AP-PA) and left-lateral portal images were compared to simulation films by using a fiducial point-pair registration technique based on the computer-assisted portal imaging quality assurance program PIPSpro, developed specifically for the verification of treatment positioning in radiation therapy. Series I consisted of 34 patients and 194 portal films (97 AP-PA and 97 left-lateral). Overirradiated (OA) and underirradiated (UA) areas were computed in terms of percentage of the reference field size. For the AP-PA portals, the average OA was 2.75% and average UA was 2.74%. For left-lateral portals, an average OA of 2.49% and UA of 2.78% were measured. Series II consisted of 25 patients and 194 portal films (98 AP-PA and 96 left-lateral). The average OA was 0.88% and average UA was 0.86% in AP-PA portals, and 1.03 and 0.82% for left-lateral portals, respectively. The accuracy of patient positioning in irradiation of prostate cancer in our institution is in the range of 2.69% for whole pelvic fields and 1.0% for small fields. We conclude that PIPSpro is an effective and useful tool for quality assurance in radiotherapy.

  16. Scalable gastroscopic video summarization via similar-inhibition dictionary selection.

    PubMed

    Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin

    2016-01-01

    This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Design and assessment of a novel SPECT system for desktop open-gantry imaging of small animals: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeraatkar, Navid; Farahani, Mohammad Hossein; Rahmim, Arman

    Purpose: Given increasing efforts in biomedical research utilizing molecular imaging methods, development of dedicated high-performance small-animal SPECT systems has been growing rapidly in the last decade. In the present work, we propose and assess an alternative concept for SPECT imaging enabling desktop open-gantry imaging of small animals. Methods: The system, PERSPECT, consists of an imaging desk, with a set of tilted detector and pinhole collimator placed beneath it. The object to be imaged is simply placed on the desk. Monte Carlo (MC) and analytical simulations were utilized to accurately model and evaluate the proposed concept and design. Furthermore, a dedicatedmore » image reconstruction algorithm, finite-aperture-based circular projections (FABCP), was developed and validated for the system, enabling more accurate modeling of the system and higher quality reconstructed images. Image quality was quantified as a function of different tilt angles in the acquisition and number of iterations in the reconstruction algorithm. Furthermore, more complex phantoms including Derenzo, Defrise, and mouse whole body were simulated and studied. Results: The sensitivity of the PERSPECT was 207 cps/MBq. It was quantitatively demonstrated that for a tilt angle of 30°, comparable image qualities were obtained in terms of normalized squared error, contrast, uniformity, noise, and spatial resolution measurements, the latter at ∼0.6 mm. Furthermore, quantitative analyses demonstrated that 3 iterations of FABCP image reconstruction (16 subsets/iteration) led to optimally reconstructed images. Conclusions: The PERSPECT, using a novel imaging protocol, can achieve comparable image quality performance in comparison with a conventional pinhole SPECT with the same configuration. The dedicated FABCP algorithm, which was developed for reconstruction of data from the PERSPECT system, can produce high quality images for small-animal imaging via accurate modeling of the system as incorporated in the forward- and back-projection steps. Meanwhile, the developed MC model and the analytical simulator of the system can be applied for further studies on development and evaluation of the system.« less

  18. Automatic assessment of the quality of patient positioning in mammography

    NASA Astrophysics Data System (ADS)

    Bülow, Thomas; Meetz, Kirsten; Kutra, Dominik; Netsch, Thomas; Wiemker, Rafael; Bergtholdt, Martin; Sabczynski, Jörg; Wieberneit, Nataly; Freund, Manuela; Schulze-Wenck, Ingrid

    2013-02-01

    Quality assurance has been recognized as crucial for the success of population-based breast cancer screening programs using x-ray mammography. Quality guidelines and criteria have been defined in the US as well as the European Union in order to ensure the quality of breast cancer screening. Taplin et al. report that incorrect positioning of the breast is the major image quality issue in screening mammography. Consequently, guidelines and criteria for correct positioning and for the assessment of the positioning quality in mammograms play an important role in the quality standards. In this paper we present a system for the automatic evaluation of positioning quality in mammography according to the existing standardized criteria. This involves the automatic detection of anatomic landmarks in medio- lateral oblique (MLO) and cranio-caudal (CC) mammograms, namely the pectoral muscle, the mammilla and the infra-mammary fold. Furthermore, the detected landmarks are assessed with respect to their proper presentation in the image. Finally, the geometric relations between the detected landmarks are investigated to assess the positioning quality. This includes the evaluation whether the pectoral muscle is imaged down to the mammilla level, and whether the posterior nipple line diameter of the breast is consistent between the different views (MLO and CC) of the same breast. Results of the computerized assessment are compared to ground truth collected from two expert readers.

  19. SkySat-1: very high-resolution imagery from a small satellite

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk

    2014-10-01

    This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.

  20. A pseudoinverse deformation vector field generator and its applications

    PubMed Central

    Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.

    2010-01-01

    Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247

  1. Development of a universal medical X-ray imaging phantom prototype.

    PubMed

    Groenewald, Annemari; Groenewald, Willem A

    2016-11-08

    Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the inserts were 3D-printed, others were machined from different materials. The different components were assembled to form the first prototype of the universal X-ray imaging phantom. The resulting prototype of the universal phantom conformed to the aims of a single phantom for multiple imag-ing modalities, which would be easy to use and manufacture at a reduced cost. A PCT International Patent Application No. PCT/IB2016/051165 has been filed for this technology. © 2016 The Authors.

  2. Stable image acquisition for mobile image processing applications

    NASA Astrophysics Data System (ADS)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  3. On-line 3D motion estimation using low resolution MRI

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2015-08-01

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with {{≤ft(2.5 \\text{mm}\\right)}3} voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. {{≤ft(5 \\text{mm}\\right)}3} . In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  4. A comparative study of multi-focus image fusion validation metrics

    NASA Astrophysics Data System (ADS)

    Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael

    2016-05-01

    Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).

  5. Development and characterization of a scintillating cell imaging dish for radioluminescence microscopy.

    PubMed

    Sengupta, Debanti; Kim, Tae Jin; Almasi, Sepideh; Miller, Stuart; Marton, Zsolt; Nagarkar, Vivek; Pratx, Guillem

    2018-04-16

    Radioluminescence microscopy is an emerging modality that can be used to image radionuclide probes with micron-scale resolution. This technique is particularly useful as a way to probe the metabolic behavior of single cells and to screen and characterize radiopharmaceuticals, but the quality of the images is critically dependent on the scintillator material used to image the cells. In this paper, we detail the development of a microscopy dish made of a thin-film scintillating material, Lu2O3:Eu, that could be used as the blueprint for a future consumable product. After developing a simple quality control method based on long-lived alpha and beta sources, we characterize the radioluminescence properties of various thin-film scintillator samples. We find consistent performance for most samples, but also identify a few samples that do not meet the specifications, thus stressing the need for routine quality control prior to biological experiments. In addition, we test and quantify the transparency of the material, and demonstrate that transparency correlates with thickness. Finally, we evaluate the biocompatibility of the material and show that the microscopy dish can produce radioluminescent images of live single cells.

  6. High contrast two-photon imaging of fingermarks

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  7. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  8. Prospective ECG-Triggered Coronary CT Angiography: Clinical Value of Noise-Based Tube Current Reduction Method with Iterative Reconstruction

    PubMed Central

    Shen, Junlin; Du, Xiangying; Guo, Daode; Cao, Lizhen; Gao, Yan; Yang, Qi; Li, Pengyu; Liu, Jiabin; Li, Kuncheng

    2013-01-01

    Objectives To evaluate the clinical value of noise-based tube current reduction method with iterative reconstruction for obtaining consistent image quality with dose optimization in prospective electrocardiogram (ECG)-triggered coronary CT angiography (CCTA). Materials and Methods We performed a prospective randomized study evaluating 338 patients undergoing CCTA with prospective ECG-triggering. Patients were randomly assigned to fixed tube current with filtered back projection (Group 1, n = 113), noise-based tube current with filtered back projection (Group 2, n = 109) or with iterative reconstruction (Group 3, n = 116). Tube voltage was fixed at 120 kV. Qualitative image quality was rated on a 5-point scale (1 = impaired, to 5 = excellent, with 3–5 defined as diagnostic). Image noise and signal intensity were measured; signal-to-noise ratio was calculated; radiation dose parameters were recorded. Statistical analyses included one-way analysis of variance, chi-square test, Kruskal-Wallis test and multivariable linear regression. Results Image noise was maintained at the target value of 35HU with small interquartile range for Group 2 (35.00–35.03HU) and Group 3 (34.99–35.02HU), while from 28.73 to 37.87HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 20% and 51% reduction in effective dose for Group 2 (2.9 mSv) and Group 3 (1.8 mSv) were achieved compared with Group 1 (3.7 mSv). After adjustment for scan characteristics, iterative reconstruction was associated with 26% reduction in effective dose. Conclusion Noise-based tube current reduction method with iterative reconstruction maintains image noise precisely at the desired level and achieves consistent image quality. Meanwhile, effective dose can be reduced by more than 50%. PMID:23741444

  9. Effect of e-learning on quality of cervical-length measurements.

    PubMed

    van Os, M A; van der Ven, A J; Bloemendaal, P M; Pajkrt, E; de Groot, C J M; Mol, B W J; Haak, M C

    2015-09-01

    To assess the effect of implementation of a newly developed e-learning module on the quality of cervical-length measurements. With the introduction of cervical-length (CL) measurement in a research setting, a CL measurement e-learning module (CLEM) was developed with the purpose to enhance the knowledge and skills of experienced ultrasonographers. CLEM was designed specifically for ultrasonographers who perform ultrasound in a general obstetrical practice but who do not regularly perform CL measurements. CLEM consists of five theoretical questions and three caliper-placement tests to learn the CL measurement technique. The quality of the CL measurements of CLEM participants was compared with images of non-participants using a CL measurement image score (CIS), defined as the sum of six items which assess the quality of the image. Each CLEM participant submitted five CL images and the images of non-CLEM participants were selected randomly from an ultrasound database. The CIS of the CLEM participants (n = 61) were significantly higher than those of non-CLEM participants (n = 23) (164.9 vs 155.6, respectively; P = 0.03). Visualization of the internal os and positioning of the calipers on the internal and external ora were found to have significantly higher CIS among the CLEM participants than among the non-CLEM participants (P = 0.001 and P < 0.001, respectively). Introducing CLEM may improve the quality of CL measurements obtained by trained and untrained sonographers. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  10. Fundamentals of in Situ Digital Camera Methodology for Water Quality Monitoring of Coast and Ocean

    PubMed Central

    Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave

    2009-01-01

    Conventional digital cameras, the Nikon Coolpix885® and the SeaLife ECOshot®, were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method. PMID:22346729

  11. Image intensifier-based volume tomographic angiography imaging system: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.

    1995-05-01

    An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.

  12. Quantitative approach for optimizing e-beam condition of photoresist inspection and measurement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Jen; Teng, Chia-Hao; Cheng, Po-Chung; Sato, Yoshishige; Huang, Shang-Chieh; Chen, Chu-En; Maruyama, Kotaro; Yamazaki, Yuichiro

    2018-03-01

    Severe process margin in advanced technology node of semiconductor device is controlled by e-beam metrology system and e-beam inspection system with scanning electron microscopy (SEM) image. By using SEM, larger area image with higher image quality is required to collect massive amount of data for metrology and to detect defect in a large area for inspection. Although photoresist is the one of the critical process in semiconductor device manufacturing, observing photoresist pattern by SEM image is crucial and troublesome especially in the case of large image. The charging effect by e-beam irradiation on photoresist pattern causes deterioration of image quality, and it affect CD variation on metrology system and causes difficulties to continue defect inspection in a long time for a large area. In this study, we established a quantitative approach for optimizing e-beam condition with "Die to Database" algorithm of NGR3500 on photoresist pattern to minimize charging effect. And we enhanced the performance of measurement and inspection on photoresist pattern by using optimized e-beam condition. NGR3500 is the geometry verification system based on "Die to Database" algorithm which compares SEM image with design data [1]. By comparing SEM image and design data, key performance indicator (KPI) of SEM image such as "Sharpness", "S/N", "Gray level variation in FOV", "Image shift" can be retrieved. These KPIs were analyzed with different e-beam conditions which consist of "Landing Energy", "Probe Current", "Scanning Speed" and "Scanning Method", and the best e-beam condition could be achieved with maximum image quality, maximum scanning speed and minimum image shift. On this quantitative approach of optimizing e-beam condition, we could observe dependency of SEM condition on photoresist charging. By using optimized e-beam condition, measurement could be continued on photoresist pattern over 24 hours stably. KPIs of SEM image proved image quality during measurement and inspection was stabled enough.

  13. NMF-Based Image Quality Assessment Using Extreme Learning Machine.

    PubMed

    Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun

    2017-01-01

    Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.

  14. Suppression of fixed pattern noise for infrared image system

    NASA Astrophysics Data System (ADS)

    Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon

    2008-04-01

    In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.

  15. Infrared imagery acquisition process supporting simulation and real image training

    NASA Astrophysics Data System (ADS)

    O'Connor, John

    2012-05-01

    The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.

  16. Floating Forests: Validation of a Citizen Science Effort to Answer Global Ecological Questions

    NASA Astrophysics Data System (ADS)

    Rosenthal, I.; Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Researchers undertaking long term, large-scale ecological analyses face significant challenges for data collection and processing. Crowdsourcing via citizen science can provide an efficient method for analyzing large data sets. However, many scientists have raised questions about the quality of data collected by citizen scientists. Here we use Floating-Forests (http://floatingforests.org), a citizen science platform for creating a global time series of giant kelp abundance, to show that ensemble classifications of satellite data can ensure data quality. Citizen scientists view satellite images of coastlines and classify kelp forests by tracing all visible patches of kelp. Each image is classified by fifteen citizen scientists before being retired. To validate citizen science results, all fifteen classifications are converted to a raster and overlaid on a calibration dataset generated from previous studies. Results show that ensemble classifications from citizen scientists are consistently accurate when compared to calibration data. Given that all source images were acquired by Landsat satellites, we expect this consistency to hold across all regions. At present, we have over 6000 web-based citizen scientists' classifications of almost 2.5 million images of kelp forests in California and Tasmania. These results are not only useful for remote sensing of kelp forests, but also for a wide array of applications that combine citizen science with remote sensing.

  17. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency

    NASA Astrophysics Data System (ADS)

    Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup

    2017-06-01

    This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.

  18. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasoundmore » scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.« less

  19. Research on auto-calibration technology of the image plane's center of 360-degree and all round looking camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Xu, Xiping

    2015-10-01

    The 360-degree and all round looking camera, as its characteristics of suitable for automatic analysis and judgment on the ambient environment of the carrier by image recognition algorithm, is usually applied to opto-electronic radar of robots and smart cars. In order to ensure the stability and consistency of image processing results of mass production, it is necessary to make sure the centers of image planes of different cameras are coincident, which requires to calibrate the position of the image plane's center. The traditional mechanical calibration method and electronic adjusting mode of inputting the offsets manually, both exist the problem of relying on human eyes, inefficiency and large range of error distribution. In this paper, an approach of auto- calibration of the image plane of this camera is presented. The imaging of the 360-degree and all round looking camera is a ring-shaped image consisting of two concentric circles, the center of the image is a smaller circle and the outside is a bigger circle. The realization of the technology is just to exploit the above characteristics. Recognizing the two circles through HOUGH TRANSFORM algorithm and calculating the center position, we can get the accurate center of image, that the deviation of the central location of the optic axis and image sensor. The program will set up the image sensor chip through I2C bus automatically, we can adjusting the center of the image plane automatically and accurately. The technique has been applied to practice, promotes productivity and guarantees the consistent quality of products.

  20. An adaptive block-based fusion method with LUE-SSIM for multi-focus images

    NASA Astrophysics Data System (ADS)

    Zheng, Jianing; Guo, Yongcai; Huang, Yukun

    2016-09-01

    Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.

  1. Portable Imagery Quality Assessment Test Field for Uav Sensors

    NASA Astrophysics Data System (ADS)

    Dąbrowski, R.; Jenerowicz, A.

    2015-08-01

    Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.

  2. Comparison null imaging ellipsometry using polarization rotator

    NASA Astrophysics Data System (ADS)

    Park, Sungmo; Kim, Eunsung; Kim, Jiwon; An, Ilsin

    2018-05-01

    In this study, two-reflection imaging ellipsometry is carried out to compare the changes in polarization states between two samples. By using a polarization rotator, the parallel and perpendicular components of polarization are easily switched between the two samples being compared. This leads to an intensity image consisting of null and off-null points depending on the difference in optical characteristics between the two samples. This technique does not require any movement of optical elements for nulling and can be used to detect defects or surface contamination for quality control of samples.

  3. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552

  4. Radiation dose reduction in a neonatal intensive care unit in computed radiography.

    PubMed

    Frayre, A S; Torres, P; Gaona, E; Rivera, T; Franco, J; Molina, N

    2012-12-01

    The purpose of this study was to evaluate the dose received by chest x-rays in neonatal care with thermoluminescent dosimetry and to determine the level of exposure where the quantum noise level does not affect the diagnostic image quality in order to reduce the dose to neonates. In pediatric radiology, especially the prematurely born children are highly sensitive to the radiation because of the highly mitotic state of their cells; in general, the sensitivity of a tissue to radiation is directly proportional to its rate of proliferation. The sample consisted of 208 neonatal chest x-rays of 12 neonates admitted and treated in a Neonatal Intensive Care Unit (NICU). All the neonates were preterm in the range of 28-34 weeks, with a mean of 30.8 weeks. Entrance Surface Doses (ESD) values for chest x-rays are higher than the DRL of 50 μGy proposed by the National Radiological Protection Board (NRPB). In order to reduce the dose to neonates, the optimum image quality was achieved by determining the level of ESD where level noise does not affect the diagnostic image quality. The optimum ESD was estimated for additional 20 chest x-rays increasing kVp and reducing mAs until quantum noise affects image quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Optical classification for quality and defect analysis of train brakes

    NASA Astrophysics Data System (ADS)

    Glock, Stefan; Hausmann, Stefan; Gerke, Sebastian; Warok, Alexander; Spiess, Peter; Witte, Stefan; Lohweg, Volker

    2009-06-01

    In this paper we present an optical measurement system approach for quality analysis of brakes which are used in high-speed trains. The brakes consist of the so called brake discs and pads. In a deceleration process the discs will be heated up to 500°C. The quality measure is based on the fact that the heated brake discs should not generate hot spots inside the brake material. Instead, the brake disc should be heated homogeneously by the deceleration. Therefore, it makes sense to analyze the number of hot spots and their relative gradients to create a quality measure for train brakes. In this contribution we present a new approach for a quality measurement system which is based on an image analysis and classification of infra-red based heat images. Brake images which are represented in pseudo-color are first transformed in a linear grayscale space by a hue-saturation-intensity (HSI) space. This transform is necessary for the following gradient analysis which is based on gray scale gradient filters. Furthermore, different features based on Haralick's measures are generated from the gray scale and gradient images. A following Fuzzy-Pattern-Classifier is used for the classification of good and bad brakes. It has to be pointed out that the classifier returns a score value for each brake which is between 0 and 100% good quality. This fact guarantees that not only good and bad bakes can be distinguished, but also their quality can be labeled. The results show that all critical thermal patterns of train brakes can be sensed and verified.

  6. Mindcontrol: A web application for brain segmentation quality control.

    PubMed

    Keshavan, Anisha; Datta, Esha; M McDonough, Ian; Madan, Christopher R; Jordan, Kesshi; Henry, Roland G

    2018-04-15

    Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the accuracy of tissue classification is important for quality research and, in particular, the translation of imaging biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data, descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of any software package in any data organization structure. Example configurations for three large, open-source datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be scaled for any size and complexity of study. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  8. Aspheric glass lens modeling and machining

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Mandina, Michael

    2005-08-01

    The incorporation of aspheric lenses in complex lens system can provide significant image quality improvement, reduction of the number of lens elements, smaller size, and lower weight. Recently, it has become practical to manufacture aspheric glass lenses using diamond-grinding methods. The evolution of the manufacturing technology is discussed for a specific aspheric glass lens. When a prototype all-glass lens system (80 mm efl, F/2.5) was fabricated and tested, it was observed that the image quality was significantly less than was predicted by the optical design software. The cause of the degradation was identified as the large aspheric element in the lens. Identification was possible by precision mapping of the spatial coordinates of the lens surface and then transforming this data into an appropriate optical surface defined by derived grid sag data. The resulting optical analysis yielded a modeled image consistent with that observed when testing the prototype lens system in the laboratory. This insight into a localized slope-error problem allowed improvements in the fabrication process to be implemented. The second fabrication attempt, the resulting aspheric lens provided remarkable improvement in the observed image quality, although still falling somewhat short of the desired image quality goal. In parallel with the fabrication enhancement effort, optical modeling of the surface was undertaken to determine how much surface error and error types were allowable to achieve the desired image quality goal. With this knowledge, final improvements were made to the fabrication process. The third prototype lens achieved the goal of optical performance. Rapid development of the aspheric glass lens was made possible by the interactive relationship between the optical designer, diamond-grinding personnel, and the metrology personnel. With rare exceptions, the subsequent production lenses were optical acceptable and afforded reasonable manufacturing costs.

  9. Toward standardized quantitative image quality (IQ) assessment in computed tomography (CT): A comprehensive framework for automated and comparative IQ analysis based on ICRU Report 87.

    PubMed

    Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2016-01-01

    Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  11. Poster - 10: QA of Ultrasound Images for Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szpala, Stanislaw; Kohli, Kirpal S.

    Purpose: The current QA protocol of ultrasound systems used in prostate brachytherapy (TG128) addresses geometrical verifications, but the scope of evaluation of image quality is limited. We recognized importance of the latter in routine practice, and designed a protocol for QA of the images. Methods: Images of an ultrasound prostate phantom (CIRS053) were collected with BK Flex Focus 400. The images were saved as bmp after adjusting the gain to 50% for consistent results. Mean pixel values and signal to noise ratio were inspected in the representative sections of the phantom, including the mock prostate and the unechoic medium. Constancymore » of these numbers over a one year period was looked at. Results: The typical intensity in the mock prostate region in the transverse images ranged between 95 and 118 (out of 256), and the signal to noise was about 10. The intensity in the urethra region was about 170±40, and the unechoic medium was 2±2. The mean and the signal to noise ratio remained almost unchanged after a year, while the signal in the unechoic medium increased to about 7±4. Similar values were obtained in the sagittal images. Conclusions: The image analysis discussed above allows quick evaluation of constancy of the image quality. This may be also useful in troubleshooting image-quality problems during routine exams, which might not be due to deterioration of the US system, but other reasons, e.g. variations in tissue properties or air being trapped between the probe and the anatomy.« less

  12. Tchebichef moment transform on image dithering for mobile applications

    NASA Astrophysics Data System (ADS)

    Ernawan, Ferda; Abu, Nur Azman; Rahmalan, Hidayah

    2012-04-01

    Currently, mobile image applications spend a lot of computing process to display images. A true color raw image contains billions of colors and it consumes high computational power in most mobile image applications. At the same time, mobile devices are only expected to be equipped with lower computing process and minimum storage space. Image dithering is a popular technique to reduce the numbers of bit per pixel at the expense of lower quality image displays. This paper proposes a novel approach on image dithering using 2x2 Tchebichef moment transform (TMT). TMT integrates a simple mathematical framework technique using matrices. TMT coefficients consist of real rational numbers. An image dithering based on TMT has the potential to provide better efficiency and simplicity. The preliminary experiment shows a promising result in term of error reconstructions and image visual textures.

  13. Real-time Internet connections: implications for surgical decision making in laparoscopy.

    PubMed

    Broderick, T J; Harnett, B M; Doarn, C R; Rodas, E B; Merrell, R C

    2001-08-01

    To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were "grabbed" from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation.

  14. A photon recycling approach to the denoising of ultra-low dose X-ray sequences.

    PubMed

    Hariharan, Sai Gokul; Strobel, Norbert; Kaethner, Christian; Kowarschik, Markus; Demirci, Stefanie; Albarqouni, Shadi; Fahrig, Rebecca; Navab, Nassir

    2018-06-01

    Clinical procedures that make use of fluoroscopy may expose patients as well as the clinical staff (throughout their career) to non-negligible doses of radiation. The potential consequences of such exposures fall under two categories, namely stochastic (mostly cancer) and deterministic risks (skin injury). According to the "as low as reasonably achievable" principle, the radiation dose can be lowered only if the necessary image quality can be maintained. Our work improves upon the existing patch-based denoising algorithms by utilizing a more sophisticated noise model to exploit non-local self-similarity better and this in turn improves the performance of low-rank approximation. The novelty of the proposed approach lies in its properly designed and parameterized noise model and the elimination of initial estimates. This reduces the computational cost significantly. The algorithm has been evaluated on 500 clinical images (7 patients, 20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e. 50% of the standard low dose level, during electrophysiology procedures. An average improvement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has been found. This is associated with an image quality achieved at around 12 (square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray image quality experts suggests that the method produces denoised images that comply with the required image quality criteria. The results are consistent with the number of patches used, and they demonstrate that it is possible to use motion estimation techniques and "recycle" photons from previous frames to improve the image quality of the current frame. Our results are comparable in terms of CNR to Video Block Matching 3D-a state-of-the-art denoising method. But qualitative analysis by experts confirms that the denoised ultra-low dose X-ray images obtained using our method are more realistic with respect to appearance.

  15. New opportunities for quality enhancing of images captured by passive THz camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2014-10-01

    As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.

  16. [Central online quality assurance in radiology: an IT solution exemplified by the German Breast Cancer Screening Program].

    PubMed

    Czwoydzinski, J; Girnus, R; Sommer, A; Heindel, W; Lenzen, H

    2011-09-01

    Physical-technical quality assurance is one of the essential tasks of the National Reference Centers in the German Breast Cancer Screening Program. For this purpose the mammography units are required to transfer the measured values of the constancy tests on a daily basis and all phantom images created for this purpose on a weekly basis to the reference centers. This is a serious logistical challenge. To meet these requirements, we developed an innovative software tool. By the end of 2005, we had already developed web-based software (MammoControl) allowing the transmission of constancy test results via entry forms. For automatic analysis and transmission of the phantom images, we then introduced an extension (MammoControl DIANA). This was based on Java, Java Web Start, the NetBeans Rich Client Platform, the Pixelmed Java DICOM Toolkit and the ImageJ library. MammoControl DIANA was designed to run locally in the mammography units. This allows automated on-site image analysis. Both results and compressed images can then be transmitted to the reference center. We developed analysis modules for the daily and monthly consistency tests and additionally for a homogeneity test. The software we developed facilitates the immediate availability of measurement results, phantom images, and DICOM header data in all reference centers. This allows both targeted guidance and short response time in the case of errors. We achieved a consistent IT-based evaluation with standardized tools for the entire screening program in Germany. © Georg Thieme Verlag KG Stuttgart · New York.

  17. TU-AB-207A-03: Image Quality, Dose, and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.

    Practicing medical physicists are often time charged with the tasks of evaluating and troubleshooting complex image quality issues related to CT scanners. This course will equip them with a solid and practical understanding of common CT imaging chain and its major components with emphasis on acquisition physics and hardware, reconstruction, artifacts, image quality, dose, and advanced clinical applications. The core objective is to explain the effects of these major system components on the image quality. This course will not focus on the rapid-changing advanced technologies given the two-hour time limit, but the fundamental principles discussed in this course may facilitatemore » better understanding of those more complicated technologies. The course will begin with an overview of CT acquisition physics and geometry. X-ray tube and CT detector are important acquisition hardware critical to the overall image quality. Each of these two subsystems consists of several major components. An in-depth description of the function and failure modes of these components will be provided. Examples of artifacts related to these failure modes will be presented: off-focal radiation, tube arcing, heel effect, oil bubble, offset drift effect, cross-talk effect, and bad pixels. The fundamentals of CT image reconstruction will first be discussed on an intuitive level. Approaches that do not require rigorous derivation of mathematical formulations will be presented. This is followed by a detailed derivation of the Fourier slice theorem: the foundation of the FBP algorithm. FBP for parallel-beam, fan-beam, and cone-beam geometries will be discussed. To address the issue of radiation dose related to x-ray CT, recent advances in iterative reconstruction, their advantages, and clinical applications will also be described. Because of the nature of fundamental physics and mathematics, limitations in data acquisition, and non-ideal conditions of major system components, image artifact often arise in the reconstructed images. Because of the limited scope of this course, only major imaging artifacts, their appearance, and possible mitigation and corrections will be discussed. Assessment of the performance of a CT scanner is a complicated subject. Procedures to measure common image quality metrics such as high contrast spatial resolution, low contrast detectability, and slice profile will be described. The reason why these metrics used for FBP may not be sufficient for statistical iterative reconstruction will be explained. Optimizing radiation dose requires comprehension of CT dose metrics. This course will briefly describe various dose metrics, and interaction with acquisition parameters and patient habitus. CT is among the most frequently used imaging tools due to its superior image quality, easy to operate, and a broad range of applications. This course will present several interesting CT applications such as a mobile CT unit on an ambulance for stroke patients, low dose lung cancer screening, and single heartbeat cardiac CT. Learning Objectives: Understand the function and impact of major components of X-ray tube on the image quality. Understand the function and impact of major components of CT detector on the image quality. Be familiar with the basic procedure of CT image reconstruction. Understand the effect of image reconstruction on CT image quality and artifacts. Understand the root causes of common CT image artifacts. Be familiar with image quality metrics especially high and low contrast resolution, noise power spectrum, slice sensitivity profile, etc. Understand why basic image quality metrics used for FBP may not be sufficient to characterize the performance of advanced iterative reconstruction. Be familiar with various CT dose metrics and their interaction with acquisition parameters. New development in advanced CT clinical applications. JH: Employee of GE Healthcare. FD: No disclosure.; J. Hsieh, Jiang Hsieh is an employee of GE Healthcare.« less

  18. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  19. Automated X-ray quality control of catalytic converters

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2017-02-01

    Catalytic converters are devices attached to the exhaust system of automobile or other engines to eliminate or substantially reduce polluting emissions. They consist of coated substrates enclosed in a stainless steel housing. The substrate is typically made of ceramic honeycombs; however stainless steel foil honeycombs are also used. The coating is usually a slurry of alumina, silica, rare earth oxides and platinum group metals. The slurry also known as the wash coat is applied to the substrate in two doses, one on each end of the substrate; in some cases multiple layers of coating are applied. X-ray imaging is used to inspect the applied coating depth on a substrate to confirm compliance with quality requirements. Automated image analysis techniques are employed to measure the coating depth from the X-ray image. Coating depth is assessed by analysis of attenuation line profiles in the image. Edge detection algorithms with noise reduction and outlier rejection are used to calculate the coating depth at a specified point along an attenuation line profile. Quality control of the product is accomplished using several attenuation line profile regions for coating depth measurements, with individual pass or fail criteria specified for each region.

  20. Application of a novel metal artifact correction algorithm in flat-panel CT after coil embolization of brain aneurysms: intraindividual comparison.

    PubMed

    Buhk, J-H; Groth, M; Sehner, S; Fiehler, J; Schmidt, N O; Grzyska, U

    2013-09-01

    To evaluate a novel algorithm for correcting beam hardening artifacts caused by metal implants in computed tomography performed on a C-arm angiography system equipped with a flat panel (FP-CT). 16 datasets of cerebral FP-CT acquisitions after coil embolization of brain aneurysms in the context of acute subarachnoid hemorrhage have been reconstructed by applying a soft tissue kernel with and without a novel reconstruction filter for metal artifact correction. Image reading was performed in multiplanar reformations (MPR) in average mode on a dedicated radiological workplace in comparison to the preinterventional native multisection CT (MS-CT) scan serving as the anatomic gold standard. Two independent radiologists performed image scoring following a defined scale in direct comparison of the image data with and without artifact correction. For statistical analysis, a random intercept model was calculated. The inter-rater agreement was very high (ICC = 86.3 %). The soft tissue image quality and visualization of the CSF spaces at the level of the implants was substantially improved. The additional metal artifact correction algorithm did not induce impairment of the subjective image quality in any other brain regions. Adding metal artifact correction to FP-CT in an acute postinterventional setting helps to visualize the close vicinity of the aneurysm at a generally consistent image quality. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Evaluation method based on the image correlation for laser jamming image

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Li, Zhongmin; Gao, Bo

    2013-09-01

    The jamming effectiveness evaluation of infrared imaging system is an important part of electro-optical countermeasure. The infrared imaging devices in the military are widely used in the searching, tracking and guidance and so many other fields. At the same time, with the continuous development of laser technology, research of laser interference and damage effect developed continuously, laser has been used to disturbing the infrared imaging device. Therefore, the effect evaluation of the infrared imaging system by laser has become a meaningful problem to be solved. The information that the infrared imaging system ultimately present to the user is an image, so the evaluation on jamming effect can be made from the point of assessment of image quality. The image contains two aspects of the information, the light amplitude and light phase, so the image correlation can accurately perform the difference between the original image and disturbed image. In the paper, the evaluation method of digital image correlation, the assessment method of image quality based on Fourier transform, the estimate method of image quality based on error statistic and the evaluation method of based on peak signal noise ratio are analysed. In addition, the advantages and disadvantages of these methods are analysed. Moreover, the infrared disturbing images of the experiment result, in which the thermal infrared imager was interfered by laser, were analysed by using these methods. The results show that the methods can better reflect the jamming effects of the infrared imaging system by laser. Furthermore, there is good consistence between evaluation results by using the methods and the results of subjective visual evaluation. And it also provides well repeatability and convenient quantitative analysis. The feasibility of the methods to evaluate the jamming effect was proved. It has some extent reference value for the studying and developing on electro-optical countermeasures equipments and effectiveness evaluation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpe, T; Marchessoux, C; Rostang, J

    Purpose: Use of color images in medical imaging has increased significantly the last few years. As of today there is no agreed standard on how color information needs to be visualized on medical color displays, resulting into large variability of color appearance and it making consistency and quality assurance a challenge. This paper presents a proposal for an extension of DICOM GSDF towards color. Methods: Visualization needs for several color modalities (multimodality imaging, nuclear medicine, digital pathology, quantitative imaging applications…) have been studied. On this basis a proposal was made for desired color behavior of color medical display systems andmore » its behavior and effect on color medical images was analyzed. Results: Several medical color modalities could benefit from perceptually linear color visualization for similar reasons as why GSDF was put in place for greyscale medical images. An extension of the GSDF (Greyscale Standard Display Function) to color is proposed: CSDF (color standard display function). CSDF is based on deltaE2000 and offers a perceptually linear color behavior. CSDF uses GSDF as its neutral grey behavior. A comparison between sRGB/GSDF and CSDF confirms that CSDF significantly improves perceptual color linearity. Furthermore, results also indicate that because of the improved perceptual linearity, CSDF has the potential to increase perceived contrast of clinically relevant color features. Conclusion: There is a need for an extension of GSDF towards color visualization in order to guarantee consistency and quality. A first proposal (CSDF) for such extension has been made. Behavior of a CSDF calibrated display has been characterized and compared with sRGB/GSDF behavior. First results indicate that CSDF could have a positive influence on perceived contrast of clinically relevant color features and could offer benefits for quantitative imaging applications. Authors are employees of Barco Healthcare.« less

  3. Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications

    NASA Technical Reports Server (NTRS)

    Thome, K.

    2017-01-01

    Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.

  4. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments.

    PubMed

    Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter

    2016-09-01

    A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended.

  5. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2014-12-01

    Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.

  6. Improvement of dem Generation from Aster Images Using Satellite Jitter Estimation and Open Source Implementation

    NASA Astrophysics Data System (ADS)

    Girod, L.; Nuth, C.; Kääb, A.

    2015-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.

  7. MO-DE-209-03: Assessing Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, W.

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M

    Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less

  9. A new method to evaluate image quality of CBCT images quantitatively without observers

    PubMed Central

    Shimizu, Mayumi; Okamura, Kazutoshi; Yoshida, Shoko; Weerawanich, Warangkana; Tokumori, Kenji; Jasa, Gainer R; Yoshiura, Kazunori

    2017-01-01

    Objectives: To develop an observer-free method for quantitatively evaluating the image quality of CBCT images by applying just-noticeable difference (JND). Methods: We used two test objects: (1) a Teflon (polytetrafluoroethylene) plate phantom attached to a dry human mandible; and (2) a block phantom consisting of a Teflon step phantom and an aluminium step phantom. These phantoms had holes with different depths. They were immersed in water and scanned with a CB MercuRay (Hitachi Medical Corporation, Tokyo, Japan) at tube voltages of 120 kV, 100 kV, 80 kV and 60 kV. Superimposed images of the phantoms with holes were used for evaluation. The number of detectable holes was used as an index of image quality. In detecting holes quantitatively, the threshold grey value (ΔG), which differentiated holes from the background, was calculated using a specific threshold (the JND), and we extracted the holes with grey values above ΔG. The indices obtained by this quantitative method (the extracted hole values) were compared with the observer evaluations (the observed hole values). In addition, the contrast-to-noise ratio (CNR) of the shallowest detectable holes and the deepest undetectable holes were measured to evaluate the contribution of CNR to detectability. Results: The results of this evaluation method corresponded almost exactly with the evaluations made by observers. The extracted hole values reflected the influence of different tube voltages. All extracted holes had an area with a CNR of ≥1.5. Conclusions: This quantitative method of evaluating CBCT image quality may be more useful and less time-consuming than evaluation by observation. PMID:28045343

  10. Sentinel-2B image quality commissioning phase results and Sentinel2 constellation performances

    NASA Astrophysics Data System (ADS)

    Languille, F.; Gaudel, A.; Vidal, B.; Binet, R.; Poulain, V.; Trémas, T.

    2017-09-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites on a polar sun-synchronous orbit with a revisit time of 5 days (with both satellites), a high field of view - 290km, 13 spectral bands in visible and shortwave infrared, and high spatial resolution - 10m, 20m and 60m. The Sentinel-2 mission offers a global coverage over terrestrial surfaces. The satellites acquire systematically terrestrial surfaces under the same viewing conditions in order to have temporal images stacks. The first satellite was launched in June 2015 and the second in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensured the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 Global Reference Image (GRI) geolocation performance assessment. This paper points on geometric image quality on Sentinel-2B commissioning phase. It relates to the methods and the performances obtained, as well as the comparison between S2A and S2B. This deals with geolocation and multispectral registration. A small focus is also done on the Sentinel-2 GRI which is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference leads to ensure an accurate multi-temporal registration -on refined Sentinel-2 products over GRI- which is also presented in this paper.

  11. Image quality assessment and medical physics evaluation of different portable dental X-ray units.

    PubMed

    Pittayapat, Pisha; Oliveira-Santos, Christiano; Thevissen, Patrick; Michielsen, Koen; Bergans, Niki; Willems, Guy; Debruyckere, Deborah; Jacobs, Reinhilde

    2010-09-10

    Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p<0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay at 60 kVp, MinRay at 70 kVp, AnyRay, Nomad and Rextar were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operator's hand being lowest with protective shielding (Nomad: 0.1 microGy). It was also low while using remote control (distance>1m: Rextar <0.2 microGy, MinRay <0.1 microGy). The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    PubMed

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  13. [Structural Equation Modeling for Public Hospital Quality of Care, Image, Role Performance, Satisfaction, Intent to (Re)visit, and Intent to Recommend Hospital as Perceived by Community Residents].

    PubMed

    Hwang, Eun Jeong; Sim, In Ok

    2016-02-01

    The study purposes were to construct and test structural equation modeling on the causal relationship of community residents' perceived quality of care, image, and role performance with satisfaction, intention to (re)visit and intention to recommend hospital. A cross-sectional survey was conducted with 3,900 community residents from 39 district public hospitals. The questionnaire was designed to collected information on personal characteristics and community awareness of public hospitals. Community awareness consisted of 6 factors and 18 items. The data were collected utilizing call-interview by a survey company. Research data were collected via questionnaires and analyzed using SPSS version 20.0 and AMOS version 20.0. Model fit indices for the hypothetical model were suitable for the recommended level: χ²=796.40 (df=79, p<.001), GFI=.93, AGFI=.90, RMSR=.08, NFI=.94. Quality of care, image, and role performance explained 68.1% of variance in community awareness. Total effect of quality of care process factors on satisfaction (path coefficients=3.67), intention to (re)visit (path coefficients=2.67) and intention to recommend hospital (coefficients=2.45) were higher than other factors. Findings show that public hospitals have to make an effort to improve community image through the provision of quality care, and excellent role performance. Support for these activities is available from both Central and Local Governments.

  14. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  15. Development of a multichannel hyperspectral imaging probe for food property and quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuping; Lu, Renfu; Chen, Kunjie

    2017-05-01

    This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.

  16. Emerging From Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer

    NASA Astrophysics Data System (ADS)

    Li, Chongyi; Guo, Jichang; Guo, Chunle

    2018-03-01

    Underwater vision suffers from severe effects due to selective attenuation and scattering when light propagates through water. Such degradation not only affects the quality of underwater images but limits the ability of vision tasks. Different from existing methods which either ignore the wavelength dependency of the attenuation or assume a specific spectral profile, we tackle color distortion problem of underwater image from a new view. In this letter, we propose a weakly supervised color transfer method to correct color distortion, which relaxes the need of paired underwater images for training and allows for the underwater images unknown where were taken. Inspired by Cycle-Consistent Adversarial Networks, we design a multi-term loss function including adversarial loss, cycle consistency loss, and SSIM (Structural Similarity Index Measure) loss, which allows the content and structure of the corrected result the same as the input, but the color as if the image was taken without the water. Experiments on underwater images captured under diverse scenes show that our method produces visually pleasing results, even outperforms the art-of-the-state methods. Besides, our method can improve the performance of vision tasks.

  17. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances.

  18. Progress toward time-resolved molecular imaging: A theoretical study of optimal parameters in static photoelectron holography

    NASA Astrophysics Data System (ADS)

    Sun, S. X.-L.; Kaduwela, A. P.; Gray, A. X.; Fadley, C. S.

    2014-05-01

    The availability of short-pulse free-electron lasers has led to the idea of using photoelectron holography as a method of directly imaging molecular dissociations or reactions in real time, as, e.g., in a recent theoretical study by Krasniqi et al., [F. Krasniqi, B. Najjari, L. Strüder, D. Rolles, A. Voitkiv, and J. Ullrich, Phys. Rev. A 81, 033411 (2010), 10.1103/PhysRevA.81.033411]. In this paper, we extend this earlier work and in particular look at two critical questions concerning the optimum type of data required for such holographic imaging: the choice of photoelectron kinetic energy (e.g., ˜300 eV versus ˜1700 eV as in the prior study), and the use of a single energy or multiple energies. After verifying that our calculations fully duplicate those in this prior paper, we show that using lower energies is preferable to using higher energies for image quality, a conclusion consistent with prior photoelectron holography studies at surfaces, and that multiple lower energies in which the hologram effectively spans a volume in kspace yields the best quality images that should be useful for such "molecular movies." Although the amount of data required for such multi-energy holography is roughly an order of magnitude higher than that for single energy, the reduction of artifacts and the improved quality of the images suggest this as the optimum ultimate future strategy for such dynamic imaging.

  19. Optimization of exposure index values for the antero-posterior pelvis and antero-posterior knee examination

    NASA Astrophysics Data System (ADS)

    Butler, M. L.; Rainford, L.; Last, J.; Brennan, P. C.

    2009-02-01

    Introduction The American Association of Medical Physicists is currently standardizing the exposure index (EI) value. Recent studies have questioned whether the EI value offered by manufacturers is optimal. This current work establishes optimum EIs for the antero-posterior (AP) projections of a pelvis and knee on a Carestream Health (Kodak) CR system and compares these with manufacturers recommended EI values from a patient dose and image quality perspective. Methodology Human cadavers were used to produce images of clinically relevant standards. Several exposures were taken to achieve various EI values and corresponding entrance surface doses (ESD) were measured using thermoluminescent dosimeters. Image quality was assessed by 5 experienced clinicians using anatomical criteria judged against a reference image. Visualization of image specific common abnormalities was also analyzed to establish diagnostic efficacy. Results A rise in ESD for both examinations, consistent with increasing EI was shown. Anatomic image quality was deemed to be acceptable at an EI of 1560 for the AP pelvis and 1590 for the AP knee. From manufacturers recommended values, a significant reduction in ESD (p=0.02) of 38% and 33% for the pelvis and knee respectively was noted. Initial pathological analysis suggests that diagnostic efficacy at lower EI values may be projection-specific. Conclusion The data in this study emphasize the need for clinical centres to consider establishing their own EI guidelines, and not necessarily relying on manufacturers recommendations. Normal and abnormal images must be used in this process.

  20. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera.

    PubMed

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.

  1. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.

    PubMed

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  2. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    PubMed Central

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966

  3. Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features.

    PubMed

    Tan, Chun-Wei; Kumar, Ajay

    2014-07-10

    Accurate iris recognition from the distantly acquired face or eye images requires development of effective strategies which can account for significant variations in the segmented iris image quality. Such variations can be highly correlated with the consistency of encoded iris features and the knowledge that such fragile bits can be exploited to improve matching accuracy. A non-linear approach to simultaneously account for both local consistency of iris bit and also the overall quality of the weight map is proposed. Our approach therefore more effectively penalizes the fragile bits while simultaneously rewarding more consistent bits. In order to achieve more stable characterization of local iris features, a Zernike moment-based phase encoding of iris features is proposed. Such Zernike moments-based phase features are computed from the partially overlapping regions to more effectively accommodate local pixel region variations in the normalized iris images. A joint strategy is adopted to simultaneously extract and combine both the global and localized iris features. The superiority of the proposed iris matching strategy is ascertained by providing comparison with several state-of-the-art iris matching algorithms on three publicly available databases: UBIRIS.v2, FRGC, CASIA.v4-distance. Our experimental results suggest that proposed strategy can achieve significant improvement in iris matching accuracy over those competing approaches in the literature, i.e., average improvement of 54.3%, 32.7% and 42.6% in equal error rates, respectively for UBIRIS.v2, FRGC, CASIA.v4-distance.

  4. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Sensor improvements for 1994 and 1995

    NASA Technical Reports Server (NTRS)

    Sarture, C. M.; Chrien, T. G.; Green, R. O.; Eastwood, M. L.; Raney, J. J.; Hernandez, M. A.

    1995-01-01

    AVIRIS is a NASA-sponsored Earth-remote-sensing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). While AVIRIS has been operational since 1989, major improvements have been completed in most of the sensor subsystems during the winter maintenance cycles. As a consequence of these efforts, the capabilities of AVIRIS to reliably acquire and deliver consistently high quality, calibrated imaging spectrometer data continue to improve annually, significantly over those in 1989. Improvements to AVIRIS prior to 1994 have been described previously. This paper details recent and planned improvements to AVIRIS in the sensor task.

  5. Multiclassifier fusion in human brain MR segmentation: modelling convergence.

    PubMed

    Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander

    2006-01-01

    Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used.

  6. Commissioning and quality assurance of an integrated system for patient positioning and setup verification in particle therapy.

    PubMed

    Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G

    2014-08-01

    In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.

  7. Establishment of effective control factors to achieve federal enforcement consistency with the Highway Beautification Act : [research summary].

    DOT National Transportation Integrated Search

    2017-10-01

    One of the pleasures of driving in Florida is enjoying a beautiful and diverse landscape. The quality of this view is critical to a states image for visitors and those considering relocation as well as to residents enjoyment. To ensure the cont...

  8. Image enhancement and quality measures for dietary assessment using mobile devices

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Zhu, Fengqing; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2012-03-01

    Measuring accurate dietary intake is considered to be an open research problem in the nutrition and health fields. We are developing a system, known as the mobile device food record (mdFR), to automatically identify and quantify foods and beverages consumed based on analyzing meal images captured with a mobile device. The mdFR makes use of a fiducial marker and other contextual information to calibrate the imaging system so that accurate amounts of food can be estimated from the scene. Food identification is a difficult problem since foods can dramatically vary in appearance. Such variations may arise not only from non-rigid deformations and intra-class variability in shape, texture, color and other visual properties, but also from changes in illumination and viewpoint. To address the color consistency problem, this paper describes illumination quality assessment methods implemented on a mobile device and three post color correction methods.

  9. Image Enhancement and Quality Measures for Dietary Assessment Using Mobile Devices

    PubMed Central

    Xu, Chang; Zhu, Fengqing; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    Measuring accurate dietary intake is considered to be an open research problem in the nutrition and health fields. We are developing a system, known as the mobile device food record (mdFR), to automatically identify and quantify foods and beverages consumed based on analyzing meal images captured with a mobile device. The mdFR makes use of a fiducial marker and other contextual information to calibrate the imaging system so that accurate amounts of food can be estimated from the scene. Food identification is a difficult problem since foods can dramatically vary in appearance. Such variations may arise not only from non-rigid deformations and intra-class variability in shape, texture, color and other visual properties, but also from changes in illumination and viewpoint. To address the color consistency problem, this paper describes illumination quality assessment methods implemented on a mobile device and three post color correction methods. PMID:28572695

  10. Leveraging Terminologies for Retrieval of Radiology Reports with Critical Imaging Findings

    PubMed Central

    Warden, Graham I.; Lacson, Ronilda; Khorasani, Ramin

    2011-01-01

    Introduction: Communication of critical imaging findings is an important component of medical quality and safety. A fundamental challenge includes retrieval of radiology reports that contain these findings. This study describes the expressiveness and coverage of existing medical terminologies for critical imaging findings and evaluates radiology report retrieval using each terminology. Methods: Four terminologies were evaluated: National Cancer Institute Thesaurus (NCIT), Radiology Lexicon (RadLex), Systemized Nomenclature of Medicine (SNOMED-CT), and International Classification of Diseases (ICD-9-CM). Concepts in each terminology were identified for 10 critical imaging findings. Three findings were subsequently selected to evaluate document retrieval. Results: SNOMED-CT consistently demonstrated the highest number of overall terms (mean=22) for each of ten critical findings. However, retrieval rate and precision varied between terminologies for the three findings evaluated. Conclusion: No single terminology is optimal for retrieving radiology reports with critical findings. The expressiveness of a terminology does not consistently correlate with radiology report retrieval. PMID:22195212

  11. An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality

    NASA Astrophysics Data System (ADS)

    Bergmann, Helmar; Dobrozemsky, Georg; Minear, Gregory; Nicoletti, Rudolf; Samal, Martin

    2005-05-01

    An inter-laboratory comparison study was conducted to assess the image quality of PET scanners in Austria. The survey included both dedicated PET scanners (D-PET, n = 8) and coincidence cameras (GC-PET, n = 7). Measurement of image quality was based on the NEMA (National Electrical Manufacturers Association) NU 2-2001 protocol and the IEC (International Electrotechnical Commission) body phantom. The latter contains six fillable spheres ranging in diameter from 37 mm down to 10 mm and a 'lung' insert. The two largest lesions L1-2 simulate cold lesions, the four smaller ones (L3-6) are filled with 18F and activity concentration ratios relative to background of 8:1 and 4:1, respectively. Acquisition and reconstruction in the study employed the participating institutes' standard oncological processing protocol. Calculation of contrast of the spheres was performed with a fully automated procedure. Contrast quality indices (CQIs) reflecting global performance were obtained by summing individual contrast values. Other image quality parameters calculated according to the NEMA protocol were background variability and relative error for correction of attenuation and scatter. Contrast values obtained were 61 ± 16 and 37 ± 14 for L1 (per cent contrast ± SD for D-PET and GC-PET, respectively), 57 ± 16 and 29 ± 16 for L2, 46 ± 10 and 26 ± 6.3 for L3, 37 ± 10 and 15 ± 4.3 for L4, 26 ± 11.5 and 6.1 ± 2.5 for L5, 14 ± 7.1 and 2.6 ± 2.6 for L6, with D-PET systems consistently being superior to GC-PET systems. CQIs permitted ranking of the scanners, also demonstrating a clear distinction between D-PET and GC-PET systems. Background variability was largest for GC-PET systems; the relative error of attenuation and scatter correction was significantly correlated with image quality for D-PET systems only. The study demonstrated considerable differences in image quality not only between GC-PET and D-PET systems but also between individual D-PET systems with possible consequences for clinical interpretation of images and measurement of quantitative indices such as the standardized uptake value. The study provided valuable feedback to the participants as well as baseline data for improving interchangeability of PET images and of quantitative indices between different laboratories.

  12. Visual grading analysis of digital neonatal chest phantom X-ray images: Impact of detector type, dose and image processing on image quality.

    PubMed

    Smet, M H; Breysem, L; Mussen, E; Bosmans, H; Marshall, N W; Cockmartin, L

    2018-07-01

    To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ). A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS). No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (p< 0.0001). Processing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (p<0.0001). Visual grading analysis (VGA) identified a detector air kerma/image (DAK/image) of ~2.4 μGy as an ideal working point for NIP, DXD and DRX detectors. VGAS tracked IQ differences between detectors and dose levels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning. • A VGA study detects IQ differences between detectors and dose levels. • The NIP detector matched the VGAS of the CsI DR detectors. • VGA data are useful in setting initial detector air kerma level. • Differences in NNPS were consistent with changes in VGAS.

  13. Hands-Off and Hands-On Casting Consistency of Amputee below Knee Sockets Using Magnetic Resonance Imaging

    PubMed Central

    Rowe, Philip

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit. PMID:24348164

  14. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  15. Optimizing 4DCBCT projection allocation to respiratory bins.

    PubMed

    O'Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J

    2014-10-07

    4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm significantly improves image quality in 4DCBCT images and provides, for the first time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications.

  16. A programmable display layer for virtual reality system architectures.

    PubMed

    Smit, Ferdi Alexander; van Liere, Robert; Froehlich, Bernd

    2010-01-01

    Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.

  17. Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)

    2002-01-01

    A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang- Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.

  18. Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)

    2002-01-01

    A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang-Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.

  19. A Two-dimensional Sixteen Channel Transmit/Receive Coil Array for Cardiac MRI at 7.0 Tesla: Design, Evaluation and Application

    PubMed Central

    Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf

    2012-01-01

    Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727

  20. Video-based teleradiology for intraosseous lesions. A receiver operating characteristic analysis.

    PubMed

    Tyndall, D A; Boyd, K S; Matteson, S R; Dove, S B

    1995-11-01

    Immediate access to off-site expert diagnostic consultants regarding unusual radiographic findings or radiographic quality assurance issues could be a current problem for private dental practitioners. Teleradiology, a system for transmitting radiographic images, offers a potential solution to this problem. Although much research has been done to evaluate feasibility and utilization of teleradiology systems in medical imaging, little research on dental applications has been performed. In this investigation 47 panoramic films with an equal distribution of images with intraosseous jaw lesions and no disease were viewed by a panel of observers with teleradiology and conventional viewing methods. The teleradiology system consisted of an analog video-based system simulating remote radiographic consultation between a general dentist and a dental imaging specialist. Conventional viewing consisted of traditional viewbox methods. Observers were asked to identify the presence or absence of 24 intraosseous lesions and to determine their locations. No statistically significant differences in modalities or observers were identified between methods at the 0.05 level. The results indicate that viewing intraosseous lesions of video-based panoramic images is equal to conventional light box viewing.

  1. A Comparison of the AVS-9 and the Panoramic Night Vision Goggles During Rotorcraft Hover and Landing

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan; Haworth, Loran; Simpson, Carol

    2000-01-01

    A flight test was conducted to assess any differences in pilot-vehicle performance and pilot opinion between the use of a current generation night vision goggle (the AVS-9) and one variant of the prototype panoramic night vision goggle (the PNVGII). The panoramic goggle has more than double the horizontal field-of-view of the AVS-9, but reduced image quality. Overall the panoramic goggles compared well to the AVS-9 goggles. However, pilot comment and data are consistent with the assertion that some of the benefits of additional field-of-view with the panoramic goggles were negated by the reduced image quality of the particular variant of the panoramic goggles tested.

  2. A limited-angle CT reconstruction method based on anisotropic TV minimization.

    PubMed

    Chen, Zhiqiang; Jin, Xin; Li, Liang; Wang, Ge

    2013-04-07

    This paper presents a compressed sensing (CS)-inspired reconstruction method for limited-angle computed tomography (CT). Currently, CS-inspired CT reconstructions are often performed by minimizing the total variation (TV) of a CT image subject to data consistency. A key to obtaining high image quality is to optimize the balance between TV-based smoothing and data fidelity. In the case of the limited-angle CT problem, the strength of data consistency is angularly varying. For example, given a parallel beam of x-rays, information extracted in the Fourier domain is mostly orthogonal to the direction of x-rays, while little is probed otherwise. However, the TV minimization process is isotropic, suggesting that it is unfit for limited-angle CT. Here we introduce an anisotropic TV minimization method to address this challenge. The advantage of our approach is demonstrated in numerical simulation with both phantom and real CT images, relative to the TV-based reconstruction.

  3. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The three types of LANDSAT 4 film products generally accessible to the user community were analyzed and attempts were made to acquire a data set consisting of a variety of TM and MSS image products for the Sacramento and San Francisco Bay Area test sites. On request, the EDC developed an interim TM analytical film by using a leaser beam recorder to produce black and white masters from which natural and false color composites were created.

  4. ROLES OF REMOTE SENSING AND CARTOGRAPHY IN THE USGS NATIONAL MAPPING DIVISION.

    USGS Publications Warehouse

    Southard, Rupert B.; Salisbury, John W.

    1983-01-01

    The inseparable roles of remote sensing and photogrammetry have been recognized to be consistent with the aims and interests of the American Society of Photogrammetry. In particular, spatial data storage, data merging and manipulation methods and other techniques originally developed for remote sensing applications also have applications for digital cartography. Also, with the introduction of much improved digital processing techniques, even relatively low resolution (80 m) traditional Landsat images can now be digitally mosaicked into excellent quality 1:250,000-scale image maps.

  5. Nonenhanced ECG-gated quiescent-interval single shot MRA: image quality and stenosis assessment at 3 tesla compared with contrast-enhanced MRA and digital subtraction angiography.

    PubMed

    Hansmann, Jan; Morelli, John N; Michaely, Henrik J; Riester, Thomas; Budjan, Johannes; Schoenberg, Stefan O; Attenberger, Ulrike I

    2014-06-01

    To evaluate the diagnostic accuracy of a nonenhanced electrocardiograph-gated quiescent-interval single shot MR-angiography (QISS-MRA) at 3 Tesla with contrast-enhanced MRA (CE-MRA) and digital subtraction angiography (DSA) serving as reference standard. Following institutional review board approval, 16 consecutive patients with peripheral arterial disease underwent a combined peripheral MRA protocol consisting of a large field-of-view QISS-MRA, continuous table movement MRA, and an additional time-resolved MRA of the calves. DSA correlation was available in eight patients. Image quality and degree of stenosis was assessed. Sensitivity and specificity of QISS-MRA was evaluated with CE-MRA and DSA serving as the standards of reference and compared using the Fisher exact test. With the exception of the calf station, image quality with QISS-MRA was rated statistically significantly less than that of CE-MRA (P < 0.05, P = 0.17, and P = 0.6, respectively). A greater percentage of segments were not accessible with QISS-MRA (19.5-20.1%) in comparison to CE-MRA (10.9%). Relative to DSA, sensitivity for QISS-MRA was high (100% versus 91.2% for CE-MRA, P = 0.24) in the evaluated segments; however, specificity (76.5%) was substantially less than that of CE-MRA (94.6%, P = 0.003). Overall image quality and specificity of QISS-MRA at 3T are diminished relative to CE-MRA. However, when image quality is adequate, QISS-MRA has high sensitivity and, thus, has potential use in patients with contraindications to gadolinium. Copyright © 2013 Wiley Periodicals, Inc.

  6. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  7. Quality of life in patients with Parkinson's disease: development of a questionnaire.

    PubMed Central

    de Boer, A G; Wijker, W; Speelman, J D; de Haes, J C

    1996-01-01

    OBJECTIVES--To develop and test a questionnaire for measuring quality of life in patients with Parkinson's disease. METHODS--An item pool was developed based on the experience of patients with Parkinson's disease and of neurologists; medical literature on the problems of patients with Parkinson's disease; and other quality of life questionnaires. To reduce the item pool, 13 patients identified items that were a problem to them and rated their importance. Items which were most often chosen and rated most important were included in the Parkinson's disease quality of life questionnaire (PDQL). The PDQL consists of 37 items. To evaluate the discriminant validity of the PDQL three groups of severity of disease were compared. To test for convergent validity, the scores of the PDQL were tested for correlation with standard indices of quality of life. RESULTS--The PDQL was filled out by 384 patients with Parkinson's disease. It consisted of four subscales: parkinsonian symptoms, systemic symptoms, emotional functioning, and social functioning. The internal-consistency reliability coefficients of the PDQL subscales were high (0.80-0.87). Patients with higher disease severity had significantly lower quality of life on all PDQL subscales (P < 0.05). Almost all PDQL subscales correlated highly (P < 0.001) with the corresponding scales of the standard quality of life indices. CONCLUSION--The PDQL is a relevant, reliable, and valid measure of the quality of life of patients with Parkinson's disease. Images PMID:8676165

  8. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D.; Shafer, D.; Efimov, S.

    2012-10-15

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A {approx}4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  9. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  10. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    PubMed

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  11. Image deblurring using a joint entropy prior in x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Chang; Dutta, Joyita; Zhang, Hui; El Fakhri, Georges; Li, Quanzheng

    2017-03-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality that can provide functional and anatomical images at the same time. Traditional narrow beam XLCT can achieve high spatial resolution as well as high sensitivity. However, by treating the CCD camera as a single pixel detector, this kind of scheme resembles the first generation of CT scanner which results in a long scanning time and a high radiation dose. Although cone beam or fan beam XLCT has the ability to mitigate this problem with an optical propagation model introduced, image quality is affected because the inverse problem is ill-conditioned. Much effort has been done to improve the image quality through hardware improvements or by developing new reconstruction techniques for XLCT. The objective of this work is to further enhance the already reconstructed image by introducing anatomical information through retrospective processing. The deblurring process used a spatially variant point spread function (PSF) model and a joint entropy based anatomical prior derived from a CT image acquired using the same XLCT system. A numerical experiment was conducted with a real mouse CT image from the Digimouse phantom used as the anatomical prior. The resultant images of bone and lung regions showed sharp edges and good consistency with the CT image. Activity error was reduced by 52.3% even for nanophosphor lesion size as small as 0.8mm.

  12. Color enhancement and image defogging in HSI based on Retinex model

    NASA Astrophysics Data System (ADS)

    Gao, Han; Wei, Ping; Ke, Jun

    2015-08-01

    Retinex is a luminance perceptual algorithm based on color consistency. It has a good performance in color enhancement. But in some cases, the traditional Retinex algorithms, both Single-Scale Retinex(SSR) and Multi-Scale Retinex(MSR) in RGB color space, do not work well and will cause color deviation. To solve this problem, we present improved SSR and MSR algorithms. Compared to other Retinex algorithms, we implement Retinex algorithms in HSI(Hue, Saturation, Intensity) color space, and use a parameter αto improve quality of the image. Moreover, the algorithms presented in this paper has a good performance in image defogging. Contrasted with traditional Retinex algorithms, we use intensity channel to obtain reflection information of an image. The intensity channel is processed using a Gaussian center-surround image filter to get light information, which should be removed from intensity channel. After that, we subtract the light information from intensity channel to obtain the reflection image, which only includes the attribute of the objects in image. Using the reflection image and a parameter α, which is an arbitrary scale factor set manually, we improve the intensity channel, and complete the color enhancement. Our experiments show that this approach works well compared with existing methods for color enhancement. Besides a better performance in color deviation problem and image defogging, a visible improvement in the image quality for human contrast perception is also observed.

  13. Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening.

    PubMed

    Chen, C; Li, H; Zhou, X; Wong, S T C

    2008-05-01

    Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.

  14. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination.

    PubMed

    McKnight, Colin D; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H; Parmar, Hemant A

    2014-08-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDIvol) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDIvol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDIvol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDIvol in the ASIR group (P < 0.01). There were statistically significant reductions in CTDI for the 3- to 12-year-old ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of gray-white differentiation, sharpness and overall diagnostic quality in ASIR examinations was not substantially different compared to non-ASIR examinations. The use of ASIR in pediatric head CT examinations allows for a 28% CTDIvol reduction in the 3- to 12-year-old age group and a 48% reduction in the >12-year-old age group without substantially affecting image quality.

  15. Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.

    PubMed

    Kasper, Lars; Engel, Maria; Barmet, Christoph; Haeberlin, Maximilian; Wilm, Bertram J; Dietrich, Benjamin E; Schmid, Thomas; Gross, Simon; Brunner, David O; Stephan, Klaas E; Pruessmann, Klaas P

    2018-03-01

    We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B 0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T 2 * contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. System for verifiable CT radiation dose optimization based on image quality. part II. process control system.

    PubMed

    Larson, David B; Malarik, Remo J; Hall, Seth M; Podberesky, Daniel J

    2013-10-01

    To evaluate the effect of an automated computed tomography (CT) radiation dose optimization and process control system on the consistency of estimated image noise and size-specific dose estimates (SSDEs) of radiation in CT examinations of the chest, abdomen, and pelvis. This quality improvement project was determined not to constitute human subject research. An automated system was developed to analyze each examination immediately after completion, and to report individual axial-image-level and study-level summary data for patient size, image noise, and SSDE. The system acquired data for 4 months beginning October 1, 2011. Protocol changes were made by using parameters recommended by the prediction application, and 3 months of additional data were acquired. Preimplementation and postimplementation mean image noise and SSDE were compared by using unpaired t tests and F tests. Common-cause variation was differentiated from special-cause variation by using a statistical process control individual chart. A total of 817 CT examinations, 490 acquired before and 327 acquired after the initial protocol changes, were included in the study. Mean patient age and water-equivalent diameter were 12.0 years and 23.0 cm, respectively. The difference between actual and target noise increased from -1.4 to 0.3 HU (P < .01) and the standard deviation decreased from 3.9 to 1.6 HU (P < .01). Mean SSDE decreased from 11.9 to 7.5 mGy, a 37% reduction (P < .01). The process control chart identified several special causes of variation. Implementation of an automated CT radiation dose optimization system led to verifiable simultaneous decrease in image noise variation and SSDE. The automated nature of the system provides the opportunity for consistent CT radiation dose optimization on a broad scale. © RSNA, 2013.

  17. The korean version of the body image scale-reliability and validity in a sample of breast cancer patients.

    PubMed

    Khang, Dongwoo; Rim, Hyo-Deog; Woo, Jungmin

    2013-03-01

    The Body Image Scale (BIS) developed in collaboration with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Study Group is a brief questionnaire for measuring body image concerns in patients with cancer. This study sought to assess the reliability and validity of the Korean version of the Body Image Scale (K-BIS). The participants consisted of 155 postoperative breast cancer patients (56 breast conserving surgery, 56 mastectomy, and 43 oncoplastic surgery). Subjects were evaluated using the K-BIS, the Body-Esteem Scale for Adolescents and Adults (BESAA), the Rosenberg Self-Esteem Scale (RSES), the Hospital Anxiety and Depression Scale (HADS), and the World Health Organization Quality of Life Scale Abbreviated Version (WHOQOL-BREF). Test-retest reliability and internal consistency were examined as a measure of reliability and validity was evaluated by convergent validity, discriminant validity and factor analysis. Cronbach's α value was 0.943. The total score of the K-BIS was negatively correlated with the BESAA (r=0.301, p<0.001) and the body image facet in the WHOQOL-BREF (r=0.315, p<0.001). The total score of K-BIS positively correlated with the HADS (HAD-A: r=0.501, p<0.001, HAD-D: r=0.466, p<0.001). As for determining discriminant validity, scores were compared between the BCS subgroup, mastectomy subgroup, and oncoplastic surgery subgroup. Difference between the mastectomy subgroup and oncoplastic surgery subgroup was statistically significant (p=0.017). Factor analysis resulted in a single factor solution in three out of four anlyses, accounting for >59% variance. The K-BIS showed good reliability and validity for assessment of body image in Korean breast cancer patients.

  18. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Paysan, P; Brehm, M

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less

  19. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    NASA Astrophysics Data System (ADS)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  20. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  1. Color standardization and optimization in whole slide imaging.

    PubMed

    Yagi, Yukako

    2011-03-30

    Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves. We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research. As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available. We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality - color.

  2. Cardiac Magnetic Resonance Imaging Using an Open 1.0T MR Platform: A Comparative Study with a 1.5T Tunnel System.

    PubMed

    Fischbach, Katharina; Kosiek, Otrud; Friebe, Björn; Wybranski, Christian; Schnackenburg, Bernhard; Schmeisser, Alexander; Smid, Jan; Ricke, Jens; Pech, Maciej

    2017-01-01

    Cardiac magnetic resonance imaging (cMRI) has become the non-invasive reference standard for the evaluation of cardiac function and viability. The introduction of open, high-field, 1.0T (HFO) MR scanners offers advantages for examinations of obese, claustrophobic and paediatric patients.The aim of our study was to compare standard cMRI sequences from an HFO scanner and those from a cylindrical, 1.5T MR system. Fifteen volunteers underwent cMRI both in an open HFO and in a cylindrical MR system. The protocol consisted of cine and unenhanced tissue sequences. The signal-to-noise ratio (SNR) for each sequence and blood-myocardium contrast for the cine sequences were assessed. Image quality and artefacts were rated. The location and number of non-diagnostic segments was determined. Volunteers' tolerance to examinations in both scanners was investigated. SNR was significantly lower in the HFO scanner (all p<0.001). However, the contrast of the cine sequence was significantly higher in the HFO platform compared to the 1.5T MR scanner (0.685±0.41 vs. 0.611±0.54; p<0.001). Image quality was comparable for all sequences (all p>0.05). Overall, only few non-diagnostic myocardial segments were recorded: 6/960 (0.6%) by the HFO and 17/960 (1.8%) segments by the cylindrical system. The volunteers expressed a preference for the open MR system (p<0.01). Standard cardiac MRI sequences in an HFO platform offer a high image quality that is comparable to the quality of images acquired in a cylindrical 1.5T MR scanner. An open scanner design may potentially improve tolerance of cardiac MRI and therefore allow to examine an even broader patient spectrum.

  3. Feasibility of dual-low scheme combined with iterative reconstruction technique in acute cerebral infarction volume CT whole brain perfusion imaging.

    PubMed

    Wang, Tao; Gong, Yi; Shi, Yibing; Hua, Rong; Zhang, Qingshan

    2017-07-01

    The feasibility of application of low-concentration contrast agent and low tube voltage combined with iterative reconstruction in whole brain computed tomography perfusion (CTP) imaging of patients with acute cerebral infarction was investigated. Fifty-nine patients who underwent whole brain CTP examination and diagnosed with acute cerebral infarction from September 2014 to March 2016 were selected. Patients were randomly divided into groups A and B. There were 28 cases in group A [tube voltage, 100 kV; contrast agent, iohexol (350 mg I/ml), reconstructed by filtered back projection] and 31 cases in group B [tube voltage, 80 kV; contrast agent, iodixanol (270 mg I/ml), reconstructed by algebraic reconstruction technique]. The artery CT value, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), dose length product, effective dose (ED) of radiation and brain iodine intake of both groups were measured and statistically analyzed. Two physicians carried out kappa (κ) analysis on the consistency of image quality evaluation. The difference in subjective image quality evaluation between the groups was tested by χ 2 . The differences in CT value, SNR, CNR, CTP and CT angiography subjective image quality evaluation between both groups were not statistically significant (P>0.05); the diagnosis rate of the acute infarcts between the two groups was not significantly different; while the ED and iodine intake in group B (dual low-dose group) were lower than group A. In conclusion, combination of low tube voltage and iterative reconstruction technique, and application of low-concentration contrast agent (270 mg I/ml) in whole brain CTP examination reduced ED and iodine intake without compromising image quality, thereby reducing the risk of contrast-induced nephropathy.

  4. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  5. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  6. MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences

    PubMed Central

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.

    2016-01-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193

  7. MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.

    PubMed

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T

    2016-11-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.

  8. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.

  9. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system.

    PubMed

    Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Joshi, H; Saunderson, J R; Beavis, A W

    2016-11-07

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQ m ) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQ m and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  10. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Joshi, H.; Saunderson, J. R.; Beavis, A. W.

    2016-11-01

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQm and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  11. A technique of experimental and numerical analysis of influence of defects in the intraocular lens on the retinal image quality

    NASA Astrophysics Data System (ADS)

    Geniusz, Malwina; ZajÄ c, Marek

    2016-09-01

    Intraocular lens (IOL) is an artificial lens implanted into the eye in order to restore correct vision after the removal of natural lens cloudy due to cataract. The IOL prolonged stay in the eyeball causes the creation of different changes on the surface and inside the implant mainly in form of small-size local defects such as vacuoles and calcium deposites. Their presence worsens the imaging properties of the eye mainly due to occurence of scattered light thus deteriorating the vision quality of patients after cataract surgery. It is very difficult to study influence the effects of these changes on image quality in real patients. To avoid these difficulties two other possibilities were chosen: the analysis of the image obtained in an optomechanical eye model with artificially aged IOL as well as numerical calculation of the image characteristics while the eye lens is burdened with adequately modeled defects. In experiments the optomechanical model of an eye consisting of a glass "cornea", chamber filled with liquid where the IOL under investigation was inserted and a high resulution CCC detector serving as a "retina" was used. The Modulation Transfer Function (MTF) of such "eye" was evaluated on the basis of image of an edge. Experiments show that there is significant connection between ageing defects and decrease in MTF parameters. Numerical part was performed with a computer programme for optical imaging analysis (OpticStudio Professional, Zemax Professional from Radiant Zemax, LLC). On the basis of Atchison eye model with lens burdened with defects Modulation Transfer Functio was calculated. Particular parameters of defects used in a numerical model were based on own measurements. Numerical simulation also show significant connection between ageing defects and decrease of MTF parameters. With this technique the influence of types, density and distribution of local defect in the IOL on the retinal image quality can be evaluated quickly without the need of performing very difficult and even dangereous experiments on real human patients.

  12. Development of a networked four-million-pixel pathological and radiological digital image presentation system and its application to medical conferences

    NASA Astrophysics Data System (ADS)

    Sakano, Toshikazu; Furukawa, Isao; Okumura, Akira; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu; Suzuki, Junji; Matsuya, Shoji; Ishihara, Teruo

    2001-08-01

    The wide spread of digital technology in the medical field has led to a demand for the high-quality, high-speed, and user-friendly digital image presentation system in the daily medical conferences. To fulfill this demand, we developed a presentation system for radiological and pathological images. It is composed of a super-high-definition (SHD) imaging system, a radiological image database (R-DB), a pathological image database (P-DB), and the network interconnecting these three. The R-DB consists of a 270GB RAID, a database server workstation, and a film digitizer. The P-DB includes an optical microscope, a four-million-pixel digital camera, a 90GB RAID, and a database server workstation. A 100Mbps Ethernet LAN interconnects all the sub-systems. The Web-based system operation software was developed for easy operation. We installed the whole system in NTT East Kanto Hospital to evaluate it in the weekly case conferences. The SHD system could display digital full-color images of 2048 x 2048 pixels on a 28-inch CRT monitor. The doctors evaluated the image quality and size, and found them applicable to the actual medical diagnosis. They also appreciated short image switching time that contributed to smooth presentation. Thus, we confirmed that its characteristics met the requirements.

  13. Real-Time Internet Connections: Implications for Surgical Decision Making in Laparoscopy

    PubMed Central

    Broderick, Timothy J.; Harnett, Brett M.; Doarn, Charles R.; Rodas, Edgar B.; Merrell, Ronald C.

    2001-01-01

    Objective To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Summary Background Data Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Methods Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were “grabbed” from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. Results The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Conclusions Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation. PMID:11505061

  14. Technical Note: Multipurpose CT, ultrasound, and MRI breast phantom for use in radiotherapy and minimally invasive interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschin, Mark, E-mail: Mark.Ruschin@sunnybrook.ca; Chin, Lee; Ravi, Ananth

    Purpose: To develop a multipurpose gel-based breast phantom consisting of a simulated tumor with realistic imaging properties in CT, ultrasound and MRI, or a postsurgical cavity on CT. Applications for the phantom include: deformable image registration (DIR) quality assurance (QA), autosegmentation validation, and localization testing and training for minimally invasive image-guided procedures such as those involving catheter or needle insertion. Methods: A thermoplastic mask of a typical breast patient lying supine was generated and then filled to make an array of phantoms. The background simulated breast tissue consisted of 32.4 g each of ballistic gelatin (BG) powder and Metamusil™ (MM)more » dissolved in 800 ml of water. Simulated tumors were added using the following recipe: 12 g of barium sulfate (1.4% v/v) plus 0.000 14 g copper sulfate plus 0.7 g of MM plus 7.2 g of BG all dissolved in 75 ml of water. The phantom was evaluated quantitatively in CT by comparing Hounsfield units (HUs) with actual breast tissue. For ultrasound and MRI, the phantoms were assessed based on subjective image quality and signal-difference to noise (SDNR) ratio, respectively. The stiffness of the phantom was evaluated based on ultrasound elastography measurements to yield an average Young’s modulus. In addition, subjective tactile assessment of phantom was performed under needle insertion. Results: The simulated breast tissue had a mean background value of 24 HU on CT imaging, which more closely resembles fibroglandular tissue (40 HU) as opposed to adipose (−100 HU). The tumor had a mean CT number of 45 HU, which yielded a qualitatively realistic image contrast relative to the background either as an intact tumor or postsurgical cavity. The tumor appeared qualitatively realistic on ultrasound images, exhibiting hypoechoic characteristics compared to background. On MRI, the tumor exhibited a SDNR of 3.7. The average Young’s modulus was computed to be 15.8 ± 0.7 kPa (1 SD). Conclusions: We have developed a process to efficiently and inexpensively produce multipurpose breast phantoms containing simulated tumors visible on CT, ultrasound, and MRI. The phantoms have been evaluated for image quality and elasticity and can serve as a medium for DIR QA, autosegmentation QA, and training for minimally invasive procedures.« less

  15. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging with a Phased Array Transducer

    PubMed Central

    Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao

    2013-01-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638

  16. Methods for CT automatic exposure control protocol translation between scanner platforms.

    PubMed

    McKenney, Sarah E; Seibert, J Anthony; Lamba, Ramit; Boone, John M

    2014-03-01

    An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. Protocol translation on the basis of quantitative metrics (volumetric CT dose index or measured image noise) is feasible. Protocol translation has a dependency on patient size, especially between the GE and Siemens systems. Translation schemes that preserve dose levels may not produce identical image quality. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. A practical material decomposition method for x-ray dual spectral computed tomography.

    PubMed

    Hu, Jingjing; Zhao, Xing

    2016-03-17

    X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.

  18. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  19. The imaging 3.0 informatics scorecard.

    PubMed

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Imaging 3.0 is a radiology community initiative to empower radiologists to create and demonstrate value for their patients, referring physicians, and health systems. In image-guided health care, radiologists contribute to the entire health care process, well before and after the actual examination, and out to the point at which they guide clinical decisions and affect patient outcome. Because imaging is so pervasive, radiologists who adopt Imaging 3.0 concepts in their practice can help their health care systems provide consistently high-quality care at reduced cost. By doing this, radiologists become more valuable in the new health care setting. The authors describe how informatics is critical to embracing Imaging 3.0 and present a scorecard that can be used to gauge a radiology group's informatics resources and capabilities. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  1. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range.

    PubMed

    Roberts, D A; Hansen, V N; Thompson, M G; Poludniowski, G; Niven, A; Seco, J; Evans, P M

    2012-03-01

    In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system for further energy reduction and subsequent improvement in image quality.

  2. Inverse scattering pre-stack depth imaging and it's comparison to some depth migration methods for imaging rich fault complex structure

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal

    2012-06-01

    Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.

  3. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  4. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer

    PubMed Central

    Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley

    2014-01-01

    Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399

  5. A method of rapidly evaluating image quality of NED optical system

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Qiu, Chuankai; Yang, Huan

    2014-11-01

    In recent years, with the development of technology of micro-display, advanced optics and the software and hardware, near-to-eye display ( NED) optical system will have a wide range of potential applications in the fields of amusement and virtual reality. However, research on the evaluating image quality of this kind optical system is comparatively lagging behind. Although now there are some methods and equipment for evaluation, they can't be applied in commercial production because of their complex operation and inaccuracy. In this paper, an academic method is proposed and a Rapid Evaluation System (RES) is designed to evaluate the image of optical system rapidly and exactly. Firstly, a set of parameters that eyes are sensitive to and also express the quality of system should be extracted and quantized to be criterion, so the evaluation standards can be established. Then, some parameters can be detected by RES consisted of micro-display, CCD camera and computer and so on. By process of scaling, the measuring results of the RES are exact and creditable, relationship between object measurement, subjective evaluation and the RES will be established. After that, image quality of optical system can be evaluated just by detecting parameters of that. The RES is simple and the results of evaluation are exact and keeping with human vision. So the method can be used not only for optimizing design of optical system, but also for evaluation in commercial production.

  6. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    NASA Astrophysics Data System (ADS)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  7. Why Physics in Medicine?

    PubMed

    Samei, Ehsan; Grist, Thomas M

    2018-05-18

    Despite its crucial role in the development of new medical imaging technologies, in clinical practice, physics has primarily been involved in the technical evaluation of technologies. However, this narrow role is no longer adequate. New trajectories in medicine call for a stronger role for physics in the clinic. The movement toward evidence-based, quantitative, and value-based medicine requires physicists to play a more integral role in delivering innovative precision care through the intentional clinical application of physical sciences. There are three aspects of this clinical role: technology assessment based on metrics as they relate to expected clinical performance, optimized use of technologies for patient-centered clinical outcomes, and retrospective analysis of imaging operations to ensure attainment of expectations in terms of quality and variability. These tasks fuel the drive toward high-quality, consistent practice of medical imaging that is patient centered, evidence based, and safe. While this particular article focuses on imaging, this trajectory and paradigm is equally applicable to the multitudes of the applications of physics in medicine. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Optimisation of the digital radiographic imaging of suspected non-accidental injury

    NASA Astrophysics Data System (ADS)

    Offiah, Amaka

    Aim: To optimise the digital (radiographic) imaging of children presenting with suspected non-accidental injury (NAI). Objectives: (i) To evaluate existing radiographic quality criteria, and to develop a more suitable system if these are found to be inapplicable to skeletal surveys obtained in suspected NAI. (ii) To document differences in image quality between conventional film-screen and the recently installed Fuji5000R computed radiography (CR) system at Great Ormond Street Hospital for Children, (iii) To document the extent of variability in the standard of skeletal surveys obtained in the UK for suspected NAI. (iv) To determine those radiographic parameters which yield the highest diagnostic accuracy, while still maintaining acceptable radiation dose to the child, (v) To determine how varying degrees of edge-enhancement affect diagnostic accuracy. (vi) To establish the accuracy of soft compared to hard copy interpretation of images in suspected NAI. Materials and Methods: (i) and (ii) Retrospective analysis of 286 paediatric lateral spine radiographs by two observers based on the Commission of European Communities (CEC) quality criteria, (iii) Review of the skeletal surveys of 50 consecutive infants referred from hospitals throughout the United Kingdom (UK) with suspected NAI. (iv) Phantom studies. Leeds TO. 10 and TO. 16 test objects were used to compare the relationship between film density, exposure parameters and visualisation of object details, (iv) Clinical study. Anteroposterior and lateral post mortem skull radiographs of six consecutive infants were obtained at various exposures. Six observers independently scored the images based on visualisation of five criteria, (v) and (vi) A study of diagnostic accuracy in which six observers independently interpreted 50 radiographs from printed copies (with varying degrees of edge-enhancement) and from a monitor. Results: The CEC criteria are useful for optimisation of imaging parameters and allow the detection of differences in quality of film-screen and digital images. There is much variability in the quality and number of radiographs performed as part of skeletal surveys in the UK for suspected NAI. The Leeds test objects are either not sensitive enough (TO. 10) or perhaps over sensitive (TO. 16) for the purposes of this project. Furthermore, the minimum spatial resolution required for digital imaging in NAI has not been established. Therefore the objective interpretation of phantom studies is difficult. There is scope for reduction of radiation dose to children with no effect on image quality. Diagnostic accuracy (fracture detection) in suspected NAI is generally low, and is not affected by image display modality. Conclusions: The CEC quality criteria are not applicable to the assessment of clinical image quality. A national protocol for skeletal surveys in NAI is required. Dedicated training, close supervision, collaboration and consistent exposure of radiologists to cases of NAI should improve diagnostic accuracy. The potential exists for dose reduction when performing skeletal surveys in children and infants with suspected NAI. Future studies should address this issue.

  9. Bits and bytes: the future of radiology lies in informatics and information technology.

    PubMed

    Brink, James A; Arenson, Ronald L; Grist, Thomas M; Lewin, Jonathan S; Enzmann, Dieter

    2017-09-01

    Advances in informatics and information technology are sure to alter the practice of medical imaging and image-guided therapies substantially over the next decade. Each element of the imaging continuum will be affected by substantial increases in computing capacity coincident with the seamless integration of digital technology into our society at large. This article focuses primarily on areas where this IT transformation is likely to have a profound effect on the practice of radiology. • Clinical decision support ensures consistent and appropriate resource utilization. • Big data enables correlation of health information across multiple domains. • Data mining advances the quality of medical decision-making. • Business analytics allow radiologists to maximize the benefits of imaging resources.

  10. A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc

    2015-06-01

    High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.

  11. Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.

    PubMed

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-06-01

    We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.

  12. Current status on the application of image processing of digital intraoral radiographs amongst general dental practitioners.

    PubMed

    Tohidast, Parisa; Shi, Xie-Qi

    2016-01-01

    The objectives of this study were to present the subjective knowledge level and the use of image processing on digital intraoral radiographs amongst general dental practitioners at Distriktståndvrden AB, Stockholm. A questionnaire, consisting of12 questions, was sent to 12 dental prac- tices in Stockholm. Additionally, 2000 radiographs were randomly selected from these clinics for evaluation of applied image processing and its effect on image quality. Descriptive and analytical statistical methods were applied to present the current status of the use of image proces- sing alternatives for the dentists' daily clinical work. 50 out of 53 dentists participated in the survey.The survey showed that most of dentists in.this study had received education on image processing at some stage of their career. No correlations were found between application of image processing on one side and educa- tion received with regards to image processing, previous working experience, age and gender on the other. Image processing in terms of adjusting brightness and contrast was frequently used. Overall, in this study 24.5% of the 200 images were actually image processed in practice, in which 90% of the images were improved or maintained in image quality. According to our survey, image processing is experienced to be frequently used by the dentists at Distriktstandvåden AB for diagnosing anatomical and pathological changes using intraoral radiographs. 24.5% of the 200 images were actually image processed in terms of adjusting brightness and/or contrast. In the present study we did not found that the dentists' age, gender, previous working experience and education in image processing influence their viewpoint towards the application of image processing.

  13. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  14. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be used as an independent standardized procedure for detector performance assessment. © 2016 The Authors.

  15. Evaluation of cassette‐based digital radiography detectors using standardized image quality metrics: AAPM TG‐150 Draft Image Detector Tests

    PubMed Central

    Greene, Travis C.; Nishino, Thomas K.; Willis, Charles E.

    2016-01-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region‐of‐interest (ROI)‐based techniques to measure nonuniformity, minimum signal‐to‐noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX‐1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG‐150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG‐150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG‐150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG‐150 tests can be used as an independent standardized procedure for detector performance assessment. PACS number(s): 87.57.‐s, 87.57.C PMID:27685102

  16. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  17. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  18. Beyond image quality: designing engaging interactions with digital products

    NASA Astrophysics Data System (ADS)

    de Ridder, Huib; Rozendaal, Marco C.

    2008-02-01

    Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed visually, but other criteria such as enjoyment, fun, engagement and hedonic quality are emerging. This paper deals with engagement, the intrinsically enjoyable readiness to put more effort into exploring and/or using a product than strictly required, thus attracting and keeping user's attention for a longer period of time. The impact of the experienced richness of an interface, both visually and degree of possible manipulations, was investigated in a series of experiments employing game-like user interfaces. This resulted in the extension of an existing conceptual framework relating engagement to richness by means of two intermediating variables, namely experienced challenge and sense of control. Predictions from this revised framework are evaluated against results of an earlier experiment assessing the ergonomic and hedonic qualities of interactive media. Test material consisted of interactive CD-ROM's containing presentations of three companies for future customers.

  19. Performance Evaluation and Quality Validation System for Optical Gas Imaging Cameras that Visualize Fugitive Hydrocarbon Gas Emissions

    EPA Science Inventory

    A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...

  20. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D; Pollock, S; Keall, P

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gatedmore » MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.« less

  1. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  2. Combined large field-of-view MRA and time-resolved MRA of the lower extremities: impact of acquisition order on image quality.

    PubMed

    Riffel, Philipp; Haneder, Stefan; Attenberger, Ulrike I; Brade, Joachim; Schoenberg, Stefan O; Michaely, Henrik J

    2012-10-01

    Different approaches exist for hybrid MRA of the calf station. So far, the order of the acquisition of the focused calf MRA and the large field-of-view MRA has not been scientifically evaluated. Therefore the aim of this study was to evaluate if the quality of the combined large field-of-view MRA (CTM MR angiography) and time-resolved MRA with stochastic interleaved trajectories (TWIST MRA) depends on the order of acquisition of the two contrast-enhanced studies. In this retrospective study, 40 consecutive patients (mean age 68.1 ± 8.7 years, 29 male/11 female) who had undergone an MR angiographic protocol that consisted of CTM-MRA (TR/TE, 2.4/1.0 ms; 21° flip angle; isotropic resolution 1.2mm; gadolinium dose, 0.07 mmol/kg) and TWIST-MRA (TR/TE 2.8/1.1; 20° flip angle; isotropic resolution 1.1mm; temporal resolution 5.5s, gadolinium dose, 0.03 mmol/kg), were included. In the first group (group 1) TWIST-MRA of the calf station was performed 1-2 min after CTM-MRA. In the second group (group 2) CTM-MRA was performed 1-2 min after TWIST-MRA of the calf station. The image quality of CTM-MRA and TWIST-MRA were evaluated by 2 two independent radiologists in consensus according to a 4-point Likert-like rating scale assessing overall image quality on a segmental basis. Venous overlay was assessed per examination. In the CTM-MRA, 1360 segments were included in the assessment of image quality. CTM-MRA was diagnostic in 95% (1289/1360) of segments. There was a significant difference (p<0.0001) between both groups with regard to the number of segments rated as excellent and moderate. The image quality was rated as excellent in group 1 in 80% (514/640 segments) and in group 2 in 67% (432/649), respectively (p<0.0001). In contrast, the image quality was rated as moderate in the first group in 5% (33/640) and in the second group in 19% (121/649) respectively (p<0.0001). The venous overlay was disturbing in 10% in group 1 and 20% in group 2 (p=n.s.). If a combined hybrid MRA approach with large field-of-view and time-resolved MRA is acquired the large field-of-view MRA should be acquired first in order for optimal image quality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Prospective quality of life outcomes following robotic surgery in gynecologic oncology.

    PubMed

    Abitbol, Jeremie; Lau, Susie; Ramanakumar, Agnihotram V; Press, Joshua Z; Drummond, Nancy; Rosberger, Zeev; Aubin, Sylvie; Gotlieb, Raphael; How, Jeffrey; Gotlieb, Walter H

    2014-07-01

    To characterize the health-related quality of life (HRQL) of patients undergoing robotic surgery for the treatment of gynecologic cancers. 211 patients completed a quality of life questionnaire before surgery. Postoperative questionnaires, consisting of the same assessment with the addition of postoperative questions, were given at 1 week, 3 weeks, 3, 6, and 12 months after surgery. The Functional Assessment of Cancer Therapy-General (FACT-G) and its subscales were used to evaluate HRQL. Patient-rated body image was evaluated using the Body Image Scale. Statistical significance was measured by the Wilcoxon signed-rank test. Minimally important difference (MID) values were analyzed to evaluate clinical significance. Overall HRQL and body image decreased at 1 week after surgery and returned to baseline by 3 weeks. Physical and functional well-being decreased at 1 week after surgery and returned to baseline by 3 months after surgery. However, using MID criteria, physical well-being returned to baseline by 3 weeks. Social well-being did not change significantly. Emotional well-being increased immediately by 1 week after surgery. Patient reported HRQL outcomes following robotic surgery for the treatment of gynecologic cancers suggests a rapid return to pre-surgery values. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    NASA Astrophysics Data System (ADS)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  5. SU-E-J-133: Autosegmentation of Linac CBCT: Improved Accuracy Via Penalized Likelihood Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y

    2015-06-15

    Purpose: To improve the quality of kV X-ray cone beam CT (CBCT) for use in radiotherapy delivery assessment and re-planning by using penalized likelihood (PL) iterative reconstruction and auto-segmentation accuracy of the resulting CBCTs as an image quality metric. Methods: Present filtered backprojection (FBP) CBCT reconstructions can be improved upon by PL reconstruction with image formation models and appropriate regularization constraints. We use two constraints: 1) image smoothing via an edge preserving filter, and 2) a constraint minimizing the differences between the reconstruction and a registered prior image. Reconstructions of prostate therapy CBCTs were computed with constraint 1 alone andmore » with both constraints. The prior images were planning CTs(pCT) deformable-registered to the FBP reconstructions. Anatomy segmentations were done using atlas-based auto-segmentation (Elekta ADMIRE). Results: We observed small but consistent improvements in the Dice similarity coefficients of PL reconstructions over the FBP results, and additional small improvements with the added prior image constraint. For a CBCT with anatomy very similar in appearance to the pCT, we observed these changes in the Dice metric: +2.9% (prostate), +8.6% (rectum), −1.9% (bladder). For a second CBCT with a very different rectum configuration, we observed +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). For a third case with significant lateral truncation of the field of view, we observed: +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). Adding the prior image constraint raised Dice measures by about 1%. Conclusion: Efficient and practical adaptive radiotherapy requires accurate deformable registration and accurate anatomy delineation. We show here small and consistent patterns of improved contour accuracy using PL iterative reconstruction compared with FBP reconstruction. However, the modest extent of these results and the pattern of differences across CBCT cases suggest that significant further development will be required to make CBCT useful to adaptive radiotherapy.« less

  6. Optimizing fiducial visibility on periodically acquired megavoltage and kilovoltage image pairs during prostate volumetric modulated arc therapy

    PubMed Central

    Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie

    2016-01-01

    Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314

  7. Motion compensation for cone-beam CT using Fourier consistency conditions

    NASA Astrophysics Data System (ADS)

    Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.

    2017-09-01

    In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.

  8. SSTL UK-DMC SLIM-6 data quality assessment

    USGS Publications Warehouse

    Chander, G.; Saunier, S.; Choate, M.J.; Scaramuzza, P.L.

    2009-01-01

    Satellite data from the Surrey Satellite Technology Limited (SSTL) United Kingdom (UK) Disaster Monitoring Constellation (DMC) were assessed for geometric and radiometric quality. The UK-DMC Surrey Linear Imager 6 (SLIM-6) sensor has a 32-m spatial resolution and a ground swath width of 640 km. The UK-DMC SLIM-6 design consists of a three-band imager with green, red, and near-infrared bands that are set to similar bandpass as Landsat bands 2, 3, and 4. The UK-DMC data consisted of imagery registered to Landsat orthorectified imagery produced from the GeoCover program. Relief displacements within the UK-DMC SLIM-6 imagery were accounted for by using global 1-km digital elevation models available through the Global Land One-km Base Elevation (GLOBE) Project. Positional accuracy and relative band-to-band accuracy were measured. Positional accuracy of the UK-DMC SLIM-6 imagery was assessed by measuring the imagery against digital orthophoto quadrangles (DOQs), which are designed to meet national map accuracy standards at 1 : 24 000 scales; this corresponds to a horizontal root-mean-square accuracy of about 6 m. The UK-DMC SLIM-6 images were typically registered to within 1.0-1.5 pixels to the DOQ mosaic images. Several radiometric artifacts like striping, coherent noise, and flat detector were discovered and studied. Indications are that the SSTL UK-DMC SLIM-6 data have few artifacts and calibration challenges, and these can be adjusted or corrected via calibration and processing algorithms. The cross-calibration of the UK-DMC SLIM-6 and Landsat 7 Enhanced Thematic Mapper Plus was performed using image statistics derived from large common areas observed by the two sensors.

  9. Neuroimaging essentials in essential tremor: A systematic review

    PubMed Central

    Sharifi, Sarvi; Nederveen, Aart J.; Booij, Jan; van Rootselaar, Anne-Fleur

    2014-01-01

    Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily clinical practice is limited. PMID:25068111

  10. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung

    2016-09-01

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on our results, we recommend using this technique for high image quality.

  11. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 1. Depth to Bedrock Determinations Using Shallow Seismic Data Acquired in the Straight Creek Drainage Near Red River, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2004-01-01

    In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.

  12. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; hide

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  13. Studies on design of 351  nm focal plane diagnostic system prototype and focusing characteristic of SGII-upgraded facility at half achievable energy performance.

    PubMed

    Liu, Chong; Ji, Lailin; Yang, Lin; Zhao, Dongfeng; Zhang, Yanfeng; Liu, Dong; Zhu, Baoqiang; Lin, Zunqi

    2016-04-01

    In order to obtain the intensity distribution of a 351 nm focal spot and smoothing by spectral dispersion (SSD) focal plane profile of a SGII-upgraded facility, a type of off-axis imaging system with three spherical mirrors, suitable for a finite distance source point to be imaged near the diffraction limit has been designed. The quality factor of the image system is 1.6 times of the diffraction limit tested by a 1053 nm point source. Because of the absence of a 351 nm point source, we can use a Collins diffraction imaging integral with respect to λ=351  nm, corresponding to a quality factor that is 3.8 times the diffraction limit at 351 nm. The calibration results show that at least the range of ±10  mrad of view field angle and ±50  mm along the axial direction around the optimum object distance can be satisfied with near diffraction limited image that is consistent with the design value. Using this image system, the No. 2 beam of the SGII-upgraded facility has been tested. The test result of the focal spot of final optics assembly (FOA) at 351 nm indicates that about 80% of energy is encompassed in 14.1 times the diffraction limit, while the output energy of the No. 2 beam is 908 J at 1053 nm. According to convolution theorem, the true value of a 351 nm focal spot of FOA is about 12 times the diffraction limit because of the influence of the quality factor. Further experimental studies indicate that the RMS value along the smoothing direction is less than 15.98% in the SSD spot test experiment. Computer simulations show that the quality factor of the image system used in the experiment has almost no effect on the SSD focal spot test. The image system can remarkably distort the SSD focal spot distribution under the circumstance of the quality factor 15 times worse than the diffraction limit. The distorted image shows a steep slope in the contour of the SSD focal spot along the smoothing direction that otherwise has a relatively flat top region around the focal spot center.

  14. Experimental evaluation of the resolution improvement provided by a silicon PET probe.

    PubMed

    Brzeziński, K; Oliver, J F; Gillam, J; Rafecas, M; Studen, A; Grkovski, M; Kagan, H; Smith, S; Llosá, G; Lacasta, C; Clinthorne, N H

    2016-09-01

    A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 × 16 arrays of 1.4 mm × 1.4 mm pixels and the other in 40 × 26 arrays of 1.0 mm × 1.0 mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 × 6 arrays of 6 mm × 12 mm × 30 mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5 mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8 mm and 4.0 mm phantom features respectively, were observed, while previously unresolvable 3.2 mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe.

  15. Design of low noise imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  16. Compound image segmentation of published biomedical figures.

    PubMed

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  17. Radiopharmaceutical considerations for using Tc-99m MAA in lung transplant patients.

    PubMed

    Ponto, James A

    2010-01-01

    To elucidate radiopharmaceutical considerations for using technetium Tc-99m albumin aggregated (Tc-99m MAA) in lung transplant patients and to establish an appropriate routine dose and preparation procedure. Tertiary care academic hospital during May 2007 to May 2009. Nuclear pharmacist working in nuclear medicine department. Radiopharmaceutical considerations deemed important for the use of Tc-99m MAA in lung transplant patients included radioactivity dose, particulate dose, rate of the radiolabeling reaction (preparation time), and final radiochemical purity. Evaluation of our initial 12-month experience, published literature, and professional practice guidelines provided the basis for establishing an appropriate dose and preparation procedure of Tc-99m MAA for use in lung transplant patients. Radiochemical purity at typical incubation times and image quality in subsequent lung transplant patients imaged during the next 12 months. Based on considerations of radioactivity dose, particulate dose, rate of the radiolabeling reaction (preparation time), and final radiochemical purity, a routine dose consisting of 3 mCi (111 MBq) and 100,000 particles of Tc-99m MAA for planar perfusion lung imaging of adult lung transplant patients was established as reasonable and appropriate. MAA kits were prepared with a more reasonable amount of Tc-99m and yielded high radiochemical purity values in typical incubation times. Images have continued to be of high diagnostic quality. Tc-99m MAA used for lung transplant imaging can be readily prepared with high radiochemical purity to provide a dose of 3 mCi (111 GBq)/100,000 particles, which provides images of high diagnostic quality.

  18. Accuracy of imaging methods for detection of bone tissue invasion in patients with oral squamous cell carcinoma

    PubMed Central

    Uribe, S; Rojas, LA; Rosas, CF

    2013-01-01

    The objective of this review is to evaluate the diagnostic accuracy of imaging methods for detection of mandibular bone tissue invasion by squamous cell carcinoma (SCC). A systematic review was carried out of studies in MEDLINE, SciELO and ScienceDirect, published between 1960 and 2012, in English, Spanish or German, which compared detection of mandibular bone tissue invasion via different imaging tests against a histopathology reference standard. Sensitivity and specificity data were extracted from each study. The outcome measure was diagnostic accuracy. We found 338 articles, of which 5 fulfilled the inclusion criteria. Tests included were: CT (four articles), MRI (four articles), panoramic radiography (one article), positron emission tomography (PET)/CT (one article) and cone beam CT (CBCT) (one article). The quality of articles was low to moderate and the evidence showed that all tests have a high diagnostic accuracy for detection of mandibular bone tissue invasion by SCC, with sensitivity values of 94% (MRI), 91% (CBCT), 83% (CT) and 55% (panoramic radiography), and specificity values of 100% (CT, MRI, CBCT), 97% (PET/CT) and 91.7% (panoramic radiography). Available evidence is scarce and of only low to moderate quality. However, it is consistently shown that current imaging methods give a moderate to high diagnostic accuracy for the detection of mandibular bone tissue invasion by SCC. Recommendations are given for improving the quality of future reports, in particular provision of a detailed description of the patients' conditions, the imaging instrument and both imaging and histopathological invasion criteria. PMID:23420854

  19. Image Quality and Stenosis Assessment of Non-Contrast-Enhanced 3-T Magnetic Resonance Angiography in Patients with Peripheral Artery Disease Compared with Contrast-Enhanced Magnetic Resonance Angiography and Digital Subtraction Angiography

    PubMed Central

    Liu, Jiayi; Zhang, Nan; Fan, Zhaoyang; Luo, Nan; Zhao, Yike; Bi, Xiaoming; An, Jing; Chen, Zhong; Liu, Dongting; Wen, Zhaoying; Fan, Zhanming; Li, Debiao

    2016-01-01

    Purpose To evaluate the diagnostic performance of flow-sensitive dephasing (FSD)-prepared steady-state free precession (SSFP) magnetic resonance angiography (MRA) at 3 T for imaging infragenual arteries relative to contrast-enhanced MRA (CE-MRA) and digital subtraction angiography (DSA). Materials and Methods A series of 16 consecutive patients with peripheral arterial disease (PAD) underwent a combined peripheral MRA protocol consisting of FSD-MRA for the calves and large field-of-view CE-MRA. DSA was performed on all patients within 1 week of the MR angiographies. Image quality and degree of stenosis was assessed by two readers with rich experience. Inter-observer agreement was determined using kappa statistics. Receiver operating characteristic (ROC) curve analysis determined the diagnostic value of FSD-MRA, CE-MRA, and CE-MRA combined with FSD-MRA (CE+FSD MRA) in predicting vascular stenosis. Results At the calf station, no significantly difference of subjective image quality scores was found between FSD-MRA and CE-MRA. Inter-reader agreement was excellent for both FSD-MRA and CE-MRA. Both of FSD-MRA and CE-MRA carry a stenosis overestimation risk relative to DSA standard. With DSA as the reference standard, ROC curve analysis showed that the area under the curve was largest for CE+FSD MRA. The greatest sensitivity and specificity were obtained when a cut-off stenosis score of 2 was used. Conclusion In patients with severe PAD,3 T FSD-MRA provides good-quality diagnostic images without a contrast agent and is a good supplement for CE-MRA. CE+FSD MRA can improve the accuracy of vascular stenosis diagnosis. PMID:27861626

  20. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance.

    PubMed

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Fukuyama, Naoki; Yokoi, Takahiro; Kido, Tomoyuki; Uetani, Teruyoshi; Vembar, Mani; Dhanantwari, Amar; Tokuyasu, Shinichi; Yamashita, Natsumi; Mochizuki, Teruhito

    2017-10-01

    We evaluated the image quality and diagnostic performance of late iodine enhancement computed tomography (LIE-CT) with knowledge-based iterative model reconstruction (IMR) for the detection of myocardial infarction (MI) in comparison with late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The study investigated 35 patients who underwent a comprehensive cardiac CT protocol and LGE-MRI for the assessment of coronary artery disease. The CT protocol consisted of stress dynamic myocardial CT perfusion, coronary CT angiography (CTA) and LIE-CT using 256-slice CT. LIE-CT scans were acquired 5 min after CTA without additional contrast medium and reconstructed with filtered back projection (FBP), a hybrid iterative reconstruction (HIR), and IMR. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed. Sensitivity and specificity of LIE-CT for detecting MI were assessed according to the 16-segment model. Image quality scores, and diagnostic performance were compared among LIE-CT with FBP, HIR and IMR. Among the 35 patients, 139 of 560 segments showed MI in LGE-MRI. On LIE-CT with FBP, HIR, and IMR, the median SNRs were 2.1, 2.9, and 6.1; and the median CNRs were 1.7, 2.2, and 4.7, respectively. Sensitivity and specificity were 56 and 93% for FBP, 62 and 91% for HIR, and 80 and 91% for IMR. LIE-CT with IMR showed the highest image quality and sensitivity (p < 0.05). The use of IMR enables significant improvement of image quality and diagnostic performance of LIE-CT for detecting MI in comparison with FBP and HIR.

  1. Measuring perceived video quality of MPEG enhancement by people with impaired vision

    PubMed Central

    Fullerton, Matthew; Woods, Russell L.; Vera-Diaz, Fuensanta A.; Peli, Eli

    2007-01-01

    We used a new method to measure the perceived quality of contrast-enhanced motion video. Patients with impaired vision (n = 24) and normally-sighted subjects (n = 6) adjusted the level of MPEG-based enhancement of 8 videos (4 minutes each) drawn from 4 categories. They selected the level of enhancement that provided the preferred view of the videos, using a reducing-step-size staircase procedure. Most patients made consistent selections of the preferred level of enhancement, indicating an appreciation of and a perceived benefit from the MPEG-based enhancement. The selections varied between patients and were correlated with letter contrast sensitivity, but the selections were not affected by training, experience or video category. We measured just noticeable differences (JNDs) directly for videos, and mapped the image manipulation (enhancement in our case) onto an approximately linear perceptual space. These tools and approaches will be of value in other evaluations of the image quality of motion video manipulations. PMID:18059909

  2. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  4. MO-DE-209-01: Primer On Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidment, A.

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  5. MO-DE-209-04: Radiation Dosimetry in Breast Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechopoulos, I.

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  6. MO-DE-209-02: Tomosynthesis Reconstruction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainprize, J.

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBTmore » shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support, Hologic, Inc.; Research Support, Barco, Inc.; Scientific Advisory Board, Gamma Medica, Inc.; Scientific Advisory Board, Real-Time Tomography, LLC.; Shareholder, Real-Time Tomography, LLC; J. Mainprize, Our lab has a research agreement with GE Healthcare on various topics in digital mammography and digital tomosynthesis; W. Zhao, Research grant from Siemens Health Care.« less

  7. An integrated content and metadata based retrieval system for art.

    PubMed

    Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James

    2004-03-01

    A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

  8. Design of CMOS imaging system based on FPGA

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for high dynamic range CMOS camera under the rolling shutter mode, a complete imaging system is designed based on the CMOS imaging sensor NSC1105. The paper decides CMOS+ADC+FPGA+Camera Link as processing architecture and introduces the design and implementation of the hardware system. As for camera software system, which consists of CMOS timing drive module, image acquisition module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The ISE 14.6 emulator ISim is used in the simulation of signals. The imaging experimental results show that the system exhibits a 1280*1024 pixel resolution, has a frame frequency of 25 fps and a dynamic range more than 120dB. The imaging quality of the system satisfies the requirement of the index.

  9. Detection of Pigment Networks in Dermoscopy Images

    NASA Astrophysics Data System (ADS)

    Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui

    2017-02-01

    One of the most important structures in dermoscopy images is the pigment network, which is also one of the most challenging and fundamental task for dermatologists in early detection of melanoma. This paper presents an automatic system to detect pigment network from dermoscopy images. The design of the proposed algorithm consists of four stages. First, a pre-processing algorithm is carried out in order to remove the noise and improve the quality of the image. Second, a bank of directional filters and morphological connected component analysis are applied to detect the pigment networks. Third, features are extracted from the detected image, which can be used in the subsequent stage. Fourth, the classification process is performed by applying feed-forward neural network, in order to classify the region as either normal or abnormal skin. The method was tested on a dataset of 200 dermoscopy images from Hospital Pedro Hispano (Matosinhos), and better results were produced compared to previous studies.

  10. An Exploratory Study of Residents' Perception of Place Image: The Case of Kavala.

    PubMed

    Stylidis, Dimitrios; Sit, Jason; Biran, Avital

    2016-05-01

    Studies on place image have predominantly focused on the tourists' destination image and have given limited attention to other stakeholders' perspectives. This study aims to address this gap by focusing on the notion of residents' place image, whereby it reviews existing literature on residents' place image in terms of whether common attributes can be identified, and examines the role of community-focused attributes in its measurement. Data collected from a sample of 481 Kavala residents (Greece) were subjected to exploratory and confirmatory factor analysis. The study reveals that the existing measurement tools have typically emphasized destination-focused attributes and neglected community-focused attributes. This study contributes to the residents' place image research by proposing a more holistic measurement, which consisted of four dimensions: physical appearance, community services, social environment, and entertainment opportunities. The study also offers practical insights for developing and promoting a tourist place while simultaneously enhancing its residents' quality of life.

  11. An Exploratory Study of Residents’ Perception of Place Image

    PubMed Central

    Stylidis, Dimitrios; Sit, Jason; Biran, Avital

    2014-01-01

    Studies on place image have predominantly focused on the tourists’ destination image and have given limited attention to other stakeholders’ perspectives. This study aims to address this gap by focusing on the notion of residents’ place image, whereby it reviews existing literature on residents’ place image in terms of whether common attributes can be identified, and examines the role of community-focused attributes in its measurement. Data collected from a sample of 481 Kavala residents (Greece) were subjected to exploratory and confirmatory factor analysis. The study reveals that the existing measurement tools have typically emphasized destination-focused attributes and neglected community-focused attributes. This study contributes to the residents’ place image research by proposing a more holistic measurement, which consisted of four dimensions: physical appearance, community services, social environment, and entertainment opportunities. The study also offers practical insights for developing and promoting a tourist place while simultaneously enhancing its residents’ quality of life. PMID:29708109

  12. Heterogeneous sharpness for cross-spectral face recognition

    NASA Astrophysics Data System (ADS)

    Cao, Zhicheng; Schmid, Natalia A.

    2017-05-01

    Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short-wave infrared are considered in this work. Both error of a regression model and validation error of a neural network are analyzed.

  13. NOTE: An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    NASA Astrophysics Data System (ADS)

    Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.

    2005-11-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.

  14. Label inspection of approximate cylinder based on adverse cylinder panorama

    NASA Astrophysics Data System (ADS)

    Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo

    2013-12-01

    This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.

  15. An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.

    PubMed

    Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero

    2017-04-01

    The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.

  16. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  17. Quality and consistency of guidelines for the management of mild traumatic brain injury in the emergency department.

    PubMed

    Tavender, Emma J; Bosch, Marije; Green, Sally; O'Connor, Denise; Pitt, Veronica; Phillips, Kate; Bragge, Peter; Gruen, Russell L

    2011-08-01

    The objective was to provide an overview of the recommendations and quality of evidence-based clinical practice guidelines (CPGs) for the emergency management of mild traumatic brain injury (mTBI), with a view to informing best practice and improving the consistency of recommendations. Electronic searches of health databases (MEDLINE, EMBASE, The Cochrane Library, PsycINFO), CPG clearinghouse websites, CPG developer websites, and Internet search engines up to January 2010 were conducted. CPGs were included if 1) they were published in English and freely accessible, 2) their scope included the management of mTBI in the emergency department (ED), 3) the date of last search was within the past 10 years (2000 onward), 4) systematic methods were used to search for evidence, and 5) there was an explicit link between the recommendations and the supporting evidence. Four authors independently assessed the quality of the included CPGs using the Appraisal of Guidelines, Research and Evaluation (AGREE) Instrument. The authors extracted and categorized recommendations according to initial clinical assessment, imaging, management, observation, discharge planning, and patient information and follow-up. The search identified 18 potential CPGs, of which six met the inclusion criteria. The included CPGs varied in scope, target population, size, and guideline development processes. Four CPGs were assessed as "strongly recommended." The majority of CPGs did not provide information about the level of stakeholder involvement (mean AGREE standardized domain score = 57%, range = 25% to 81%), nor did they address the organizational/cost implications of applying the recommendations or provide criteria for monitoring and review of recommendations in practice (mean AGREE standardized domain score = 46.6%, range = 19% to 94%). Recommendations were mostly consistent in terms of the use of the Glasgow Coma Scale (GCS) score (adult and pediatric) to assess the level of consciousness, initial assessment criteria, the use of computed tomography (CT) scanning as imaging investigation of choice, and the provision of patient information. The CPGs defined mTBI in a variety of ways and described different rules to determine the need for CT scanning and therefore used different criteria to identify high-risk patients. Higher-quality CPGs for mTBI are consistent in their recommendations about assessment, imaging, and provision of patient information. There is not, however, an agreed definition of mTBI, and the quality of future CPGs could be improved with better reporting of stakeholder involvement, procedures for updating, and greater consideration of the applicability of the recommendations (cost implications, monitoring procedures). Nevertheless, guideline developers may benefit from adapting existing CPGs to their local context rather than investing in developing CPGs de novo. © 2011 by the Society for Academic Emergency Medicine.

  18. Fast ℓ1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime

    PubMed Central

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-01-01

    We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529

  19. MR and CT image fusion for postimplant analysis in permanent prostate seed implants.

    PubMed

    Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto

    2004-12-01

    To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.

  20. Joint water-fat separation and deblurring for spiral imaging.

    PubMed

    Wang, Dinghui; Zwart, Nicholas R; Pipe, James G

    2018-06-01

    Most previous approaches to spiral Dixon water-fat imaging perform the water-fat separation and deblurring sequentially based on the assumption that the phase accumulation and blurring as a result of off-resonance are separable. This condition can easily be violated in regions where the B 0 inhomogeneity varies rapidly. The goal of this work is to present a novel joint water-fat separation and deblurring method for spiral imaging. The proposed approach is based on a more accurate signal model that takes into account the phase accumulation and blurring simultaneously. A conjugate gradient method is used in the image domain to reconstruct the deblurred water and fat iteratively. Spatially varying convolutions with a local convergence criterion are used to reduce the computational demand. Both simulation and high-resolution brain imaging have demonstrated that the proposed joint method consistently improves the quality of reconstructed water and fat images compared with the sequential approach, especially in regions where the field inhomogeneity changes rapidly in space. The loss of signal-to-noise-ratio as a result of deblurring is minor at optimal echo times. High-quality water-fat spiral imaging can be achieved with the proposed joint approach, provided that an accurate field map of B 0 inhomogeneity is available. Magn Reson Med 79:3218-3228, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Optimizing Radiometric Fidelity to Enhance Aerial Image Change Detection Utilizing Digital Single Lens Reflex (DSLR) Cameras

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew D.

    Determining optimal imaging settings and best practices related to the capture of aerial imagery using consumer-grade digital single lens reflex (DSLR) cameras, should enable remote sensing scientists to generate consistent, high quality, and low cost image data sets. Radiometric optimization, image fidelity, image capture consistency and repeatability were evaluated in the context of detailed image-based change detection. The impetus for this research is in part, a dearth of relevant, contemporary literature, on the utilization of consumer grade DSLR cameras for remote sensing, and the best practices associated with their use. The main radiometric control settings on a DSLR camera, EV (Exposure Value), WB (White Balance), light metering, ISO, and aperture (f-stop), are variables that were altered and controlled over the course of several image capture missions. These variables were compared for their effects on dynamic range, intra-frame brightness variation, visual acuity, temporal consistency, and the detectability of simulated cracks placed in the images. This testing was conducted from a terrestrial, rather than an airborne collection platform, due to the large number of images per collection, and the desire to minimize inter-image misregistration. The results point to a range of slightly underexposed image exposure values as preferable for change detection and noise minimization fidelity. The makeup of the scene, the sensor, and aerial platform, influence the selection of the aperture and shutter speed which along with other variables, allow for estimation of the apparent image motion (AIM) motion blur in the resulting images. The importance of the image edges in the image application, will in part dictate the lowest usable f-stop, and allow the user to select a more optimal shutter speed and ISO. The single most important camera capture variable is exposure bias (EV), with a full dynamic range, wide distribution of DN values, and high visual contrast and acuity occurring around -0.7 to -0.3EV exposure bias. The ideal values for sensor gain, was found to be ISO 100, with ISO 200 a less desirable. This study offers researchers a better understanding of the effects of camera capture settings on RSI pairs and their influence on image-based change detection.

  2. Remote Sensing Image Quality Assessment Experiment with Post-Processing

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.

    2018-04-01

    This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  3. A range/depth modulation transfer function (RMTF) framework for characterizing 3D imaging LADAR performance

    NASA Astrophysics Data System (ADS)

    Staple, Bevan; Earhart, R. P.; Slaymaker, Philip A.; Drouillard, Thomas F., II; Mahony, Thomas

    2005-05-01

    3D imaging LADARs have emerged as the key technology for producing high-resolution imagery of targets in 3-dimensions (X and Y spatial, and Z in the range/depth dimension). Ball Aerospace & Technologies Corp. continues to make significant investments in this technology to enable critical NASA, Department of Defense, and national security missions. As a consequence of rapid technology developments, two issues have emerged that need resolution. First, the terminology used to rate LADAR performance (e.g., range resolution) is inconsistently defined, is improperly used, and thus has become misleading. Second, the terminology does not include a metric of the system"s ability to resolve the 3D depth features of targets. These two issues create confusion when translating customer requirements into hardware. This paper presents a candidate framework for addressing these issues. To address the consistency issue, the framework utilizes only those terminologies proposed and tested by leading LADAR research and standards institutions. We also provide suggestions for strengthening these definitions by linking them to the well-known Rayleigh criterion extended into the range dimension. To address the inadequate 3D image quality metrics, the framework introduces the concept of a Range/Depth Modulation Transfer Function (RMTF). The RMTF measures the impact of the spatial frequencies of a 3D target on its measured modulation in range/depth. It is determined using a new, Range-Based, Slanted Knife-Edge test. We present simulated results for two LADAR pulse detection techniques and compare them to a baseline centroid technique. Consistency in terminology plus a 3D image quality metric enable improved system standardization.

  4. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline.

    PubMed

    Adhikari, Bhim M; Jahanshad, Neda; Shukla, Dinesh; Glahn, David C; Blangero, John; Reynolds, Richard C; Cox, Robert W; Fieremans, Els; Veraart, Jelle; Novikov, Dmitry S; Nichols, Thomas E; Hong, L Elliot; Thompson, Paul M; Kochunov, Peter

    2018-01-01

    Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.

  5. Neuromuscular ultrasound imaging in low back pain patients with radiculopathy.

    PubMed

    Frost, Lydia R; Brown, Stephen H M

    2016-02-01

    Patients suffering from chronic low back pain with associated radiculopathy (LBP-R), or sciatica, experience neuromuscular symptoms in the lower back and leg; however, research to date has focussed solely on the lower back. To expand neuromuscular research of LBP-R patients into the lower limb, using ultrasound imaging. Case control study comparing LBP-R patients to matched healthy controls. LBP-R patients with disc bulge or herniation (L3/L4 to L5/S1) resulting in unilateral radiculopathy (n = 17) and healthy matched controls (n = 17) were recruited. High-resolution ultrasound imaging was used to investigate sciatic nerve structure, as well as the quality (relative magnitude of fat/fibrosis infiltration) and contraction (muscle thickening) of associated musculature in the lower back (paraspinals) and lower limb (biceps femoris, gastrocnemius, soleus). LBP-R patients had swollen sciatic nerves (increased cross sectional area), but this was not associated with evidence of reduced lower limb muscle quality. As compared to controls, LBP-R patients demonstrated less soleus muscle thickening during submaximal contraction; however, there were no impairments in the hamstring or lower back musculature. Ultrasound imaging was an effective method to detect sciatic nerve swelling in mild to moderately affected LBP-R patients. Nerve swelling was not associated with poorer muscle quality, nor consistently impaired muscle contraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A prototype of mammography CADx scheme integrated to imaging quality evaluation techniques

    NASA Astrophysics Data System (ADS)

    Schiabel, Homero; Matheus, Bruno R. N.; Angelo, Michele F.; Patrocínio, Ana Claudia; Ventura, Liliane

    2011-03-01

    As all women over the age of 40 are recommended to perform mammographic exams every two years, the demands on radiologists to evaluate mammographic images in short periods of time has increased considerably. As a tool to improve quality and accelerate analysis CADe/Dx (computer-aided detection/diagnosis) schemes have been investigated, but very few complete CADe/Dx schemes have been developed and most are restricted to detection and not diagnosis. The existent ones usually are associated to specific mammographic equipment (usually DR), which makes them very expensive. So this paper describes a prototype of a complete mammography CADx scheme developed by our research group integrated to an imaging quality evaluation process. The basic structure consists of pre-processing modules based on image acquisition and digitization procedures (FFDM, CR or film + scanner), a segmentation tool to detect clustered microcalcifications and suspect masses and a classification scheme, which evaluates as the presence of microcalcifications clusters as well as possible malignant masses based on their contour. The aim is to provide enough information not only on the detected structures but also a pre-report with a BI-RADS classification. At this time the system is still lacking an interface integrating all the modules. Despite this, it is functional as a prototype for clinical practice testing, with results comparable to others reported in literature.

  7. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  8. Efficient testing methodologies for microcameras in a gigapixel imaging system

    NASA Astrophysics Data System (ADS)

    Youn, Seo Ho; Marks, Daniel L.; McLaughlin, Paul O.; Brady, David J.; Kim, Jungsang

    2013-04-01

    Multiscale parallel imaging--based on a monocentric optical design--promises revolutionary advances in diverse imaging applications by enabling high resolution, real-time image capture over a wide field-of-view (FOV), including sport broadcast, wide-field microscopy, astronomy, and security surveillance. Recently demonstrated AWARE-2 is a gigapixel camera consisting of an objective lens and 98 microcameras spherically arranged to capture an image over FOV of 120° by 50°, using computational image processing to form a composite image of 0.96 gigapixels. Since microcameras are capable of individually adjusting exposure, gain, and focus, true parallel imaging is achieved with a high dynamic range. From the integration perspective, manufacturing and verifying consistent quality of microcameras is a key to successful realization of AWARE cameras. We have developed an efficient testing methodology that utilizes a precisely fabricated dot grid chart as a calibration target to extract critical optical properties such as optical distortion, veiling glare index, and modulation transfer function to validate imaging performance of microcameras. This approach utilizes an AWARE objective lens simulator which mimics the actual objective lens but operates with a short object distance, suitable for a laboratory environment. Here we describe the principles of the methodologies developed for AWARE microcameras and discuss the experimental results with our prototype microcameras. Reference Brady, D. J., Gehm, M. E., Stack, R. A., Marks, D. L., Kittle, D. S., Golish, D. R., Vera, E. M., and Feller, S. D., "Multiscale gigapixel photography," Nature 486, 386--389 (2012).

  9. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  10. Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda.

    PubMed

    Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E

    2014-12-15

    In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

  11. Automatic retinal interest evaluation system (ARIES).

    PubMed

    Yin, Fengshou; Wong, Damon Wing Kee; Yow, Ai Ping; Lee, Beng Hai; Quan, Ying; Zhang, Zhuo; Gopalakrishnan, Kavitha; Li, Ruoying; Liu, Jiang

    2014-01-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. However, in practice, retinal image quality is a big concern as automatic systems without consideration of degraded image quality will likely generate unreliable results. In this paper, an automatic retinal image quality assessment system (ARIES) is introduced to assess both image quality of the whole image and focal regions of interest. ARIES achieves 99.54% accuracy in distinguishing fundus images from other types of images through a retinal image identification step in a dataset of 35342 images. The system employs high level image quality measures (HIQM) to perform image quality assessment, and achieves areas under curve (AUCs) of 0.958 and 0.987 for whole image and optic disk region respectively in a testing dataset of 370 images. ARIES acts as a form of automatic quality control which ensures good quality images are used for processing, and can also be used to alert operators of poor quality images at the time of acquisition.

  12. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  13. Observing vegetation phenology through social media.

    PubMed

    Silva, Sam J; Barbieri, Lindsay K; Thomer, Andrea K

    2018-01-01

    The widespread use of social media has created a valuable but underused source of data for the environmental sciences. We demonstrate the potential for images posted to the website Twitter to capture variability in vegetation phenology across United States National Parks. We process a subset of images posted to Twitter within eight U.S. National Parks, with the aim of understanding the amount of green vegetation in each image. Analysis of the relative greenness of the images show statistically significant seasonal cycles across most National Parks at the 95% confidence level, consistent with springtime green-up and fall senescence. Additionally, these social media-derived greenness indices correlate with monthly mean satellite NDVI (r = 0.62), reinforcing the potential value these data could provide in constraining models and observing regions with limited high quality scientific monitoring.

  14. Crustal deformation at long Valley Caldera, eastern California, 1992-1996 inferred from satellite radar interferometry

    USGS Publications Warehouse

    Thatcher, W.; Massonnet, D.

    1997-01-01

    Satellite radar interferometric images of Long Valley caldera show a pattern of surface deformation that resembles that expected from analysis of an extensive suite of ground-based geodetic data. Images from 2 and 4 year intervals respectively, are consistent with uniform movement rates determined from leveling surveys. Synthetic interferograms generated from ellipsoidal-inclusion source models based on inversion of the ground-based data show generally good agreement with the observed images. Two interferograms show evidence for a magmatic source southwest of the caldera in a region not covered by ground measurements. Poorer image quality in the 4 year interferogram indicates that temporal decorrelation of surface radar reflectors is progressively degrading the fringe pattern in the Long Valley region. Copyright 1997 by the American Geophysical Union.

  15. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  16. Evaluation of the visual performance of image processing pipes: information value of subjective image attributes

    NASA Astrophysics Data System (ADS)

    Nyman, G.; Häkkinen, J.; Koivisto, E.-M.; Leisti, T.; Lindroos, P.; Orenius, O.; Virtanen, T.; Vuori, T.

    2010-01-01

    Subjective image quality data for 9 image processing pipes and 8 image contents (taken with mobile phone camera, 72 natural scene test images altogether) from 14 test subjects were collected. A triplet comparison setup and a hybrid qualitative/quantitative methodology were applied. MOS data and spontaneous, subjective image quality attributes to each test image were recorded. The use of positive and negative image quality attributes by the experimental subjects suggested a significant difference between the subjective spaces of low and high image quality. The robustness of the attribute data was shown by correlating DMOS data of the test images against their corresponding, average subjective attribute vector length data. The findings demonstrate the information value of spontaneous, subjective image quality attributes in evaluating image quality at variable quality levels. We discuss the implications of these findings for the development of sensitive performance measures and methods in profiling image processing systems and their components, especially at high image quality levels.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H; Malin, M; Chmura, S

    Purpose: For African-American patients receiving breast radiotherapy with a bolus, skin darkening can affect the surface visualization when using optical imaging for daily positioning and gating at deep-inspiration breath holds (DIBH). Our goal is to identify a region-of-interest (ROI) that is robust against deteriorating surface image quality due to skin darkening. Methods: We study four patients whose post-mastectomy surfaces are imaged daily with AlignRT (VisionRT, UK) for DIBH radiotherapy and whose surface image quality is degraded toward the end of treatment. To simulate the effects of skin darkening, surfaces from the first ten fractions of each patient are systematically degradedmore » by 25–35%, 40–50% and 65–75% of the total area of the clinically used ROI-ipsilateral-chestwall. The degraded surfaces are registered to the reference surface in six degrees-of-freedom. To identify a robust ROI, three additional reference ROIs — ROI-chest+abdomen, ROI-bilateral-chest and ROI-extended-ipsilateral-chestwall are created and registered to the degraded surfaces. Differences in registration using these ROIs are compared to that using ROI-ipsilateral-chestwall. Results: For three patients, the deviations in the registrations to ROI-ipsilateral-chestwall are > 2.0, 3.1 and 7.9mm on average for 25–35%, 40–50% and 65–75% degraded surfaces, respectively. Rotational deviations reach 11.1° in pitch. For the last patient, registration is consistent to within 2.6mm even on the 65–75% degraded surfaces, possibly because the surface topography has more distinct features. For ROI-bilateral-chest and ROI-extended-ipsilateral-chest registrations deviate in a similar pattern. However, registration on ROI-chest+abdomen is robust to deteriorating image qualities to within 4.2mm for all four patients. Conclusion: Registration deviations using ROI-ipsilateral-chestwall can reach 9.8mm on the 40–50% degraded surfaces. Caution is required when using AlignRT for patients experiencing skin darkening since the accuracy of AlignRT registration deteriorates. To avoid this inaccuracy, we recommend use of ROI-chest+abdomen, on which registration is consistent within 4.2mm even for highly degraded surfaces.« less

  18. The retrospective binning method improves the consistency of phase binning in respiratory-gated PET/CT

    NASA Astrophysics Data System (ADS)

    Didierlaurent, D.; Ribes, S.; Batatia, H.; Jaudet, C.; Dierickx, L. O.; Zerdoud, S.; Brillouet, S.; Caselles, O.; Courbon, F.

    2012-12-01

    This study assesses the accuracy of prospective phase-gated PET/CT data binning and presents a retrospective data binning method that improves image quality and consistency. Respiratory signals from 17 patients who underwent 4D PET/CT were analysed to evaluate the reproducibility of temporal triggers used for the standard phase-based gating method. Breathing signals were reprocessed to implement retrospective PET data binning. The mean and standard deviation of time lags between automatic triggers provided by the Real-time Position Management (RPM, Varian) gating device and inhalation peaks derived from respiratory curves were computed for each patient. The total number of respiratory cycles available for 4D PET/CT according to the binning mode (prospective versus retrospective) was compared. The maximum standardized uptake value (SUVmax), biological tumour volume (BTV) and tumour trajectory measures were determined from the PET/CT images of five patients. Compared to retrospective binning (RB), prospective gating approach led to (i) a significant loss in breathing cycles (15%) and (ii) the inconsistency of data binning due to temporal dispersion of triggers (average 396 ms). Consequently, tumour characterization could be impacted. In retrospective mode, SUVmax was up to 27% higher, where no significant difference appeared in BTV. In addition, prospective mode gave an inconsistent spatial location of the tumour throughout the bins. Improved consistency with breathing patterns and greater motion amplitude of the tumour centroid were observed with retrospective mode. The detection of the tumour motion and trajectory was improved also for small temporal dispersion of triggers. This study shows that the binning mode could have a significant impact on 4D PET images. The consistency of triggers with breathing signals should be checked before clinical use of gated PET/CT images, and our RB method improves 4D PET/CT image quantification.

  19. Recognising Differences in Weed and Crop Species Recognition Skills of Agriculture Students

    ERIC Educational Resources Information Center

    Burrows, Geoffrey E.

    2012-01-01

    Students in an agricultural science degree were surveyed to assess their ability to recognise plants of agricultural importance. The survey consisted of high quality images of 25 species. Students were surveyed at the start of their studies in first year, and at various times during their second year of studies. At the start of their studies…

  20. Wide-angle lens for miniature capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Chen, Yung-Lin; Lee, Hsin-Hung; LU, Shih-chieh; Wu, Hsien-Ming

    2006-02-01

    In recent years, using the capsule endoscope to inspect the pathological change of digestive system and intestine had a great break-through on the medical engineering. However, there are some problems needs to overcome. One is that, the field of view was not wide enough, and the other is that the image quality was not enough well. The drawbacks made medical professionals to examine digestive diseases unclearly and ambiguously. In order to solve these problems, the paper designed a novel miniature lenses which has a wide angle of field of view and a good quality of imaging. The lenses employed in the capsule endoscope consisted of a piece of plastic aspherical lens and a piece of glass lens and compacted in the 9.8mm (W) *9.8mm (L) *10.7mm (H) size. Taking the white LED light source and the 10μm pixel size of 256*256 CMOS sensor under considerations, the field of view of the lenses could be achieved to 86 degrees, and the MTF to 37% at 50lp/mm of space frequency. The experimental data proves that the design is consistent with the finished prototype.

  1. Content-independent embedding scheme for multi-modal medical image watermarking.

    PubMed

    Nyeem, Hussain; Boles, Wageeh; Boyd, Colin

    2015-02-04

    As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI's least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.

  2. SU-G-JeP4-13: Continuous Intra-Fractional Monitoring of the Prostate Using Dynamic KV Collimation and Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, D; Robar, J; Nova Scotia Health Authority, Halifax, NS

    Purpose: The focus of this work is to improve the available kV image quality for continuous intra-fraction monitoring of the prostate. This is investigated using a novel blade collimation system enabling modulated volume-of-interest (VOI) imaging of prostate fiducial markers. Methods: A four-blade dynamic kV collimator was used to track a VOI during gantry rotation. Planar image quality was investigated as a function of collimator dimension, while maintaining the same dose to isocenter, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert. A sample prostate anatomy was defined in the planning system, including three fiducialmore » markers within the CTV. The VOI margin around each marker was set to be 2σ of the population covariance matrix characterizing prostate motion. DRRs were used to calculate the kV attenuation for each VOI as a function of angle. The optimal marker and tube current were determined using kV attenuation. Monte Carlo simulations were used to calculate the imaging dose to the phantom and MV scatter dose to the imaging panel. Results: Preliminary measurements show an increase in CNR by a factor of 1.3 with the VOI method, when decreasing from an 6×6 to 2×2 cm{sup 2} field. Attenuation calculations show a change in kV fluence at the detector by a factor of 21.6 with fiducial optimization; resultant tube current modulation increases maximum dose by a factor of 1.4 compared to no modulation. MV scatter contribution to the kV detector changes by approximately a factor of two over a complete gantry rotation. Conclusion: The dynamic collimation system allows single fiducial marker tracking at a very low dose, with reduction of scatter and improvement of image quality, compared to imaging the entire prostate. The approach is compatible with tube current modulation, which enables consistent image quality throughout the range of gantry rotation. This project was funded by Varian Medical Systems.« less

  3. SU-F-R-11: Designing Quality and Safety Informatics Through Implementation of a CT Radiation Dose Monitoring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, JM; Samei, E; Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, NC

    2016-06-15

    Purpose: Recent legislative and accreditation requirements have driven rapid development and implementation of CT radiation dose monitoring solutions. Institutions must determine how to improve quality, safety, and consistency of their clinical performance. The purpose of this work was to design a strategy and meaningful characterization of results from an in-house, clinically-deployed dose monitoring solution. Methods: A dose monitoring platform was designed by our imaging physics group that focused on extracting protocol parameters, dose metrics, and patient demographics and size. Compared to most commercial solutions, which focus on individual exam alerts and global thresholds, the program sought to characterize overall consistencymore » and targeted thresholds based on eight analytic interrogations. Those were based on explicit questions related to protocol application, national benchmarks, protocol and size-specific dose targets, operational consistency, outliers, temporal trends, intra-system variability, and consistent use of electronic protocols. Using historical data since the start of 2013, 95% and 99% intervals were used to establish yellow and amber parameterized dose alert thresholds, respectively, as a function of protocol, scanner, and size. Results: Quarterly reports have been generated for three hospitals for 3 quarters of 2015 totaling 27880, 28502, 30631 exams, respectively. Four adult and two pediatric protocols were higher than external institutional benchmarks. Four protocol dose levels were being inconsistently applied as a function of patient size. For the three hospitals, the minimum and maximum amber outlier percentages were [1.53%,2.28%], [0.76%,1.8%], [0.94%,1.17%], respectively. Compared with the electronic protocols, 10 protocols were found to be used with some inconsistency. Conclusion: Dose monitoring can satisfy requirements with global alert thresholds and patient dose records, but the real value is in optimizing patient-specific protocols, balancing image quality trade-offs that dose-reduction strategies promise, and improving the performance and consistency of a clinical operation. Data plots that capture patient demographics and scanner performance demonstrate that value.« less

  4. SU-E-J-50: An Evaluation of the Stability of Image Quality Parameters of the Elekta XVI and IView Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D; Papanikolaou, N; Gutierrez, A

    2015-06-15

    Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity,more » Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the Cancer Prevention Research Institute of Texas Pre doctoral fellowship training grant (RP140105) to Dennis N. Stanley M.Sc.« less

  5. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  6. Establishing daily quality control (QC) in screen-film mammography using leeds tor (max) phantom at the breast imaging unit of USTH-Benavides Cancer Institute

    NASA Astrophysics Data System (ADS)

    Acaba, K. J. C.; Cinco, L. D.; Melchor, J. N.

    2016-03-01

    Daily QC tests performed on screen film mammography (SFM) equipment are essential to ensure that both SFM unit and film processor are working in a consistent manner. The Breast Imaging Unit of USTH-Benavides Cancer Institute has been conducting QC following the test protocols in the IAEA Human Health Series No.2 manual. However, the availability of Leeds breast phantom (CRP E13039) in the facility made the task easier. Instead of carrying out separate tests on AEC constancy and light sensitometry, only one exposure of the phantom is done to accomplish the two tests. It was observed that measurements made on mAs output and optical densities (ODs) using the Leeds TOR (MAX) phantom are comparable with that obtained from the usual conduct of tests, taking into account the attenuation characteristic of the phantom. Image quality parameters such as low contrast and high contrast details were also evaluated from the phantom image. The authors recognize the usefulness of the phantom in determining technical factors that will help improve detection of smallest pathological details on breast images. The phantom is also convenient for daily QC monitoring and economical since less number of films is expended.

  7. A comparison of five standard methods for evaluating image intensity uniformity in partially parallel imaging MRI

    PubMed Central

    Goerner, Frank L.; Duong, Timothy; Stafford, R. Jason; Clarke, Geoffrey D.

    2013-01-01

    Purpose: To investigate the utility of five different standard measurement methods for determining image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a variety of pulse sequences and reconstruction strategies. Methods: Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE) with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional, two-dimensional Fourier imaging methods (R = 1). Five measurement methods of uniformity, recommended by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) were considered. The methods investigated were (1) an ACR method and a (2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA method used to produce a gray scale uniformity map, (4) determining the normalized absolute average deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value or reconstruction method had a greater influence on signal intensity uniformity measurements for partially parallel MRI. Results: Two of the methods studied had consistently negative slopes when signal intensity uniformity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity. The results of the two-way ANOVA analysis suggest that R-value and pulse sequence type produce the largest influences on uniformity and PPI reconstruction method had relatively little effect. Conclusions: Two of the methods of measuring signal intensity uniformity, described by the (NEMA) MRI standards, consistently indicated a decrease in uniformity with an increase in R-value. Other methods investigated did not demonstrate consistent results for evaluating signal uniformity in MR images obtained by partially parallel methods. However, because the spatial distribution of noise affects uniformity, it is recommended that additional uniformity quality metrics be investigated for partially parallel MR images. PMID:23927345

  8. GAP: yet another image processing system for solar observations.

    NASA Astrophysics Data System (ADS)

    Keller, C. U.

    GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.

  9. Collecting, analyzing and assessing big land use data: Results from the cropland capture game

    NASA Astrophysics Data System (ADS)

    Salk, C.; Sturn, T.; Fritz, S.; See, L. M.; McCallum, I.; Fuss, S.; Perger, C.; Duerauer, M.; Obersteiner, M.

    2014-12-01

    The International Institute for Applied Systems Analysis (IIASA) has developed a number of tools for assessing the socioeconomic benefit of Earth Observation such as quantifying the monetary benefit of improved land cover information for mitigation policies. Recently, IIASA has been assessing the benefit of an improved global carbon observation system in the GEOCARBON Project. Because traditional ground-based land cover validation is expensive, IIASA has developed crowdsourcing projects such as Geo-Wiki which to contribute to land-cover validation. A recent activity is the 'Cropland Capture' game which can be played in a browser or mobile device. It can be downloaded or played online at http://www.geo-wiki.org/games/croplandcapture/. In the game, players see an image (from a satellite or ground-based camera) and are asked if they see any cropland in it. They can answer "yes", "no" or "maybe" if they are unsure. The game had over 3,000 players who made about 4,500,000 classifications on 190,000 unique images. The benefits delivered by crowdsourcing relative to conventional data acquisition depends critically on the quality of the data received. Players' rating quality was compared by assessing their agreement with the crowd, consistency on images rated more than once, and agreement with expert validators. These metrics were compared with one another and with potential predictors of user quality: the total number of images rated by a player, and their professional background in land-cover science. Individual users' agreement with the crowd and self-agreement were highly positively correlated. The frequency of admitting uncertainty about an image was a good measure of user caution, showing a negative relationship with self-contradiction rate. Many users were more reliable in either identifying cropland or non-cropland, and these two skills were uncorrelated. Overall, user reliability increased with number of images rated, although among the top decile of users, this trend was reversed. Surprisingly, professional background had little influence on quality of ratings. We explore implications of these results for assessing potential benefits of user contributed data in the context of differential user quality and compare this with conventional data collection methods.

  10. Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics.

    PubMed

    Moccia, Sara; De Momi, Elena; El Hadji, Sara; Mattos, Leonardo S

    2018-05-01

    Blood vessel segmentation is a topic of high interest in medical image analysis since the analysis of vessels is crucial for diagnosis, treatment planning and execution, and evaluation of clinical outcomes in different fields, including laryngology, neurosurgery and ophthalmology. Automatic or semi-automatic vessel segmentation can support clinicians in performing these tasks. Different medical imaging techniques are currently used in clinical practice and an appropriate choice of the segmentation algorithm is mandatory to deal with the adopted imaging technique characteristics (e.g. resolution, noise and vessel contrast). This paper aims at reviewing the most recent and innovative blood vessel segmentation algorithms. Among the algorithms and approaches considered, we deeply investigated the most novel blood vessel segmentation including machine learning, deformable model, and tracking-based approaches. This paper analyzes more than 100 articles focused on blood vessel segmentation methods. For each analyzed approach, summary tables are presented reporting imaging technique used, anatomical region and performance measures employed. Benefits and disadvantages of each method are highlighted. Despite the constant progress and efforts addressed in the field, several issues still need to be overcome. A relevant limitation consists in the segmentation of pathological vessels. Unfortunately, not consistent research effort has been addressed to this issue yet. Research is needed since some of the main assumptions made for healthy vessels (such as linearity and circular cross-section) do not hold in pathological tissues, which on the other hand require new vessel model formulations. Moreover, image intensity drops, noise and low contrast still represent an important obstacle for the achievement of a high-quality enhancement. This is particularly true for optical imaging, where the image quality is usually lower in terms of noise and contrast with respect to magnetic resonance and computer tomography angiography. No single segmentation approach is suitable for all the different anatomical region or imaging modalities, thus the primary goal of this review was to provide an up to date source of information about the state of the art of the vessel segmentation algorithms so that the most suitable methods can be chosen according to the specific task. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. In vivo MRS and MRSI: Performance analysis, measurement considerations and evaluation of metabolite concentration images

    NASA Astrophysics Data System (ADS)

    Vikhoff-Baaz, Barbro

    2000-10-01

    The doctoral thesis concerns development, evaluation and performance of quality assessment methods for volume- selection methods in 31P and 1H MR spectroscopy (MRS). It also contains different aspects of the measurement procedure for 1H MR spectroscopic imaging (MRSI) with application on the human brain, image reconstruction of the MRSI images and evaluation methods for lateralization of temporal lobe epilepsy (TLE). Two complementary two-compartment phantoms and evaluation methods for quality assessment of 31P MRS in small-bore MR systems were presented. The first phantom consisted of an inner cube inside a sphere phantom where measurements with and without volume selection where compared for various VOI sizes. The multi-centre showed that the evaluated parameters provide useful information of the performance of volume-selective MRS at the MR system. The second phantom consisted of two compartments divided by a very thin wall and was found useful for measurements of the appearance and position of the VOI profile in specific gradient directions. The second part concerned 1H MRS and MRSI of whole-body MR systems. Different factors that may degrade or complicate the measurement procedure like for MRSI were evaluated, e.g. the volume selection performance, contamination, susceptibility and motion. Two interpolation methods for reconstruction of MRSI images were compared. Measurements and computer simulations showed that Fourier interpolation correctly visualizes the information inherent in the data set, while the results were dependent on the position of the object relative the original matrix using Cubic spline interpolation. Application of spatial filtering may improve the image representation of the data. Finally, 1H MRSI was performed on healthy volunteers and patients with temporal lobe epilepsy (TLE). Metabolite concentration images were used for lateralization of TLE, where the signal intensity in the two hemispheres were compared. Visual analysis of the metabolite concentration images can, with high accuracy, be used for lateralization in routine examinations. Analysis from measurements with region-of-interests (ROI) in different locations gives quantitative information about the degree of signal loss and the spatial distribution.

  12. Performance of hybrid system for fluorescence and micro-computed tomography in synchronous mode

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhang, Yi; Liu, Fei; Guo, Xiaolian; Wang, Xin; Bai, Jing

    2010-11-01

    Fluorescence diffuse optical tomography (FDOT) plays an important role in studying physiological and pathological processes of small animals in vivo. The low spatial resolution, however, limits the ability of FDOT in resolving the biodistributions of fluorescent markers. The anatomical information provided by X-ray computed tomography (CT) can be used to improve the image quality of FDOT. However, in most hybrid FDOT/CT systems, the projection data sets of optics and X-ray are acquired sequentially, which increases the acquisition time and bring in the unwanted soft tissue displacement. In this paper, we evaluate the performance of a synchronous FDOT/CT system, which allows for faster and concurrent imaging. Compared with previous FDOT/CT systems, the two subsystems (FDOT and CT) acquire projection images in synchronous mode, so the body position can keep consistent in the same projection data acquired by both subsystems. The experimental results of phantom and in vivo experiments suggest that the reconstruction quality of FDOT can be significantly improved when structural a priori information is utilized to constrain the reconstruction process. On the other hand, the synchronous FDOT/CT system decreases the imaging time.

  13. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    PubMed

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  14. Optical system design with wide field of view and high resolution based on monocentric multi-scale construction

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wang, Hu; Xiao, Nan; Shen, Yang; Xue, Yaoke

    2018-03-01

    With the development of related technology gradually mature in the field of optoelectronic information, it is a great demand to design an optical system with high resolution and wide field of view(FOV). However, as it is illustrated in conventional Applied Optics, there is a contradiction between these two characteristics. Namely, the FOV and imaging resolution are limited by each other. Here, based on the study of typical wide-FOV optical system design, we propose the monocentric multi-scale system design method to solve this problem. Consisting of a concentric spherical lens and a series of micro-lens array, this system has effective improvement on its imaging quality. As an example, we designed a typical imaging system, which has a focal length of 35mm and a instantaneous field angle of 14.7", as well as the FOV set to be 120°. By analyzing the imaging quality, we demonstrate that in different FOV, all the values of MTF at 200lp/mm are higher than 0.4 when the sampling frequency of the Nyquist is 200lp/mm, which shows a good accordance with our design.

  15. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  16. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  17. Human Connectome Project Informatics: quality control, database services, and data visualization

    PubMed Central

    Marcus, Daniel S.; Harms, Michael P.; Snyder, Abraham Z.; Jenkinson, Mark; Wilson, J Anthony; Glasser, Matthew F.; Barch, Deanna M.; Archie, Kevin A.; Burgess, Gregory C.; Ramaratnam, Mohana; Hodge, Michael; Horton, William; Herrick, Rick; Olsen, Timothy; McKay, Michael; House, Matthew; Hileman, Michael; Reid, Erin; Harwell, John; Coalson, Timothy; Schindler, Jon; Elam, Jennifer S.; Curtiss, Sandra W.; Van Essen, David C.

    2013-01-01

    The Human Connectome Project (HCP) has developed protocols, standard operating and quality control procedures, and a suite of informatics tools to enable high throughput data collection, data sharing, automated data processing and analysis, and data mining and visualization. Quality control procedures include methods to maintain data collection consistency over time, to measure head motion, and to establish quantitative modality-specific overall quality assessments. Database services developed as customizations of the XNAT imaging informatics platform support both internal daily operations and open access data sharing. The Connectome Workbench visualization environment enables user interaction with HCP data and is increasingly integrated with the HCP's database services. Here we describe the current state of these procedures and tools and their application in the ongoing HCP study. PMID:23707591

  18. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  19. Guided filter-based fusion method for multiexposure images

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei

    2016-11-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.

  20. Trans-dimensional MCMC methods for fully automatic motion analysis in tagged MRI.

    PubMed

    Smal, Ihor; Carranza-Herrezuelo, Noemí; Klein, Stefan; Niessen, Wiro; Meijering, Erik

    2011-01-01

    Tagged magnetic resonance imaging (tMRI) is a well-known noninvasive method allowing quantitative analysis of regional heart dynamics. Its clinical use has so far been limited, in part due to the lack of robustness and accuracy of existing tag tracking algorithms in dealing with low (and intrinsically time-varying) image quality. In this paper, we propose a novel probabilistic method for tag tracking, implemented by means of Bayesian particle filtering and a trans-dimensional Markov chain Monte Carlo (MCMC) approach, which efficiently combines information about the imaging process and tag appearance with prior knowledge about the heart dynamics obtained by means of non-rigid image registration. Experiments using synthetic image data (with ground truth) and real data (with expert manual annotation) from preclinical (small animal) and clinical (human) studies confirm that the proposed method yields higher consistency, accuracy, and intrinsic tag reliability assessment in comparison with other frequently used tag tracking methods.

  1. Mobile image based color correction using deblurring

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xu, Chang; Boushey, Carol; Zhu, Fengqing; Delp, Edward J.

    2015-03-01

    Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many chronic diseases such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) System, developed at Purdue University, is to automatically identify and quantify foods and beverages consumed by utilizing food images acquired with a mobile device. Color correction serves as a critical step to ensure accurate food identification and volume estimation. We make use of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging system so that the variations of food appearance under different lighting conditions can be determined. In this paper, we propose an image quality enhancement technique by combining image de-blurring and color correction. The contribution consists of introducing an automatic camera shake removal method using a saliency map and improving the polynomial color correction model using the LMS color space.

  2. The development of a multifunction lens test instrument by using computer aided variable test patterns

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-08-01

    A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.

  3. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J; Imbergamo, P

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less

  4. Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151.

    PubMed

    Jones, A Kyle; Heintz, Philip; Geiser, William; Goldman, Lee; Jerjian, Khachig; Martin, Melissa; Peck, Donald; Pfeiffer, Douglas; Ranger, Nicole; Yorkston, John

    2015-11-01

    Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist is responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography.

  5. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  6. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    NASA Astrophysics Data System (ADS)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  7. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  8. Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Geiser, William; Heintz, Philip

    Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist ismore » responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography.« less

  9. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  10. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  11. Imaging in syndesmotic injury: a systematic literature review.

    PubMed

    Krähenbühl, Nicola; Weinberg, Maxwell W; Davidson, Nathan P; Mills, Megan K; Hintermann, Beat; Saltzman, Charles L; Barg, Alexej

    2018-05-01

    To give a systematic overview of current diagnostic imaging options for assessment of the distal tibio-fibular syndesmosis. A systematic literature search across the following sources was performed: PubMed, ScienceDirect, Google Scholar, and SpringerLink. Forty-two articles were included and subdivided into three groups: group one consists of studies using conventional radiographs (22 articles), group two includes studies using computed tomography (CT) scans (15 articles), and group three comprises studies using magnet resonance imaging (MRI, 9 articles).The following data were extracted: imaging modality, measurement method, number of participants and ankles included, average age of participants, sensitivity, specificity, and accuracy of the measurement technique. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the methodological quality. The three most common techniques used for assessment of the syndesmosis in conventional radiographs are the tibio-fibular clear space (TFCS), the tibio-fibular overlap (TFO), and the medial clear space (MCS). Regarding CT scans, the tibio-fibular width (axial images) was most commonly used. Most of the MRI studies used direct assessment of syndesmotic integrity. Overall, the included studies show low probability of bias and are applicable in daily practice. Conventional radiographs cannot predict syndesmotic injuries reliably. CT scans outperform plain radiographs in detecting syndesmotic mal-reduction. Additionally, the syndesmotic interval can be assessed in greater detail by CT. MRI measurements achieve a sensitivity and specificity of nearly 100%; however, correlating MRI findings with patients' complaints is difficult, and utility with subtle syndesmotic instability needs further investigation. Overall, the methodological quality of these studies was satisfactory.

  12. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  13. The optimal balance between quality and efficiency in proton radiography imaging technique at various proton beam energies: A Monte Carlo study.

    PubMed

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Koffeman, E N; Nakaji, T; Takatsu, J; Visser, J; Brandenburg, S

    2017-09-01

    Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3-5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate. In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150MeV, 190MeV and 230MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton's direction and position. A scattering angle cut of 8.7mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Moving beyond quality control in diagnostic radiology and the role of the clinically qualified medical physicist.

    PubMed

    Delis, H; Christaki, K; Healy, B; Loreti, G; Poli, G L; Toroi, P; Meghzifene, A

    2017-09-01

    Quality control (QC), according to ISO definitions, represents the most basic level of quality. It is considered to be the snapshot of the performance or the characteristics of a product or service, in order to verify that it complies with the requirements. Although it is usually believed that "the role of medical physicists in Diagnostic Radiology is QC", this, not only limits the contribution of medical physicists, but is also no longer adequate to meet the needs of Diagnostic Radiology in terms of Quality. In order to assure quality practices more organized activities and efforts are required in the modern era of diagnostic radiology. The complete system of QC is just one element of a comprehensive quality assurance (QA) program that aims at ensuring that the requirements of quality of a product or service will consistently be fulfilled. A comprehensive Quality system, starts even before the procurement of any equipment, as the need analysis and the development of specifications are important components under the QA framework. Further expanding this framework of QA, a comprehensive Quality Management System can provide additional benefits to a Diagnostic Radiology service. Harmonized policies and procedures and elements such as mission statement or job descriptions can provide clarity and consistency in the services provided, enhancing the outcome and representing a solid platform for quality improvement. The International Atomic Energy Agency (IAEA) promotes this comprehensive quality approach in diagnostic imaging and especially supports the field of comprehensive clinical audits as a tool for quality improvement. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. A rapid communication from the AAPM Task Group 201: recommendations for the QA of external beam radiotherapy data transfer. AAPM TG 201: quality assurance of external beam radiotherapy data transfer.

    PubMed

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Santanam, Lakshmi; Blodgett, Kurt; Curran, Bruce H; Engelsman, Martijn; Feng, Wenzheng; Mechalakos, Jim; Pavord, Dan; Simon, Tom; Sutlieff, Steven; Zhu, X Ronald

    2010-12-04

    The transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records. QA of the database state (logical consistency and information integrity) is also addressed to ensure that accurate data are transferred.

  16. Clinical image quality evaluation for panoramic radiography in Korean dental clinics

    PubMed Central

    Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak

    2012-01-01

    Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969

  17. In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-01-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  18. A three-dimensional quality-guided phase unwrapping method for MR elastography

    NASA Astrophysics Data System (ADS)

    Wang, Huifang; Weaver, John B.; Perreard, Irina I.; Doyley, Marvin M.; Paulsen, Keith D.

    2011-07-01

    Magnetic resonance elastography (MRE) uses accumulated phases that are acquired at multiple, uniformly spaced relative phase offsets, to estimate harmonic motion information. Heavily wrapped phase occurs when the motion is large and unwrapping procedures are necessary to estimate the displacements required by MRE. Two unwrapping methods were developed and compared in this paper. The first method is a sequentially applied approach. The three-dimensional MRE phase image block for each slice was processed by two-dimensional unwrapping followed by a one-dimensional phase unwrapping approach along the phase-offset direction. This unwrapping approach generally works well for low noise data. However, there are still cases where the two-dimensional unwrapping method fails when noise is high. In this case, the baseline of the corrupted regions within an unwrapped image will not be consistent. Instead of separating the two-dimensional and one-dimensional unwrapping in a sequential approach, an interleaved three-dimensional quality-guided unwrapping method was developed to combine both the two-dimensional phase image continuity and one-dimensional harmonic motion information. The quality of one-dimensional harmonic motion unwrapping was used to guide the three-dimensional unwrapping procedures and it resulted in stronger guidance than in the sequential method. In this work, in vivo results generated by the two methods were compared.

  19. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  20. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  1. Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela; Iskandrian, Ami E; Krumholz, Harlan M; Gillam, Linda; Hendel, Robert; Jollis, James; Peterson, Eric; Chen, Jersey; Masoudi, Frederick; Mohler, Emile; McNamara, Robert L; Patel, Manesh R; Spertus, John

    2006-11-21

    Cardiovascular imaging has enjoyed both rapid technological advances and sustained growth, yet less attention has been focused on quality than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met, and this report provides an overview of the discussions. A consensus definition of quality in imaging and a convergence of opinion on quality measures across imaging modalities was achieved and are intended to be the start of a process culminating in the development, dissemination, and adoption of quality measures for all cardiovascular imaging modalities.

  2. Improving Performance During Image-Guided Procedures

    PubMed Central

    Duncan, James R.; Tabriz, David

    2015-01-01

    Objective Image-guided procedures have become a mainstay of modern health care. This article reviews how human operators process imaging data and use it to plan procedures and make intraprocedural decisions. Methods A series of models from human factors research, communication theory, and organizational learning were applied to the human-machine interface that occupies the center stage during image-guided procedures. Results Together, these models suggest several opportunities for improving performance as follows: 1. Performance will depend not only on the operator’s skill but also on the knowledge embedded in the imaging technology, available tools, and existing protocols. 2. Voluntary movements consist of planning and execution phases. Performance subscores should be developed that assess quality and efficiency during each phase. For procedures involving ionizing radiation (fluoroscopy and computed tomography), radiation metrics can be used to assess performance. 3. At a basic level, these procedures consist of advancing a tool to a specific location within a patient and using the tool. Paradigms from mapping and navigation should be applied to image-guided procedures. 4. Recording the content of the imaging system allows one to reconstruct the stimulus/response cycles that occur during image-guided procedures. Conclusions When compared with traditional “open” procedures, the technology used during image-guided procedures places an imaging system and long thin tools between the operator and the patient. Taking a step back and reexamining how information flows through an imaging system and how actions are conveyed through human-machine interfaces suggest that much can be learned from studying system failures. In the same way that flight data recorders revolutionized accident investigations in aviation, much could be learned from recording video data during image-guided procedures. PMID:24921628

  3. Portable radiography: a reality and necessity for ISS and explorer-class missions.

    PubMed

    Lerner, David J; Parmet, Allen J

    2015-02-01

    On ISS missions and explorer class missions, unexpected medical and surgical emergencies could be disastrous. Lack of ability to rapidly assess and make critical decisions affects mission capability. Current imaging modalities on ISS consist only of ultrasound. There are many acute diagnoses which ultrasound alone cannot diagnose. Portable X-Ray imaging (radiography) technology has advanced far enough to where it is now small enough, cheap enough, and accurate enough to give diagnostic quality images sent wirelessly to the onboard computer and on Earth for interpretation while fitting in something the size of a briefcase. Although further research is warranted, Portable Radiography is an important addition to have on ISS and future Explorer Class Missions while maintaining a very small footprint.

  4. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  5. Imaging industry expectations for compressed sensing in MRI

    NASA Astrophysics Data System (ADS)

    King, Kevin F.; Kanwischer, Adriana; Peters, Rob

    2015-09-01

    Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm concerns include the decision of which algorithms to implement as well as the problem of optimal setting of adjustable parameters. It will take imaging vendors several years to work through these challenges and provide solutions for a wide range of applications.

  6. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  7. A mask quality control tool for the OSIRIS multi-object spectrograph

    NASA Astrophysics Data System (ADS)

    López-Ruiz, J. C.; Vaz Cedillo, Jacinto Javier; Ederoclite, Alessandro; Bongiovanni, Ángel; González Escalera, Víctor

    2012-09-01

    OSIRIS multi object spectrograph uses a set of user-customised-masks, which are manufactured on-demand. The manufacturing process consists of drilling the specified slits on the mask with the required accuracy. Ensuring that slits are on the right place when observing is of vital importance. We present a tool for checking the quality of the process of manufacturing the masks which is based on analyzing the instrument images obtained with the manufactured masks on place. The tool extracts the slit information from these images, relates specifications with the extracted slit information, and finally communicates to the operator if the manufactured mask fulfills the expectations of the mask designer. The proposed tool has been built using scripting languages and using standard libraries such as opencv, pyraf and scipy. The software architecture, advantages and limits of this tool in the lifecycle of a multiobject acquisition are presented.

  8. The GeoEye Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Dial, Gene; Cole, Aaron; Lutes, James; McKune, John; Martinez, Mike; Rao, R. S.; Taylor, Martin

    2007-01-01

    The GeoEye Constellation consists of: a) IKONOS and OrbView-3 for high resolution; b) GeoEye with higher resolution 1Q2007; c) RESOUCESAT-1 for global crop assessment; d) OrbView-2 for ocean research and fish. IKONOS performance in 2005 included stable image quality, radiometry and geometric accuracy. reliability is 80% to 2008. Demonstrated capacity for high-volume, quick-response collection and production.

  9. One Step Forward and Two Steps Back: A Study of the Image of Women in the 100 Basic Works of Literature in Turkey

    ERIC Educational Resources Information Center

    Cer, Erkan

    2015-01-01

    Children's books of literary quality may affect gender perception, self-perception, and the social roles of children through the illustrations, main characters, and situations that they reflect. The Turkish Ministry of Education suggested a list consisting of stories, novels, poetry, and puns under the title "100 Basic Works of…

  10. Improved Peritoneal Cavity and Abdominal Organ Imaging Using a Biphasic Contrast Agent Protocol and Spectral Photon Counting Computed Tomography K-Edge Imaging.

    PubMed

    Si-Mohamed, Salim; Thivolet, Arnaud; Bonnot, Pierre-Emmanuel; Bar-Ness, Daniel; Képénékian, Vahan; Cormode, David P; Douek, Philippe; Rousset, Pascal

    2018-05-23

    To validate in vitro the capability of a high-spatial-resolution prototype spectral photon-counting computed tomography (SPCCT) scanner to differentiate between 2 contrast agents and to assess in vivo the image quality and the feasibility to image the peritoneal cavity in rats using the 2 contrast agents simultaneously within the vascular and peritoneal compartments. The authors performed SPCCT imaging (100 mAs, 120 kVp) with energy bin thresholds set to 30, 51, 64, 72, and 85 keV in vitro on a custom-made polyoxymethylene cylindrical phantom consisting of tubes with dilutions of both contrast agents and in vivo on 2 groups of adult rats using 2 injection protocols. Approval from the institutional animal ethics committee was obtained. One group received macrocylic gadolinium chelate intraperitoneal (IP) and iodine intravenous (IV) injections (protocol A, n = 3), whereas the second group received iodine IP and gadolinium IV (protocol B, n = 3). Helical scans were performed 35 minutes after IP injection and 20 seconds after IV injection. The SPCCT and contrast material images, that is, iodine and gadolinium maps, were reconstructed with a field of view of 160 mm, an isotropic voxel size of 250 μm, and a matrix size of 640 × 640 pixels using a soft reconstruction kernel. The SPCCT images were reconstructed with 2 different spatial resolutions to compare the image quality (sharpness, diagnostic quality, and organ visualization) of SPCCT (250 μm) with single-energy computed tomography (CT) (600 μm). Two radiologists evaluated the peritoneal opacification index in 13 regions (score = 0-3 per region) on each type of image. Concentrations of contrast agents were measured in the organs of interest. In vitro, the concentration measurements correlated well with the expected concentrations. The linear regressions both had R values of 0.99, slopes of 0.84 and 0.87, and offsets at -0.52 and -0.38 mg/mL for iodine and gadolinium, respectively. In vivo, the SPCCT images were of better diagnostic quality, with increased sharpness compared with the CT-like images (P < 0.0001). Intraperitoneal diffusion was excellent, with similar peritoneal opacification index on SPCCT images and overlay of contrast material maps (P = 1) without a significant difference between protocol A (37.0 ± 1.7) and protocol B (35.3 ± 1.5) (P = 0.34). Only the contrast material maps demonstrated clear visual separation of the contrast agents, allowing specific quantification of the physiological enhancement in the liver, spleen, and kidney and the urinary clearance in the renal pelvis and bladder. Renal excretion of the contrast agents injected IP was observed and was consistent with blood diffusion. Spectral photon-counting CT can be used to perform a complete peritoneal dual-contrast protocol, enabling a good assessment of the peritoneal cavity and abdominal organs in rats.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  11. Local dynamic range compensation for scanning electron microscope imaging system by sub-blocking multiple peak HE with convolution.

    PubMed

    Sim, K S; Teh, V; Tey, Y C; Kho, T K

    2016-11-01

    This paper introduces new development technique to improve the Scanning Electron Microscope (SEM) image quality and we name it as sub-blocking multiple peak histogram equalization (SUB-B-MPHE) with convolution operator. By using this new proposed technique, it shows that the new modified MPHE performs better than original MPHE. In addition, the sub-blocking method consists of convolution operator which can help to remove the blocking effect for SEM images after applying this new developed technique. Hence, by using the convolution operator, it effectively removes the blocking effect by properly distributing the suitable pixel value for the whole image. Overall, the SUB-B-MPHE with convolution outperforms the rest of methods. SCANNING 38:492-501, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  12. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  13. Photoplus: auxiliary information for printed images based on distributed source coding

    NASA Astrophysics Data System (ADS)

    Samadani, Ramin; Mukherjee, Debargha

    2008-01-01

    A printed photograph is difficult to reuse because the digital information that generated the print may no longer be available. This paper describes a mechanism for approximating the original digital image by combining a scan of the printed photograph with small amounts of digital auxiliary information kept together with the print. The auxiliary information consists of a small amount of digital data to enable accurate registration and color-reproduction, followed by a larger amount of digital data to recover residual errors and lost frequencies by distributed Wyner-Ziv coding techniques. Approximating the original digital image enables many uses, including making good quality reprints from the original print, even when they are faded many years later. In essence, the print itself becomes the currency for archiving and repurposing digital images, without requiring computer infrastructure.

  14. A Protective Eye Shield for Prevention of Media Opacities during Small Animal Ocular Imaging

    PubMed Central

    Bell, Brent A.; Kaul, Charles; Hollyfield, Joe G.

    2014-01-01

    Optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO) and other non-invasive imaging techniques are increasingly used in eye research to document disease-related changes in rodent eyes. Corneal dehydration is a major contributor to the formation of ocular opacities that can limit the repeated application of these techniques to individual animals. General anesthesia is usually required for imaging, which is accompanied by the loss of the blink reflex. As a consequence, the tear film cannot be maintained, drying occurs and the cornea becomes dehydrated. Without supplemental hydration, structural damage to the cornea quickly follows. Soon thereafter, anterior lens opacities can also develop. Collectively these changes ultimately compromise image quality, especially for studies involving repeated use of the same animal over several weeks or months. To minimize these changes, a protective shield was designed for mice and rats that prevent ocular dehydration during anesthesia. The eye shield, along with a semi-viscous ophthalmic solution, is placed over the corneas as soon as the anesthesia immobilizes the animal. Eye shields are removed for only the brief periods required for imaging and then reapplied before the fellow eye is examined. As a result, the corneal surface of each eye is exposed only for the time required for imaging. The device and detailed methods described here minimize the corneal and lens changes associated with ocular surface desiccation. When these methods are used consistently, high quality images can be obtained repeatedly from individual animals. PMID:25245081

  15. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  16. Dual-pulse frequency compounded superharmonic imaging.

    PubMed

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.

  17. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  18. A low-cost method for visible fluorescence imaging.

    PubMed

    Tarver, Crissy L; Pusey, Marc

    2017-12-01

    A wide variety of crystallization solutions are screened to establish conditions that promote the growth of a diffraction-quality crystal. Screening these conditions requires the assessment of many crystallization plates for the presence of crystals. Automated systems for screening and imaging are very expensive. A simple approach to imaging trace fluorescently labeled protein crystals in crystallization plates has been devised, and can be implemented at a cost as low as $50. The proteins β-lactoglobulin B, trypsin and purified concanavalin A (ConA) were trace fluorescently labeled using three different fluorescent probes: Cascade Yellow (CY), Carboxyrhodamine 6G (CR) and Pacific Blue (PB). A crystallization screening plate was set up using β-lactoglobulin B labeled with CR, trypsin labeled with CY, ConA labeled with each probe, and a mixture consisting of 50% PB-labeled ConA and 50% CR-labeled ConA. The wells of these plates were imaged using a commercially available macro-imaging lens attachment for smart devices that have a camera. Several types of macro lens attachments were tested with smartphones and tablets. Images with the highest quality were obtained with an iPhone 6S and an AUKEY Ora 10× macro lens. Depending upon the fluorescent probe employed and its Stokes shift, a light-emitting diode or a laser diode was used for excitation. An emission filter was used for the imaging of protein crystals labeled with CR and crystals with two-color fluorescence. This approach can also be used with microscopy systems commonly used to observe crystallization plates.

  19. Optical tests for using smartphones inside medical devices

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David

    2018-02-01

    Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.

  20. Blind image quality assessment without training on human opinion scores

    NASA Astrophysics Data System (ADS)

    Mittal, Anish; Soundararajan, Rajiv; Muralidhar, Gautam S.; Bovik, Alan C.; Ghosh, Joydeep

    2013-03-01

    We propose a family of image quality assessment (IQA) models based on natural scene statistics (NSS), that can predict the subjective quality of a distorted image without reference to a corresponding distortionless image, and without any training results on human opinion scores of distorted images. These `completely blind' models compete well with standard non-blind image quality indices in terms of subjective predictive performance when tested on the large publicly available `LIVE' Image Quality database.

  1. Slow-rotation dynamic SPECT with a temporal second derivative constraint.

    PubMed

    Humphries, T; Celler, A; Trummer, M

    2011-08-01

    Dynamic tracer behavior in the human body arises as a result of continuous physiological processes. Hence, the change in tracer concentration within a region of interest (ROI) should follow a smooth curve. The authors propose a modification to an existing slow-rotation dynamic SPECT reconstruction algorithm (dSPECT) with the goal of improving the smoothness of time activity curves (TACs) and other properties of the reconstructed image. The new method, denoted d2EM, imposes a constraint on the second derivative (concavity) of the TAC in every voxel of the reconstructed image, allowing it to change sign at most once. Further constraints are enforced to prevent other nonphysical behaviors from arising. The new method is compared with dSPECT using digital phantom simulations and experimental dynamic 99mTc -DTPA renal SPECT data, to assess any improvement in image quality. In both phantom simulations and healthy volunteer experiments, the d2EM method provides smoother TACs than dSPECT, with more consistent shapes in regions with dynamic behavior. Magnitudes of TACs within an ROI still vary noticeably in both dSPECT and d2EM images, but also in images produced using an OSEM approach that reconstructs each time frame individually, based on much more complete projection data. TACs produced by averaging over a region are similar using either method, even for small ROIs. Results for experimental renal data show expected behavior in images produced by both methods, with d2EM providing somewhat smoother mean TACs and more consistent TAC shapes. The d2EM method is successful in improving the smoothness of time activity curves obtained from the reconstruction, as well as improving consistency of TAC shapes within ROIs.

  2. Developing and evaluating a target-background similarity metric for camouflage detection.

    PubMed

    Lin, Chiuhsiang Joe; Chang, Chi-Chan; Liu, Bor-Shong

    2014-01-01

    Measurement of camouflage performance is of fundamental importance for military stealth applications. The goal of camouflage assessment algorithms is to automatically assess the effect of camouflage in agreement with human detection responses. In a previous study, we found that the Universal Image Quality Index (UIQI) correlated well with the psychophysical measures, and it could be a potentially camouflage assessment tool. In this study, we want to quantify the camouflage similarity index and psychophysical results. We compare several image quality indexes for computational evaluation of camouflage effectiveness, and present the results of an extensive human visual experiment conducted to evaluate the performance of several camouflage assessment algorithms and analyze the strengths and weaknesses of these algorithms. The experimental data demonstrates the effectiveness of the approach, and the correlation coefficient result of the UIQI was higher than those of other methods. This approach was highly correlated with the human target-searching results. It also showed that this method is an objective and effective camouflage performance evaluation method because it considers the human visual system and image structure, which makes it consistent with the subjective evaluation results.

  3. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.

  4. Analysis of full disc Ca II K spectroheliograms. I. Photometric calibration and centre-to-limb variation compensation

    NASA Astrophysics Data System (ADS)

    Chatzistergos, Theodosios; Ermolli, Ilaria; Solanki, Sami K.; Krivova, Natalie A.

    2018-01-01

    Context. Historical Ca II K spectroheliograms (SHG) are unique in representing long-term variations of the solar chromospheric magnetic field. They usually suffer from numerous problems and lack photometric calibration. Thus accurate processing of these data is required to get meaningful results from their analysis. Aims: In this paper we aim at developing an automatic processing and photometric calibration method that provides precise and consistent results when applied to historical SHG. Methods: The proposed method is based on the assumption that the centre-to-limb variation of the intensity in quiet Sun regions does not vary with time. We tested the accuracy of the proposed method on various sets of synthetic images that mimic problems encountered in historical observations. We also tested our approach on a large sample of images randomly extracted from seven different SHG archives. Results: The tests carried out on the synthetic data show that the maximum relative errors of the method are generally <6.5%, while the average error is <1%, even if rather poor quality observations are considered. In the absence of strong artefacts the method returns images that differ from the ideal ones by <2% in any pixel. The method gives consistent values for both plage and network areas. We also show that our method returns consistent results for images from different SHG archives. Conclusions: Our tests show that the proposed method is more accurate than other methods presented in the literature. Our method can also be applied to process images from photographic archives of solar observations at other wavelengths than Ca II K.

  5. A virtual image chain for perceived image quality of medical display

    NASA Astrophysics Data System (ADS)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  6. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, B; Asprey, W; Yan, Y

    Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less

  8. A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin

    NASA Astrophysics Data System (ADS)

    Carstens, D.; Amer, R. M.

    2017-12-01

    The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that decrease in dissolved oxygen and phosphorus, and the increase in specific conductance, nitrogen and pH from 1985 to 2015 are consistent with the rate of urban sprawl that occurred during this time period. Future work will include analysis of changes in agricultural and industrial activities and correlation with changes of water quality parameters.

  9. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    PubMed

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.

  10. Remote assessment of acne: the use of acne grading tools to evaluate digital skin images.

    PubMed

    Bergman, Hagit; Tsai, Kenneth Y; Seo, Su-Jean; Kvedar, Joseph C; Watson, Alice J

    2009-06-01

    Digital imaging of dermatology patients is a novel approach to remote data collection. A number of assessment tools have been developed to grade acne severity and to track clinical progress over time. Although these tools have been validated when used in a face-to-face setting, their efficacy and reliability when used to assess digital images have not been examined. The main purpose of this study was to determine whether specific assessment tools designed to grade acne during face-to-face visits can be applied to the evaluation of digital images. The secondary purpose was to ascertain whether images obtained by subjects are of adequate quality to allow such assessments to be made. Three hundred (300) digital images of patients with mild to moderate facial inflammatory acne from an ongoing randomized-controlled study were included in this analysis. These images were obtained from 20 patients and consisted of sets of 3 images taken over time. Of these images, 120 images were captured by subjects themselves and 180 were taken by study staff. Subjects were asked to retake their photographs if the initial images were deemed of poor quality by study staff. Images were evaluated by two dermatologists-in-training using validated acne assessment measures: Total Inflammatory Lesion Count, Leeds technique, and the Investigator's Global Assessment. Reliability of raters was evaluated using correlation coefficients and kappa statistics. Of the different acne assessment measures tested, the inter-rater reliability was highest for the total inflammatory lesion count (r = 0.871), but low for the Leeds technique (kappa = 0.381) and global assessment (kappa = 0.3119). Raters were able to evaluate over 89% of all images using each type of acne assessment measure despite the fact that images obtained by study staff were of higher quality than those obtained by patients (p < 0.001). Several existing clinical assessment measures can be used to evaluate digital images obtained from subjects with inflammatory acne lesions. The level of inter-rater agreement is highly variable across assessment measures, and we found the Total Inflammatory Lesion Count to be the most reliable. This measure could be used to allow a dermatologist to remotely track a patient's progress over time.

  11. Blind image quality assessment based on aesthetic and statistical quality-aware features

    NASA Astrophysics Data System (ADS)

    Jenadeleh, Mohsen; Masaeli, Mohammad Masood; Moghaddam, Mohsen Ebrahimi

    2017-07-01

    The main goal of image quality assessment (IQA) methods is the emulation of human perceptual image quality judgments. Therefore, the correlation between objective scores of these methods with human perceptual scores is considered as their performance metric. Human judgment of the image quality implicitly includes many factors when assessing perceptual image qualities such as aesthetics, semantics, context, and various types of visual distortions. The main idea of this paper is to use a host of features that are commonly employed in image aesthetics assessment in order to improve blind image quality assessment (BIQA) methods accuracy. We propose an approach that enriches the features of BIQA methods by integrating a host of aesthetics image features with the features of natural image statistics derived from multiple domains. The proposed features have been used for augmenting five different state-of-the-art BIQA methods, which use statistical natural scene statistics features. Experiments were performed on seven benchmark image quality databases. The experimental results showed significant improvement of the accuracy of the methods.

  12. Real-time Implementation of a Dual-Mode Ultrasound Array System: In Vivo Results

    PubMed Central

    Casper, Andrew J.; Liu, Dalong; Ballard, John R.; Ebbini, Emad S.

    2013-01-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array and modular multi-channel transmitter/receiver. It is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays (FPGA) and graphical processing units (GPU) is used to enable real-time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small and large animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA’s ability to form anatomically-correct images with sufficient contrast in an extended field of view (FOV) around its geometric center. In addition, high frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during HIFU exposures with 45 – 50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its fnumber and bandwidth with well behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound. PMID:23708766

  13. Real-time implementation of a dual-mode ultrasound array system: in vivo results.

    PubMed

    Casper, Andrew J; Liu, Dalong; Ballard, John R; Ebbini, Emad S

    2013-10-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.

  14. CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation

    PubMed Central

    Wilke, Marko; Altaye, Mekibib; Holland, Scott K.

    2017-01-01

    Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348

  15. CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.

    PubMed

    Wilke, Marko; Altaye, Mekibib; Holland, Scott K

    2017-01-01

    Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.

  16. Reliability of a visual scoring system with fluorescent tracers to assess dermal pesticide exposure.

    PubMed

    Aragon, Aurora; Blanco, Luis; Lopez, Lylliam; Liden, Carola; Nise, Gun; Wesseling, Catharina

    2004-10-01

    We modified Fenske's semi-quantitative 'visual scoring system' of fluorescent tracer deposited on the skin of pesticide applicators and evaluated its reproducibility in the Nicaraguan setting. The body surface of 33 farmers, divided into 31 segments, was videotaped in the field after spraying with a pesticide solution containing a fluorescent tracer. A portable UV lamp was used for illumination in a foldaway dark room. The videos of five farmers were randomly selected. The scoring was based on a matrix with extension of fluorescent patterns (scale 0-5) on the ordinate and intensity (scale 0-5) on the abscissa, with the product of these two ranks as the final score for each body segment (0-25). Five medical students rated and evaluated the quality of 155 video images having undergone 4 h of training. Cronbach alpha coefficients and two-way random effects intraclass correlation coefficients (ICC) with absolute agreement were computed to assess inter-rater reliability. Consistency was high (Cronbach alpha = 0.96), but the scores differed substantially between raters. The overall ICC was satisfactory [0.75; 95% confidence interval (CI) = 0.62-0.83], but it was lower for intensity (0.54; 95% CI = 0.40-0.66) and higher for extension (0.80; 95% CI = 0.71-0.86). ICCs were lowest for images with low scores and evaluated as low quality, and highest for images with high scores and high quality. Inter-rater reliability coefficients indicate repeatability of the scoring system. However, field conditions for recording fluorescence should be improved to achieve higher quality images, and training should emphasize a better mechanism for the reading of body areas with low contamination.

  17. Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks

    NASA Technical Reports Server (NTRS)

    Carr, James L.; Madani, Houria

    2007-01-01

    Geostationary Operational Environmental Satellite (GOES) Image Navigation and Registration (INR) performance is specified at the 3- level, meaning that 99.7% of a collection of individual measurements must comply with specification thresholds. Landmarks are measured by the Replacement Product Monitor (RPM), part of the operational GOES ground system, to assess INR performance and to close the INR loop. The RPM automatically discriminates between valid and invalid measurements enabling it to run without human supervision. In general, this screening is reliable, but a small population of invalid measurements will be falsely identified as valid. Even a small population of invalid measurements can create problems when assessing performance at the 3-sigma level. This paper describes an additional layer of quality control whereby landmarks of the highest quality ("platinum") are identified by their self-consistency. The platinum screening criteria are not simple statistical outlier tests against sigma values in populations of INR errors. In-orbit INR performance metrics for GOES-12 and GOES-13 are presented using the platinum landmark methodology.

  18. Evaluation of image quality of digital photo documentation of female genital injuries following sexual assault.

    PubMed

    Ernst, E J; Speck, Patricia M; Fitzpatrick, Joyce J

    2011-12-01

    With the patient's consent, physical injuries sustained in a sexual assault are evaluated and treated by the sexual assault nurse examiner (SANE) and documented on preprinted traumagrams and with photographs. Digital imaging is now available to the SANE for documentation of sexual assault injuries, but studies of the image quality of forensic digital imaging of female genital injuries after sexual assault were not found in the literature. The Photo Documentation Image Quality Scoring System (PDIQSS) was developed to rate the image quality of digital photo documentation of female genital injuries after sexual assault. Three expert observers performed evaluations on 30 separate images at two points in time. An image quality score, the sum of eight integral technical and anatomical attributes on the PDIQSS, was obtained for each image. Individual image quality ratings, defined by rating image quality for each of the data, were also determined. The results demonstrated a high level of image quality and agreement when measured in all dimensions. For the SANE in clinical practice, the results of this study indicate that a high degree of agreement exists between expert observers when using the PDIQSS to rate image quality of individual digital photographs of female genital injuries after sexual assault. © 2011 International Association of Forensic Nurses.

  19. Comparison of 10 digital SLR cameras for orthodontic photography.

    PubMed

    Bister, D; Mordarai, F; Aveling, R M

    2006-09-01

    Digital photography is now widely used to document orthodontic patients. High quality intra-oral photography depends on a satisfactory 'depth of field' focus and good illumination. Automatic 'through the lens' (TTL) metering is ideal to achieve both the above aims. Ten current digital single lens reflex (SLR) cameras were tested for use in intra- and extra-oral photography as used in orthodontics. The manufacturers' recommended macro-lens and macro-flash were used with each camera. Handling characteristics, colour-reproducibility, quality of the viewfinder and flash recharge time were investigated. No camera took acceptable images in factory default setting or 'automatic' mode: this mode was not present for some cameras (Nikon, Fujifilm); led to overexposure (Olympus) or poor depth of field (Canon, Konica-Minolta, Pentax), particularly for intra-oral views. Once adjusted, only Olympus cameras were able to take intra- and extra-oral photographs without the need to change settings, and were therefore the easiest to use. All other cameras needed adjustments of aperture (Canon, Konica-Minolta, Pentax), or aperture and flash (Fujifilm, Nikon), making the latter the most complex to use. However, all cameras produced high quality intra- and extra-oral images, once appropriately adjusted. The resolution of the images is more than satisfactory for all cameras. There were significant differences relating to the quality of colour reproduction, size and brightness of the viewfinders. The Nikon D100 and Fujifilm S 3 Pro consistently scored best for colour fidelity. Pentax and Konica-Minolta had the largest and brightest viewfinders.

  20. Development of a technique for contrast radiographic examination of the gastrointestinal tract in ball pythons (Python regius).

    PubMed

    Banzato, Tommaso; Russo, Elisa; Finotti, Luca; Zotti, Alessandro

    2012-07-01

    To develop a technique for radiographic evaluation of the gastrointestinal tract in ball pythons (Python regius). 10 ball python cadavers (5 males and 5 females) and 18 healthy adult ball pythons (10 males and 8 females). Live snakes were allocated to 3 groups (A, B, and C). A dose (25 mL/kg) of barium sulfate suspension at 3 concentrations (25%, 35%, and 45% [wt/vol]) was administered through an esophageal probe to snakes in groups A, B, and C, respectively. Each evaluation ended when all the contrast medium had reached the large intestine. Transit times through the esophagus, stomach, and small intestine were recorded. Imaging quality was evaluated by 3 investigators who assigned a grading score on the basis of predetermined criteria. Statistical analysis was conducted to evaluate differences in quality among the study groups. The esophagus and stomach had a consistent distribution pattern of contrast medium, whereas 3 distribution patterns of contrast medium were identified in the small intestine, regardless of barium concentration. Significant differences in imaging quality were detected among the 3 groups. Radiographic procedures were tolerated well by all snakes. The 35% concentration of contrast medium yielded the best imaging quality. Use of contrast medium for evaluation of the cranial portion of the gastrointestinal tract could be a reliable technique for the diagnosis of gastrointestinal diseases in ball pythons. However, results of this study may not translate to other snake species because of variables identified in this group of snakes.

  1. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  2. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  3. A risk index for pediatric patients undergoing diagnostic imaging with 99mTc-dimercaptosuccinic acid that accounts for body habitus

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; Plyku, Donika; Sgouros, George; Fahey, Frederic H.; Treves, S. Ted; Frey, Eric C.; Bolch, Wesley E.

    2016-03-01

    Published guidelines for administered activity to pediatric patients undergoing diagnostic nuclear medicine imaging are currently obtained through expert consensus of the minimum values as a function of body weight as required to yield diagnostic quality images. We have previously shown that consideration of body habitus is also important in obtaining diagnostic quality images at the lowest administered activity. The objective of this study was to create a series of computational phantoms that realistically portray the anatomy of the pediatric patient population which can be used to develop and validate techniques to minimize radiation dose while maintaining adequate image quality. To achieve this objective, we have defined an imaging risk index that may be used in future studies to develop pediatric patient dosing guidelines. A population of 48 hybrid phantoms consisting of non-uniform B-spline surfaces and polygon meshes was generated. The representative ages included the newborn, 1 year, 5 year, 10 year and 15 year male and female. For each age, the phantoms were modeled at their 10th, 50th, and 90th height percentile each at a constant 50th weight percentile. To test the impact of kidney size, the newborn phantoms were modeled with the following three kidney volumes:  -15%, average, and  +15%. To illustrate the impact of different morphologies on dose optimization, we calculated the effective dose for each phantom using weight-based 99mTc-DMSA activity administration. For a given patient weight, body habitus had a considerable effect on effective dose. Substantial variations were observed in the risk index between the 10th and 90th percentile height phantoms from the 50th percentile phantoms for a given age, with the greatest difference being 18%. There was a dependence found between kidney size and risk of radiation induced kidney cancer, with the highest risk indices observed in newborns with the smallest kidneys. Overall, the phantoms and techniques in this study can be used to provide data to refine dosing guidelines for pediatric nuclear imaging studies while taking into account the effects on both radiation dose and image quality. This work was supported by:R01 EB013558 with the National Institute for Biomedical Imaging and Bioengineering (NIBIB).

  4. Past, present, and future of sublimation transfer imaging

    NASA Astrophysics Data System (ADS)

    Akada, Masanori

    1990-07-01

    SONY's announcement of tlavica system shaked the world in 1981. In the new nonphotographic imaging system, image is acquired with CCD to be converted into electric image-signal, stored in magnetic recording media,displayed on a CR1 and printed on a special sheet. To get a hard copy, Sublimation Transfer technology was developed. That announcement brought about world-wide R&D of competitive color imaging systems: Ink-jet, Wax transfer,. Sublimation Transfer(ST) and Electrophotography. In spite of much effort,most of those were insufficient for getting a good hard copy. Developing sufficient ST recording media, Dai Nippon Printing started ST recording media business in 1986. It was the first manufacturing scale production and sale of ST recording media in the world. Nowadays ST technology is known for its advantages: high image quality, consistency from copy to copy, smooth tone-reproduction from high-light to maximum density, and easiness to use. In the following paper progress of ST recording media and the present situation and future markets of the media will be presented.

  5. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  6. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    PubMed

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  7. Developing new extension of GafChromic RTQA2 film to patient quality assurance field using a plan-based calibration method

    NASA Astrophysics Data System (ADS)

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2015-10-01

    GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter. Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method. The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90%  ±  1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality. By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the calibration curve.

  8. Content-based image retrieval in medical applications for picture archiving and communication systems

    NASA Astrophysics Data System (ADS)

    Lehmann, Thomas M.; Guld, Mark O.; Thies, Christian; Fischer, Benedikt; Keysers, Daniel; Kohnen, Michael; Schubert, Henning; Wein, Berthold B.

    2003-05-01

    Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists" workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.

  9. An imaging method of wavefront coding system based on phase plate rotation

    NASA Astrophysics Data System (ADS)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  10. Quality Control and Reproducibility in M-mode, Two-dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year-25 Examination Experience

    PubMed Central

    Armstrong, Anderson C.; Ricketts, Erin P.; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; RDCS; Sidney, Stephen; Lewis, Cora E.; Schreiner, Pamela J.; Shikany, James M.; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S.; Lima, João A. C.

    2014-01-01

    Introduction Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultra-sound, particularly in novel techniques such as Speckle Tracking (STE). We evaluate the echocardiography assessment performance in the CARDIA study Y25 examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and Reading Center (RC) accuracy. Methods The CARDIA Y25 examination had 3,475 echocardiograms performed in 4 US Field Centers and analyzed in a Reading Center, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (2- and 4-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intra-class correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. Results For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and 4-chamber and 58% in 2-chamber. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with Echo RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Conclusion Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. PMID:25382818

  11. Quality Control and Reproducibility in M-Mode, Two-Dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year 25 Examination Experience.

    PubMed

    Armstrong, Anderson C; Ricketts, Erin P; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; Sidney, Stephen; Lewis, Cora E; Schreiner, Pamela J; Shikany, James M; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S; Lima, João A C

    2015-08-01

    Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultrasound, particularly in novel techniques such as speckle tracking echocardiography (STE). We evaluate the echocardiography assessment performance in the Coronary Artery Risk Development in Young Adults (CARDIA) study Year 25 (Y25) examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and reading center (RC) accuracy. The CARDIA Y25 examination had 3475 echocardiograms performed in 4 US Field Centers and analyzed in a RC, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (two- and four-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and four-chamber and 58% in two-chamber views. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with echocardiography RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. © 2014, Wiley Periodicals, Inc.

  12. Importance of methodology on (99m)technetium dimercapto-succinic acid scintigraphic image quality: imaging pilot study for RIVUR (Randomized Intervention for Children With Vesicoureteral Reflux) multicenter investigation.

    PubMed

    Ziessman, Harvey A; Majd, Massoud

    2009-07-01

    We reviewed our experience with (99m)technetium dimercapto-succinic acid scintigraphy obtained during an imaging pilot study for a multicenter investigation (Randomized Intervention for Children With Vesicoureteral Reflux) of the effectiveness of daily antimicrobial prophylaxis for preventing recurrent urinary tract infection and renal scarring. We analyzed imaging methodology and its relation to diagnostic image quality. (99m)Technetium dimercapto-succinic acid imaging guidelines were provided to participating sites. High-resolution planar imaging with parallel hole or pinhole collimation was required. Two core reviewers evaluated all submitted images. Analysis included appropriate views, presence or lack of patient motion, adequate magnification, sufficient counts and diagnostic image quality. Inter-reader agreement was evaluated. We evaluated 70, (99m)technetium dimercapto-succinic acid studies from 14 institutions. Variability was noted in methodology and image quality. Correlation (r value) between dose administered and patient age was 0.780. For parallel hole collimator imaging good correlation was noted between activity administered and counts (r = 0.800). For pinhole imaging the correlation was poor (r = 0.110). A total of 10 studies (17%) were rejected for quality issues of motion, kidney overlap, inadequate magnification, inadequate counts and poor quality images. The submitting institution was informed and provided with recommendations for improving quality, and resubmission of another study was required. Only 4 studies (6%) were judged differently by the 2 reviewers, and the differences were minor. Methodology and image quality for (99m)technetium dimercapto-succinic acid scintigraphy varied more than expected between institutions. The most common reason for poor image quality was inadequate count acquisition with insufficient attention to the tradeoff between administered dose, length of image acquisition, start time of imaging and resulting image quality. Inter-observer core reader agreement was high. The pilot study ensured good diagnostic quality standardized images for the Randomized Intervention for Children With Vesicoureteral Reflux investigation.

  13. TU-AB-207-01: Introduction to Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechopoulos, I.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  14. TU-AB-207-03: Tomosynthesis: Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidment, A.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  15. TU-AB-207-00: Digital Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  16. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  17. Computer-aided diagnosis in radiological imaging: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Doi, Kunio

    2009-10-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.

  18. Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma.

    PubMed

    Olsen, J; Themstrup, L; De Carvalho, N; Mogensen, M; Pellacani, G; Jemec, G B E

    2016-12-01

    Early diagnosis of non-melanoma skin cancer (NMSC) is potentially possible using optical coherence tomography (OCT) which provides non-invasive, real-time images of skin with micrometre resolution and an imaging depth of up to 2mm. OCT technology for skin imaging has undergone significant developments, improving image quality substantially. The diagnostic accuracy of any method is influenced by continuous technological development making it necessary to regularly re-evaluate methods. The objective of this study is to estimate the diagnostic accuracy of OCT in basal cell carcinomas (BCC) and actinic keratosis (AK) as well as differentiating these lesions from normal skin. A study set consisting of 142 OCT images meeting selection criterea for image quality and diagnosis of AK, BCC and normal skin was presented uniformly to two groups of blinded observers: 5 dermatologists experienced in OCT-image interpretation and 5 dermatologists with no experience in OCT. During the presentation of the study set the observers filled out a standardized questionnaire regarding the OCT diagnosis. Images were captured using a commercially available OCT machine (Vivosight ® , Michelson Diagnostics, UK). Skilled OCT observers were able to diagnose BCC lesions with a sensitivity of 86% to 95% and a specificity of 81% to 98%. Skilled observers with at least one year of OCT-experience showed an overall higher diagnostic accuracy compared to inexperienced observers. The study shows an improved diagnostic accuracy of OCT in differentiating AK and BCC from healthy skin using state-of-the-art technology compared to earlier OCT technology, especially concerning BCC diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    PubMed

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Cytopathology whole slide images and adaptive tutorials for postgraduate pathology trainees: a randomized crossover trial.

    PubMed

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2015-09-01

    To determine whether cytopathology whole slide images and virtual microscopy adaptive tutorials aid learning by postgraduate trainees, we designed a randomized crossover trial to evaluate the quantitative and qualitative impact of whole slide images and virtual microscopy adaptive tutorials compared with traditional glass slide and textbook methods of learning cytopathology. Forty-three anatomical pathology registrars were recruited from Australia, New Zealand, and Malaysia. Online assessments were used to determine efficacy, whereas user experience and perceptions of efficiency were evaluated using online Likert scales and open-ended questions. Outcomes of online assessments indicated that, with respect to performance, learning with whole slide images and virtual microscopy adaptive tutorials was equivalent to using traditional methods. High-impact learning, efficiency, and equity of learning from virtual microscopy adaptive tutorials were strong themes identified in open-ended responses. Participants raised concern about the lack of z-axis capability in the cytopathology whole slide images, suggesting that delivery of z-stacked whole slide images online may be important for future educational development. In this trial, learning cytopathology with whole slide images and virtual microscopy adaptive tutorials was found to be as effective as and perceived as more efficient than learning from glass slides and textbooks. The use of whole slide images and virtual microscopy adaptive tutorials has the potential to provide equitable access to effective learning from teaching material of consistently high quality. It also has broader implications for continuing professional development and maintenance of competence and quality assurance in specialist practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A novel high-frequency encoding algorithm for image compression

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  2. Image Quality Assessment of High-Resolution Satellite Images with Mtf-Based Fuzzy Comprehensive Evaluation Method

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.

    2018-04-01

    A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.

  3. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    PubMed

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  4. Image quality scaling of electrophotographic prints

    NASA Astrophysics Data System (ADS)

    Johnson, Garrett M.; Patil, Rohit A.; Montag, Ethan D.; Fairchild, Mark D.

    2003-12-01

    Two psychophysical experiments were performed scaling overall image quality of black-and-white electrophotographic (EP) images. Six different printers were used to generate the images. There were six different scenes included in the experiment, representing photographs, business graphics, and test-targets. The two experiments were split into a paired-comparison experiment examining overall image quality, and a triad experiment judging overall similarity and dissimilarity of the printed images. The paired-comparison experiment was analyzed using Thurstone's Law, to generate an interval scale of quality, and with dual scaling, to determine the independent dimensions used for categorical scaling. The triad experiment was analyzed using multidimensional scaling to generate a psychological stimulus space. The psychophysical results indicated that the image quality was judged mainly along one dimension and that the relationships among the images can be described with a single dimension in most cases. Regression of various physical measurements of the images to the paired comparison results showed that a small number of physical attributes of the images could be correlated with the psychophysical scale of image quality. However, global image difference metrics did not correlate well with image quality.

  5. Evaluation of intensified image enhancement through conspicuity and triangle orientation discrimination measures

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; van Eekeren, Adam W. M.; Toet, Alexander; den Hollander, Richard J. M.; Schutte, Klamer; van Heijningen, Ad W. P.; Bijl, Piet

    2013-04-01

    For many military operations, situational awareness is of great importance. During night conditions, this situational awareness can be improved using both analog and digital image-intensified cameras. The quality of image intensifiers is a topic of interest. One of the differences between a digital and analog system is noise behavior. For digital image intensifiers, the noise behavior is not as good as for analog image intensifiers, but it can be improved using noise-reduction techniques. In this paper, the improvement using temporal noise reduction and local adaptive contrast enhancement is shown and quantitatively evaluated by subjective measurement of the conspicuity and triangle orientation discrimination (TOD). The results of the conspicuity and TOD experiments are consistent with each other. The highest improvement is found for a low-clutter environment; for medium- and high-clutter environments, the improvement is less. This can be explained by the fact that image enhancement increases contrast of all image details, irrespective of whether they are targets or clutter. For low-clutter image enhancement, target conspicuity and target detection improvement will be largest, since there are not many distracting elements.

  6. Snapshot gradient-recalled echo-planar images of rat brains at long echo time at 9.4 T

    PubMed Central

    Lei, Hongxia; Mlynárik, Vladimir; Just, Nathalie; Gruetter, Rolf

    2009-01-01

    With improved B0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B0 inhomogeneities, especially second-order shim terms, a 200×200 μm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set. PMID:18486393

  7. Colony image acquisition and segmentation

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2007-12-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.

  8. Development of educational image databases and e-books for medical physics training.

    PubMed

    Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T

    2005-09-01

    Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.

  9. Sentinel 2 products and data quality status

    NASA Astrophysics Data System (ADS)

    Clerc, Sebastien; Gascon, Ferran; Bouzinac, Catherine; Touli-Lebreton, Dimitra; Francesconi, Benjamin; Lafrance, Bruno; Louis, Jerome; Alhammoud, Bahjat; Massera, Stephane; Pflug, Bringfried; Viallefont, Francoise; Pessiot, Laetitia

    2017-04-01

    Since July 2015, Sentinel-2A provides high-quality multi-spectral images with 10 m spatial resolution. With the launch of Sentinel-2B scheduled for early March 2017, the mission will create a consistent time series with a revisit time of 5 days. The consistency of the time series is ensured by some specific performance requirements such as multi-temporal spatial co-registration and radiometric stability, routinely monitored by the Sentinel-2 Mission Performance Centre (S2MPC). The products also provide a rich set of metadata and auxiliary data to support higher-level processing. This presentation will focus on the current status of the Sentinel-2 L1C and L2A products, including dissemination and product format aspects. Up-to-date mission performance estimations will be presented. Finally we will provide an outlook on the future evolutions: commissioning tasks for Sentinel-2B, geometric refinement, product format and processing improvements.

  10. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to whichmore » the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all imaging doses, soft tissue contrast was more easily differentiated on IBL + SPA head and neck and pelvic images than TBL + LFB and IBL + LFB. IBL + SPA thoracic images were comparable to IBL + LFB images, but less noisy than TBL + LFB images at all imaging doses considered. The mean MTFs over all imaging doses were comparable, at within 3%, for all imaging system configurations for both the head- and pelvis-sized phantoms. Conclusions: Since CNR scales with the square root of imaging dose, changing from TBL + LFB to IBL + LFB and IBL + LFB to IBL + SPA reduces the imaging dose required to obtain a given CNR by factors of 0.38 and 0.37, respectively. MTFs were comparable between imaging system configurations. IBL + SPA patient image quality was always better than that of the TBL + LFB system and as good as or better than that of the IBL + LFB system, for a given dose.« less

  11. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  12. First Science Verification of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Amy

    2017-01-01

    My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.

  13. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  14. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  15. Comparative Analysis of Reconstructed Image Quality in a Simulated Chromotomographic Imager

    DTIC Science & Technology

    2014-03-01

    quality . This example uses five basic images a backlit bar chart with random intensity, 100 nm separation. A total of 54 initial target...compared for a variety of scenes. Reconstructed image quality is highly dependent on the initial target hypercube so a total of 54 initial target...COMPARATIVE ANALYSIS OF RECONSTRUCTED IMAGE QUALITY IN A SIMULATED CHROMOTOMOGRAPHIC IMAGER THESIS

  16. Enhancement of PET Images

    NASA Astrophysics Data System (ADS)

    Davis, Paul B.; Abidi, Mongi A.

    1989-05-01

    PET is the only imaging modality that provides doctors with early analytic and quantitative biochemical assessment and precise localization of pathology. In PET images, boundary information as well as local pixel intensity are both crucial for manual and/or automated feature tracing, extraction, and identification. Unfortunately, the present PET technology does not provide the necessary image quality from which such precise analytic and quantitative measurements can be made. PET images suffer from significantly high levels of radial noise present in the form of streaks caused by the inexactness of the models used in image reconstruction. In this paper, our objective is to model PET noise and remove it without altering dominant features in the image. The ultimate goal here is to enhance these dominant features to allow for automatic computer interpretation and classification of PET images by developing techniques that take into consideration PET signal characteristics, data collection, and data reconstruction. We have modeled the noise steaks in PET images in both rectangular and polar representations and have shown both analytically and through computer simulation that it exhibits consistent mapping patterns. A class of filters was designed and applied successfully. Visual inspection of the filtered images show clear enhancement over the original images.

  17. SU-E-T-646: Quality Assurance of Truebeam Multi-Leaf Collimator Using a MLC QA Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Lu, J; Hong, D

    2015-06-15

    Purpose: To perform a routine quality assurance procedure for Truebeam multi-leaf collimator (MLC) using MLC QA phantom, verify the stability and reliability of MLC during the treatment. Methods: MLC QA phantom is a specialized phantom for MLC quality assurance (QA), and contains five radio-opaque spheres that are embedded in an “L” shape. The phantom was placed isocentrically on the Truebeam treatment couch for the tests. A quality assurance plan was setted up in the Eclipse v10.0, the fields that need to be delivered in order to acquire the necessary images, the MLC shapes can then be obtained by the images.more » The images acquired by the electronic portal imaging device (EPID), and imported into the PIPSpro software for the analysis. The tests were delivered twelve weeks (once a week) to verify consistency of the delivery, and the images are acquired in the same manner each time. Results: For the Leaf position test, the average position error was 0.23mm±0.02mm (range: 0.18mm∼0.25mm). The Leaf width was measured at the isocenter, the average error was 0.06mm±0.02mm (range: 0.02mm∼0.08mm) for the Leaf width test. Multi-Port test showed the dynamic leaf shift error, the average error was 0.28mm±0.03mm (range: 0.2mm∼0.35mm). For the leaf transmission test, the average inter-leaf leakage value was 1.0%±0.17% (range: 0.8%∼1.3%) and the average inter-bank leakage value was 32.6%±2.1% (range: 30.2%∼36.1%). Conclusion: By the test of 12 weeks, the MLC system of the Truebeam is running in a good condition and the MLC system can be steadily and reliably carried out during the treatment. The MLC QA phantom is a useful test tool for the MLC QA.« less

  18. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  19. Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?

    PubMed Central

    Joshi, Anuja; Gislason-Lee, Amber J; Keeble, Claire; Sivananthan, Uduvil M

    2017-01-01

    Objective: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10–89% dose reduction). 16 observers with relevant experience scored the image quality of these angiograms in 3 states—with no image processing and with 2 different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction, respectively, as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusion: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose. PMID:28124572

  20. Psychosexual and body image aspects of quality of life in Turkish breast cancer patients: a comparison of breast conserving treatment and mastectomy.

    PubMed

    Alicikus, Zumre Arican; Gorken, Ilknur Bilkay; Sen, Rachel Cooper; Kentli, Suleyman; Kinay, Munir; Alanyali, Hilmi; Harmancioglu, Omer

    2009-01-01

    Assessing psychosexual and body image aspects of quality of life in Turkish breast cancer patients treated by either mastectomy or breast conserving treatment (BCT). The study group consisted of 112 patients who had undergone all treatment at a single institution under the care of a multidisciplinary breast team. Following surgery, all patients underwent adjuvant radiotherapy with or without chemotherapy and hormone therapy. At the time of this study all patients were disease free with at least 2 years' follow-up. Twenty percent of the patients were premenopausal and 80% postmenopausal. The patients completed a questionnaire consisting of 42 questions related to their sexual relations and body image. Forty-one percent of sexually active patients had experienced a deterioration of sexual functioning after treatment. This was mainly due to loss of libido (80%), loss of interest in partner (54%), and sexual dissatisfaction (59%). Problems tended to develop early in the course of treatment. Decreased sexual desire was significantly more frequent in patients undergoing mastectomy versus BCT (80% vs 61%; P = 0.043) and in premenopausal versus postmenopausal patients (P = 0.024). Although 80% of patients were satisfied with their appearance as a whole, only 54% liked their naked bodies. There was no significant difference in body image scores between patients undergoing mastectomy or BCT apart from a general feeling of physical unattractiveness in mastectomy patients (3.4 vs 2.8; P = 0.03). Significant, similar psychosexual and body image problems occur in patients treated for breast cancer with either mastectomy or BCT. Problems arise early in the course of the disease and therefore detection and treatment of these problems should be addressed during the patients' initial assessment and at the start of treatment. These findings are similar to those reported on similar groups of treated women in American and European populations.

Top