Looking at protists as a source of pathogenic viruses.
La Scola, Bernard
2014-12-01
In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hart, Benjamin L.
2011-01-01
No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants. PMID:22042917
Biogeography of Human Infectious Diseases: A Global Historical Analysis
Cashdan, Elizabeth
2014-01-01
Objectives Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Methods Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Results Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare. PMID:25271730
Biogeography of human infectious diseases: a global historical analysis.
Cashdan, Elizabeth
2014-01-01
Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare.
Pathogen Transmission from Humans to Great Apes is a Growing Threat to Primate Conservation.
Dunay, Emily; Apakupakul, Kathleen; Leard, Stephen; Palmer, Jamie L; Deem, Sharon L
2018-01-23
All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.
Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser
Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel
2014-01-01
Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037
Hussain, Arif; Shaik, Sabiha; Ranjan, Amit; Nandanwar, Nishant; Tiwari, Sumeet K.; Majid, Mohammad; Baddam, Ramani; Qureshi, Insaf A.; Semmler, Torsten; Wieler, Lothar H.; Islam, Mohammad A.; Chakravortty, Dipshikha; Ahmed, Niyaz
2017-01-01
Multidrug-resistant Escherichia coli infections are a growing public health concern. This study analyzed the possibility of contamination of commercial poultry meat (broiler and free-range) with pathogenic and or multi-resistant E. coli in retail chain poultry meat markets in India. We analyzed 168 E. coli isolates from broiler and free-range retail poultry (meat/ceca) sampled over a wide geographical area, for their antimicrobial sensitivity, phylogenetic groupings, virulence determinants, extended-spectrum-β-lactamase (ESBL) genotypes, fingerprinting by Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and genetic relatedness to human pathogenic E. coli using whole genome sequencing (WGS). The prevalence rates of ESBL producing E. coli among broiler chicken were: meat 46%; ceca 40%. Whereas, those for free range chicken were: meat 15%; ceca 30%. E. coli from broiler and free-range chicken exhibited varied prevalence rates for multi-drug resistance (meat 68%; ceca 64% and meat 8%; ceca 26%, respectively) and extraintestinal pathogenic E. coli (ExPEC) contamination (5 and 0%, respectively). WGS analysis confirmed two globally emergent human pathogenic lineages of E. coli, namely the ST131 (H30-Rx subclone) and ST117 among our poultry E. coli isolates. These results suggest that commercial poultry meat is not only an indirect public health risk by being a possible carrier of non-pathogenic multi-drug resistant (MDR)-E. coli, but could as well be the carrier of human E. coli pathotypes. Further, the free-range chicken appears to carry low risk of contamination with antimicrobial resistant and extraintestinal pathogenic E. coli (ExPEC). Overall, these observations reinforce the understanding that poultry meat in the retail chain could possibly be contaminated by MDR and/or pathogenic E. coli. PMID:29180984
Hussain, Arif; Shaik, Sabiha; Ranjan, Amit; Nandanwar, Nishant; Tiwari, Sumeet K; Majid, Mohammad; Baddam, Ramani; Qureshi, Insaf A; Semmler, Torsten; Wieler, Lothar H; Islam, Mohammad A; Chakravortty, Dipshikha; Ahmed, Niyaz
2017-01-01
Multidrug-resistant Escherichia coli infections are a growing public health concern. This study analyzed the possibility of contamination of commercial poultry meat (broiler and free-range) with pathogenic and or multi-resistant E. coli in retail chain poultry meat markets in India. We analyzed 168 E. coli isolates from broiler and free-range retail poultry (meat/ceca) sampled over a wide geographical area, for their antimicrobial sensitivity, phylogenetic groupings, virulence determinants, extended-spectrum-β-lactamase (ESBL) genotypes, fingerprinting by Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and genetic relatedness to human pathogenic E. coli using whole genome sequencing (WGS). The prevalence rates of ESBL producing E. coli among broiler chicken were: meat 46%; ceca 40%. Whereas, those for free range chicken were: meat 15%; ceca 30%. E. coli from broiler and free-range chicken exhibited varied prevalence rates for multi-drug resistance (meat 68%; ceca 64% and meat 8%; ceca 26%, respectively) and extraintestinal pathogenic E. coli (ExPEC) contamination (5 and 0%, respectively). WGS analysis confirmed two globally emergent human pathogenic lineages of E. coli , namely the ST131 ( H 30-Rx subclone) and ST117 among our poultry E. coli isolates. These results suggest that commercial poultry meat is not only an indirect public health risk by being a possible carrier of non-pathogenic multi-drug resistant (MDR)- E. coli , but could as well be the carrier of human E. coli pathotypes. Further, the free-range chicken appears to carry low risk of contamination with antimicrobial resistant and extraintestinal pathogenic E. coli (ExPEC). Overall, these observations reinforce the understanding that poultry meat in the retail chain could possibly be contaminated by MDR and/or pathogenic E. coli.
NASA Astrophysics Data System (ADS)
Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom
2016-02-01
The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.
Allovahlkampfia spelaea Causing Keratitis in Humans
Tolba, Mohammed Essa Marghany; Huseein, Enas Abdelhameed Mahmoud; Farrag, Haiam Mohamed Mahmoud; Mohamed, Hanan El Deek; Kobayashi, Seiki; Suzuki, Jun; Ali, Tarek Ahmed Mohamed; Sugano, Sumio
2016-01-01
Background Free-living amoebae are present worldwide. They can survive in different environment causing human diseases in some instances. Acanthamoeba sp. is known for causing sight-threatening keratitis in humans. Free-living amoeba keratitis is more common in developing countries. Amoebae of family Vahlkampfiidae are rarely reported to cause such affections. A new genus, Allovahlkampfia spelaea was recently identified from caves with no data about pathogenicity in humans. We tried to identify the causative free-living amoeba in a case of keratitis in an Egyptian patient using morphological and molecular techniques. Methods Pathogenic amoebae were culture using monoxenic culture system. Identification through morphological features and 18S ribosomal RNA subunit DNA amplification and sequencing was done. Pathogenicity to laboratory rabbits and ability to produce keratitis were assessed experimentally. Results Allovahlkampfia spelaea was identified as a cause of human keratitis. Whole sequence of 18S ribosomal subunit DNA was sequenced and assembled. The Egyptian strain was closely related to SK1 strain isolated in Slovenia. The ability to induce keratitis was confirmed using animal model. Conclusions This the first time to report Allovahlkampfia spelaea as a human pathogen. Combining both molecular and morphological identification is critical to correctly diagnose amoebae causing keratitis in humans. Use of different pairs of primers and sequencing amplified DNA is needed to prevent misdiagnosis. PMID:27415799
Detection of milk oligosaccharides in plasma of infants
Ruhaak, L. Renee; Stroble, Carol; Underwood, Mark A.; Lebrilla, Carlito B.
2014-01-01
Human Milk Oligosaccharides (HMO) are one of the major components of human milk. HMO are non-digestible by the human gut, where they are known to play important functions as prebiotics and decoys for binding pathogens. Moreover, it has been proposed that HMO may provide sialic acids to the infant that are important in brain development, however this would require absorption of HMO into the bloodstream. HMO have consistently been found in the urine of humans and other mammals, suggesting systemic absorption. Here we present a procedure for the profiling of milk oligosaccharides (MO) in plasma samples obtained from 13 term infants hospitalized for surgery for congenital heart disease. The method comprises protein denaturation, oligosaccharide reduction and porous graphitized carbon solid phase extraction for purification followed by analysis using nHPLC-PGC-chip-TOF-MS. Approximately 15 free MO were typically observed in the plasma of human infants, including LNT, LDFP, LNFT, 3’SL, 6’SL, 3’SLN and 6’SLN, of which the presence was confirmed using fragmentation studies. A novel third isomer of SLN, not found in human or bovine milk was also consistently detected. Differences in the free MO profiles were observed between infants that were totally formula-fed and infants that received at least some part breast milk. Our results indicate that free MO similar in structure to those found in human milk and urine are present in the blood of infants. The method and results presented here will facilitate further research toward the possible roles of free MO in the development of the infant. PMID:25059723
Experimental evidence of a pathogen invasion threshold
Krkošek, Martin
2018-01-01
Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models. PMID:29410876
Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries
Abdul Majid, Mohamad Azlan; Mahboob, Tooba; Mong, Brandon G. J.; Jaturas, Narong; Richard, Reena Leeba; Tian-Chye, Tan; Phimphila, Anusorn; Mahaphonh, Panomphanh; Aye, Kyaw Nyein; Aung, Wai Lynn; Chuah, Joon; Ziegler, Alan D.; Yasiri, Atipat; Sawangjaroen, Nongyao; Lim, Yvonne A. L.; Nissapatorn, Veeranoot
2017-01-01
Data on the distribution of free-living amoebae is still lacking especially in Southeast Asian region. The aquatic environment revealed a high occurrence of free-living amoebae (FLA) due to its suitable condition and availability of food source, which subsequently causes infection to humans. A total of 94 water samples consisted of both treated and untreated from Laos (31), Myanmar (42), and Singapore (21) were investigated for the presence of pathogenic FLA. Each water sample was filtered and cultured onto non-nutrient agar seeded with live suspension of Escherichia coli and incubated at room temperature. Morphological identification was conducted for both trophozoites and cysts via microscopic stains (Giemsa and immunofluorescence). The presence of Naegleria-like structures was the most frequently encountered in both treated and untreated water samples, followed by Acanthamoeba-like and Vermamoeba-like features. To identify the pathogenic isolates, species-specific primer sets were applied for molecular identification of Acanthamoeba, Naegleria, and Vermamoeba. The pathogenic species of Acanthamoeba lenticulata and A. triangularis were detected from untreated water samples, while Vermamoeba vermiformis was found in both treated and untreated water samples. Our results suggested that poor water quality as well as inadequate maintenance and treatment might be the cause of this alarming problem since chlorine disinfection is ineffective in eradicating these amoebas in treated water samples. Regular monitoring and examination of water qualities are necessary in order to control the growth, hence, further preventing the widespread of FLA infections among the public. PMID:28212409
Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries.
Abdul Majid, Mohamad Azlan; Mahboob, Tooba; Mong, Brandon G J; Jaturas, Narong; Richard, Reena Leeba; Tian-Chye, Tan; Phimphila, Anusorn; Mahaphonh, Panomphanh; Aye, Kyaw Nyein; Aung, Wai Lynn; Chuah, Joon; Ziegler, Alan D; Yasiri, Atipat; Sawangjaroen, Nongyao; Lim, Yvonne A L; Nissapatorn, Veeranoot
2017-01-01
Data on the distribution of free-living amoebae is still lacking especially in Southeast Asian region. The aquatic environment revealed a high occurrence of free-living amoebae (FLA) due to its suitable condition and availability of food source, which subsequently causes infection to humans. A total of 94 water samples consisted of both treated and untreated from Laos (31), Myanmar (42), and Singapore (21) were investigated for the presence of pathogenic FLA. Each water sample was filtered and cultured onto non-nutrient agar seeded with live suspension of Escherichia coli and incubated at room temperature. Morphological identification was conducted for both trophozoites and cysts via microscopic stains (Giemsa and immunofluorescence). The presence of Naegleria-like structures was the most frequently encountered in both treated and untreated water samples, followed by Acanthamoeba-like and Vermamoeba-like features. To identify the pathogenic isolates, species-specific primer sets were applied for molecular identification of Acanthamoeba, Naegleria, and Vermamoeba. The pathogenic species of Acanthamoeba lenticulata and A. triangularis were detected from untreated water samples, while Vermamoeba vermiformis was found in both treated and untreated water samples. Our results suggested that poor water quality as well as inadequate maintenance and treatment might be the cause of this alarming problem since chlorine disinfection is ineffective in eradicating these amoebas in treated water samples. Regular monitoring and examination of water qualities are necessary in order to control the growth, hence, further preventing the widespread of FLA infections among the public.
Lahodny, G E; Gautam, R; Ivanek, R
2015-01-01
Indirect transmission through the environment, pathogen shedding by infectious hosts, replication of free-living pathogens within the environment, and environmental decontamination are suspected to play important roles in the spread and control of environmentally transmitted infectious diseases. To account for these factors, the classic Susceptible-Infectious-Recovered-Susceptible epidemic model is modified to include a compartment representing the amount of free-living pathogen within the environment. The model accounts for host demography, direct and indirect transmission, replication of free-living pathogens in the environment, and removal of free-living pathogens by natural death or environmental decontamination. Based on the assumptions of the deterministic model, a continuous-time Markov chain model is developed. An estimate for the probability of disease extinction or a major outbreak is obtained by approximating the Markov chain with a multitype branching process. Numerical simulations illustrate important differences between the deterministic and stochastic counterparts, relevant for outbreak prevention, that depend on indirect transmission, pathogen shedding by infectious hosts, replication of free-living pathogens, and environmental decontamination. The probability of a major outbreak is computed for salmonellosis in a herd of dairy cattle as well as cholera in a human population. An explicit expression for the probability of disease extinction or a major outbreak in terms of the model parameters is obtained for systems with no direct transmission or replication of free-living pathogens.
Thalwitzer, Susanne; Wachter, Bettina; Robert, Nadia; Wibbelt, Gudrun; Müller, Thomas; Lonzer, Johann; Meli, Marina L.; Bay, Gert; Hofer, Heribert; Lutz, Hans
2010-01-01
Cheetah populations are diminishing rapidly in their natural habitat. One reason for their decline is thought to be a high susceptibility to (infectious) diseases because cheetahs in zoos suffer from high disease-induced mortality. Data on the health status of free-ranging cheetahs are scarce, and little is known about their exposure and susceptibility to infectious diseases. We determined seroprevalences to nine key viruses (feline herpesvirus 1, feline calicivirus, feline parvovirus, feline coronavirus, canine distemper virus, feline immunodeficiency virus [FIV], puma lentivirus, feline leukemia virus, and rabies virus) in 68 free-ranging cheetahs on east-central Namibian farmland, 24 nonvaccinated Namibian captive cheetahs, and several other wild carnivore species and conducted necropsies of cheetahs and other wild carnivores. Eight of 11 other wild carnivores were seropositive for at least one of the viruses, including the first record of an FIV-like infection in a wild felid west of the Kalahari, the caracal (Felis caracal). Seroprevalences of the free-ranging cheetahs were below 5% for all nine viruses, which is significantly lower than seroprevalences in nonvaccinated captive cheetahs and those for five of seven viruses in previously studied free-ranging cheetahs from north-central Namibia (L. Munson, L. Marker, E. Dubovi, J. A. Spencer, J. F. Evermann, and S. J. O'Brien, J. Wildl. Dis. 40:23-31, 2004). There was no clinical or pathological evidence of infectious diseases in living or dead cheetahs. The results suggest that while free-ranging wild carnivores may be a source of pathogens, the distribution of seroprevalences across studies mirrored local human population density and factors associated with human habitation, probably reflecting contact opportunities with (nonvaccinated) domestic and feral cats and dogs. They also suggest that Namibian cheetahs respond effectively to viral challenges, encouraging consistent and sustainable conservation efforts. PMID:19955325
Thalwitzer, Susanne; Wachter, Bettina; Robert, Nadia; Wibbelt, Gudrun; Müller, Thomas; Lonzer, Johann; Meli, Marina L; Bay, Gert; Hofer, Heribert; Lutz, Hans
2010-02-01
Cheetah populations are diminishing rapidly in their natural habitat. One reason for their decline is thought to be a high susceptibility to (infectious) diseases because cheetahs in zoos suffer from high disease-induced mortality. Data on the health status of free-ranging cheetahs are scarce, and little is known about their exposure and susceptibility to infectious diseases. We determined seroprevalences to nine key viruses (feline herpesvirus 1, feline calicivirus, feline parvovirus, feline coronavirus, canine distemper virus, feline immunodeficiency virus [FIV], puma lentivirus, feline leukemia virus, and rabies virus) in 68 free-ranging cheetahs on east-central Namibian farmland, 24 nonvaccinated Namibian captive cheetahs, and several other wild carnivore species and conducted necropsies of cheetahs and other wild carnivores. Eight of 11 other wild carnivores were seropositive for at least one of the viruses, including the first record of an FIV-like infection in a wild felid west of the Kalahari, the caracal (Felis caracal). Seroprevalences of the free-ranging cheetahs were below 5% for all nine viruses, which is significantly lower than seroprevalences in nonvaccinated captive cheetahs and those for five of seven viruses in previously studied free-ranging cheetahs from north-central Namibia (L. Munson, L. Marker, E. Dubovi, J. A. Spencer, J. F. Evermann, and S. J. O'Brien, J. Wildl. Dis. 40:23-31, 2004). There was no clinical or pathological evidence of infectious diseases in living or dead cheetahs. The results suggest that while free-ranging wild carnivores may be a source of pathogens, the distribution of seroprevalences across studies mirrored local human population density and factors associated with human habitation, probably reflecting contact opportunities with (nonvaccinated) domestic and feral cats and dogs. They also suggest that Namibian cheetahs respond effectively to viral challenges, encouraging consistent and sustainable conservation efforts.
USDA-ARS?s Scientific Manuscript database
Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...
Specific pathogen-free macaques: definition, history, and current production.
Morton, William R; Agy, Michael B; Capuano, Saverio V; Grant, Richard F
2008-01-01
Specific pathogen-free (SPF) macaque colonies are now requested frequently as a resource for research. Such colonies were originally conceived as a means to cull diseased animals from research-dedicated colonies, with the goal of eliminating debilitating or fatal infectious agents from the colony to improve the reproductive capacity of captive research animals. The initial pathogen of concern was Mycobacterium tuberculosis (M.tb.), recognized for many years as a pathogen of nonhuman primates as well as a human health target. More recently attention has focused on four viral pathogens as the basis for an SPF colony: simian type D retrovirus (SRV), simian immunodeficiency virus (SIV), simian T cell lymphotropic/leukemia virus (STLV), and Cercopithecine herpesvirus 1 (CHV-1). New technologies, breeding, and maintenance schemes have emerged to develop and provide SPF primates for research. In this review we focus on the nonhuman primates (NHPs) most common to North American NHP research facilities, Asian macaques, and the most common current research application of these animals, modeling of human AIDS.
Beyond specific pathogen-free: biology and effect of common viruses in macaques.
Lerche, Nicholas W; Simmons, Joe H
2008-02-01
Macaque models have contributed to key advances in our basic knowledge of behavior, anatomy, and physiology as well as to our understanding of a wide variety of human diseases. This issue of Comparative Medicine focuses on several of the viral agents (members of Retroviridae, Herpesviridae and 2 small DNA viruses) that can infect both nonhuman primates and humans as well as confound research studies. Featured articles also address the challenges of developing colonies of macaques and other nonhuman primates that are truly specific pathogen-free for these and other adventitious infectious agents.
Beyond Specific Pathogen-Free: Biology and Effect of Common Viruses in Macaques
Lerche, Nicholas W; Simmons, Joe H
2008-01-01
Macaque models have contributed to key advances in our basic knowledge of behavior, anatomy, and physiology as well as to our understanding of a wide variety of human diseases. This issue of Comparative Medicine focuses on several of the viral agents (members of Retroviridae, Herpesviridae and 2 small DNA viruses) that can infect both nonhuman primates and humans as well as confound research studies. Featured articles also address the challenges of developing colonies of macaques and other nonhuman primates that are truly specific pathogen-free for these and other adventitious infectious agents. PMID:19793451
Weiss, Sabrina; Dabrowski, Piotr Wojtek; Kurth, Andreas; Leendertz, Siv Aina J; Leendertz, Fabian H
2017-09-18
Zoonotic transmission events play a major role in the emergence of novel diseases. While such events are virtually impossible to predict, wildlife screening for potential emerging pathogens can be a first step. Driven by recent disease epidemics like severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, bats have gained special interest as reservoirs of emerging viruses. As part of a bigger study investigating pathogens in African bats we screened animals for the presence of known and unknown viruses. We isolated and characterised a novel reovirus from blood of free-tailed bats (Chaereophon aloysiisabaudiae) captured in 2006 in Côte d'Ivoire. The virus showed closest relationship with two human pathogenic viruses, Colorado tick fever virus and Eyach virus, and was able to infect various human cell lines in vitro. The study shows the presence of a coltivirus-related virus in bats from Sub-Sahara Africa. Serological studies could help to assess its impact on humans or wildlife health.
Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates
USDA-ARS?s Scientific Manuscript database
Salmonella Typhimurium is an important foodborne pathogen which causes gastroenteritis in both humans and animals. Currently available rapid methods have relied on antibodies to offer specific recognition of the pathogen from the background. As a substitute of antibodies, nucleic acid aptamers offer...
PARASITOLOGY AND SEROLOGY OF FREE-RANGING COYOTES (CANIS LATRANS) IN NORTH CAROLINA, USA.
Chitwood, M Colter; Swingen, Morgan B; Lashley, Marcus A; Flowers, James R; Palamar, Maria B; Apperson, Charles S; Olfenbuttel, Colleen; Moorman, Christopher E; DePerno, Christopher S
2015-07-01
Coyotes (Canis latrans) have expanded recently into the eastern US and can serve as a source of pathogens to domestic dogs (Canis lupus familiaris), livestock, and humans. We examined free-ranging coyotes from central North Carolina, US, for selected parasites and prevalence of antibodies against viral and bacterial agents. We detected ticks on most (81%) coyotes, with Amblyomma americanum detected on 83% of those with ticks. Fifteen (47%) coyotes were positive for heartworms (Dirofilaria immitis), with a greater detection rate in adults (75%) than juveniles (22%). Serology revealed antibodies against canine adenovirus (71%), canine coronavirus (32%), canine distemper virus (17%), canine parvovirus (96%), and Leptospira spp. (7%). We did not detect antibodies against Brucella abortus/suis or Brucella canis. Our results showed that coyotes harbor many common pathogens that present health risks to humans and domestic animals and suggest that continued monitoring of the coyote's role in pathogen transmission is warranted.
2012-01-01
Background Francisella is a genus of gram-negative bacterium highly virulent in fishes and human where F. tularensis is causing the serious disease tularaemia in human. Recently Francisella species have been reported to cause mortality in aquaculture species like Atlantic cod and tilapia. We have completed the sequencing and draft assembly of the Francisella noatunensis subsp. orientalisToba04 strain isolated from farmed Tilapia. Compared to other available Francisella genomes, it is most similar to the genome of Francisella philomiragia subsp. philomiragia, a free-living bacterium not virulent to human. Results The genome is rearranged compared to the available Francisella genomes even though we found no IS-elements in the genome. Nearly 16% percent of the predicted ORFs are pseudogenes. Computational pathway analysis indicates that a number of the metabolic pathways are disrupted due to pseudogenes. Comparing the novel genome with other available Francisella genomes, we found around 2.5% of unique genes present in Francisella noatunensis subsp. orientalis Toba04 and a list of genes uniquely present in the human-pathogenic Francisella subspecies. Most of these genes might have transferred from bacterial species through horizontal gene transfer. Comparative analysis between human and fish pathogen also provide insights into genes responsible for pathogenecity. Our analysis of pseudogenes indicates that the evolution of Francisella subspecies’s pseudogenes from Tilapia is old with large number of pseudogenes having more than one inactivating mutation. Conclusions The fish pathogen has lost non-essential genes some time ago. Evolutionary analysis of the Francisella genomes, strongly suggests that human and fish pathogenic Francisella species have evolved independently from free-living metabolically competent Francisella species. These findings will contribute to understanding the evolution of Francisella species and pathogenesis. PMID:23131096
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii
Lux, Thomas M.; Lee, Rob; Love, John
2014-01-01
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change. PMID:25191313
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii.
Lux, Thomas M; Lee, Rob; Love, John
2014-01-01
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Mining virulence genes using metagenomics.
Belda-Ferre, Pedro; Cabrera-Rubio, Raúl; Moya, Andrés; Mira, Alex
2011-01-01
When a bacterial genome is compared to the metagenome of an environment it inhabits, most genes recruit at high sequence identity. In free-living bacteria (for instance marine bacteria compared against the ocean metagenome) certain genomic regions are totally absent in recruitment plots, representing therefore genes unique to individual bacterial isolates. We show that these Metagenomic Islands (MIs) are also visible in bacteria living in human hosts when their genomes are compared to sequences from the human microbiome, despite the compartmentalized structure of human-related environments such as the gut. From an applied point of view, MIs of human pathogens (e.g. those identified in enterohaemorragic Escherichia coli against the gut metagenome or in pathogenic Neisseria meningitidis against the oral metagenome) include virulence genes that appear to be absent in related strains or species present in the microbiome of healthy individuals. We propose that this strategy (i.e. recruitment analysis of pathogenic bacteria against the metagenome of healthy subjects) can be used to detect pathogenicity regions in species where the genes involved in virulence are poorly characterized. Using this approach, we detect well-known pathogenicity islands and identify new potential virulence genes in several human pathogens.
USDA-ARS?s Scientific Manuscript database
Salmonella enterica is a major cause of food-borne illness in the US, leading to more deaths than any other food-related pathogen. This is an extremely diverse bacterial species consisting of six subspecies and over 2500 named serovars. Examining the evolutionary history within Salmonella with techn...
TOXOPLASMA GONDII : UPTAKE AND SURVIVAL OF OOCYSTS IN FREE-LIVING AMOEBAE
USDA-ARS?s Scientific Manuscript database
Waterborne transmission of the oocyst stage of Toxoplasma gondii can cause outbreaks of clinical toxoplasmosis in humans and infection of marine mammals. In water-related environments and soil, free-living amoebae are considered potential carriers of various pathogens, but knowledge on interactions ...
For conservation purposes and due to ecotourism free-ranging gorillas of Uganda have been habituated to humans, and molecular epidemiology evidence indicates that this habituation might have enhanced transmission of anthropozoonotic pathogens. Microsporidian spores have been det...
Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.
2012-01-01
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858
Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T
2012-09-28
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.
NASA Astrophysics Data System (ADS)
Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.
2012-03-01
Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.
Vascellari, Marta; Ravagnan, Silvia; Carminato, Antonio; Cazzin, Stefania; Carli, Erika; Da Rold, Graziana; Lucchese, Laura; Natale, Alda; Otranto, Domenico; Capelli, Gioia
2016-06-29
Many vector-borne pathogens including viruses, bacteria, protozoa and nematodes occur in northeast Italy, representing a potential threat to animal and human populations. Little information is available on the circulation of the above vector-borne pathogens in dogs. This work aims to (i) assess exposure to and circulation of pathogens transmitted to dogs in northeast Italy by ticks, sandflies, and mosquitoes, and (ii) drive blood donor screening at the newly established canine blood bank of the Istituto Zooprofilattico Sperimentale delle Venezie. Blood samples from 150 privately-owned canine candidate blood donors and 338 free-roaming dogs were screened by serology (IFA for Leishmania infantum, Ehrlichia canis, Anaplasma phagocythophilum, Babesia canis, Rickettsia conorii, R. rickettsii), microscopic blood smear examination, and blood filtration for Dirofilaria spp. All candidate donors and seropositive free-roaming dogs were tested by PCR for L. infantum, E. canis, A. phagocythophilum, Babesia/Theileria and Rickettsia spp. The dogs had no clinical signs at the time of sampling. Overall, 40 candidate donors (26.7 %) and 108 free-roaming dogs (32 %) were seroreactive to at least one vector-borne pathogen. Seroprevalence in candidate donors vs free-roaming dogs was: Leishmania infantum 6.7 vs 7.1 %; Anaplasma phagocytophilum 4.7 vs 3.3 %; Babesia canis 1.3 vs 2.7 %; Ehrlichia canis none vs 0.9 %; Rickettsia conorii 16 vs 21.3 % and R. rickettsii 11 vs 14.3 %. Seroreactivity to R. rickettsii, which is not reported in Italy, is likely a cross-reaction with other rickettsiae. Filariae, as Dirofilaria immitis (n = 19) and D. repens (n = 2), were identified in free-roaming dogs only. No significant differences were observed between candidate donors and free-roaming dogs either in the overall seroprevalence of vector-borne pathogens or for each individual pathogen. All PCRs and smears performed on blood were negative. This study demonstrated that dogs are considerably exposed to vector-borne pathogens in northeast Italy. Although the dog owners reported regularly using ectoparasiticides against fleas and ticks, their dogs had similar exposure to vector-borne pathogens as free-roaming dogs. This prompts the need to improve owner education on the use of insecticidal and repellent compounds in order to reduce the risk of arthropod bites and exposure to vector-borne pathogens. Based on the absence of pathogens circulating in the blood of healthy dogs, the risk of transmission of these pathogens by blood transfusion seems to be low, depending also on the sensitivity of the tests used for screening.
Free-living amoebae isolated in the Central African Republic: epidemiological and molecular aspects.
Farra, Alain; Bekondi, Claudine; Tricou, Vianney; Mbecko, Jean Robert; Talarmin, Antoine
2017-01-01
Among the many species of free-living amoebae infecting humans, only Naegleria fowleri , a few species of Acanthamoeba, Balamuthia mandrillaris recently Sappinia diploïdea and Paravahlkampfia Francina are responsible for human diseases especially deadly encephalitis outside of Acanthamoeba keratitis related. In the Central African Republic (CAR), no studies have previously been conducted about free amoebae and no suspicious cases of encephalitis or amoebic keratitis was reported even though the ecosystem supported the proliferation of these microorganisms. The objective of this study was to identify free-living amoebae present in CAR and to define the molecular characteristic. Bathing sites and cerebrospinal fluid from patients died of bacterial meningitis untagged were explored by culture and PCR and the amplicons were sequenced which allowed to characterize the species found. Only species of the genus Tetramitus, namely T. Entericus, T. waccamawensis and T.sp similar to those already described in the world and not pathogenic for humans were found in bathing sites, the cerebrospinal fluid meanwhile remained negative. Although no pathogen species such as Naegleria fowleri or species of Acanthamoeba have been isolated, this study worth pursuing because this investigation was very limited in space because of the insecurity in the country.
Glycoconjugates in human milk: protecting infants from disease.
Peterson, Robyn; Cheah, Wai Yuen; Grinyer, Jasmine; Packer, Nicolle
2013-12-01
Breastfeeding is known to have many health benefits for a newborn. Not only does human milk provide an excellent source of nutrition, it also contains components that protect against infection from a wide range of pathogens. Some of the protective properties of human milk can be attributed to the immunoglobulins. Yet, there is another level of defense provided by the "sweet" protective agents that human milk contains, including free oligosaccharides, glycoproteins and glycolipids. Sugar epitopes in human milk are similar to the glycan receptors that serve as pathogen adhesion sites in the human gastrointestinal tract and other epithelial cell surfaces; hence, the milk glycans can competitively bind to and remove the disease-causing microorganisms before they cause infection. The protective value of free oligosaccharides in human milk has been well researched and documented. Human milk glycoconjugates have received less attention but appear to play an equally important role. Here, we bring together the breadth of research that has focused on the protective mechanisms of human milk glycoconjugates, with a particular focus on the glycan moieties that may play a role in disease prevention. In addition, human milk glycoconjugates are compared with bovine milk glycoconjugates in terms of their health benefits for the human infant.
Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates
USDA-ARS?s Scientific Manuscript database
A straightforward label-free method based on aptamer binding and surface enhanced Raman specstroscopy (SERS) has been developed for the detection of Salmonella Typhimurium, an important foodborne pathogen that causes gastroenteritis in both humans and animals. Surface of the SERS-active silver nanor...
Occurrence of Infected Free-Living Amoebae in Cooling Towers of Southern Brazil.
Soares, Scheila S; Souza, Thamires K; Berté, Francisco K; Cantarelli, Vlademir V; Rott, Marilise B
2017-12-01
This study determined the occurrence of potentially pathogenic free-living amoebae (FLA) and bacteria associated with amoebae in air-conditioning cooling towers in southern Brazil. Water samples were collected from 36 cooling systems from air-conditioning in the state of Rio Grande do Sul, Brazil. The organisms were identified using polymerase chain reaction (PCR) and sequencing automated. The results showed that these aquatic environments, with variable temperature, are potential "hot spots" for emerging human pathogens like free-living amoebae and bacteria associated. In total, 92% of the cooling-tower samples analyzed were positive for FLA, and Acanthamoeba was the dominant genus by culture and PCR. Amoebal isolates revealed intracellular bacteria in 39.3% of them and all were confirmed as members of the genus Pseudomonas. The results obtained show the important role of cooling towers as a source of amoebae-associated pathogens.
Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D
2017-11-08
Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.
Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice
Galipeau, Heather J.; McCarville, Justin L.; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A.; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G.; Verdu, Elena F.
2016-01-01
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. PMID:26456581
Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water
Blyton, Michaela D. J.; Gordon, David M.
2017-01-01
Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination. PMID:28107364
Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.
Blyton, Michaela D J; Gordon, David M
2017-01-01
Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N
2015-12-01
The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.
2018-01-01
Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444
Lectins in human pathogenic fungi.
Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro
2014-01-01
Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.; ...
2016-01-01
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacteriumBartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mMsodium citrate tribasic pH 5.5 and were shown to diffract to ~2.10 Å resolution. They belonged to space groupP2 12 12 1, with unit-cell parametersa= 79.96,b= 106.33,c= 136.25more » Å. The finalRvalues wereR r.i.m.= 0.098,R work= 0.183,R free= 0.233.« less
USDA-ARS?s Scientific Manuscript database
Pseudoalteromonas piscicida strain DE2-B is a halophilic bacterium which has broad inhibitory activity toward vibrios and other human and fish pathogens. We report the first closed genome sequence for this species which consists of two chromosomes (4,128,210 and 1,188,838 bp). Annotation revealed ...
Swe, Pearl M; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja
2014-01-01
The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.
Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja
2014-01-01
Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections. PMID:24875186
Canis lupus familiaris involved in the transmission of pathogenic Yersinia spp. in China.
Wang, Xin; Liang, Junrong; Xi, Jinxiao; Yang, Jinchuan; Wang, Mingliu; Tian, Kecheng; Li, Jicheng; Qiu, Haiyan; Xiao, Yuchun; Duan, Ran; Yang, Haoshu; Li, Kewei; Cui, Zhigang; Qi, Meiying; Jing, Huaiqi
2014-08-06
To investigate canines carrying pathogens associated with human illness, we studied their roles in transmitting and maintaining pathogenic Yersinia spp. We examined different ecological landscapes in China for the distribution of pathogenic Yersinia spp. in Canis lupus familiaris, the domestic dog. The highest number of pathogenic Yersinia enterocolitica was shown from the tonsils (6.30%), followed by rectal swabs (3.63%) and feces (1.23%). Strains isolated from plague free areas for C. lupus familiaris, local pig and diarrhea patients shared the same pulsed-field gel electrophoresis (PFGE) pattern, indicating they may be from the same clone and the close transmission source of pathogenic Y. enterocolitica infections in these areas. Among 226 dogs serum samples collected from natural plague areas of Yersinia pestis in Gansu and Qinghai Provinces, 49 were positive for F1 antibody, while the serum samples collected from plague free areas were all negative, suggested a potential public health risk following exposure to dogs. No Y. enterocolitica or Yersinia pseudotuberculosis was isolated from canine rectal swabs in natural plague areas. Therefore, pathogenic Yersinia spp. may be regionally distributed in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Enteric pathogen sampling of tourist restaurants in Bangkok, Thailand.
Teague, Nathan S; Srijan, Apichai; Wongstitwilairoong, Boonchai; Poramathikul, Kamonporn; Champathai, Thanaporn; Ruksasiri, Supaporn; Pavlin, Julie; Mason, Carl J
2010-01-01
Travelers' diarrhea (TD) is the most prevalent disorder affecting travelers to developing countries. Thailand is considered "moderately risky" for TD acquisition, but the risk by city visited or behavior of the visitor has yet to be definitely defined. Restaurant eating is consistently associated with the acquisition of diarrhea while traveling, and pathogen-free meals serve as a marker of public health success. This study seeks to ascertain a traveler's risk of exposure to certain bacterial gastric pathogens while eating at Bangkok restaurants recommended in popular tourist guide books. A cross-sectional tourist restaurant survey was conducted. Thirty-five restaurants recommended in the two top selling Bangkok guidebooks on Amazon.com were sampled for bacterial pathogens known to cause diarrhea in Thailand, namely Salmonella, Campylobacter, and Arcobacter (a Campylobacter-like organism). A total of 70 samples from two meals at each restaurant were obtained. Suspected bacterial pathogens were isolated by differential culture and tested for antibiotic resistance. Salmonella group E was isolated from one meal (2%), and Arcobacter butzleri from nine meals (13%). Campylobacter spp. were not found. The large majority of A butzleri isolates were resistant to azithromycin but susceptible to ciprofloxacin and an aminoglycoside. A traveler's risk of exposure to established bacterial pathogens, Salmonella and Campylobacter, by eating in recommended restaurants is small. Arcobacter butzleri exposure risk is 13% per meal eaten, and rises to 75% when 10 meals are eaten. All restaurants, regardless of price, appear to be equally "risky." Current evidence points to Arcobacter being pathogenic in humans; however, further research is needed to conclusively define pathogenicity. Routine prophylaxis for diarrhea is not recommended; however, travelers should be aware of the risk and come prepared with adequate and appropriate self-treatment medications.
Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.
2009-01-01
Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland. PMID:19411413
Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.
Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F
2015-11-01
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Synthesis of Melanin-Like Pigments by Sporothrix schenckii In Vitro and during Mammalian Infection
Morris-Jones, Rachael; Youngchim, Sirida; Gomez, Beatriz L.; Aisen, Phil; Hay, Roderick J.; Nosanchuk, Joshua D.; Casadevall, Arturo; Hamilton, Andrew J.
2003-01-01
Melanin has been implicated in the pathogenesis of several important human fungal pathogens. Existing data suggest that the conidia of the dimorphic fungal pathogen Sporothrix schenckii produce melanin or melanin-like compounds; in this study we aimed to confirm this suggestion and to demonstrate in vitro and in vivo production of melanin by yeast cells. S. schenckii grown on Mycosel agar produced visibly pigmented conidia, although yeast cells grown in brain heart infusion and minimal medium broth appeared to be nonpigmented macroscopically. However, treatment of both conidia and yeast cells with proteolytic enzymes, denaturant, and concentrated hot acid yielded dark particles similar in shape and size to the corresponding propagules, which were stable free radicals consistent with identification as melanins. Melanin particles extracted from S. schenckii yeast cells were used to produce a panel of murine monoclonal antibodies (MAbs) which labeled pigmented conidia, yeast cells, and the isolated particles. Tissue from hamster testicles infected with S. schenckii contained fungal cells that were labeled by melanin-binding MAbs, and digestion of infected hamster tissue yielded dark particles that were also reactive. Additionally, sera from humans with sporotrichosis contained antibodies that bound melanin particles. These findings indicate that S. schenckii conidia and yeast cells can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role in the pathogenesis of sporotrichosis. PMID:12819091
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors
Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo
2013-01-01
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670
Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J
2013-06-01
The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.
[Immunocytochemical localization of the GFAP in heterotransplanted human gliomas (author's transl)].
Maunoury, R; Courdi, A; Vedrenne, C; Constans, J P
1978-01-01
Three cell lines derived in our laboratory from human malignant gliomas (SA 130, SA 132, SA 134) were injected subcutaneously into pathogen-free nude thymus less mice. These three cell lines gave origine to malignant tumors which, as original tumors, were positive for the glial fibrillary acidic protein (GFAP) revealed by immunoperoxidase method.
Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo
2014-01-01
In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The genus Anaplasma consists of tick-transmitted obligate intracellular bacteria that invade white or red blood cells to cause debilitating and potentially fatal infections. A. phagocytophilum, a human and veterinary pathogen, infects neutrophils to cause granulocytic anaplasmosis. A. marginale inva...
Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital.
Borges, C A; Beraldo, L G; Maluta, R P; Cardozo, M V; Barboza, K B; Guastalli, E A L; Kariyawasam, S; DebRoy, C; Ávila, F A
2017-02-01
Wild birds are carriers of Escherichia coli. However, little is known about their role as reservoirs for extra-intestinal pathogenic E. coli (ExPEC). In this work we investigated E. coli strains carrying virulence genes related to human and animal ExPEC isolated from free-living wild birds treated in a veterinary hospital. Multidrug resistance was found in 47.4% of the strains, but none of them were extended-spectrum beta-lactamase producers. Not only the virulence genes, but also the serogroups (e.g. O1 and O2) detected in the isolates of E. coli have already been implicated in human and bird diseases. The sequence types detected were also found in wild, companion and food animals, environmental and human clinical isolates in different countries. Furthermore, from the 19 isolates, 17 (89.5%) showed a degree of pathogenicity on an in vivo infection model. The isolates showed high heterogeneity by pulsed-field gel electrophoresis indicating that E. coli from these birds are clonally diverse. Overall, the results showed that wild birds can be reservoirs and/or vectors of highly pathogenic and multidrug-resistant E. coli that have the potential to cause disease in humans and poultry.
Jian, Jiahui; Beno, Sarah M.; Wiedmann, Martin
2018-01-01
ABSTRACT While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto), the pathogenicity of other species (e.g., B. pseudomycoides) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI (B. weihenstephanensis/B. mycoides), where none of the isolates were cytotoxic, and isolates in clade I (B. pseudomycoides), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade. IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and exhibits a phenotype consistent with the production of pore-forming toxins. Furthermore, B. mycoides/B. weihenstephanensis isolates (clade VI) did not show cytotoxicity when grown at 37°C, despite carrying multiple toxin genes. Overall, we show that the current standard methods to characterize B. cereus group isolates and to detect the presence of toxin genes are not reliable indicators of species, phylogenetic clades, or an isolate's cytotoxic capacity, suggesting that novel methods are still needed for differentiating pathogenic from nonpathogenic species within the B. cereus group. Our results also contribute data that are necessary to facilitate risk assessments and a better understanding as to which B. cereus group species are likely to cause foodborne illness. PMID:29330180
The composting option for human waste disposal in the backcountry
S. C. Fay; R. H. Walke
1977-01-01
The disposal of human waste by composting at backcountry recreation areas is a possible alternative to methods that are considered unsafe. The literature indicates that aerobic, thermophilic composting is a reliable disposal method that can be low in cost and in maintenance. A bark-sewage mixture can be composted to produce a pathogen-free substance that might be used...
Chu, Chishih; Huang, Pei-Yu; Chen, Hung-Ming; Wang, Ying-Hsiang; Tsai, I-An; Lu, Chih-Cheng; Chen, Che-Chun
2016-08-02
Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007-2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia. PCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3-4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II-IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates. Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish.
Label-free detection of salmonella typhimurium with ssDNA aptamers
USDA-ARS?s Scientific Manuscript database
Foodborne pathogen Salmonella enterica is one of the major causes of gastrointestinal infections in human and animals. Conventional detection methods are time consuming and not effective enough under emergency circumstances to control outbreaks immediately. Therefore, biosensors that can detect Salm...
Origin, Spread and Demography of the Mycobacterium tuberculosis Complex
Wirth, Thierry; Hildebrand, Falk; Allix-Béguec, Caroline; Wölbeling, Florian; Kubica, Tanja; Kremer, Kristin; van Soolingen, Dick; Rüsch-Gerdes, Sabine; Locht, Camille; Brisse, Sylvain; Meyer, Axel
2008-01-01
The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations. PMID:18802459
Thermal ecology of Naegleria fowleri from a power plant cooling reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huizinga, H.W.; McLaughlin, G.L.
1990-07-01
The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance,more » mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.« less
Mora, Mónica; Napolitano, Constanza; Ortega, René; Poulin, Elie; Pizarro-Lucero, José
2015-01-01
Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are two of the most common viruses affecting domestic cats (Felis catus). During the last two decades, reports show that both viruses also infect or affect other species of the family Felidae. Human landscape perturbation is one of the main causes of emerging diseases in wild animals, facilitating contact and transmission of pathogens between domestic and wild animals. We investigated FIV and FeLV infection in free-ranging guignas (Leopardus guigna) and sympatric domestic cats in human perturbed landscapes on Chiloé Island, Chile. Samples from 78 domestic cats and 15 guignas were collected from 2008 to 2010 and analyzed by PCR amplification and sequencing. Two guignas and two domestic cats were positive for FIV; three guignas and 26 domestic cats were positive for FeLV. The high percentage of nucleotide identity of FIV and FeLV sequences from both species suggests possible interspecies transmission of viruses, facilitated by increased contact probability through human invasion into natural habitats, fragmentation of guigna habitat, and poultry attacks by guignas. This study enhances our knowledge on the transmission of pathogens from domestic to wild animals in the global scenario of human landscape perturbation and emerging diseases.
Belsare, A V; Vanak, A T; Gompper, M E
2014-08-01
There is an increasing concern that free-ranging domestic dog (Canis familiaris) populations may serve as reservoirs of pathogens which may be transmitted to wildlife. We documented the prevalence of antibodies to three viral pathogens, canine parvovirus (CPV), canine distemper virus (CDV) and canine adenovirus (CAV), in free-ranging dog and sympatric Indian fox (Vulpes bengalensis) populations in and around the Great Indian Bustard Wildlife Sanctuary, in Maharashtra, central India. A total of 219 dogs and 33 foxes were sampled during the study period. Ninety-three percentage of dogs and 87% of foxes were exposed to one or more of the three pathogens. Exposure rates in dogs were high: >88% for CPV, >72% for CDV and 71% for CAV. A large proportion of adult dogs had antibodies against these pathogens due to seroconversion following earlier natural infection. The high prevalence of exposure to these pathogens across the sampling sessions, significantly higher exposure rates of adults compared with juveniles, and seroconversion in some unvaccinated dogs documented during the study period suggests that these pathogens are enzootic. The prevalence of exposure to CPV, CDV and CAV in foxes was 48%, 18% and 52%, respectively. Further, a high rate of mortality was documented in foxes with serologic evidence of ongoing CDV infection. Dogs could be playing a role in the maintenance and transmission of these pathogens in the fox population, but our findings show that most dogs in the population are immune to these pathogens by virtue of earlier natural infection, and therefore, these individuals make little current or future contribution to viral maintenance. Vaccination of this cohort will neither greatly improve their collective immune status nor contribute to herd immunity. Our findings have potentially important implications for dog disease control programmes that propose using canine vaccination as a tool for conservation management of wild carnivore populations. © 2014 Blackwell Verlag GmbH.
Xu, Jianping; Yan, Zhun; Guo, Hong
2009-06-01
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.
Free-grazing Ducks and Highly Pathogenic Avian Influenza, Thailand
Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan
2006-01-01
Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI. PMID:16494747
Lis-Kuberka, Jolanta; Orczyk-Pawiłowicz, Magdalena
2015-07-22
Human milk is extremely complex secretion rich in biologically active glycoconjugates including free oligosaccharides, glycoproteins, glycolipids, and glycosaminoglycans. Alpha1-2-fucosylated glycoconjugates of human milk are component of the innate immune system and provide an additional defense for infants. Participation of fucosylated glycotopes in the inhibition of infections caused by some bacteria and/or viruses rely on blocking of lectin-receptors of pathogen. Free fucosylated glycoconjugates present in milk are recognized and bound by the lectin-receptors of bacteria and/or viruses, and prevent pathogens adhesion to host epithelial cells and development of infection. So far, the efficacy of fucosylated glycoconjugates of human milk in the inhibition of adhesion has been confirmed for Escherichia coli, Campylobacter jejuni, Salmonella enterica, Rotaviruses, HIV, and Noroviruses. In this process the secretor/nonsecretor status of mother plays an important role. This is particularly important for the women who are nonsecretors and whose milk does not contain α1-2-fucosylated glycoconjugates and has reduced anti-microbial properties. Fucosylated glycoconjugates of milk are also one of the energy sources for physiological bacterial flora (Bifidobacterium), and have a positive impact on the intestinal peristalsis, and indirectly stimulate the central nervous system of infants. Furthermore, compared to human milk, the content of fucosylated glycoconjugates of cow’s milk is very low and does not provide adequate protection. This fact is particularly important in terms of nutrition and should be taken into consideration when artificial mixtures based on cows’ milk are used. The paper presents the current state of knowledge on human milk glycoconjugates, particularly on α1-2-fucosylated free oligosaccharides and glycoproteins, and discusses the significance of fucosylated glycoconjugates of human milk in the nutrition of newborns and infants.
Lessons learned: Optimization of a murine small bowel resection model
Taylor, Janice A.; Martin, Colin A.; Nair, Rajalakshmi; Guo, Jun; Erwin, Christopher R.; Warner, Brad W.
2008-01-01
Background/Purpose Central to the use of murine models of disease is the ability to derive reproducible data. The purpose of this study was to determine factors contributing to variability in our murine model of small bowel resection (SBR). Methods Male C57Bl/6 mice were randomized to sham or 50% SBR. The effect of housing type (pathogen-free versus standard housing), nutrition (reconstituted powder versus tube feeding formulation), and correlates of intestinal morphology with gene expression changes were investigated Multiple linear regression modeling or one-way ANOVA was used for data analysis. Results Pathogen-free mice had significantly shorter ileal villi at baseline and demonstrated greater villus growth after SBR compared to mice housed in standard rooms. Food type did not affect adaptation. Gene expression changes were more consistent and significant in isolated crypt cells that demonstrated adaptive growth when compared with crypts that did not deepen after SBR. Conclusion Maintenance of mice in pathogen-free conditions and restricting gene expression analysis to individual animals exhibiting morphologic adaptation enhances sensitivity and specificity of data derived from this model. These refinements will minimize experimental variability and lead to improved understanding of the complex process of intestinal adaptation. PMID:18558176
Free-living pathogens: life-history constraints and strain competition.
Caraco, Thomas; Wang, Ing-Nang
2008-02-07
Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage.
McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather
2018-01-01
Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.
McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M
2018-07-15
Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.
Awaisheh, Saddam S; Ibrahim, Salam A
2009-11-01
The objective of this work was to screen the antibacterial activity of lactic acid bacteria (LAB) isolated from different sources against different pathogens found in ready-to-eat vacuum-packaged meat products (RTE-VPMP). LAB were isolated from human, RTE-VPMP, fermented vegetables, and dairy samples. These isolates were assessed for their antibacterial activity against Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using spot on lawn technique. Six LAB isolates-three from a human source, two from a RTE-VPMP source, and one from a fermented vegetable source-were found to be effective against all pathogenic strains. Antibacterial activities of cell-free neutral supernatant broths of these isolates were assessed against the different pathogenic strains to confirm bacteriocin production. All six isolates were effective against all pathogenic strains. LAB isolates from the human source had the highest antibacterial activity and were significantly more effective than other LAB isolates, with the inhibition zone ranging from 14 to 22 mm. Inhibition zones of RTE-VPMP LAB isolates were lower than those of human origin (inhibition zone range, 11-17 mm). The lowest activities were for the fermented vegetable isolate, for which inhibition zones ranged from 11 to 15 mm. The three isolates of human origin were identified as L. acidophilus, L. casei, and L. reuteri; the two isolates from RTE-VPMP source were both L. sake; and the one isolate of fermented vegetable origin was L. plantarum. Our results showed that nonmeat product-sourced LAB were effective against several foodborne pathogens, which suggests that they could be used as natural biopreservatives in many RTE-VPMP produced in Jordan.
Infectious disease risks in xenotransplantation.
Fishman, Jay A
2018-03-07
Hurdles exist to clinical xenotransplantation including potential infectious transmission from nonhuman species to xenograft recipients. In anticipation of clinical trials of xenotransplantation, the associated infectious risks have been investigated. Swine and immunocompromised humans share some potential pathogens. Swine herpesviruses including porcine cytomegalovirus (PCMV) and porcine lymphotropic herpesvirus (PLHV) are largely species-specific and do not, generally, infect human cells. Human cellular receptors exist for porcine endogenous retrovirus (PERV), which infects certain human-derived cell lines in vitro. PERV-inactivated pigs have been produced recently. Human infection due to PERV has not been described. A screening paradigm can be applied to exclude potential human pathogens from "designated pathogen free" breeding colonies. Various microbiological assays have been developed for screening and diagnosis including antibody-based tests and qualitative and quantitative molecular assays for viruses. Additional assays may be required to diagnose pig-specific organisms in human xenograft recipients. Significant progress has been made in the evaluation of the potential infectious risks of clinical xenotransplantation. Infectious risk would be amplified by intensive immunosuppression. The available data suggest that risks of xenotransplant-associated recipient infection are manageable and that clinical trials can be performed safely. Possible infectious risks of xenotransplantation to the community at large are undefined but merit consideration. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.
An In vitro Model for Bacterial Growth on Human Stratum Corneum.
van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M
2016-11-02
The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.
Bomar, Lindsey; Brugger, Silvio D; Yost, Brian H; Davies, Sean S; Lemon, Katherine P
2016-01-05
Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization. Copyright © 2016 Bomar et al.
Jones, Natalia R; Millman, Caroline; van der Es, Mike; Hukelova, Miroslava; Forbes, Ken J; Glover, Catherine; Haldenby, Sam; Hunter, Paul R; Jackson, Kathryn; O'Brien, Sarah J; Rigby, Dan; Strachan, Norval J C; Williams, Nicola; Lake, Iain R
2017-07-15
This paper introduces a novel method for sampling pathogens in natural environments. It uses fabric boot socks worn over walkers' shoes to allow the collection of composite samples over large areas. Wide-area sampling is better suited to studies focusing on human exposure to pathogens (e.g., recreational walking). This sampling method is implemented using a citizen science approach: groups of three walkers wearing boot socks undertook one of six routes, 40 times over 16 months in the North West (NW) and East Anglian (EA) regions of England. To validate this methodology, we report the successful implementation of this citizen science approach, the observation that Campylobacter bacteria were detected on 47% of boot socks, and the observation that multiple boot socks from individual walks produced consistent results. The findings indicate higher Campylobacter levels in the livestock-dominated NW than in EA (55.8% versus 38.6%). Seasonal differences in the presence of Campylobacter bacteria were found between the regions, with indications of winter peaks in both regions but a spring peak in the NW. The presence of Campylobacter bacteria on boot socks was negatively associated with ambient temperature ( P = 0.011) and positively associated with precipitation ( P < 0.001), results consistent with our understanding of Campylobacter survival and the probability of material adhering to boot socks. Campylobacter jejuni was the predominant species found; Campylobacter coli was largely restricted to the livestock-dominated NW. Source attribution analysis indicated that the potential source of C. jejuni was predominantly sheep in the NW and wild birds in EA but did not differ between peak and nonpeak periods of human incidence. IMPORTANCE There is debate in the literature on the pathways through which pathogens are transferred from the environment to humans. We report on the success of a novel method for sampling human-pathogen interactions using boot socks and citizen science techniques, which enable us to sample human-pathogen interactions that may occur through visits to natural environments. This contrasts with traditional environmental sampling, which is based on spot sampling techniques and does not sample human-pathogen interactions. Our methods are of practical value to scientists trying to understand the transmission of pathogens from the environment to people. Our findings provide insight into the risk of Campylobacter exposure from recreational visits and an understanding of seasonal differences in risk and the factors behind these patterns. We highlight the Campylobacter species predominantly encountered and the potential sources of C. jejuni . Copyright © 2017 Jones et al.
Millman, Caroline; van der Es, Mike; Hukelova, Miroslava; Forbes, Ken J.; Glover, Catherine; Haldenby, Sam; Hunter, Paul R.; Jackson, Kathryn; O'Brien, Sarah J.; Rigby, Dan; Strachan, Norval J. C.; Williams, Nicola; Lake, Iain R.
2017-01-01
ABSTRACT This paper introduces a novel method for sampling pathogens in natural environments. It uses fabric boot socks worn over walkers' shoes to allow the collection of composite samples over large areas. Wide-area sampling is better suited to studies focusing on human exposure to pathogens (e.g., recreational walking). This sampling method is implemented using a citizen science approach: groups of three walkers wearing boot socks undertook one of six routes, 40 times over 16 months in the North West (NW) and East Anglian (EA) regions of England. To validate this methodology, we report the successful implementation of this citizen science approach, the observation that Campylobacter bacteria were detected on 47% of boot socks, and the observation that multiple boot socks from individual walks produced consistent results. The findings indicate higher Campylobacter levels in the livestock-dominated NW than in EA (55.8% versus 38.6%). Seasonal differences in the presence of Campylobacter bacteria were found between the regions, with indications of winter peaks in both regions but a spring peak in the NW. The presence of Campylobacter bacteria on boot socks was negatively associated with ambient temperature (P = 0.011) and positively associated with precipitation (P < 0.001), results consistent with our understanding of Campylobacter survival and the probability of material adhering to boot socks. Campylobacter jejuni was the predominant species found; Campylobacter coli was largely restricted to the livestock-dominated NW. Source attribution analysis indicated that the potential source of C. jejuni was predominantly sheep in the NW and wild birds in EA but did not differ between peak and nonpeak periods of human incidence. IMPORTANCE There is debate in the literature on the pathways through which pathogens are transferred from the environment to humans. We report on the success of a novel method for sampling human-pathogen interactions using boot socks and citizen science techniques, which enable us to sample human-pathogen interactions that may occur through visits to natural environments. This contrasts with traditional environmental sampling, which is based on spot sampling techniques and does not sample human-pathogen interactions. Our methods are of practical value to scientists trying to understand the transmission of pathogens from the environment to people. Our findings provide insight into the risk of Campylobacter exposure from recreational visits and an understanding of seasonal differences in risk and the factors behind these patterns. We highlight the Campylobacter species predominantly encountered and the potential sources of C. jejuni. PMID:28500040
Genomic Target Database (GTD): A database of potential targets in human pathogenic bacteria
Barh, Debmalya; Kumar, Anil; Misra, Amarendra Narayana
2009-01-01
A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into Drug targets in pathogen specific unique metabolic pathways,Drug targets in host-pathogen common metabolic pathways, andMembrane localized drug targets. HTML code is used to link each target to its various properties and other available public resources. Essential resources and tools for subtractive genomic analysis, sub-cellular localization, vaccine and drug designing are also mentioned. To the best of authors knowledge, no such database (DB) is presently available that has listed metabolic pathways and membrane specific genomic drug targets based on subtractive genomics. Listed targets in GTD are readily available resource in developing drug and vaccine against the respective pathogen, its subtypes, and other family members. Currently GTD contains 58 drug targets for four pathogens. Shortly, drug targets for six more pathogens will be listed. Availability GTD is available at IIOAB website http://www.iioab.webs.com/GTD.htm. It can also be accessed at http://www.iioabdgd.webs.com.GTD is free for academic research and non-commercial use only. Commercial use is strictly prohibited without prior permission from IIOAB. PMID:20011153
Free-living pathogens: life-history constraints and strain competition
Caraco, Thomas; Wang, Ing-Nang
2008-01-01
Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage. PMID:18062992
NASA Astrophysics Data System (ADS)
Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing
2018-05-01
Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.
Dong, Xue; Zhou, Shiyue; Mechref, Yehia
2016-01-01
Oligosaccharides in milk not only provide nutrition to the infants, but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat and human milk using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat and human milk samples (without isomeric consideration) were 11, 8 and 11 respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by PGC LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using PGC column. Permethylation of the glycan structures facilitated the interpretation of tandem MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529
Dong, Xue; Zhou, Shiyue; Mechref, Yehia
2016-06-01
Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka
2008-11-27
Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka
2008-01-01
Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MIP-1β) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis. PMID:19038023
Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato
2017-01-01
This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people. PMID:28141857
Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato
2017-01-01
This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people.
Lu, Jingrang; Buse, Helen; Struewing, Ian; Zhao, Amy; Lytle, Darren; Ashbolt, Nicholas
2017-01-01
Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold = 26, N hot = 26) and shower (N shower = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L -1 ) of Mycobacterium spp. were highest (100 %, 1.4 × 10 5 ), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential pathogens.
Acoustofluidic bacteria separation
NASA Astrophysics Data System (ADS)
Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun
2017-01-01
Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.
Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar
2017-01-12
The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http://calculator.clinicalgenome.org . By enabling evidence-based reasoning about the pathogenicity of genetic variants and by documenting supporting evidence, the Calculator contributes toward the creation of a knowledge commons and more accurate interpretation of sequence variants in research and clinical care.
Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan
2017-03-01
Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atassi, Fabrice; Servin, Alain L
2010-03-01
The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.
Pathogen Specific, IRF3-Dependent Signaling and Innate Resistance to Human Kidney Infection
Fischer, Hans; Lutay, Nataliya; Ragnarsdóttir, Bryndís; Yadav, Manisha; Jönsson, Klas; Urbano, Alexander; Al Hadad, Ahmed; Rämisch, Sebastian; Storm, Petter; Dobrindt, Ulrich; Salvador, Ellaine; Karpman, Diana; Jodal, Ulf; Svanborg, Catharina
2010-01-01
The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3−/− mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3−/− mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response. PMID:20886096
Gall, Aimee M; Shisler, Joanna L; Mariñas, Benito J
2016-03-01
Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.
1994-09-01
development of immunoreactive bands was restricted to molecular masses of greater than 18.5 kDa for Naegleria , Hartmannella, and Vahlkampfia antigens. Two...detected between representative species of the three subgroups of Acanthamoeba. Naegleria antigen was likewise serologically distinct, as were
Label-Free Immuno-Sensors for the Fast Detection of Listeria in Food.
Morlay, Alexandra; Roux, Agnès; Templier, Vincent; Piat, Félix; Roupioz, Yoann
2017-01-01
Foodborne diseases are a major concern for both food industry and health organizations due to the economic costs and potential threats for human lives. For these reasons, specific regulations impose the research of pathogenic bacteria in food products. Nevertheless, current methods, references and alternatives, take up to several days and require many handling steps. In order to improve pathogen detection in food, we developed an immune-sensor, based on Surface Plasmon Resonance imaging (SPRi) and bacterial growth which allows the detection of a very low number of Listeria monocytogenes in food sample in one day. Adequate sensitivity is achieved by the deposition of several antibodies in a micro-array format allowing real-time detection. This label-free method thus reduces handling and time to result compared with current methods.
Double-stranded RNA virus in the human pathogenic fungus Blastomyces dermatitidis.
Kohno, S; Fujimura, T; Rulong, S; Kwon-Chung, K J
1994-01-01
Double-stranded RNA viruses were detected in a strain of Blastomyces dermatitidis isolated from a patient in Uganda. The viral particles are spherical (mostly 44 to 50 nm in diameter) and consist of about 25% double-stranded RNA (5 kb) and 75% protein (90 kDa). The virus contains transcriptional RNA polymerase activity; it synthesized single-stranded RNA in vitro in a conservative manner. The newly synthesized single-stranded RNA was a full-length strand, and the rate of chain elongation was approximately 170 nucleotides per min. The virus-containing strain shows no morphological difference from virus-free strains in the mycelial phase. Although the association with the presence of the virus is unclear, the virus-infected strain converts to the yeast form at 37 degrees C, but the yeast cells fail to multiply at that temperature. Images PMID:7933142
Zahedi, Alireza; Paparini, Andrea; Jian, Fuchun; Robertson, Ian; Ryan, Una
2016-04-01
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Shattuck, Wendy M C; Dyer, Megan C; Desrosiers, Joe; Fast, Loren D; Terry, Frances E; Martin, William D; Moise, Leonard; De Groot, Anne S; Mather, Thomas N
2014-01-01
Ticks are notorious vectors of disease for humans, and many species of ticks transmit multiple pathogens, sometimes in the same tick bite. Accordingly, a broad-spectrum vaccine that targets vector ticks and pathogen transmission at the tick/host interface, rather than multiple vaccines against every possible tickborne pathogen, could become an important tool for resolving an emerging public health crisis. The concept for such a tick protective vaccine comes from observations of an acquired tick resistance (ATR) that can develop in non-natural hosts of ticks following sensitization to tick salivary components. Mice are commonly used as models to study immune responses to human pathogens but normal mice are natural hosts for many species of ticks and fail to develop ATR. We evaluated HLA DR3 transgenic (tg) "humanized" mice as a potential model of ATR and assessed the possibility of using this animal model for tick protective vaccine discovery studies. Serial tick infestations with pathogen-free Ixodes scapularis ticks were used to tick-bite sensitize HLA DR3 tg mice. Sensitization resulted in a cytokine skew favoring a Th2 bias as well as partial (57%) protection to infection with Lyme disease spirochetes (Borrelia burgdorferi) following infected tick challenge when compared to tick naïve counterparts. I. scapularis salivary gland homogenate (SGH) and a group of immunoinformatic-predicted T cell epitopes identified from the I. scapularis salivary transcriptome were used separately to vaccinate HLA DR3 tg mice, and these mice also were assessed for both pathogen protection and epitope recognition. Reduced pathogen transmission along with a Th2 skew resulted from SGH vaccination, while no significant protection and a possible T regulatory bias was seen in epitope-vaccinated mice. This study provides the first proof-of-concept for using HLA DR tg "humanized" mice for studying the potential tick protective effects of immunoinformatic- or otherwise-derived tick salivary components as tickborne disease vaccines.
Blake, Khandis R; Yih, Jennifer; Zhao, Kun; Sung, Billy; Harmon-Jones, Cindy
2017-09-01
Skin-transmitted pathogens have threatened humans since ancient times. We investigated whether skin-transmitted pathogens were a subclass of disgust stimuli that evoked an emotional response that was related to, but distinct from, disgust and fear. We labelled this response "the heebie jeebies". In Study 1, coding of 76 participants' experiences of disgust, fear, and the heebie jeebies showed that the heebie jeebies was elicited by unique stimuli which produced skin-crawling sensations and an urge to protect the skin. In Experiment 2,350 participants' responses to skin-transmitted pathogen, fear-inducing, and disgust-inducing vignettes showed that the vignettes elicited sensations and urges which loaded onto heebie jeebies, fear, and disgust factors, respectively. Experiment 3 largely replicated findings from Experiment 2 using video stimuli (178 participants). Results are consistent with the notion that skin-transmitted pathogens are a subclass of disgust stimuli which motivate behaviours that are functionally consistent with disgust yet qualitatively distinct.
Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru
2018-01-01
Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production. Copyright © 2017 American Society for Microbiology.
Barry, Peter A; Strelow, Lisa
2008-02-01
Development of breeding colonies of rhesus macaques (Macaca mulatta) that are specific pathogen-free (SPF) for rhesus cytomegalovirus (RhCMV) is relatively straightforward and requires few modifications from current SPF programs. Infants separated from the dam at or within a few days of birth and cohoused with similarly treated animals remain RhCMV seronegative indefinitely, provided they are never directly or indirectly exposed to a RhCMV-infected monkey. By systematically cohousing seronegative animals into larger social cohorts, breeding populations of animals SPF for RhCMV can be established. The additional costs involved in expanding the current definition of SPF status to include RhCMV are incremental compared with the money already being spent on existing SPF efforts. Moreover, the large increase in research opportunities available for RhCMV-free animals arguably would far exceed the development costs. Potential new areas of research and further expansion of existing research efforts involving these newly defined SPF animals would have direct implications for improvements in human health.
Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya
2017-01-01
Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a dissociated monolayer and feeder-free culture system have the potential to generate oligodendrocyte progenitor cells and mature oligodendrocytes in vitro and in vivo. This culture method could be applied to prepare large amounts of oligodendrocyte progenitor cells and mature oligodendrocytes in a relatively short amount of time.
Networks and plant disease management: concepts and applications.
Shaw, M W; Pautasso, M
2014-01-01
A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, and by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce the flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading diseases, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.
Mouinga-Ondémé, Augustin; Betsem, Edouard; Caron, Mélanie; Makuwa, Maria; Sallé, Bettina; Renault, Noemie; Saib, Ali; Telfer, Paul; Marx, Preston; Gessain, Antoine; Kazanji, Mirdad
2010-12-14
Each of the pathogenic human retroviruses (HIV-1/2 and HTLV-1) has a nonhuman primate counterpart, and the presence of these retroviruses in humans results from interspecies transmission. The passage of another simian retrovirus, simian foamy virus (SFV), from apes or monkeys to humans has been reported. Mandrillus sphinx, a monkey species living in central Africa, is naturally infected with SFV. We evaluated the natural history of the virus in a free-ranging colony of mandrills and investigated possible transmission of mandrill SFV to humans. We studied 84 semi-free-ranging captive mandrills at the Primate Centre of the Centre International de Recherches Médicales de Franceville (Gabon) and 15 wild mandrills caught in various areas of the country. The presence of SFV was also evaluated in 20 people who worked closely with mandrills and other nonhuman primates. SFV infection was determined by specific serological (Western blot) and molecular (nested PCR of the integrase region in the polymerase gene) assays. Seropositivity for SFV was found in 70/84 (83%) captive and 9/15 (60%) wild-caught mandrills and in 2/20 (10%) humans. The 425-bp SFV integrase fragment was detected in peripheral blood DNA from 53 captive and 8 wild-caught mandrills and in two personnel. Sequence and phylogenetic studies demonstrated the presence of two distinct strains of mandrill SFV, one clade including SFVs from mandrills living in the northern part of Gabon and the second consisting of SFV from animals living in the south. One man who had been bitten 10 years earlier by a mandrill and another bitten 22 years earlier by a macaque were found to be SFV infected, both at the Primate Centre. The second man had a sequence close to SFVmac sequences. Comparative sequence analysis of the virus from the first man and from the mandrill showed nearly identical sequences, indicating genetic stability of SFV over time. Our results show a high prevalence of SFV infection in a semi-free-ranging colony of mandrills, with the presence of two different strains. We also showed transmission of SFV from a mandrill and a macaque to humans.
Cunningham, Andrew A.; Langton, Tom E. S.
2016-01-01
There have been few reconstructions of wildlife disease emergences, despite their extensive impact on biodiversity and human health. This is in large part attributable to the lack of structured and robust spatio-temporal datasets. We overcame logistical problems of obtaining suitable information by using data from a citizen science project and formulating spatio-temporal models of the spread of a wildlife pathogen (genus Ranavirus, infecting amphibians). We evaluated three main hypotheses for the rapid increase in disease reports in the UK: that outbreaks were being reported more frequently, that climate change had altered the interaction between hosts and a previously widespread pathogen, and that disease was emerging due to spatial spread of a novel pathogen. Our analysis characterized localized spread from nearby ponds, consistent with amphibian dispersal, but also revealed a highly significant trend for elevated rates of additional outbreaks in localities with higher human population density—pointing to human activities in also spreading the virus. Phylogenetic analyses of pathogen genomes support the inference of at least two independent introductions into the UK. Together these results point strongly to humans repeatedly translocating ranaviruses into the UK from other countries and between UK ponds, and therefore suggest potential control measures. PMID:27683363
Microorganisms in human milk: lights and shadows.
Civardi, Elisa; Garofoli, Francesca; Tzialla, Chryssoula; Paolillo, Piermichele; Bollani, Lina; Stronati, Mauro
2013-10-01
Human milk has been traditionally considered germ free, however, recent studies have shown that it represents a continuous supply of commensal and potentially probiotic bacteria to the infant gut. Mammary microbioma may exercise anti-infective, anti-inflammatory, immunomodulatory and metabolic properties. Moreover human milk may be a source of pathogenic microorganism during maternal infection, if contaminated during expression or in case of vaccination of the mother. The non-sterility of breast milk can, thus, be seen as a protective factor, or rarely, as a risk factor for the newborn.
Dupuytren's contracture: emerging insight into a Viking disease.
Nunn, Adam C; Schreuder, Fred B
2014-01-01
Dupuytren's disease is a fibroproliferative condition of the palm, with a predilection for men, which has affected Northern Europeans since the Viking conquests. Although strongly heritable, clear evidence exists for environmental factors that modify the underlying genetic risk, such as diabetes, heavy drinking, and smoking. Evidence also exists for epilepsy (probably due to treatment with certain anti-epileptic drugs), and Human Immunodeficiency Virus infection. Recent large studies have shown no relationship with manual labour or vibrating tools. Two theories have emerged regarding the pathogenic mechanism: the first attributes the aberrant healing process that characterises Dupuytren's to free radicals, generated as a result of microangiopathy, whereas the second cites a genetic tendency toward apoptosis-resistant myofibroblasts. Despite only one study demonstrating linkage, emerging data from genome-wide association studies highlight a series of single nucleotide polymorphisms near members of the Wnt signalling pathway, and transcriptional profiling studies have consistently identified certain components of the extracellular matrix.
The Pathogen-Host Interactions database (PHI-base): additions and future developments
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species
Watkins, Rhys A.; Johnston, Simon A.
2017-01-01
Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans. PMID:28974017
Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus.
Lowder, Bethan V; Guinane, Caitriona M; Ben Zakour, Nouri L; Weinert, Lucy A; Conway-Morris, Andrew; Cartwright, Robyn A; Simpson, A John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J Ross
2009-11-17
The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens.
Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E
1999-01-01
We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.
Prediction of molecular mimicry candidates in human pathogenic bacteria.
Doxey, Andrew C; McConkey, Brendan J
2013-08-15
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.
Prediction of molecular mimicry candidates in human pathogenic bacteria
Doxey, Andrew C; McConkey, Brendan J
2013-01-01
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053
Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri.
Zysset-Burri, Denise C; Müller, Norbert; Beuret, Christian; Heller, Manfred; Schürch, Nadia; Gottstein, Bruno; Wittwer, Matthias
2014-06-19
The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.
Development of a high- versus low-pathogenicity model of the free-living amoeba Naegleria fowleri.
Burri, Denise C; Gottstein, Bruno; Zumkehr, Béatrice; Hemphill, Andrew; Schürch, Nadia; Wittwer, Matthias; Müller, Norbert
2012-10-01
Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.
Yu, Xiaobo; Woolery, Andrew R.; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C.; Orth, Kim; LaBaer, Joshua
2014-01-01
AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. PMID:25073739
Winge, Stefan; Yderland, Louise; Kannicht, Christoph; Hermans, Pim; Adema, Simon; Schmidt, Torben; Gilljam, Gustav; Linhult, Martin; Tiemeyer, Maya; Belyanskaya, Larisa; Walter, Olaf
2015-11-01
Human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII (rFVIII), is the first rFVIII produced in a human cell-line approved by the European Medicines Agency. To describe the development, upscaling and process validation for industrial-scale human-cl rhFVIII purification. The purification process involves one centrifugation, two filtration, five chromatography columns and two dedicated pathogen clearance steps (solvent/detergent treatment and 20 nm nanofiltration). The key purification step uses an affinity resin (VIIISelect) with high specificity for FVIII, removing essentially all host-cell proteins with >80% product recovery. The production-scale multi-step purification process efficiently removes process- and product-related impurities and results in a high-purity rhFVIII product, with an overall yield of ∼50%. Specific activity of the final product was >9000 IU/mg, and the ratio between active FVIII and total FVIII protein present was >0.9. The entire production process is free of animal-derived products. Leaching of potential harmful compounds from chromatography resins and all pathogens tested were below the limit of quantification in the final product. Human-cl rhFVIII can be produced at 500 L bioreactor scale, maintaining high purity and recoveries. The innovative purification process ensures a high-purity and high-quality human-cl rhFVIII product with a high pathogen safety margin. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Chantong, Wasan; Kaneene, John B
2011-05-01
Highly pathogenic avian influenza (HPAI), caused by the virus strain H5N1, currently occurs worldwide with the greatest burden in Southeast Asia where the disease was first reported. In Thailand where the disease was first confirmed in January 2004, the virus had been persistent as a major threat to the poultry industry and human health over the past several years. It was generally hypothesized that the main reason for the disease to circulate in Thailand was the existence of traditional backyard chickens and free-range ducks raising systems. Consequently, this study reviewed the structure of poultry raising systems, the recent outbreaks of HPAI H5N1, the disease association to the backyard and free-grazing poultry production, and consequences of the outbreaks in Thailand. Although the major outbreaks in the country had declined, the sustaining disease surveillance and prevention are still strongly recommended.
Advances in cell-free protein array methods.
Yu, Xiaobo; Petritis, Brianne; Duan, Hu; Xu, Danke; LaBaer, Joshua
2018-01-01
Cell-free protein microarrays represent a special form of protein microarray which display proteins made fresh at the time of the experiment, avoiding storage and denaturation. They have been used increasingly in basic and translational research over the past decade to study protein-protein interactions, the pathogen-host relationship, post-translational modifications, and antibody biomarkers of different human diseases. Their role in the first blood-based diagnostic test for early stage breast cancer highlights their value in managing human health. Cell-free protein microarrays will continue to evolve to become widespread tools for research and clinical management. Areas covered: We review the advantages and disadvantages of different cell-free protein arrays, with an emphasis on the methods that have been studied in the last five years. We also discuss the applications of each microarray method. Expert commentary: Given the growing roles and impact of cell-free protein microarrays in research and medicine, we discuss: 1) the current technical and practical limitations of cell-free protein microarrays; 2) the biomarker discovery and verification pipeline using protein microarrays; and 3) how cell-free protein microarrays will advance over the next five years, both in their technology and applications.
Dalia, Ankur B.; Weiser, Jeffrey N.
2011-01-01
SUMMARY The complement system, which functions by lysing pathogens directly or by promoting their uptake by phagocytes, is critical for controlling many microbial infections. Here we show that in Streptococcus pneumoniae, increasing bacterial chain length sensitizes this pathogen to complement deposition and subsequent uptake by human neutrophils. Consistent with this, we show that minimizing chain length provides wild-type bacteria with a competitive advantage in vivo in a model of systemic infection. Investigating how the host overcomes this virulence strategy, we find that antibody promotes complement-dependent opsonophagocytic killing of Streptococcus pneumoniae and lysis of Haemophilus influenzae independent of Fc-mediated effector functions. Consistent with the agglutinating effect of antibody, F(ab′)2 but not Fab could promote this effect. Therefore, increasing pathogen size, whether by natural changes in cellular morphology or via antibody-mediated agglutination, promotes complement-dependent killing. These observations have broad implications for how cell size and morphology can affect virulence among pathogenic microbes. PMID:22100164
Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation
Glidden, Caroline K.; Beechler, Brianna; Buss, Peter Erik; Charleston, Bryan; de Klerk-Lorist, Lin-Mari; Maree, Francois Frederick; Muller, Timothy; Pérez-Martin, Eva; Scott, Katherine Anne; van Schalkwyk, Ockert Louis; Jolles, Anna
2018-01-01
Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed. Tracking common host immune responses indicative of recent infection may have potential as a non-specific diagnostic approach for disease surveillance. The challenge to immunologists is to identify the most promising markers, which ideally should be highly conserved across pathogens and host species, become upregulated rapidly and consistently in response to pathogen invasion, and remain elevated beyond clearance of infection. This study combined an infection experiment and a longitudinal observational study to evaluate the utility of non-specific markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A), two pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer). Specifically, in the experimental study, we asked (1) How quickly do buffalo mount NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease virus; (2) for how long do NSMI remain elevated after viral clearance and; (3) how pronounced is the difference between peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we asked (4) Are elevated NSMI associated with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild population? Among the four NSMI that we tested, haptoglobin showed the strongest potential as a surveillance marker in African buffalo: concentrations quickly and consistently reached high levels in response to experimental infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was indicative of recent exposure to two respiratory pathogens assessed in the longitudinal study. We hope this work motivates studies investigating suites of NSMI as indicators for pathogen exposure in a broader range of both pathogen and host species, potentially transforming how we track disease burden in natural populations. PMID:29375568
PIML: the Pathogen Information Markup Language.
He, Yongqun; Vines, Richard R; Wattam, Alice R; Abramochkin, Georgiy V; Dickerman, Allan W; Eckart, J Dana; Sobral, Bruno W S
2005-01-01
A vast amount of information about human, animal and plant pathogens has been acquired, stored and displayed in varied formats through different resources, both electronically and otherwise. However, there is no community standard format for organizing this information or agreement on machine-readable format(s) for data exchange, thereby hampering interoperation efforts across information systems harboring such infectious disease data. The Pathogen Information Markup Language (PIML) is a free, open, XML-based format for representing pathogen information. XSLT-based visual presentations of valid PIML documents were developed and can be accessed through the PathInfo website or as part of the interoperable web services federation known as ToolBus/PathPort. Currently, detailed PIML documents are available for 21 pathogens deemed of high priority with regard to public health and national biological defense. A dynamic query system allows simple queries as well as comparisons among these pathogens. Continuing efforts are being taken to include other groups' supporting PIML and to develop more PIML documents. All the PIML-related information is accessible from http://www.vbi.vt.edu/pathport/pathinfo/
Balczun, Carsten; Scheid, Patrick L
2017-04-01
Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses.
Balczun, Carsten; Scheid, Patrick L.
2017-01-01
Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses. PMID:28368313
Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum
2017-05-15
E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Cell Envelope of Corynebacteria: Structure and Influence on Pathogenicity
Burkovski, Andreas
2013-01-01
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper. PMID:23724339
Cell envelope of corynebacteria: structure and influence on pathogenicity.
Burkovski, Andreas
2013-01-01
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
Reptiles as Reservoirs of Bacterial Infections: Real Threat or Methodological Bias?
Zancolli, Giulia; Mahsberg, Dieter; Sickel, Wiebke; Keller, Alexander
2015-10-01
Bacterial infections secondary to snakebites and human pathogens (e.g., Salmonella) have been linked to the oral microbiota of snakes and pet reptiles. Based on culture-dependent studies, it is speculated that snakes' oral microbiota reflects the fecal flora of their ingested preys. However, cultured-based techniques have been shown to be limited as they fail to identify unculturable microorganisms which represent the vast majority of the microbial diversity. Here, we used culture-independent high-throughput sequencing to identify reptile-associated pathogens and to characterize the oral microbial community of five snakes, one gecko, and two terrapins. Few potential human pathogens were detected at extremely low frequencies. Moreover, bacterial taxa represented in the snake's oral cavity bore little resemblance to their preys' fecal microbiota. Overall, we found distinct, highly diverse microbial communities with consistent, species-specific patterns contrary to previous culture-based studies. Our study does not support the widely held assumption that reptiles' oral cavity acts as pathogen reservoir and provides important insights for future research.
The Role of L-DOPA on Melanization and Mycelial Production in Malassezia Furfur
Youngchim, Sirida; Nosanchuk, Joshua D.; Pornsuwan, Soraya; Kajiwara, Susumu; Vanittanakom, Nongnuch
2013-01-01
Melanins are synthesized by organisms of all biological kingdoms and comprise a heterogeneous class of natural pigments. Certain of these polymers have been implicated in the pathogenesis of several important human fungal pathogens. This study investigated whether the fungal skin pathogen Malassezia furfur produces melanin or melanin-like compounds. A melanin-binding monoclonal antibody (MAb) labelled in vitro cultivated yeast cells of M. furfur. In addition, melanization of Malassezia yeasts and hyphae was detected by anti-melanin MAb in scrapings from patients with pityriasis versicolor. Treatment of Malassezia yeasts with proteolytic enzymes, denaturant and concentrated hot acid yielded dark particles and electron spin resonance spectroscopy revealed that these particles contained a stable free radical compound, consistent with their identification as melanins. Malassezia yeasts required phenolic compounds, such as L-DOPA, in order to synthesize melanin. L-DOPA also triggered hyphal formation in vitro when combined with kojic acid, a tyrosinase inhibitor, in a dose-dependent manner. In this respect, L-DOPA is thought to be an essential substance that is linked to both melanization and yeast-mycelial transformation in M. furfur. In summary, M. furfur can produce melanin or melanin-like compounds in vitro and in vivo, and the DOPA melanin pathway is involved in cell wall melanization. PMID:23762233
The role of L-DOPA on melanization and mycelial production in Malassezia furfur.
Youngchim, Sirida; Nosanchuk, Joshua D; Pornsuwan, Soraya; Kajiwara, Susumu; Vanittanakom, Nongnuch
2013-01-01
Melanins are synthesized by organisms of all biological kingdoms and comprise a heterogeneous class of natural pigments. Certain of these polymers have been implicated in the pathogenesis of several important human fungal pathogens. This study investigated whether the fungal skin pathogen Malassezia furfur produces melanin or melanin-like compounds. A melanin-binding monoclonal antibody (MAb) labelled in vitro cultivated yeast cells of M. furfur. In addition, melanization of Malassezia yeasts and hyphae was detected by anti-melanin MAb in scrapings from patients with pityriasis versicolor. Treatment of Malassezia yeasts with proteolytic enzymes, denaturant and concentrated hot acid yielded dark particles and electron spin resonance spectroscopy revealed that these particles contained a stable free radical compound, consistent with their identification as melanins. Malassezia yeasts required phenolic compounds, such as L-DOPA, in order to synthesize melanin. L-DOPA also triggered hyphal formation in vitro when combined with kojic acid, a tyrosinase inhibitor, in a dose-dependent manner. In this respect, L-DOPA is thought to be an essential substance that is linked to both melanization and yeast-mycelial transformation in M. furfur. In summary, M. furfur can produce melanin or melanin-like compounds in vitro and in vivo, and the DOPA melanin pathway is involved in cell wall melanization.
Gillespie, Thomas R; Morgan, David; Deutsch, J Charlie; Kuhlenschmidt, Mark S; Salzer, Johanna S; Cameron, Kenneth; Reed, Trish; Sanz, Crickette
2009-12-01
Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa.
Morgan, David; Deutsch, J. Charlie; Kuhlenschmidt, Mark S.; Salzer, Johanna S.; Cameron, Kenneth; Reed, Trish; Sanz, Crickette
2010-01-01
Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa. PMID:20238141
USDA-ARS?s Scientific Manuscript database
Introduction: The prevalence of antibiotic resistance microorganisms has significant implications for environmental, animal, and human health. One focus is the use of antibiotics in animal agriculture and its effects on antibiotic resistant bacterial populations within those systems, but before thi...
Lares-Jiménez, Luis Fernando; Borquez-Román, Manuel Alejandro; Alfaro-Sifuentes, Rosalía; Meza-Montenegro, María Mercedes; Casillas-Hernández, Ramón; Lares-Villa, Fernando
2018-06-01
The presence of free-living amoebae of the genera Naegleria, Acanthamoeba and Balamuthia, which contain pathogenic species for humans and animals, has been demonstrated several times and in different natural aquatic environments in the northwest of Mexico. With the aim of continuing the addition of knowledge about immunology of pathogenic free-living amoebae, 118 sera from children and adolescents, living in three villages, were studied. Humoral IgG response against B. mandrillaris, N. fowleri and Acanthamoeba sp. genotype T4, was analyzed in duplicate to titers 1: 100 and 1: 500 by enzyme-linked immunosorbent assay (ELISA). Children and adolescents ages ranged between 5 and 16 years old, with a mean of 9 years old, 55% males. All tested sera were positive for the 1: 100 dilution, and in the results obtained with the 1: 500 dilution, 116 of 118 (98.3%) were seropositive for N. fowleri, 101 of 118 (85.6%) were seropositive for Acanthamoeba sp. genotype T4, and 43 of 118 (36.4%) were seropositive for B. mandrillaris. The statistical analysis showed different distributions among the three communities and for the three species of pathogenic free-living amoebae, including age. Lysed and complete cells used as Balamuthia antigens gave differences in seropositivity. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Background: The prevalence of antibiotic resistance microorganisms has significant implications for environmental, animal, and human health. One focus is the use of antibiotics in animal agriculture and its effects on antibiotic resistant bacterial populations within those systems, but before this ...
Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus
Lowder, Bethan V.; Guinane, Caitriona M.; Ben Zakour, Nouri L.; Weinert, Lucy A.; Conway-Morris, Andrew; Cartwright, Robyn A.; Simpson, A. John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J. Ross
2009-01-01
The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens. PMID:19884497
The Pathogen-Host Interactions database (PHI-base): additions and future developments.
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in § 94.6(a) as free of END and highly pathogenic avian influenza at the time the poultry were in the... slaughtered in a region designated in § 94.6(a) as free of END and highly pathogenic avian influenza at a... § 94.6(a) as free of END and highly pathogenic avian influenza in a federally inspected processing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in § 94.6(a) as free of END and highly pathogenic avian influenza at the time the poultry were in the... slaughtered in a region designated in § 94.6(a) as free of END and highly pathogenic avian influenza at a... § 94.6(a) as free of END and highly pathogenic avian influenza in a federally inspected processing...
Edwards, Marten J; Barbalato, Laura A; Makkapati, Amulya; Pham, Katerina D; Bugbee, Louise M
2015-09-01
Several human pathogens are transmitted by the blacklegged tick, Ixodes scapularis. These include the spirochetes that cause Lyme disease (Borrelia burgdorferi) which is endemic to the Lehigh Valley region of eastern Pennsylvania. Emerging and currently rare tick-borne diseases have been of increasing concern in this region, including tick-borne relapsing fever (caused by Borrelia miyamotoi), human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum), and human babesiosis (caused by Babesia microti). Real-time PCR assays and in some instances, conventional PCR followed by DNA sequencing, were used to screen 423 DNA samples that were prepared from questing adult and nymph stage I. scapularis ticks for infection with four tick-borne human pathogens. B. burgdorferi was detected in 23.2% of the sampled ticks, while B. miyamotoi, B. microti and a human variant of A. phagocytophilum were detected in less than 0.5% of the ticks. Our results are consistent with those expected in a region where Lyme disease is prevalent and human cases of tick-borne relapsing fever, babesiosis and human granulocytic anaplasmosis are not currently widespread. It is expected that this study will serve as a baseline for future studies of tick-borne pathogens in an area that is in close proximity to regions of high endemicity for Lyme disease, human granulocytic anaplasmosis and human babesiosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging
USDA-ARS?s Scientific Manuscript database
In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...
Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia
Gilbert, Marius; Xiao, Xiangming; Pfeiffer, Dirk U.; Epprecht, M.; Boles, Stephen; Czarnecki, Christina; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Minh, Phan Q.; Otte, M. J.; Martin, Vincent; Slingenbergh, Jan
2008-01-01
The highly pathogenic avian influenza (HPAI) H5N1 virus that emerged in southern China in the mid-1990s has in recent years evolved into the first HPAI panzootic. In many countries where the virus was detected, the virus was successfully controlled, whereas other countries face periodic reoccurrence despite significant control efforts. A central question is to understand the factors favoring the continuing reoccurrence of the virus. The abundance of domestic ducks, in particular free-grazing ducks feeding in intensive rice cropping areas, has been identified as one such risk factor based on separate studies carried out in Thailand and Vietnam. In addition, recent extensive progress was made in the spatial prediction of rice cropping intensity obtained through satellite imagery processing. This article analyses the statistical association between the recorded HPAI H5N1 virus presence and a set of five key environmental variables comprising elevation, human population, chicken numbers, duck numbers, and rice cropping intensity for three synchronous epidemic waves in Thailand and Vietnam. A consistent pattern emerges suggesting risk to be associated with duck abundance, human population, and rice cropping intensity in contrast to a relatively low association with chicken numbers. A statistical risk model based on the second epidemic wave data in Thailand is found to maintain its predictive power when extrapolated to Vietnam, which supports its application to other countries with similar agro-ecological conditions such as Laos or Cambodia. The model's potential application to mapping HPAI H5N1 disease risk in Indonesia is discussed. PMID:18362346
Vázquez-Rosas-Landa, Mirna; Ponce-Soto, Gabriel Yaxal; Eguiarte, Luis E; Souza, V
2017-07-31
Bacteria have numerous strategies to interact with themselves and with their environment, but genes associated with these interactions are usually cataloged as pathogenic. To understand the role that these genes have not only in pathogenesis but also in bacterial interactions, we compared the genomes of eight bacteria from human-impacted environments with those of free-living bacteria from the Cuatro Ciénegas Basin (CCB), a relatively pristine oligotrophic site. Fifty-one genomes from CCB bacteria, including Pseudomonas, Vibrio, Photobacterium and Aeromonas, were analyzed. We found that the CCB strains had several virulence-related genes, 15 of which were common to all strains and were related to flagella and chemotaxis. We also identified the presence of Type III and VI secretion systems, which leads us to propose that these systems play an important role in interactions among bacterial communities beyond pathogenesis. None of the CCB strains had pathogenicity islands, despite having genes associated with antibiotics. Integrons were rare, while CRISPR elements were common. The idea that pathogenicity-related genes in many cases form part of a wider strategy used by bacteria to interact with other organisms could help us to understand the role of pathogenicity-related elements in an ecological and evolutionary framework leading toward a more inclusive One Health concept. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Development of a new live attenuated mumps virus vaccine in human diploid cells.
Sassani, A; Mirchamsy, H; Shafyi, A; Ahourai, P; Razavi, J; Gholami, M R; Mohammadi, A; Ezzi, A; Rahmani, M; Fateh, G
1991-07-01
A new live attenuated mumps vaccine was developed in human diploid cells. The S-12 virus was isolated from a 10-year-old girl showing typical symptoms of mumps infection, the diagnosis was confirmed by a pediatrician. The virus was isolated in green monkey kidney cells, without passage in chick embryo cavity or chick embryo fibroblasts. Attenuation of the wild virus was performed by serial passages in human diploid cells (MRC-5). The attenuated virus was characterized by identity tests, as well as by a reduction in plaque size, as marker tests. The virus was free from adventitious agents and safe for laboratory animals as well as for monkeys. The reactogenicity and immunogenicity of the S-12 virus for man was investigated by administration of a monovalent vaccine to 20 seronegative adult male volunteers and 30 children aged 1 to 5 years without history of mumps infection or vaccination. Seroconversion was obtained in 95% of the vaccinees. The new vaccine has the advantage of not requiring specific pathogen-free eggs, and being free from avian proteins and therefore can be used in sensitized patients.
Mosteo, R; Goñi, P; Miguel, N; Abadías, J; Valero, P; Ormad, M P
2016-01-01
Dreissena polymorpha (the zebra mussel) has been invading freshwater bodies in Europe since the beginning of the nineteenth century. Filter-feeding organisms can accumulate and concentrate both chemical and biological contaminants in their tissues. Therefore, zebra mussels are recognized as indicators of freshwater quality. In this work, the capacity of the zebra mussel to accumulate human pathogenic bacteria and protozoa has been evaluated and the sanitary risk associated with their presence in surface water has also been assessed. The results show a good correlation between the pathogenic bacteria concentration in zebra mussels and in watercourses. Zebra mussels could therefore be used as an indicator of biological contamination. The bacteria (Escherichia coli, Enterococcus spp., Pseudomonas spp., and Salmonella spp.) and parasites (Cryptosporidium oocysts and free-living amoebae) detected in these mussels reflect a potential sanitary risk in water.
Akçaalan, Reyhan; Albay, Meric; Koker, Latife; Baudart, Julia; Guillebault, Delphine; Fischer, Sabine; Weigel, Wilfried; Medlin, Linda K
2017-12-22
Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives. Molecular tools are more rapid, accurate and reliable than traditional methods, which means faster mitigation strategies with less harm to humans and the community. We present microarray results for the presence of freshwater pathogens from a Turkish lake used drinking water and inferred cyanobacterial cell equivalents from samples concentrated from 40 into 1 L in 45 min using hollow fibre filters. In two companion studies from the same samples, cyanobacterial toxins were analysed using chemical methods and those dates with highest toxin values also had highest cell equivalents as inferred from this microarray study.
Bao, Aorigele; Zhong, Jie; Zeng, Xian-Chun; Nie, Yao; Zhang, Lei; Peng, Zhao Feng
2015-10-01
Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, pose serious threat to human health. The outbreak of antibiotic-resistant pathogens in recent years emphasizes once again the urgent need for the development of new antimicrobial agents. Here, we discovered a novel antimicrobial peptide from the scorpion Opistophthalmus glabrifrons, which was referred to as Opisin. Opisin consists of 19 amino acid residues without disulfide bridges. It is a cationic, amphipathic, and α-helical molecule. Protein sequence homology search revealed that Opisin shares 42.1-5.3% sequence identities to the 17/18-mer antimicrobial peptides from scorpions. Antimicrobial assay showed that Opisin is able to potently inhibit the growth of the tested Gram-positive bacteria with the minimal inhibitory concentration (MIC) values of 4.0-10.0 μM; in contrast, it possesses much lower activity against the tested Gram-negative bacteria and a fungus. It is interesting to see that Opisin is able to strongly inhibit the growth of methicillin- and vancomycin-resistant pathogens with the MICs ranging from 2.0 to 4.0 μM and from 4.0 to 6.0 μM, respectively. We found that at a concentration of 5 × MIC, Opisin completely killed all the cultured methicillin-resistant Staphylococcus aureus. These results suggest that Opisin is a promising therapeutic candidate for the treatment of the antibiotic-resistant bacterial infections. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Lethal Respiratory Disease Associated with Human Rhinovirus C in Wild Chimpanzees, Uganda, 2013.
Scully, Erik J; Basnet, Sarmi; Wrangham, Richard W; Muller, Martin N; Otali, Emily; Hyeroba, David; Grindle, Kristine A; Pappas, Tressa E; Thompson, Melissa Emery; Machanda, Zarin; Watters, Kelly E; Palmenberg, Ann C; Gern, James E; Goldberg, Tony L
2018-02-01
We describe a lethal respiratory outbreak among wild chimpanzees in Uganda in 2013 for which molecular and epidemiologic analyses implicate human rhinovirus C as the cause. Postmortem samples from an infant chimpanzee yielded near-complete genome sequences throughout the respiratory tract; other pathogens were absent. Epidemiologic modeling estimated the basic reproductive number (R 0 ) for the epidemic as 1.83, consistent with the common cold in humans. Genotyping of 41 chimpanzees and examination of 24 published chimpanzee genomes from subspecies across Africa showed universal homozygosity for the cadherin-related family member 3 CDHR3-Y 529 allele, which increases risk for rhinovirus C infection and asthma in human children. These results indicate that chimpanzees exhibit a species-wide genetic susceptibility to rhinovirus C and that this virus, heretofore considered a uniquely human pathogen, can cross primate species barriers and threatens wild apes. We advocate engineering interventions and prevention strategies for rhinovirus infections for both humans and wild apes.
Investigation of magnetic microdiscs for bacterial pathogen detection
NASA Astrophysics Data System (ADS)
Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.
2016-05-01
Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.
Spengler, Jessica R; Saturday, Greg; Lavender, Kerry J; Martellaro, Cynthia; Keck, James G; Nichol, Stuart T; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph
2017-12-27
Both Ebola virus (EBOV) and Reston virus (RESTV) cause disease in nonhuman primates, yet only EBOV causes disease in humans. To investigate differences in viral pathogenicity, humanized mice (hu-NSG-SGM3) were inoculated with EBOV or RESTV. Consistent with differences in disease in human infection, pronounced weight loss and markers of hepatic damage and disease were observed exclusively in EBOV-infected mice. These abnormalities were associated with significantly higher EBOV replication in the liver but not in the spleen, suggesting that in this model, efficiency of viral replication in select tissues early in infection may contribute to differences in viral pathogenicity. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Wasimuddin; Menke, Sebastian; Melzheimer, Jörg; Thalwitzer, Susanne; Heinrich, Sonja; Wachter, Bettina; Sommer, Simone
2017-10-01
Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free-ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free-ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease-associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management. © 2017 John Wiley & Sons Ltd.
Pathogen and rodenticide exposure in American badgers (Taxidea taxus) in California.
Quinn, Jessica H; Girard, Yvette A; Gilardi, Kirsten; Hernandez, Yvette; Poppenga, Robert; Chomel, Bruno B; Foley, Janet E; Johnson, Christine K
2012-04-01
Urban and agricultural land use may increase the risk of disease transmission among wildlife, domestic animals, and humans as we share ever-shrinking and fragmented habitat. American badgers (Taxidae taxus), a species of special concern in California, USA, live in proximity to urban development and often share habitat with livestock and small peridomestic mammals. As such, they may be susceptible to pathogens commonly transmitted at this interface and to anticoagulant rodenticides used to control nuisance wildlife on agricultural lands. We evaluated free-ranging badgers in California for exposure to pathogens and anticoagulant rodenticides that pose a risk to wildlife, domestic animals, or public health. We found serologic evidence of badger exposure to Francisella tularensis, Toxoplasma gondii, Anaplasma phagocytophilum, canine distemper virus, and three Bartonella species: B. henselae, B. clarridgeiae, and B. vinsonii subsp. berkhoffii. Badger tissues contained anticoagulant rodenticides brodifacoum and bromadiolone, commonly used to control periurban rodent pests. These data provide a preliminary investigation of pathogen and toxicant exposure in the wild badger population.
Gálvez Ranilla, Lena; Christopher, Ashish; Sarkar, Dipayan; Shetty, Kalidas; Chirinos, Rosana; Campos, David
2017-12-01
Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic H. pylori. Purple corn can be targeted for design of probiotic functional foods integrated with their anthocyanin linked-coloring properties. © 2017 Institute of Food Technologists®.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DISEASE, HIGHLY PATHOGENIC AVIAN INFLUENZA, AFRICAN SWINE FEVER, CLASSICAL SWINE FEVER, SWINE VESICULAR... in § 94.6(a) as free of Newcastle disease and highly pathogenic avian influenza at the time the... free of Newcastle disease and highly pathogenic avian influenza at a federally inspected slaughter...
Newburg, D S
2009-04-01
This review discusses the role of human milk glycans in protecting infants, but the conclusion that the human milk glycans constitute an innate immune system whereby the mother protects her offspring may have general applicability in all mammals, including species of commercial importance. Infants that are not breastfed have a greater incidence of severe diarrhea and respiratory diseases than those who are breastfed. In the past, this had been attributed primarily to human milk secretory antibodies. However, the oligosaccharides are major components of human milk, and milk is also rich in other glycans, including glycoproteins, mucins, glycosaminoglycans, and glycolipids. These milk glycans, especially the oligosaccharides, are composed of thousands of components. The milk factor that promotes gut colonization by Bifidobacterium bifidum was found to be a glycan, and such prebiotic characteristics may contribute to protection against infectious agents. However, the ability of human milk glycans to protect the neonate seems primarily to be due to their inhibition of pathogen binding to their host cell target ligands. Many such examples include specific fucosylated oligosaccharides and glycans that inhibit specific pathogens. Most human milk oligosaccharides are fucosylated, and their production depends on fucosyltransferase enzymes; mutations in these fucosyltransferase genes are common and underlie the various Lewis blood types in humans. Variable expression of specific fucosylated oligosaccharides in milk, also a function of these genes (and maternal Lewis blood type), is significantly associated with the risk of infectious disease in breastfed infants. Human milk also contains major quantities and large numbers of sialylated oligosaccharides, many of which are also present in bovine colostrum. These could similarly inhibit several common viral pathogens. Moreover, human milk oligosaccharides strongly attenuate inflammatory processes in the intestinal mucosa. These results support the hypothesis that oligosaccharides and other glycans are the major constituents of an innate immune system of human milk whereby the mother protects her infant from enteric and other pathogens through breastfeeding. These protective glycans may prove useful as a basis for the development of novel prophylactic and therapeutic agents that inhibit disease by mucosal pathogens in many species.
van Wilgenburg, Bonnie; Browne, Cathy; Vowles, Jane; Cowley, Sally A.
2013-01-01
Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively, up to ∼3×107 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14+, CD16low, CD163+). Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology. PMID:23951090
Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities
2017-01-01
Humans can be exposed to pathogens from poorly managed animal feces, particularly in communities where animals live in close proximity to humans. This systematic review of peer-reviewed and gray literature examines the human health impacts of exposure to poorly managed animal feces transmitted via water, sanitation, and hygiene (WASH)-related pathways in low- and middle-income countries, where household livestock, small-scale animal operations, and free-roaming animals are common. We identify routes of contamination by animal feces, control measures to reduce human exposure, and propose research priorities for further inquiry. Exposure to animal feces has been associated with diarrhea, soil-transmitted helminth infection, trachoma, environmental enteric dysfunction, and growth faltering. Few studies have evaluated control measures, but interventions include reducing cohabitation with animals, provision of animal feces scoops, controlling animal movement, creating safe child spaces, improving veterinary care, and hygiene promotion. Future research should evaluate: behaviors related to points of contact with animal feces; animal fecal contamination of food; cultural behaviors of animal fecal management; acute and chronic health risks associated with exposure to animal feces; and factors influencing concentrations and shedding rates of pathogens originating from animal feces. PMID:28926696
Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun
2017-08-15
Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.
Growth and survival of foodborne pathogens in beer.
Menz, Garry; Aldred, Peter; Vriesekoop, Frank
2011-10-01
This work aimed to assess the growth and survival of four foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) in beer. The effects of ethanol, pH, and storage temperature were investigated for the gram-negative pathogens (E. coli O157:H7 and Salmonella Typhimurium), whereas the presence of hops ensured that the gram-positive pathogens (L. monocytogenes and S. aureus) were rapidly inactivated in alcohol-free beer. The pathogens E. coli O157:H7 and Salmonella Typhimurium could not grow in the mid-strength or full-strength beers, although they could survive for more than 30 days in the mid-strength beer when held at 4°C. These pathogens grew rapidly in the alcohol-free beer; however, growth was prevented when the pH of the alcohol-free beer was lowered from the "as received" value of 4.3 to 4.0. Pathogen survival in all beers was prolonged at lowered storage temperatures.
Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species.
Butt, Aaron T; Thomas, Mark S
2017-01-01
Burkholderia is a genus within the β -Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans , opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species
Butt, Aaron T.; Thomas, Mark S.
2017-01-01
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans. PMID:29164069
Plant-based oral vaccines against zoonotic and non-zoonotic diseases.
Shahid, Naila; Daniell, Henry
2016-11-01
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Auffret, Marc D; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; John Wallace, R; Freeman, Tom C; Stewart, Robert; Watson, Mick; Roehe, Rainer
2017-12-11
The emergence and spread of antimicrobial resistance is the most urgent current threat to human and animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds receiving two diets containing different proportions of concentrate. Two hundred and four genes associated with antimicrobial resistance (AMR), colonisation, communication or pathogenicity functions were identified from 4966 metagenomic genes using KEGG identification. Both the diversity and abundance of these genes were higher in concentrate-fed animals. Chloramphenicol and microcin resistance genes were dominant in samples from forage-fed animals (P < 0.001), while aminoglycoside and streptomycin resistances were enriched in concentrate-fed animals. The concentrate-based diet also increased the relative abundance of Proteobacteria, which includes many animal and zoonotic pathogens. A high ratio of Proteobacteria to (Firmicutes + Bacteroidetes) was confirmed as a good indicator for rumen dysbiosis, with eight cases all from concentrate-fed animals. Finally, network analysis demonstrated that the resistance/pathogenicity genes are potentially useful as biomarkers for health risk assessment of the ruminal microbiome. Diet has important effects on the complement of AMR genes in the rumen microbial community, with potential implications for human and animal health.
Wood, James L. N.; Leach, Melissa; Waldman, Linda; MacGregor, Hayley; Fooks, Anthony R.; Jones, Kate E.; Restif, Olivier; Dechmann, Dina; Hayman, David T. S.; Baker, Kate S.; Peel, Alison J.; Kamins, Alexandra O.; Fahr, Jakob; Ntiamoa-Baidu, Yaa; Suu-Ire, Richard; Breiman, Robert F.; Epstein, Jonathan H.; Field, Hume E.; Cunningham, Andrew A.
2012-01-01
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation. PMID:22966143
Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.
Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M
2017-11-07
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens. Copyright © 2017 Schmid-Siegert et al.
Rangé, Hélène; Labreuche, Julien; Louedec, Liliane; Rondeau, Philippe; Planesse, Cynthia; Sebbag, Uriel; Bourdon, Emmanuel; Michel, Jean-Baptiste; Bouchard, Philippe; Meilhac, Olivier
2014-10-01
Epidemiological, biological and clinical links between periodontal and cardiovascular diseases are now well established. Several human studies have detected bacterial DNA corresponding to periodontal pathogens in cardiovascular samples. Intraplaque hemorrhage has been associated with a higher risk of atherosclerotic plaque rupture, potentially mediated by neutrophil activation. In this study, we hypothesized that plaque composition may be related to periodontal pathogens. Carotid culprit plaque samples were collected from 157 patients. Macroscopic characterization was performed at the time of collection: presence of blood, lipid core, calcification and fibrosis. Markers of neutrophil activation released by carotid samples were quantified (myeloperoxidase or MPO, cell-free DNA and DNA-MPO complexes). PCR analysis using specific primers for Porphyromonas gingivalis, Aggregatibacter actinomycetemcommitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia was used to detect DNA from periodontal pathogens in carotid tissues. In addition, bacterial lipopolysaccharide (LPS) and Immunoglobulins G against T. forsythia were quantified in atherosclerotic carotid conditioned medium. Intraplaque hemorrhage was present in 73/157 carotid samples and was associated with neutrophil activation, reflected by the release of MPO, cell-free DNA and MPO-DNA complexes. LPS levels were also linked to intraplaque hemorrhage but not with the neutrophil activation markers. Seventy-three percent of the carotid samples were positive for periodontal bacterial DNA. Furthermore, hemoglobin levels were associated with the detection of T. forsythia and neutrophil activation/inflammation markers. This study suggests a potential role of periodontal microorganisms, especially T. forsythia, in neutrophil activation within hemorrhagic atherosclerotic carotid plaques. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bowness, Paul
2015-01-01
Possession of the human leukocyte antigen (HLA) class I molecule B27 is strongly associated with ankylosing spondylitis (AS), but the pathogenic role of HLA-B27 is unknown. Two broad theories most likely explain the role of HLA-B27 in AS pathogenesis. The first is based on the natural immunological function of HLA-B27 of presenting antigenic peptides to cytotoxic T cells. Thus, HLA-B27-restricted immune responses to self-antigens, or arthritogenic peptides, might drive immunopathology. B27 can also "behave badly," misfolding during assembly and leading to endoplasmic reticulum stress and autophagy responses. β2m-free B27 heavy chain structures including homodimers (B272) can also be expressed at the cell surface following endosomal recycling of cell surface heterotrimers. Cell surface free heavy chains and B272 bind to innate immune receptors on T, NK, and myeloid cells with proinflammatory effects. This review describes the natural function of HLA-B27, its disease associations, and the current theories as to its pathogenic role.
A novel spatially-explicit condition for the onset of waterborne diseases in complex environments
NASA Astrophysics Data System (ADS)
Mari, L.; Gatto, M.; Bertuzzo, E.; Casagrandi, R.; Righetto, L.; Rodriguez-Iturbe, I.; Rinaldo, A.
2012-12-01
In spatial models of waterborne infections the condition that all the local reproduction numbers be larger than one is neither necessary nor sufficient for outbreaks to occur. Here, to properly determine epidemic onset conditions, we examine the transition from stable to unstable of the disease-free equilibrium of a system of nonlinear differential equations characterizing the evolution of susceptible and infected individuals within their respective settlements, and pathogen concentration in their accessible environment. Two different network connectivity layers are assumed to link human settlements: hydrologic pathways serve as ecological corridors for pathogens, while human mobility acts as disease vehicle through susceptibles contracting the disease and asymptomatic infectives shedding bacteria at their temporary destinations. We show that an epidemic outbreak can be triggered if the dominant eigenvalue of a generalized reproduction matrix G0, suitably accounting for spatial distribution of human settlements, hydrological pathways for pathogen dispersal and pathogen redistribution mechanisms due to human mobility, is larger than unity. Matrix G0 and its dominant eigenvalue thus replace the usual reproduction number whenever spatial effects on disease propagation cannot be ignored. Conversely, our novel criterion decays into the standard onset condition based on local reproduction numbers in nonspatial settings. By analyzing realistic test cases we show that within a connected network system the disease can start even if all the local reproduction numbers are smaller than unity, or might not start even if all the local reproduction numbers are larger than unity. We also show that onset geography in complex environments is linked to the dominant eigenvector of matrix G0. Applications to cholera outbreaks in developing countries demonstrate that our approach can be successfully used for disease prediction and emergency management.
Characterization of the human gut microbiome during travelers' diarrhea
Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K
2015-01-01
Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel. PMID:25695334
Characterization of the human gut microbiome during travelers' diarrhea.
Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K
2015-01-01
Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.
The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex.
Brites, Daniela; Gagneux, Sebastien
2017-01-01
The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.
Porrero, M Concepción; Mentaberre, Gregorio; Sánchez, Sergio; Fernández-Llario, Pedro; Gómez-Barrero, Susana; Navarro-Gonzalez, Nora; Serrano, Emmanuel; Casas-Díaz, Encarna; Marco, Ignasi; Fernández-Garayzabal, José-Francisco; Mateos, Ana; Vidal, Dolors; Lavín, Santiago; Domínguez, Lucas
2013-10-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening pathogen in humans and its presence in animals is a public health concern. The aim of this study was to measure the prevalence of MRSA in free-living wild animals. Samples from red deer (n=273), Iberian ibex (n=212), Eurasian Griffon vulture (n=40) and wild boar (n=817) taken from different areas in Spain between June 2008 and November 2011 were analyzed. Characterization of the isolates was performed by spa typing, multi-locus sequence typing (MLST) and antimicrobial susceptibility testing. A low prevalence of MRSA was found with 13 isolates obtained from 12 animals (0.89%; 95% CI: 0.46-1.56). All MRSA sequence types belonged to ST398 (t011 and t1451) and ST1 (t127). Genotypes and antimicrobial susceptibility patterns (tetracycline resistance in ST398 and clindamycin-erythromycin-tetracycline resistance in ST1) suggest that the MRSA found probably originated in livestock (ST398) or humans (ST1). This is the first report of MRSA carriers in free-living wild animals in Europe. Although our data showed that MRSA prevalence is currently low, free-living wild animals might act as reservoir and represent a potential risk for human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Managing dynamic epidemiological risks through trade
Horan, Richard D.; Fenichel, Eli P.; Finnoff, David; Wolf, Christopher A.
2015-01-01
There is growing concern that trade, by connecting geographically isolated regions, unintentionally facilitates the spread of invasive pathogens and pests – forms of biological pollution that pose significant risks to ecosystem and human health. We use a bioeconomic framework to examine whether trade always increases private risks, focusing specifically on pathogen risks from live animal trade. When the pathogens have already established and traders bear some private risk, we find two results that run counter to the conventional wisdom on trade. First, uncertainty about the disease status of individual animals held in inventory may increase the incentives to trade relative to the disease-free case. Second, trade may facilitate reduced long-run disease prevalence among buyers. These results arise because disease risks are endogenous due to dynamic feedback processes involving valuable inventories, and markets facilitate the management of private risks that producers face with or without trade. PMID:25914431
Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Dunn, J.; Gao, S.
2008-10-31
Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing asmore » little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.« less
Mucosal Vaccination against Tuberculosis Using Inert Bioparticles
Reljic, Rajko; Sibley, Laura; Huang, Jen-Min; Pepponi, Ilaria; Hoppe, Andreas; Hong, Huynh A.
2013-01-01
Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens. PMID:23959722
Thaipadungpanit, Janjira; Wuthiekanun, Vanaporn; Chantratita, Narisara; Yimsamran, Surapon; Amornchai, Premjit; Boonsilp, Siriphan; Maneeboonyang, Wanchai; Tharnpoophasiam, Prapin; Saiprom, Natnaree; Mahakunkijcharoen, Yuvadee; Day, Nicholas P J; Singhasivanon, Pratap; Peacock, Sharon J; Limmathurotsakul, Direk
2013-10-01
Floodwater samples (N = 110) collected during the 2011 Bangkok floods were tested for Leptospira using culture and polymerase chain reaction (PCR); 65 samples were PCR-positive for putatively non-pathogenic Leptospira species, 1 sample contained a putatively pathogenic Leptospira, and 6 samples contained Leptospira clustering phylogenetically with the intermediate group. The low prevalence of pathogenic and intermediate Leptospira in floodwater was consistent with the low number of human leptospirosis cases reported to the Bureau of Epidemiology in Thailand. This study provides baseline information on environmental Leptospira in Bangkok together with a set of laboratory tests that could be readily deployed in the event of future flooding.
Jenny, Robert A; Hirst, Claire; Lim, Sue Mei; Goulburn, Adam L; Micallef, Suzanne J; Labonne, Tanya; Kicic, Anthony; Ling, Kak-Ming; Stick, Stephen M; Ng, Elizabeth S; Trounson, Alan; Giudice, Antonietta; Elefanty, Andrew G; Stanley, Edouard G
2015-06-01
Airway epithelial cells generated from pluripotent stem cells (PSCs) represent a resource for research into a variety of human respiratory conditions, including those resulting from infection with common human pathogens. Using an NKX2.1-GFP reporter human embryonic stem cell line, we developed a serum-free protocol for the generation of NKX2.1(+) endoderm that, when transplanted into immunodeficient mice, matured into respiratory cell types identified by expression of CC10, MUC5AC, and surfactant proteins. Gene profiling experiments indicated that day 10 NKX2.1(+) endoderm expressed markers indicative of early foregut but lacked genes associated with later stages of respiratory epithelial cell differentiation. Nevertheless, NKX2.1(+) endoderm supported the infection and replication of the common respiratory pathogen human rhinovirus HRV1b. Moreover, NKX2.1(+) endoderm upregulated expression of IL-6, IL-8, and IL-1B in response to infection, a characteristic of human airway epithelial cells. Our experiments provide proof of principle for the use of PSC-derived respiratory epithelial cells in the study of cell-virus interactions. This report provides proof-of-principle experiments demonstrating, for the first time, that human respiratory progenitor cells derived from stem cells in the laboratory can be productively infected with human rhinovirus, the predominant cause of the common cold. ©AlphaMed Press.
EuPathDB: the eukaryotic pathogen genomics database resource
Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie
2017-01-01
The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard
2016-10-18
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment. Copyright © 2016 Gerwien et al.
Escherichia coli and urinary tract infections: the role of poultry-meat.
Manges, A R
2016-02-01
Extraintestinal pathogenic Escherichia coli (ExPEC) is the most common cause of community-acquired and hospital-acquired extraintestinal infections. The hypothesis that human ExPEC may have a food animal reservoir has been a topic of investigation by multiple groups around the world. Experimental studies showing the shared pathogenic potential of human ExPEC and avian pathogenic E. coli suggest that these extraintestinal E. coli may be derived from the same bacterial lineages or share common evolutionary roots. The consistent observation of specific human ExPEC lineages in poultry or poultry products, and rarely in other meat commodities, supports the hypothesis that there may be a poultry reservoir for human ExPEC. The time lag between human ExPEC acquisition (in the intestine) and infection is the fundamental challenge facing studies attempting to attribute ExPEC transmission to poultry or other environmental sources. Even whole genome sequencing efforts to address attribution will struggle with defining meaningful genetic relationships outside of a discrete food-borne outbreak setting. However, if even a fraction of all human ExPEC infections, especially antimicrobial-resistant ExPEC infections, is attributable to the introduction of multidrug-resistant ExPEC lineages through contaminated food product(s), the relevance to public health, food animal production and food safety will be significant. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.
2010-02-01
The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.
Balakireva, Anastasia V; Zamyatnin, Andrey A
2016-10-18
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.
Balakireva, Anastasia V.; Zamyatnin, Andrey A.
2016-01-01
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541
Ex vivo regenerative effects of a spring water.
Nicoletti, Giovanni; Saler, Marco; Pellegatta, Tommaso; Tresoldi, Marco Mario; Bonfanti, Viola; Malovini, Alberto; Faga, Angela; Riva, Federica
2017-12-01
Previous experiments by our group have indicated the regenerative effects of a spring water (Comano), which was possibly associated with the native non-pathogenic bacterial flora. The present study aimed to confirm these regenerative properties in a human ex vivo experimental model in the context of physiological wound healing. Human 6-mm punch skin biopsies harvested during plastic surgery sessions were injured in their central portion to induce skin loss and were cultured in either conventional medium (controls) or medium powder reconstituted with filtered Comano spring water (treated samples). At 24, 48 and 72 h the specimens were observed following staining with hematoxylin and eosin, Picrosirius Red, orcein and anti-proliferating cell nuclear antigen. Compared with the controls, the treated samples exhibited reduced overall cell infiltration, evidence of fibroblasts, stimulation of cell proliferation and collagen and elastic fiber regeneration. In the spring water, in addition to 12 resident non-pathogenic bacterial strains exhibiting favorable metabolic activities, more unknown non-pathogenic species are being identified by genomic analysis. In the present study, the efficacy of this 'germ-free', filtered spring water in wound regeneration was indicated. Thus, the Comano spring water microbiota should be acknowledged for its regenerative properties.
Health implications associated with exposure to farmed and wild sea turtles.
Warwick, Clifford; Arena, Phillip C; Steedman, Catrina
2013-01-01
Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.
Kebbi-Beghdadi, Carole; Greub, Gilbert
2014-08-01
Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Grau-Leal, Ferran; Quirós, Pablo; Martínez-Castillo, Alexandre; Muniesa, Maite
2015-11-01
Stx bacteriophages are involved in the pathogenicity of Stx-producing Escherichia coli. Induction of the Stx phage lytic cycle increases Stx expression and releases Stx phages that reach extracellular environments. Stx phage family comprises different phages that harbour any stx subtype. Stx2 is closely related with severe disease and therefore previous studies focused on free Stx2 phages in extraintestinal environments. To provide similar information regarding Stx1 phages, we evaluate free Stx1 phages in 357 samples of human and animal wastewater, faeces, river water, soil, sludge and food. Our method, based on quantification of stx1 in the DNA from the viral fraction, was validated using electron microscopy counting of phages and infectivity. The overall prevalence of Stx1 phages was very low: 7.6% of positive samples and values below 3 × 10(3) GC (gene copies) ml(-1) . These results contrast starkly with the abundance of Stx2 phages in the samples (68.4%). This environmental scarcity of free Stx1 phages is attributed to their lower rates of induction and the fact that Stx1 does not require phage induction to be expressed because it possesses an independent promoter. The implications of the low prevalence of free Stx1 phages for the emergence of new pathogenic strains in the environment are discussed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia
2016-01-01
ABSTRACT Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker’s yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. PMID:27795405
Shared Features of Cryptic Plasmids from Environmental and Pathogenic Francisella Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challacombe, Jean Faust; Pillai, Segaran; Kuske, Cheryl R.
The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We havemore » identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. In conclusion, genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.« less
Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys
2010-01-01
Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268
Shared Features of Cryptic Plasmids from Environmental and Pathogenic Francisella Species
Challacombe, Jean Faust; Pillai, Segaran; Kuske, Cheryl R.
2017-08-24
The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We havemore » identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. In conclusion, genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.« less
USDA-ARS?s Scientific Manuscript database
Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium...
Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.
2018-01-01
BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363
Conde-Álvarez, Raquel; Palacios-Chaves, Leyre; Gil-Ramírez, Yolanda; Salvador-Bescós, Miriam; Bárcena-Varela, Marina; Aragón-Aranda, Beatriz; Martínez-Gómez, Estrella; Zúñiga-Ripa, Amaia; de Miguel, María J; Bartholomew, Toby Leigh; Hanniffy, Sean; Grilló, María-Jesús; Vences-Guzmán, Miguel Ángel; Bengoechea, José A; Arce-Gorvel, Vilma; Gorvel, Jean-Pierre; Moriyón, Ignacio; Iriarte, Maite
2017-01-01
The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE , and lpxO , three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA , which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi . Free-lipid analysis revealed that lpxO corresponded to olsC , the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti , while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE , or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL β-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.
Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.
Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S
2011-01-01
This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner. Published by Elsevier B.V.
Syed, Baker; M N, Nagendra Prasad; K, Mohan Kumar; B L, Dhananjaya; Satish, Sreedharamurthy
2017-06-01
Synthesis of gold nanobactericides (AuNBs) were achieved by treating 1mM chloroaurate with cell free supernatant of Aneurinibacillus migulanus. Formation of AuNBs was initially was monitored with change in colour to ruby red. Further confirmation was assessed with UV-visible spectra with maximum absorption occurring at 510nm. Transmission electron microscopy (TEM) analysis revealed the polydispersity of AuNBs with size distribution ranging from 10 to 60nm with an average size of 30nm. Crystalline nature was studied using X-ray diffraction which exhibited characteristic peaks indexed to Bragg's reflection at 2θ angle which confers (111), (200), (220), and (311) planes suggesting AuNBs were face-centred cubic. Fourier transform infrared spectroscopy (FTIR) analysis revealed absorption peaks occurring at 3341cm -1 , 1635cm -1 and 670cm -1 which corresponds to functional groups attributing to synthesis. The antibacterial efficacy of AuNBs was tested against selective human pathogenic bacteria and activity was measured as zone of inhibition by using disc and well diffusion. Bactericidal activity was interpreted with standard antibiotics gentamicin and kanamycin. Micro broth dilution assay expressed the minimal concentration of AuNBs to inhibit the growth of test pathogens. Highest activity was observed against Pseudomonas aeruginosa (MTCC 7903) with 21.00±0.57mm compared to other pathogens. The possible mode of action of AuNBs on DNA was carried out with in vitro assay as preliminary test against pathogenic DNA isolated from P. aeruginosa. Further studies will be interesting enough to reveal the exact interactive mechanism of AuNBs with DNA. Overall study contributes towards biogenic synthesis of AuNBs as one of the alternative in combating drug resistant pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.
Chan, Ming Liang; Petravic, Janka; Ortiz, Alexandra M; Engram, Jessica; Paiardini, Mirko; Cromer, Deborah; Silvestri, Guido; Davenport, Miles P
2010-12-22
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, 'natural hosts' of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to 'fuel the fire' of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.
Chan, Ming Liang; Petravic, Janka; Ortiz, Alexandra M.; Engram, Jessica; Paiardini, Mirko; Cromer, Deborah; Silvestri, Guido; Davenport, Miles P.
2010-01-01
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection. PMID:20591864
VanWormer, Elizabeth; Carpenter, Tim E; Singh, Purnendu; Shapiro, Karen; Wallender, Wesley W.; Conrad, Patricia A.; Largier, John L.; Maneta, Marco P.; Mazet, Jonna A. K.
2016-01-01
Rapidly developing coastal regions face consequences of land use and climate change including flooding and increased sediment, nutrient, and chemical runoff, but these forces may also enhance pathogen runoff, which threatens human, animal, and ecosystem health. Using the zoonotic parasite Toxoplasma gondii in California, USA as a model for coastal pathogen pollution, we examine the spatial distribution of parasite runoff and the impacts of precipitation and development on projected pathogen delivery to the ocean. Oocysts, the extremely hardy free-living environmental stage of T. gondii shed in faeces of domestic and wild felids, are carried to the ocean by freshwater runoff. Linking spatial pathogen loading and transport models, we show that watersheds with the highest levels of oocyst runoff align closely with regions of increased sentinel marine mammal T. gondii infection. These watersheds are characterized by higher levels of coastal development and larger domestic cat populations. Increases in coastal development and precipitation independently raised oocyst delivery to the ocean (average increases of 44% and 79%, respectively), but dramatically increased parasite runoff when combined (175% average increase). Anthropogenic changes in landscapes and climate can accelerate runoff of diverse pathogens from terrestrial to aquatic environments, influencing transmission to people, domestic animals, and wildlife. PMID:27456911
VanWormer, Elizabeth; Carpenter, Tim E; Singh, Purnendu; Shapiro, Karen; Wallender, Wesley W; Conrad, Patricia A; Largier, John L; Maneta, Marco P; Mazet, Jonna A K
2016-07-26
Rapidly developing coastal regions face consequences of land use and climate change including flooding and increased sediment, nutrient, and chemical runoff, but these forces may also enhance pathogen runoff, which threatens human, animal, and ecosystem health. Using the zoonotic parasite Toxoplasma gondii in California, USA as a model for coastal pathogen pollution, we examine the spatial distribution of parasite runoff and the impacts of precipitation and development on projected pathogen delivery to the ocean. Oocysts, the extremely hardy free-living environmental stage of T. gondii shed in faeces of domestic and wild felids, are carried to the ocean by freshwater runoff. Linking spatial pathogen loading and transport models, we show that watersheds with the highest levels of oocyst runoff align closely with regions of increased sentinel marine mammal T. gondii infection. These watersheds are characterized by higher levels of coastal development and larger domestic cat populations. Increases in coastal development and precipitation independently raised oocyst delivery to the ocean (average increases of 44% and 79%, respectively), but dramatically increased parasite runoff when combined (175% average increase). Anthropogenic changes in landscapes and climate can accelerate runoff of diverse pathogens from terrestrial to aquatic environments, influencing transmission to people, domestic animals, and wildlife.
Corona, Erik; Wang, Liuyang; Ko, Dennis; Patel, Chirag J
2018-01-01
Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.
Tracking serum antibody response to viral antigens with arrayed imaging reflectometry
NASA Astrophysics Data System (ADS)
Mace, Charles R.; Rose, Robert C.; Miller, Benjamin L.
2009-02-01
Arrayed Imaging Reflectometry, or "AIR", is a new label-free technique for detecting proteins that relies on bindinginduced changes in the response of an antireflective coating on the surface of a silicon ship. Because the technique provides high sensitivity, excellent dynamic range, and readily integrates with standard silicon wafer processing technology, it is an exceptionally attractive platform on which to build systems for detecting proteins in complex solutions. In our early research, we used AIR chips bearing secreted receptor proteins from enteropathogenic E. coli to develop sensors for this pathogen. Recently, we have been exploring an alternative strategy: Rather than detecting the pathogen directly, can one immobilize antigens from a pathogen, and employ AIR to detect antibody responses to those antigens? Such a strategy would provide enhanced sensitivity for pathogen detection (as the immune system essentially amplifies the "signal" caused by the presence of an organism to which it responds), and would also potentially prove useful in the process of vaccine development. We describe herein preliminary results in the application of such a strategy to the detection of antibodies to human papillomavirus (HPV).
Pauza, Matthew D; Driessen, Michael M; Skerratt, Lee F
2010-11-01
Chytridiomycosis is an emerging infectious disease caused by the pathogen Batrachochytrium dendrobatidis (Bd) and is the cause of the decline and extinction of amphibian species throughout the world. We surveyed the distribution of Bd within and around the Tasmanian Wilderness World Heritage Area (TWWHA), a 1.38 million ha area of significant fauna conservation value, which provides the majority of habitat for Tasmania's 3 endemic frog species (Litoria burrowsae, Bryobatrachus nimbus and Crinia tasmaniensis). Bd was detected at only 1 (3%) of the 33 sites surveyed within the TWWHA and at 15 (52%) of the 29 sites surveyed surrounding the TWWHA. The relatively low incidence of the disease within the TWWHA suggests that the majority of the TWWHA is currently free of the pathogen despite the fact that the region provides what appears to be optimal conditions for the persistence of Bd. For all survey sites within and around the TWWHA, the presence of Bd was strongly associated with the presence of gravel roads, forest and < 1000 m altitude--factors that in this study were associated with human-disturbed landscapes around the TWWHA. Conversely, the presence of walking tracks was strongly associated with the absence of Bd, suggesting an association of absence with relatively remote locations. The wide distribution of Bd in areas of Tasmania with high levels of human disturbance and its very limited occurrence in remote wilderness areas suggests that anthropogenic activities may facilitate the dissemination of the pathogen on a landscape scale in Tasmania. Because the majority of the TWWHA is not readily accessible and appears to be largely free of Bd, and because Tasmanian frogs reproduce in ponds rather than streams, it may be feasible to control the spread of the disease in the TWWHA.
Staphylococcus aureus Growth using Human Hemoglobin as an Iron Source
Pishchany, Gleb; Haley, Kathryn P.; Skaar, Eric P.
2013-01-01
S. aureus is a pathogenic bacterium that requires iron to carry out vital metabolic functions and cause disease. The most abundant reservoir of iron inside the human host is heme, which is the cofactor of hemoglobin. To acquire iron from hemoglobin, S. aureus utilizes an elaborate system known as the iron-regulated surface determinant (Isd) system1. Components of the Isd system first bind host hemoglobin, then extract and import heme, and finally liberate iron from heme in the bacterial cytoplasm2,3. This pathway has been dissected through numerous in vitro studies4-9. Further, the contribution of the Isd system to infection has been repeatedly demonstrated in mouse models8,10-14. Establishing the contribution of the Isd system to hemoglobin-derived iron acquisition and growth has proven to be more challenging. Growth assays using hemoglobin as a sole iron source are complicated by the instability of commercially available hemoglobin, contaminating free iron in the growth medium, and toxicity associated with iron chelators. Here we present a method that overcomes these limitations. High quality hemoglobin is prepared from fresh blood and is stored in liquid nitrogen. Purified hemoglobin is supplemented into iron-deplete medium mimicking the iron-poor environment encountered by pathogens inside the vertebrate host. By starving S. aureus of free iron and supplementing with a minimally manipulated form of hemoglobin we induce growth in a manner that is entirely dependent on the ability to bind hemoglobin, extract heme, pass heme through the bacterial cell envelope and degrade heme in the cytoplasm. This assay will be useful for researchers seeking to elucidate the mechanisms of hemoglobin-/heme-derived iron acquisition in S. aureus and possibly other bacterial pathogens. PMID:23426144
Mechanism of Mitochondrial Transcription Factor A Attenuation of CpG-Induced Antibody Production
Saifee, Jessica F.; Torres, Raul M.; Janoff, Edward N.
2016-01-01
Mitochondrial transcription factor A (TFAM) had previously been shown to act as a damage associated molecular pattern with the ability to enhance CpG-A phosphorothioate oligodeoxynucleotide (ODN)-mediated stimulation of IFNα production from human plasmacytoid dendritic cells. Examination of the mechanism by which TFAM might influence CpG ODN mediated innate immune responses revealed that TFAM binds directly, tightly and selectively to the structurally related CpG-A, -B, and -C ODN. TFAM also modulated the ability of the CpG-B or -C to stimulate the production of antibodies from human B cells. TFAM showed a dose-dependent modulation of CpG-B, and -C -induced antibody production from human B cells in vitro, with enhancement of high dose and inhibition of low doses of CpG stimulation. This effect was linked to the ability of TFAM to directly inhibit the binding of CpG ODNs to B cells, in a manner consistent with the relative binding affinities of TFAM for the ODNs. These data suggest that TFAM alters the free concentration of the CpG available to stimulate B cells by sequestering this ODN in a TFAM-CpG complex. Thus, TFAM has the potential to decrease the pathogenic consequences of exposure to natural CpG-like hypomethylated DNA in vivo, as well as such as that found in traumatic injury, infection, autoimmune disease and during pregnancy. PMID:27280778
Yaguchi, Yuji; Okabayashi, Sachi; Abe, Niichiro; Masatou, Haruhisa; Iida, Shinya; Teramoto, Isao; Matsubayashi, Makoto; Shibahara, Tomoyuki
2014-11-01
Human pinworms, Enterobius vermicularis, are normally recognized as minor pathogens. However, a fatal case of human pinworm infection has been reported in a nonhuman primate, a zoo reared chimpanzee. Here, we histopathologically examined the lesions in tissues from the deceased chimpanzee and genetically characterized the isolated worms to investigate the pathogenicity and determine the phylogeny. We identified ulcers deep in the submucosa where many parasites were found to have invaded the lamina propria mucosa or submucous tissue. An inflammatory reaction consisting mainly of neutrophils and lymphocytes but not eosinophils was observed around the parasites, and intense hemorrhage in the lamina propria was confirmed. The parasites were morphologically similar to E. vermicularis based on the shape of the copulatory spicules. Mitochondrial cytochrome c oxidase subunit 1 gene products were amplified from worm DNA by PCR and were genetically identified as E. vermicularis based on >98.7% similarity of partial sequences. Phylogenetic analysis revealed that the sequences clustered together with other chimpanzee E. vermicularis isolates in a group which has been referred to as type C and which differs from human isolates (type A). The samples were negative for bacterial pathogens and Entamoeba histolytica indicating that E. vermicularis could be pathogenic in chimpanzees. Phylogenetic clustering of the isolates indicated that the parasite may be host specific.
Ali, Amjad; Naz, Anam; Soares, Siomar C; Bakhtiar, Marriam; Tiwari, Sandeep; Hassan, Syed S; Hanan, Fazal; Ramos, Rommel; Pereira, Ulisses; Barh, Debmalya; Figueiredo, Henrique César Pereira; Ussery, David W; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco
2015-01-01
Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.
Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress.
Kulkarni, Ritwij; Antala, Swati; Wang, Alice; Amaral, Fábio E; Rampersaud, Ryan; Larussa, Samuel J; Planet, Paul J; Ratner, Adam J
2012-11-01
The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.
Xia, Yu; Li, An-Dong; Deng, Yu; Jiang, Xiao-Tao; Li, Li-Guan; Zhang, Tong
2017-01-01
Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them.
Xia, Yu; Li, An-Dong; Deng, Yu; Jiang, Xiao-Tao; Li, Li-Guan; Zhang, Tong
2017-01-01
Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them. PMID:29163399
A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe
McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew
2014-01-01
Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810
Mbaeyi, Chukwuma; Panlilio, Adelisa L; Hobbs, Cynthia; Patel, Priti R; Kuhar, David T
2012-10-01
Occupational exposure management is an important element in preventing the transmission of bloodborne pathogens in health care settings. In 2008, the US Centers for Disease Control and Prevention conducted a survey to assess procedures for managing occupational bloodborne pathogen exposures in outpatient dialysis facilities in the United States. A cross-sectional survey of randomly selected outpatient dialysis facilities. 339 outpatient dialysis facilities drawn from the 2006 US end-stage renal disease database. Hospital affiliation (free-standing vs hospital-based facilities), profit status (for-profit vs not-for-profit facilities), and number of health care personnel (≥100 vs <100 health care personnel). Exposures to hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV); provision of HBV and HIV postexposure prophylaxis. We calculated the proportion of facilities reporting occupational bloodborne pathogen exposures and offering occupational exposure management services. We analyzed bloodborne pathogen exposures and provision of postexposure prophylaxis by facility type. Nearly all respondents (99.7%) had written policies and 95% provided occupational exposure management services to health care personnel during the daytime on weekdays, but services were provided infrequently during other periods of the week. Approximately 10%-15% of facilities reported having HIV, HBV, or HCV exposures in health care personnel in the 12 months prior to the survey, but inconsistencies were noted in procedures for managing such exposures. Despite 86% of facilities providing HIV prophylaxis for exposed health care personnel, only 37% designated a primary HIV postexposure prophylaxis regimen. For-profit and free-standing facilities reported fewer exposures, but did not as reliably offer HBV prophylaxis or have a primary HIV postexposure prophylaxis regimen relative to not-for-profit and hospital-based facilities. The survey response rate was low (37%) and familiarity of individuals completing the survey with facility policies or national guidelines could not be ascertained. Significant improvements are required in the implementation of guidelines for managing occupational exposures to bloodborne pathogens in outpatient dialysis facilities. Published by Elsevier Inc.
Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang
2016-01-01
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. Here, we presented the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific inter-wire spacing were synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, we demonstrated ~50% H5N2 avian influenza viruses were physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 hours for virus culture, subsequent molecular diagnosis and other virus characterization and analyses. This device performs viable, unbiased and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. PMID:27918640
Solnick, Jay V.; Canfield, Don R.; Hansen, Lori M.; Torabian, Sima Z.
2000-01-01
Immunization with urease can protect mice from challenge with Helicobacter pylori, though results vary depending on the particular vaccine, challenge strain, and method of evaluation. Unlike mice, rhesus monkeys are naturally colonized with H. pylori and so may provide a better estimate of vaccine efficacy in humans. The purpose of this study was to examine the effectiveness of H. pylori urease as a vaccine in specific-pathogen (H. pylori)-free rhesus monkeys. Monkeys raised from birth and documented to be free of H. pylori were vaccinated with orogastric (n = 4) or intramuscular (n = 5) urease. Two control monkeys were sham vaccinated. All monkeys were challenged with a rhesus monkey-derived strain of H. pylori, and the effects of vaccination were evaluated by use of quantitative cultures of gastric tissue, histology, and measurement of serum immunoglobulin G (IgG) and salivary IgA. Despite a humoral immune response, all monkeys were infected after H. pylori challenge, and there were no differences in the density of colonization. Immunization with urease therefore does not fully protect against challenge with H. pylori. An effective vaccine to prevent H. pylori infection will require different or more likely additional antigens, as well as improvements in the stimulation of the host immune response. PMID:10768944
Pathogen Prevalence From Traditional Cage and Free Range Production
USDA-ARS?s Scientific Manuscript database
Overview: A study was conducted to determine if differences in pathogen prevalence occurred between a sister flock of conventional cage and free range laying hens. Both environmental and egg microbiology was monitored throughout 20 – 79 weeks of age. Salmonella, Campylobacter, and Listeria preval...
USDA-ARS?s Scientific Manuscript database
The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single chain protein which consists of 233 amino acid residues with a molecular weight of 27,078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, ...
USDA-ARS?s Scientific Manuscript database
The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal entertoxin A (SEA), a single-chain protein that consists of 233 amino acid residues with a molecular weight of 27 078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, dia...
Tettelin, Hervé; Masignani, Vega; Cieslewicz, Michael J.; Donati, Claudio; Medini, Duccio; Ward, Naomi L.; Angiuoli, Samuel V.; Crabtree, Jonathan; Jones, Amanda L.; Durkin, A. Scott; DeBoy, Robert T.; Davidsen, Tanja M.; Mora, Marirosa; Scarselli, Maria; Margarit y Ros, Immaculada; Peterson, Jeremy D.; Hauser, Christopher R.; Sundaram, Jaideep P.; Nelson, William C.; Madupu, Ramana; Brinkac, Lauren M.; Dodson, Robert J.; Rosovitz, Mary J.; Sullivan, Steven A.; Daugherty, Sean C.; Haft, Daniel H.; Selengut, Jeremy; Gwinn, Michelle L.; Zhou, Liwei; Zafar, Nikhat; Khouri, Hoda; Radune, Diana; Dimitrov, George; Watkins, Kisha; O'Connor, Kevin J. B.; Smith, Shannon; Utterback, Teresa R.; White, Owen; Rubens, Craig E.; Grandi, Guido; Madoff, Lawrence C.; Kasper, Dennis L.; Telford, John L.; Wessels, Michael R.; Rappuoli, Rino; Fraser, Claire M.
2005-01-01
The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for ≈80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes. PMID:16172379
The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes
Hunt, Vicky L.; Tsai, Isheng J.; Coghlan, Avril; Reid, Adam J.; Holroyd, Nancy; Foth, Bernardo J.; Tracey, Alan; Cotton, James A.; Stanley, Eleanor J.; Beasley, Helen; Bennett, Hayley M.; Brooks, Karen; Harsha, Bhavana; Kajitani, Rei; Kulkarni, Arpita; Harbecke, Dorothee; Nagayasu, Eiji; Nichol, Sarah; Ogura, Yoshitoshi; Quail, Michael A.; Randle, Nadine; Xia, Dong; Brattig, Norbert W.; Soblik, Hanns; Ribeiro, Diogo M.; Sanchez-Flores, Alejandro; Hayashi, Tetsuya; Itoh, Takehiko; Denver, Dee R.; Grant, Warwick; Stoltzfus, Jonathan D.; Lok, James B.; Murayama, Haruhiko; Wastling, Jonathan; Streit, Adrian; Kikuchi, Taisei; Viney, Mark; Berriman, Matthew
2016-01-01
Soil transmitted nematodes, including Strongyloides, cause one of the most prevalent Neglected Tropical Diseases. Here we compare the genomes of four Strongyloides spp., including the human pathogen S. stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp). A significant paralogous expansion of key gene families – astacin-like and SCP/TAPS coding gene families – is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle we compare the transcriptome of its parasitic and free-living stages and find that these same genes are upregulated in the parasitic stages, underscoring their role in nematode parasitism. PMID:26829753
Culture of human cell lines by a pathogen-inactivated human platelet lysate.
Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L
2016-08-01
Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.
Hillitt, K L; Jenkins, R E; Spiller, O B; Beeton, M L
2017-03-01
The susceptibility of the cell wall-free bacterial pathogens Ureaplasma spp. to Manuka honey was examined. The minimum inhibitory concentration (MIC) of Manuka honey for four Ureaplasma urealyticum and four Ureaplasma parvum isolates was determined. Sensitivity to honey was also compared to clinical isolates with resistance to tetracycline, macrolide and fluoroquinolone antibiotics. Finally step-wise resistance training was utilized in an attempt to induce increased tolerance to honey. The MIC was dependent on the initial bacterial load with 7·5 and 18·0% w/v honey required to inhibit U. urealyticum at 1 and 10 6 colour changing units (CCU), respectively, and 4·8 and 15·3% w/v required to inhibit U. parvum at 1 and 10 6 CCU respectively. MIC values were consistently lower for U. parvum compared with U. urealyticum. Antimicrobial activity was seen against tetracycline-resistant, erythromycin-resistant and ciprofloxacin-resistant isolates at 10 5 CCU. No resistance to honey was observed with 50 consecutive challenges at increasing concentrations of honey. This is the first report of the antimicrobial activity of Manuka honey against a cell wall-free bacterial pathogen. The antimicrobial activity was retained against antibiotic-resistant strains and it was not possible to generate resistant mutants. Manuka honey is known to have a broad spectrum of antimicrobial activity, with the bacterial cell wall being suggested as a predominant site of action. This study has demonstrated that Manuka honey has activity against Ureaplasma spp., a genus of cell wall-free bacteria which are intrinsically resistant to many available antibiotics making treatment inherently difficult. This is the first report of the antimicrobial activity of Manuka honey against a bacterial pathogen, in the absence of a cell well and opens scope for the use of components of Manuka honey as a therapeutic among Ureaplasma infections. © 2016 The Society for Applied Microbiology.
STUDY OF PATHOGENIC FREE-LIVING AMEBAS IN FRESH-WATER LAKES IN VIRGINIA
Pathogenic free-living amebas may produce fatal infection of the central nervous system known as Primary Amebic Meningoencephalitis (PAM). In Richmond, Virginia, 17 cases have occurred, more than in any other location in the world. The objectives were to examine freshwater lakes ...
Yamane, Chikayo; Yamazaki, Tomohiro; Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki
2015-01-01
Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.
Hartung, John S; Paul, Cristina; Achor, Diann; Brlansky, R H
2010-08-01
Huanglongbing, or citrus greening, threatens the global citrus industry. The presumptive pathogens, 'Candidatus Liberibacter asiaticus' and 'Ca. L. americanus' can be transferred from citrus to more easily studied experimental hosts by using holoparasitic dodder plants. However, the interaction between 'Candidatus Liberibacter' spp. and the dodder has not been studied. We combined quantitative polymerase chain reaction with electron microscopy to show that only 65% of tendrils of Cuscuta indecora grown on 'Ca. Liberibacter' spp.-infected host plants had detectable levels of the pathogen. Among tendrils that were colonized by Liberibacter in at least one 2 cm segment, most were not colonized in all segments. Furthermore, the estimated population levels of the pathogen present in serial 2 cm segments of dodder tendrils varied widely and without any consistent pattern. Thus, there was generally not a concentration gradient of the pathogen from the source plant towards the recipient and populations of the pathogen were sometimes found in the distal segments of the dodder plant but not in the proximal or middle segments. Populations of the pathogens ranged from 2 x 10(2) to 3.0 x 10(8) cells per 2 cm segment. On a fresh weight basis, populations as high as 1.4 x 10(10) cells per g of tissue were observed demonstrating that 'Ca. Liberibacter' spp. multiplies well in Cuscuta indecora. However, 55% of individual stem segments did not contain detectable levels of the pathogen, consistent with a pattern of nonuniform colonization similar to that observed in the much more anatomically complex citrus tree. Colonization of dodder by the pathogen is also nonuniform at the ultrastructural level, with adjacent phloem vessel elements being completely full of the pathogen or free of the pathogen. We also observed bacteria in the phloem vessels that belonged to two distinct size classes based on the diameters of cross sections of cells. In other sections from the same tendrils we observed single bacterial cells that were apparently in the process of differentiating between the large and round forms to the long and thin forms (or vice versa). The process controlling this morphological differentiation of the pathogen is not known. The highly reduced and simplified anatomy of the dodder plant as well as its rapid growth rate compared with citrus, and the ability of the plant to support multiplication of the pathogen to high levels, makes it an interesting host plant for further studies of host-pathogen interactions.
Gervasi, T; Lo Curto, R; Minniti, E; Narbad, A; Mayer, M J
2014-10-01
Clostridium perfringens is frequently found in food and the environment and produces potent toxins that have a negative impact on both human and animal health and particularly on the poultry industry. Lactobacillus johnsonii FI9785, isolated from the chicken gastrointestinal tract, has been demonstrated to exclude Cl. perfringens in poultry. We have investigated the interaction of wild-type Lact. johnsonii FI9785 or an engineered strain expressing a cell wall-hydrolysing endolysin with Cl. perfringens in vitro, using a batch culture designed to simulate human gastrointestinal tract conditions. Co-culture experiments indicated that acid production by Lact. johnsonii is important in pathogen control. The co-culture of the endolysin-secreting Lact. johnsonii with Cl. perfringens showed that the engineered strain had the potential to control the pathogen, but the ability to reduce Cl. perfringens numbers was not consistent. Results obtained indicate that survival of high numbers of Lact. johnsonii will be essential for effective pathogen control. Significance and impact of the study: The bacterium Lactobacillus johnsonii FI9785 reduces numbers of the pathogen Clostridium perfringens in vitro. Biocontrol was improved by engineering the strain to produce and export a cell wall-hydrolysing endolysin, but good survival of the producer strain is essential. The production of bacteriophage endolysins by commensal bacteria has the potential to improve competitive exclusion of pathogens in the gastrointestinal tract. © 2014 The Society for Applied Microbiology.
Wildlife trade and global disease emergence.
Karesh, William B; Cook, Robert A; Bennett, Elizabeth L; Newcomb, James
2005-07-01
The global trade in wildlife provides disease transmission mechanisms that not only cause human disease outbreaks but also threaten livestock, international trade, rural livelihoods, native wildlife populations, and the health of ecosystems. Outbreaks resulting from wildlife trade have caused hundreds of billions of dollars of economic damage globally. Rather than attempting to eradicate pathogens or the wild species that may harbor them, a practical approach would include decreasing the contact rate among species, including humans, at the interface created by the wildlife trade. Since wildlife marketing functions as a system of scale-free networks with major hubs, these points provide control opportunities to maximize the effects of regulatory efforts.
Pecon-Slattery, Jill; McCracken, Carrie L; Troyer, Jennifer L; VandeWoude, Sue; Roelke, Melody; Sondgeroth, Kerry; Winterbach, Christiaan; Winterbach, Hanlie; O'Brien, Stephen J
2008-01-01
Background Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. Results In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca, Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIVPle subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. Conclusion This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in wild populations of endangered species. PMID:18251995
Wilming, Niklas; Kietzmann, Tim C; Jutras, Megan; Xue, Cheng; Treue, Stefan; Buffalo, Elizabeth A; König, Peter
2017-01-01
Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans. © The Author 2017. Published by Oxford University Press.
Wilming, Niklas; Kietzmann, Tim C.; Jutras, Megan; Xue, Cheng; Treue, Stefan; Buffalo, Elizabeth A.; König, Peter
2017-01-01
Abstract Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans. PMID:28077512
NASA Astrophysics Data System (ADS)
Reverey, Julia F.; Jeon, Jae-Hyung; Bao, Han; Leippe, Matthias; Metzler, Ralf; Selhuber-Unkel, Christine
2015-06-01
Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.
Commensal microbes provide first line defense against Listeria monocytogenes infection
Littmann, Eric R.; Kim, Sohn G.; Morjaria, Sejal M.; Ling, Lilan; Gyaltshen, Yangtsho; Taur, Ying; Leiner, Ingrid M.
2017-01-01
Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics. PMID:28588016
DNA variant databases improve test accuracy and phenotype prediction in Alport syndrome.
Savige, Judy; Ars, Elisabet; Cotton, Richard G H; Crockett, David; Dagher, Hayat; Deltas, Constantinos; Ding, Jie; Flinter, Frances; Pont-Kingdon, Genevieve; Smaoui, Nizar; Torra, Roser; Storey, Helen
2014-06-01
X-linked Alport syndrome is a form of progressive renal failure caused by pathogenic variants in the COL4A5 gene. More than 700 variants have been described and a further 400 are estimated to be known to individual laboratories but are unpublished. The major genetic testing laboratories for X-linked Alport syndrome worldwide have established a Web-based database for published and unpublished COL4A5 variants ( https://grenada.lumc.nl/LOVD2/COL4A/home.php?select_db=COL4A5 ). This conforms with the recommendations of the Human Variome Project: it uses the Leiden Open Variation Database (LOVD) format, describes variants according to the human reference sequence with standardized nomenclature, indicates likely pathogenicity and associated clinical features, and credits the submitting laboratory. The database includes non-pathogenic and recurrent variants, and is linked to another COL4A5 mutation database and relevant bioinformatics sites. Access is free. Increasing the number of COL4A5 variants in the public domain helps patients, diagnostic laboratories, clinicians, and researchers. The database improves the accuracy and efficiency of genetic testing because its variants are already categorized for pathogenicity. The description of further COL4A5 variants and clinical associations will improve our ability to predict phenotype and our understanding of collagen IV biochemistry. The database for X-linked Alport syndrome represents a model for databases in other inherited renal diseases.
Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins
USDA-ARS?s Scientific Manuscript database
More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...
Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu
2013-01-01
Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119
Sousa, Ana Margarida; Pereira, Maria Olívia; Lourenço, Anália
2015-06-01
One of the major concerns of the biomedical community is the increasing prevalence of antimicrobial resistant microorganisms. Recent findings show that the diversification of colony morphology may be indicative of the expression of virulence factors and increased resistance to antibiotic therapeutics. To transform these findings, and upcoming results, into a valuable clinical decision making tool, colony morphology characterisation should be standardised. Notably, it is important to establish the minimum experimental information necessary to contextualise the environment that originated the colony morphology, and describe the main morphological features associated unambiguously. This paper presents MorphoCol, a new ontology-based tool for the standardised, consistent and machine-interpretable description of the morphology of colonies formed by human pathogenic bacteria. The Colony Morphology Ontology (CMO) is the first controlled vocabulary addressing the specificities of the morphology of clinically significant bacteria, whereas the MorphoCol publicly Web-accessible knowledgebase is an end-user means to search and compare CMO annotated colony morphotypes. Its ultimate aim is to help correlate the morphological alterations manifested by colony-forming bacteria during infection with their response to the antimicrobial treatments administered. MorphoCol is the first tool to address bacterial colony morphotyping systematically and deliver a free of charge resource to the community. Hopefully, it may introduce interesting features of analysis on pathogenic behaviour and play a significant role in clinical decision making. http://morphocol.org. Copyright © 2015 Elsevier Inc. All rights reserved.
A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment.
Vutukuru, Manjula Ramya; Sharma, Divya Khandige; Ragavendar, M S; Schmolke, Susanne; Huang, Yiwei; Gumbrecht, Walter; Mitra, Nivedita
2016-12-01
Molecular diagnostics is a promising alternative to culture based methods for the detection of bloodstream infections, notably due to its overall lower turnaround time when starting directly from patient samples. Whole blood is usually the starting diagnostic sample in suspected bloodstream infections. The detection of low concentrations of pathogens in blood using a molecular assay necessitates a fairly high starting volume of blood sample in the range of 5-10mL. This large volume of blood sample has a substantial accompanying human genomic content that interferes with pathogen detection. In this study, we have established a workflow using magnetic beads coated with Apolipoprotein H that makes it possible to concentrate pathogens from a 5.0mL whole blood sample, thereby enriching pathogens from whole blood background and also reducing the sample volume to ~200μL or less. We have also demonstrated that this method of enrichment allows detection of 1CFU/mL of Escherichia coli, Enterococcus gallinarum and Candida tropicalis from 5mL blood using quantitative PCR; a detection limit that is not possible in unenriched samples. The enrichment method demonstrated here took 30min to complete and can be easily integrated with various downstream molecular and microbiological techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Iron and copper as virulence modulators in human fungal pathogens.
Ding, Chen; Festa, Richard A; Sun, Tian-Shu; Wang, Zhan-You
2014-07-01
Fungal pathogens have evolved sophisticated machinery to precisely balance the fine line between acquiring essential metals and defending against metal toxicity. Iron and copper are essential metals for many processes in both fungal pathogens and their mammalian hosts, but reduce viability when present in excess. However, during infection, the host uses these two metals differently. Fe has a long-standing history of influencing virulence in pathogenic fungi, mostly in regards to Fe acquisition. Numerous studies demonstrate the requirement of the Fe acquisition pathway of Candida, Cryptococcus and Aspergillus for successful systemic infection. Fe is not free in the host, but is associated with Fe-binding proteins, leading fungi to develop mechanisms to interact with and to acquire Fe from these Fe-bound proteins. Cu is also essential for cell growth and development. Essential Cu-binding proteins include Fe transporters, superoxide dismutase (SOD) and cytochrome c oxidase. Although Cu acquisition plays critical roles in fungal survival in the host, recent work has revealed that Cu detoxification is extremely important. Here, we review fungal responses to altered metal conditions presented by the host, contrast the roles of Fe and Cu during infection, and outline the critical roles of fungal metal homeostasis machinery at the host-pathogen axis. © 2014 John Wiley & Sons Ltd.
Immunity in urogenital protozoa.
Malla, N; Goyal, K; Dhanda, R S; Yadav, M
2014-09-01
Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated. © 2014 John Wiley & Sons Ltd.
Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri.
De Jonckheere, Johan F
2011-10-01
Naegleria fowleri, a worldwide distributed pathogen, is the causative agent of primary amoebic meningoencephalitis. Because it is such a fulminant disease, most patients do not survive the infection. This pathogen is a free-living amoeboflagellate present in warm water. To date, it is well established that there are several types of N. fowleri, which can be distinguished based on the length of the internal transcribed spacer 1 and a one bp transition in the 5.8S rDNA. Seven of the eight known types have been detected in Europe. Three types are present in the USA, of which one is unique to this country. Only one of the eight types occurs in Oceania (Australia and New Zealand) and Japan. In mainland Asia (India, China and Thailand) the two most common types are found, which are also present in Europe and the USA. There is strong indication that the pathogenic N. fowleri evolved from the nonpathogenic Naegleria lovaniensis on the American continent. There is no evidence of virulence differences between the types of N. fowleri. Two other Naegleria spp. are pathogenic for mice, but human infections due to these two other Naegleria spp. are not known. Copyright © 2011 Elsevier B.V. All rights reserved.
Standardized Metadata for Human Pathogen/Vector Genomic Sequences
Dugan, Vivien G.; Emrich, Scott J.; Giraldo-Calderón, Gloria I.; Harb, Omar S.; Newman, Ruchi M.; Pickett, Brett E.; Schriml, Lynn M.; Stockwell, Timothy B.; Stoeckert, Christian J.; Sullivan, Dan E.; Singh, Indresh; Ward, Doyle V.; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M.; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H.; Cuomo, Christina A.; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W. Florian; Giovanni, Maria; Henn, Matthew R.; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C.; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F.; Murphy, Cheryl I.; Myers, Garry; Neafsey, Daniel E.; Nelson, Karen E.; Nierman, William C.; Puzak, Julia; Rasko, David; Roos, David S.; Sadzewicz, Lisa; Silva, Joana C.; Sobral, Bruno; Squires, R. Burke; Stevens, Rick L.; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H.
2014-01-01
High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium’s minimal information (MIxS) and NCBI’s BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant. PMID:24936976
Standardized metadata for human pathogen/vector genomic sequences.
Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H
2014-01-01
High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant.
Santos, Rosemary V; Lin, Kuei-Chin; Mansfield, Keith; Wachtman, Lynn M
2011-10-01
The repertoire of viruses to which research primates are exposed, even in the absence of clinical disease, may contribute to experimental confounding. In this study we examined whether standard specific pathogen-free (SPF) rhesus macaques exposed to a wider spectrum of enzootic viruses and expanded SPF macaques derived to exclude a greater number of viral agents would display alterations in immune activation or immune cell populations. Given the impact of immunophenotype on human immunodeficiency virus (HIV) progression and the importance of the simian immunodeficiency virus (SIV) model for the study of HIV pathogenesis, we elected to additionally examine the impact of SPF status on the capacity of peripheral blood mononuclear cells (PBMCs) to support SIV replication. The expanded SPF group displayed significant immune alterations including increased serum interleukin (IL)-15 and a greater in vitro elaboration of GM-CSF, IL1ra, VEGF, IL-10, IL12/23, and MIP-1b. Consistent with reduced viral antigenic exposure in expanded SPF macaques, decreased CD4(+) and CD8(+) transitional and effector memory (T(EM)) cell populations were observed. Expanded SPF PBMC cultures also demonstrated an increased peak (192.61 ng/ml p27) and area under the curve in in vitro SIV production (1968.64 ng/ml p27) when compared to standard SPF macaques (99.32 ng/ml p27; p=0.03 and 915.17 ng/ml p27; p=0.03, respectively). In vitro SIV replication did not correlate with CD4(+) T(EM) cell counts but was highly correlated with serum IL-15 in the subset of animals examined. Findings suggest that an altered immunophenotype associated with the maintenance of primates under differing levels of bioexclusion has the potential to impact the outcome of SIV studies and models for which the measurement of immunologic endpoints is critical.
Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo
2016-01-01
Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.
1980-01-01
A study of the effect of thermal additions on the presence of free-living thermophilic amoeba at the Savannah River site was undertaken. Seasonality effects and the influence of varied degrees of thermal enrichment on the numbers and types of thermophilic pathogenic and nonpathogenic amoeba were determined. In addition, the ability of thermophilic nonpathogenic Naegleria to competitively inhibit the growth of the pathogenic Naegleria was defined and related to water quality differences.
Monitoring and improving the effectiveness of surface cleaning and disinfection.
Rutala, William A; Weber, David J
2016-05-02
Disinfection of noncritical environmental surfaces and equipment is an essential component of an infection prevention program. Noncritical environmental surfaces and noncritical medical equipment surfaces may become contaminated with infectious agents and may contribute to cross-transmission by acquisition of transient hand carriage by health care personnel. Disinfection should render surfaces and equipment free of pathogens in sufficient numbers to prevent human disease (ie, hygienically clean). Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Experimental infection of bovine mammary gland with prototheca zopfii genotype 1.
Ito, Takaaki; Kano, Rui; Sobukawa, Hideto; Ogawa, Jin; Honda, Yayoi; Hosoi, Yoshihiro; Shibuya, Hisashi; Sato, Tsuneo; Hasegawa, Atsuhiko; Kamata, Hiroshi
2011-01-01
Prototheca zopfii is divided into three genotypes, one of which, P. zopfii genotype 2, appears to be the main causative agent of bovine protothecal mastitis. However, the difference in pathogenicity between genotypes 1 and 2 has not been well investigated. In the present study, we experimentally infected normal bovine mammary gland with P. zopfii genotype 1 to investigate its pathogenicity. The mammary gland infected with P. zopfii genotype 1 showed no clinical signs. However, the histopathologic features of the infected mammary gland consisted of interstitial infiltrates of macrophages, plasma cells, lymphocytes, and fibroblasts with neutrophils in acinar lumens. Algae were present in macrophages and free in the alveolar lumens and the interstitium. Histopathology of the resultant tissue samples revealed that genotype 1 also induced a granulomatous lesion in the cow teat, similar to the mastitis lesion due to genotype 2.
From grazing resistance to pathogenesis: the coincidental evolution of virulence factors.
Adiba, Sandrine; Nizak, Clément; van Baalen, Minus; Denamur, Erick; Depaulis, Frantz
2010-08-11
To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.
Wild immunology assessed by multidimensional mass cytometry.
Japp, Alberto Sada; Hoffmann, Kerstin; Schlickeiser, Stephan; Glauben, Rainer; Nikolaou, Christos; Maecker, Holden T; Braun, Julian; Matzmohr, Nadine; Sawitzki, Birgit; Siegmund, Britta; Radbruch, Andreas; Volk, Hans-Dieter; Frentsch, Marco; Kunkel, Desiree; Thiel, Andreas
2017-01-01
A great part of our knowledge on mammalian immunology has been established in laboratory settings. The use of inbred mouse strains enabled controlled studies of immune cell and molecule functions in defined settings. These studies were usually performed in specific-pathogen free (SPF) environments providing standardized conditions. In contrast, mammalians including humans living in their natural habitat are continuously facing pathogen encounters throughout their life. The influences of environmental conditions on the signatures of the immune system and on experimental outcomes are yet not well defined. Thus, the transferability of results obtained in current experimental systems to the physiological human situation has always been a matter of debate. Studies elucidating the diversity of "wild immunology" imprintings in detail and comparing it with those of "clean" lab mice are sparse. Here, we applied multidimensional mass cytometry to dissect phenotypic and functional differences between distinct groups of laboratory and pet shop mice as a source for "wild mice". For this purpose, we developed a 31-antibody panel for murine leukocyte subsets identification and a 35-antibody panel assessing various cytokines. Established murine leukocyte populations were easily identified and diverse immune signatures indicative of numerous pathogen encounters were classified particularly in pet shop mice and to a lesser extent in quarantine and non-SPF mice as compared to SPF mice. In addition, unsupervised analysis identified distinct clusters that associated strongly with the degree of pathogenic priming, including increased frequencies of activated NK cells and antigen-experienced B- and T-cell subsets. Our study unravels the complexity of immune signatures altered under physiological pathogen challenges and highlights the importance of carefully adapting laboratory settings for immunological studies in mice, including drug and therapy testing. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.
Barak, Jeri D; Schroeder, Brenda K
2012-01-01
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
The lyme disease pathogen has no effect on the survival of its rodent reservoir host.
Voordouw, Maarten J; Lachish, Shelly; Dolan, Marc C
2015-01-01
Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.
Discovery of a Novel Hepatovirus (Phopivirus of Seals) Related to Human Hepatitis A Virus.
Anthony, S J; St Leger, J A; Liang, E; Hicks, A L; Sanchez-Leon, M D; Jain, K; Lefkowitch, J H; Navarrete-Macias, I; Knowles, N; Goldstein, T; Pugliares, K; Ip, H S; Rowles, T; Lipkin, W I
2015-08-25
Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV. Hepatitis A virus (HAV) is an important viral hepatitis in humans because of the substantial number of cases each year in regions with low socioeconomic status. The origin of HAV is unknown, and no nonprimate HAV-like viruses have been described. Here, we describe the discovery of an HAV-like virus in seals. This finding suggests that the diversity and evolutionary history of these viruses might be far greater than previously thought and may provide insight into the origin and pathogenicity of HAV. Copyright © 2015 Anthony et al.
Litschko, Christa; Oldrini, Davide; Budde, Insa; Berger, Monika; Meens, Jochen; Gerardy-Schahn, Rita; Berti, Francesco; Schubert, Mario; Fiebig, Timm
2018-05-29
Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis , Actinobacillus pleuropneumoniae , Haemophilus influenzae , Bibersteinia trehalosi , and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis. IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy. The new capsule polymerase family described here vastly increases the toolbox of enzymes available for biotechnology purposes. Representatives are abundantly found in human pathogens but also in animal pathogens, paving the way for the exploitation of polymerases for the development of a new generation of vaccines for animal husbandry. Copyright © 2018 Litschko et al.
Duscher, Tanja; Hodžić, Adnan; Glawischnig, Walter; Duscher, Georg G
2017-04-01
The neozoan species raccoon dog (Nyctereutes procyonoides) and raccoon (Procyon lotor) are widespread in Europe and potential vectors of many diseases that can threaten human and domestic animal health. Facing a further spread of these species, it is important to know about (i) pathogens imported and/or (ii) pathogens acquired in the new habitat. Thus, we investigated the parasite fauna of wild raccoon dogs and raccoons from Austria, at the edge of their new distribution range. The eight examined raccoons were nearly free of pathogens including Baylisascaris procyonis, and thus assumed to have a low epidemiological impact, so far. Out of ten raccoon dog specimens, we found one from western Austria to be infected with Echinococcus multilocularis and another three from the eastern wetland regions to harbour adults of Alaria alata. Furthermore, we detected Babesia cf. microti in five of eight raccoon dogs all over Austria but none of our samples were tested positive for Trichinella spp. Nevertheless, the raccoon dog seems to be a relevant host, at least for the zoonotic pathogens E. multilocularis and A. alata, and we suggest to further monitor the raccoon dogs parasite fauna.
Discovery of a novel hepatovirus (Phopivirus of seals) related to human Hepatitis A Virus
Anthony. S.J.,; St. Leger, J.A; Liang, E.; Hicks, A.L.; Sanchez-Leon, M.D; Ip, Hon S.; Jain, K.; Lefkowitch, J. H.; Navarrete-Macias, I.; Knowles, N.; Goldstein, T.; Pugliares, K.; Rowles, T.; Lipkin, W.I.
2015-01-01
Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV.
Kalmar, Isabelle; Berndt, Angela; Yin, Lizi; Chiers, Koen; Sachse, Konrad; Vanrompay, Daisy
2015-03-15
Although Chlamydia (C.) psittaci infections are recognized as an important factor causing economic losses and impairing animal welfare in poultry production, the specific mechanisms leading to severe clinical outcomes are poorly understood. In the present study, we comparatively investigated pathology and host immune response, as well as systemic dissemination and expression of essential chlamydial genes in the course of experimental aerogeneous infection with C. psittaci and the closely related C. abortus, respectively, in specific pathogen-free chicks. Clinical signs appeared sooner and were more severe in the C. psittaci-infected group. Compared to C. abortus infection, more intense systemic dissemination of C. psittaci correlated with higher and faster infiltration of immune cells, as well as more macroscopic lesions and epithelial pathology, such as hyperplasia and erosion. In thoracic air sac tissue, mRNA expression of immunologically relevant factors, such as IFN-γ, IL-1β, IL-6, IL-17, IL-22, LITAF and iNOS was significantly stronger up-regulated in C. psittaci- than in C. abortus-infected birds between 3 and 14 days post-infection. Likewise, transcription rates of the chlamydial genes groEL, cpaf and ftsW were consistently higher in C. psittaci during the acute phase. These findings illustrate that the stronger replication of C. psittaci in its natural host also evoked a more intense immune response than in the case of C. abortus infection. Copyright © 2015 Elsevier B.V. All rights reserved.
2012-01-01
Background Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. Results Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R2 = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus. Conclusions Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold A. fumigatus. As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major components of the hypoxia response in this pathogenic mold. In addition, a significant induction of the transcripts involved in ergosterol biosynthesis is consistent with previous observations in the pathogenic yeasts Candida albicans and Cryptococcus neoformans indicating conservation of this response to hypoxia in pathogenic fungi. Because ergosterol biosynthesis enzymes also require iron as a co-factor, the increase in iron uptake transcripts is consistent with an increased need for iron under hypoxia. However, unlike C. albicans and C. neoformans, the GABA shunt appears to play an important role in reducing NADH levels in response to hypoxia in A. fumigatus and it will be intriguing to determine whether this is critical for fungal virulence. Overall, regulatory mechanisms of the A. fumigatus hypoxia response appear to involve both transcriptional and post-transcriptional control of transcript and protein levels and thus provide candidate genes for future analysis of their role in hypoxia adaptation and fungal virulence. PMID:22309491
The environment as a driver of immune and endocrine responses in dolphins (Tursiops truncatus)
Fair, Patricia A.; Schaefer, Adam M.; Houser, Dorian S.; Bossart, Gregory D.; Romano, Tracy A.; Champagne, Cory D.; Stott, Jeffrey L.; Rice, Charles D.; White, Natasha; Reif, John S.
2017-01-01
Immune and endocrine responses play a critical role in allowing animals to adjust to environmental perturbations. We measured immune and endocrine related markers in multiple samples from individuals from two managed-care care dolphin groups (n = 82 samples from 17 dolphins and single samples collected from two wild dolphin populations: Indian River Lagoon, (IRL) FL (n = 26); and Charleston, (CHS) SC (n = 19). The immune systems of wild dolphins were more upregulated than those of managed-care-dolphins as shown by higher concentrations of IgG and increases in lysozyme, NK cell function, pathogen antibody titers and leukocyte cytokine transcript levels. Collectively, managed-care care dolphins had significantly lower levels of transcripts encoding pro-inflammatory cytokine TNF, anti-viral MX1 and INFα and regulatory IL-10. IL-2Rα and CD69, markers of lymphocyte activation, were both lower in managed-care care dolphins. IL-4, a cytokine associated with TH2 activity, was lower in managed-care care dolphins compared to the free-ranging dolphins. Differences in immune parameters appear to reflect the environmental conditions under which these four dolphin populations live which vary widely in temperature, nutrition, veterinary care, pathogen/contaminant exposures, etc. Many of the differences found were consistent with reduced pathogenic antigenic stimulation in managed-care care dolphins compared to wild dolphins. Managed-care care dolphins had relatively low TH2 lymphocyte activity and fewer circulating eosinophils compared to wild dolphins. Both of these immunologic parameters are associated with exposure to helminth parasites which is uncommon in managed-care care dolphins. Less consistent trends were observed in a suite of hormones but significant differences were found for cortisol, ACTH, total T4, free T3, and epinephrine. While the underlying mechanisms are likely multiple and complex, the marked differences observed in the immune and endocrine systems of wild and managed-care care dolphins appear to be shaped by their environment. PMID:28467830
The environment as a driver of immune and endocrine responses in dolphins (Tursiops truncatus).
Fair, Patricia A; Schaefer, Adam M; Houser, Dorian S; Bossart, Gregory D; Romano, Tracy A; Champagne, Cory D; Stott, Jeffrey L; Rice, Charles D; White, Natasha; Reif, John S
2017-01-01
Immune and endocrine responses play a critical role in allowing animals to adjust to environmental perturbations. We measured immune and endocrine related markers in multiple samples from individuals from two managed-care care dolphin groups (n = 82 samples from 17 dolphins and single samples collected from two wild dolphin populations: Indian River Lagoon, (IRL) FL (n = 26); and Charleston, (CHS) SC (n = 19). The immune systems of wild dolphins were more upregulated than those of managed-care-dolphins as shown by higher concentrations of IgG and increases in lysozyme, NK cell function, pathogen antibody titers and leukocyte cytokine transcript levels. Collectively, managed-care care dolphins had significantly lower levels of transcripts encoding pro-inflammatory cytokine TNF, anti-viral MX1 and INFα and regulatory IL-10. IL-2Rα and CD69, markers of lymphocyte activation, were both lower in managed-care care dolphins. IL-4, a cytokine associated with TH2 activity, was lower in managed-care care dolphins compared to the free-ranging dolphins. Differences in immune parameters appear to reflect the environmental conditions under which these four dolphin populations live which vary widely in temperature, nutrition, veterinary care, pathogen/contaminant exposures, etc. Many of the differences found were consistent with reduced pathogenic antigenic stimulation in managed-care care dolphins compared to wild dolphins. Managed-care care dolphins had relatively low TH2 lymphocyte activity and fewer circulating eosinophils compared to wild dolphins. Both of these immunologic parameters are associated with exposure to helminth parasites which is uncommon in managed-care care dolphins. Less consistent trends were observed in a suite of hormones but significant differences were found for cortisol, ACTH, total T4, free T3, and epinephrine. While the underlying mechanisms are likely multiple and complex, the marked differences observed in the immune and endocrine systems of wild and managed-care care dolphins appear to be shaped by their environment.
Risks Posed by Reston, the Forgotten Ebolavirus
Cantoni, Diego; Hamlet, Arran; Michaelis, Martin; Wass, Mark N.
2016-01-01
ABSTRACT Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs. PMID:28066813
Detection Methodologies for Pathogen and Toxins: A Review.
Alahi, Md Eshrat E; Mukhopadhyay, Subhas Chandra
2017-08-16
Pathogen and toxin-contaminated foods and beverages are a major source of illnesses, even death, and have a significant economic impact worldwide. Human health is always under a potential threat, including from biological warfare, due to these dangerous pathogens. The agricultural and food production chain consists of many steps such as harvesting, handling, processing, packaging, storage, distribution, preparation, and consumption. Each step is susceptible to threats of environmental contamination or failure to safeguard the processes. The production process can be controlled in the food and agricultural sector, where smart sensors can play a major role, ensuring greater food quality and safety by low cost, fast, reliable, and profitable methods of detection. Techniques for the detection of pathogens and toxins may vary in cost, size, and specificity, speed of response, sensitivity, and precision. Smart sensors can detect, analyse and quantify at molecular levels contents of different biological origin and ensure quality of foods against spiking with pesticides, fertilizers, dioxin, modified organisms, anti-nutrients, allergens, drugs and so on. This paper reviews different methodologies to detect pathogens and toxins in foods and beverages.
Shen, Zhenyu; Zhang, Michael Z; Stich, Roger W; Mitchell, William J; Zhang, Shuping
2018-05-23
Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Lyme disease associated Borrelia spp. are the most common tick-borne pathogens reported to infect human beings worldwide and other animals, such as dogs and horses. In the present study, we developed a broad-coverage SYBR Green QPCR panel consisting of four individual assays for the detection and partial differentiation of the aforementioned pathogens. All assays were optimized to the same thermocycling condition and had a detection limit of 10 copies per reaction. The assays remained sensitive when used to test canine and equine blood DNA samples spiked with known amounts of synthetic DNA (gBlock) control template. The assays were specific, as evidenced by lack of cross reaction to non-target gBlock or other pathogens commonly tested in veterinary diagnostic labs. With appropriate Ct cutoff values for positive samples and negative controls and the melting temperature (TM) ranges established in the present study, the QPCR panel is suitable for accurate, convenient and rapid screening and confirmation of tick-borne pathogens in animals. Copyright © 2017. Published by Elsevier B.V.
Resistance in persisting bat populations after white-nose syndrome invasion.
Langwig, Kate E; Hoyt, Joseph R; Parise, Katy L; Frick, Winifred F; Foster, Jeffrey T; Kilpatrick, A Marm
2017-01-19
Increases in anthropogenic movement have led to a rise in pathogen introductions and the emergence of infectious diseases in naive host communities worldwide. We combined empirical data and mathematical models to examine changes in disease dynamics in little brown bat (Myotis lucifugus) populations following the introduction of the emerging fungal pathogen Pseudogymnoascus destructans, which causes the disease white-nose syndrome. We found that infection intensity was much lower in persisting populations than in declining populations where the fungus has recently invaded. Fitted models indicate that this is most consistent with a reduction in the growth rate of the pathogen when fungal loads become high. The data are inconsistent with the evolution of tolerance or an overall reduced pathogen growth rate that might be caused by environmental factors. The existence of resistance in some persisting populations of little brown bats offers a glimmer of hope that a precipitously declining species will persist in the face of this deadly pathogen.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Siddiqui, Ruqaiyyah; Aqeel, Yousuf; Khan, Naveed Ahmed
2013-01-01
The opportunist free-living protists such as Acanthamoeba spp. and Balamuthia mandrillaris have become a serious threat to human life. As most available drugs target functional aspects of pathogens, the ability of free-living protists to transform into metabolically inactive cyst forms presents a challenge in treatment. It is hoped, that the development of broad spectrum antiprotist agents acting against multiple cyst-forming protists to provide target-directed inhibition will offer a viable drug strategy in the treatment of these rare infections. Here, we present a comprehensive report on upcoming drug targets, with emphasis on cyst wall biosynthesis along with the related biochemistry of encystment pathways, as we strive to bring ourselves a step closer to being able to combat these deadly diseases. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki
2015-01-01
Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells. PMID:25643359
Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang
2017-02-01
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive, and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. This study presents the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific interwire spacing are synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, this study demonstrates that about 50% H5N2 avian influenza viruses are physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 h for virus culture, subsequent molecular diagnosis, and other virus characterization and analyses. This device performs viable, unbiased, and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Pathogen-free growing media are widely used for strawberry production in protected structures in Europe but not common in the United States. There is a need to investigate the feasibility of producing strawberry fruits in open fields with the pathogen-free media in the U.S. The objective of the stud...
Alterations in choice behavior by manipulations of world model.
Green, C S; Benson, C; Kersten, D; Schrater, P
2010-09-14
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.
Rajkowski, Kathleen T; Ashurst, Kean
2009-11-01
To achieve the production of pathogen-free sprouts, there must be appropriate mixing of liquid sanitizer with the seeds to assure contact. Commercial treatments by irradiation or ozone gas of Salmonella spp. artificially inoculated seeds were compared, and these resulted in a 1 log reduction after all treatments. Use of peroxyacetic acid (1%) sanitizer on Salmonella spp. or Escherichia coli O157:H7 inoculated alfalfa seeds consistently resulted in a greater than 1 log reduction. In addition, during these studies debris was noted after the seeds were removed. Based on this observation, an air-mixing wash basin was developed for commercial use. Validation was done by commercial growers using 1% peroxyacetic acid sanitizer to wash seeds in the air-mixing basin, followed by sprouting the seeds. No positive or false-positive pathogen results were reported after the required testing of the sprout water (run-off during sprouting). Use of 1% peroxyacetic acid sanitizer in the air-mixing wash basin does provide the sprout grower an effective means of sanitizing sprout seeds.
Normalizing the environment recapitulates adult human immune traits in laboratory mice.
Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David
2016-04-28
Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.
Derlet, Robert W; Carlson, James R
2004-01-01
To determine the prevalence of coliform and potentially pathogenic bacteria in remote backcountry alpine lakes and streams of national parks in the Sierra Nevada mountains. Water was sampled at 55 predetermined lakes and streams that would stratify the risk, based on sites used by backpackers, sites used by pack animals, and uncontaminated wild areas. Sites were distributed among Kings Canyon (15), Sequoia (17), and Yosemite (23). Water was collected using Millipore bacterial samplers, which provided specific counts of coliform and other bacteria in each water sample and also served as a transport media from the wilderness to the laboratory. On return to the laboratory, bacteria were harvested from the samplers and subjected to specific identification and qualitative analysis using standard microbiology techniques for the analysis of water. Coliform bacteria were detected in 22 of the 55 sites. All of these sites were below areas used by backpackers or pack animals. Thirty-three sites were free of coliforms. These sites included both those used lightly by backpackers and those with no human or domestic animal use. All samples contained expected amounts of normal aquatic bacteria including Pseudomonas, Rahnella aquatilis, Serratia spp, and nonpathogenic species of Yersinia. Most sampling sites in these national parks are free of coliform or pathogenic organisms. Low levels of coliform bacteria are found in some bodies of water where the watershed has been affected by human or pack animal travel.
Droplet microfluidics for amplification-free genetic detection of single cells.
Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei
2012-09-21
In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.
Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens.
Pogue, J M; Kaye, K S; Cohen, D A; Marchaim, D
2015-04-01
The past decade has brought a significant rise in antimicrobial resistance, and the ESKAPE pathogens have become a significant threat to public health. Three epidemiological features that negatively impact patients, which are consistently seen with the ESKAPE pathogens, are the following: 1) there has been a rise in incidence of these organisms as causative human pathogens, 2) there has been a significant increase in antimicrobial resistance in these bacterial species, and 3) the infections caused by these resistant strains are associated with worse outcomes when compared with infections caused by their susceptible counterparts. Significant delays in time to appropriate antimicrobial therapy of up to 5 days have been reported in infections due to these organisms and this is the strongest predictor of mortality with ESKAPE pathogens, particular in critically ill patients, where every hour delay has an incremental survival disadvantage for patients. Strategies to decrease these delays are urgently needed. Although routine broad-spectrum empiric coverage for these organisms would ideally limit this delay, agents with activity against these organisms are sometimes less effective, have significant toxicity risk, and their use can result in the development of resistance. Therefore, strategies to optimize therapy, although limiting unnecessary use of broad-spectrum antimicrobials, are urgently needed. This review will discuss potential strategies to optimize empiric therapy in the age of multi-drug resistance, the limitations of these strategies, and will discuss future directions and opportunities. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Luz, Hermes Ribeiro; McIntosh, Douglas; Furusawa, Guilherme P; Flausino, Walter; Rozental, Tatiana; Lemos, Elba R S; Landulfo, Gabriel A; Faccini, João Luiz H
2016-10-01
Rickettsia rickettsii and Rickettsia sp. strain Atlantic rainforest, that is considered to represent a genetic variant of Rickettsia parkeri, are confirmed as being capable of infecting humans in Brazil. This study reports the detection and characterization, by PCR and nucleotide sequencing, of Rickettsia sp. strain Atlantic rain forest in Amblyomma ovale parasitizing a human, in ticks infesting dogs and in free-living ticks collected from the environment where the human infestation was recorded. The data contribute to our knowledge of infection rates in A. ovale with Rickettsia sp. strain Atlantic rainforest and identified an additional location in the state of São Paulo populated with ticks infected with this emerging pathogen. Copyright © 2016 Elsevier GmbH. All rights reserved.
Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall
Gelbard-Sagiv, Hagar; Mukamel, Roy; Harel, Michal; Malach, Rafael; Fried, Itzhak
2009-01-01
The emergence of memory, a trace of things past, into human consciousness is one of the greatest mysteries of the human mind. Whereas the neuronal basis of recognition memory can be probed experimentally in human and nonhuman primates, the study of free recall requires that the mind declare the occurrence of a recalled memory (an event intrinsic to the organism and invisible to an observer). Here, we report the activity of single neurons in the human hippocampus and surrounding areas when subjects first view cinematic episodes consisting of audiovisual sequences and again later when they freely recall these episodes. A subset of these neurons exhibited selective firing, which often persisted throughout and following specific episodes for as long as 12 seconds. Verbal reports of memories of these specific episodes at the time of free recall were preceded by selective reactivation of the same hippocampal and entorhinal cortex neurons. We suggest that this reactivation is an internally generated neuronal correlate for the subjective experience of spontaneous emergence of human recollection. PMID:18772395
Colles, Frances M.; Cain, Russell J.; Nickson, Thomas; Smith, Adrian L.; Roberts, Stephen J.; Maiden, Martin C. J.; Lunn, Daniel; Dawkins, Marian Stamp
2016-01-01
Campylobacter is the commonest bacterial cause of gastrointestinal infection in humans, and chicken meat is the major source of infection throughout the world. Strict and expensive on-farm biosecurity measures have been largely unsuccessful in controlling infection and are hampered by the time needed to analyse faecal samples, with the result that Campylobacter status is often known only after a flock has been processed. Our data demonstrate an alternative approach that monitors the behaviour of live chickens with cameras and analyses the ‘optical flow’ patterns made by flock movements. Campylobacter-free chicken flocks have higher mean and lower kurtosis of optical flow than those testing positive for Campylobacter by microbiological methods. We show that by monitoring behaviour in this way, flocks likely to become positive can be identified within the first 7–10 days of life, much earlier than conventional on-farm microbiological methods. This early warning has the potential to lead to a more targeted approach to Campylobacter control and also provides new insights into possible sources of infection that could transform the control of this globally important food-borne pathogen. PMID:26740618
NASA Astrophysics Data System (ADS)
Contreras, Christy; McKay, John; Blattman, Joseph; Holechek, Susan
2015-03-01
The lymphocytic choriomenigitis virus (LCMV) is a rodent-spread virus commonly recognized as causing neurological disease that exhibits asymptomatic pathology. The virus is a pathogen normally carried among rodents that can be transmitted to humans by direct or indirect contact with the virus in excretions and secretions from rodents and can cause aseptic meningitis and other conditions in humans. We consider an epidemiological system within rodent populations modeled by a system of ordinary differential equations that captures the dynamics of the diseases transmission and present our findings. The asymptotic nature of the pathogen plays a large role in its spread within a given population, which has motivated us to expand upon an existing SIRC model (Holechek et al in preparation) that accounts for susceptible-, infected-, recovered-, and carrier-mice on the basis of their gender. We are interested in observing and determining the conditions under which the carrier population will reach a disease free equilibrium, and we focus our investigation on the sensitivity of our model to gender, pregnancy related infection, and reproduction rate conditions.
A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders.
Karbassi, Izabela; Maston, Glenn A; Love, Angela; DiVincenzo, Christina; Braastad, Corey D; Elzinga, Christopher D; Bright, Alison R; Previte, Domenic; Zhang, Ke; Rowland, Charles M; McCarthy, Michele; Lapierre, Jennifer L; Dubois, Felicita; Medeiros, Katelyn A; Batish, Sat Dev; Jones, Jeffrey; Liaquat, Khalida; Hoffman, Carol A; Jaremko, Malgorzata; Wang, Zhenyuan; Sun, Weimin; Buller-Burckle, Arlene; Strom, Charles M; Keiles, Steven B; Higgins, Joseph J
2016-01-01
We developed a rules-based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co-occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re-evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.
Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G
2015-06-01
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes
Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.
2015-01-01
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191
Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.
Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca
2014-01-27
Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.
Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells
2014-01-01
Background Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. Methods PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. Results PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. Conclusion The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures. PMID:24467837
Contamination of produce with human pathogens: sources and solutions
USDA-ARS?s Scientific Manuscript database
Outbreaks of foodborne illnesses associated with the presence of human pathogens have led to increased concern about the prevalence of pathogens in the environment and the vulnerability of fresh produce to contamination by these pathogens. As the FDA strives to mandate treatments to reduce pathogen...
Genome-Wide Identification of Molecular Mimicry Candidates in Parasites
Ludin, Philipp; Nilsson, Daniel; Mäser, Pascal
2011-01-01
Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions. PMID:21408160
Hornsby, Michael J; Huff, Jennifer L; Kays, Robert J; Canfield, Don R; Bevins, Charles L; Solnick, Jay V
2008-04-01
We used the rhesus macaque model to study the effects of the cag pathogenicity island (cag PAI) on the H pylori host-pathogen interaction. H pylori-specific pathogen-free (SPF) monkeys were experimentally challenged with wild-type (WT) H pylori strain J166 (J166WT, n = 4) or its cag PAI isogenic knockout (J166Deltacag PAI, n = 4). Animals underwent endoscopy before and 1, 4, 8, and 13 weeks after challenge. Gastric biopsies were collected for quantitative culture, histopathology, and host gene expression analysis. Quantitative cultures showed that all experimentally challenged animals were infected with J166WT or its isogenic J166Deltacag PAI. Histopathology demonstrated that inflammation and expansion of the lamina propria were attenuated in animals infected with J166Deltacag PAI compared with J166WT. Microarray analysis showed that of the 119 up-regulated genes in the J166WT-infected animals, several encode innate antimicrobial effector proteins, including elafin, siderocalin, DMBT1, DUOX2, and several novel paralogues of human-beta defensin-2. Quantitative RT-PCR confirmed that high-level induction of each of these genes depended on the presence of the cag PAI. Immunohistochemistry confirmed increased human-beta defensin-2 epithelial cell staining in animals challenged with J166WT compared with either J166Deltacag PAI-challenged or uninfected control animals. We propose that one function of the cag PAI is to induce an antimicrobial host response that may serve to increase the competitive advantage of H pylori in the gastric niche and could even provide a protective benefit to the host.
Nowakiewicz, Aneta; Zięba, Przemysław; Ziółkowska, Grażyna; Gnat, Sebastian; Muszyńska, Marta; Tomczuk, Krzysztof; Majer Dziedzic, Barbara; Ulbrych, Łukasz; Trościańczyk, Aleksandra
2016-01-01
The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12.5% exhibiting the presence of egc-like variants. In two animals, we also noted the gene encoding the TSST-1 toxin. The results of the study showed that free-living animals may be a significant reservoir of bacteria that are potentially pathogenic for humans. The results of the statistical analysis revealed that, among the animals species studied, the red fox constitutes the most important source of infections.
Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi
2018-01-01
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722
Chromobacterium violaceum Infection in a free-ranging howler monkey in Costa Rica.
Baldi, Mario; Morales, Juan A; Hernández, Giovanna; Jiménez, Mauricio; Alfaro, Alejandro; Barquero-Calvo, Elias
2010-01-01
Chromobacterium violaceum is a gram-negative saprobe bacterium that is a rare opportunistic pathogen in mammals. There are numerous reports in humans including fatalities, but no record exists in free-ranging nonhuman primates. Here we report an infection by C. violaceum in a wild adult male howler monkey (Alouatta palliata) captured at Ballena Marine National Park, in southwestern Costa Rica. The individual had severe skin lesions over its extremities; gross findings included multiple skin ulcers, white foci in liver, and lymphoid hyperplasia. Histologic results included deep dermatitis with presence of necrotic epithelial cells where clusters of coccoid-shaped bacteria were detected. In the liver, numerous neutrophils forming microabscesses, telangiectasia, and focal necrotic areas were observed. Necrotic liver tissue sampled for bacteriologic culture resulted in the isolation of C. violaceum. We could not ascertain the source or mechanism of infection in this case, although infection through skin microabrasions is suspected. To the best of our knowledge, this is the first report for this pathogen in a wild, nonhuman primate. This report also draws attention to this infectious agent as a potential emerging wildlife disease and consideration should be paid by regional veterinary and epidemiologic vigilance services.
Isolation of Balamuthia mandrillaris from urban dust, free of known infectious involvement.
Niyyati, Maryam; Lorenzo-Morales, Jacob; Rezaeian, Mostafa; Martin-Navarro, Carmen M; Haghi, Afsaneh Motevalli; Maciver, Sutherland K; Valladares, Basilio
2009-12-01
The free-living amoeba Balamuthia mandrillaris can cause fatal encephalitis in humans and other mammals. The organism is associated with soils, and soil exposure has been identified as a risk factor for this pathogen. However, B. mandrillaris has been isolated only once from soils believed to be the source of the infection in child from California, USA who died of Balamuthia amoebic encephalitis and once from another unrelated soil source. We report for a third time the isolation of B. mandrillaris from the environment and for the second time its isolation from a sample not known to be involved with pathogenicity. We have established the new clonal B. mandrillaris strain (ID-19) in axenic media. The identity of our isolate was originally by morphology using a light microscope and this has been confirmed by 16S rRNA gene PCR. The new strain ID-19 groups with others of the species. The fact that our isolate came from dust particles deposited on surfaces from the air in an urban environment may suggest that it is not just soil exposure that constitutes a risk factor for Balamuthia infection. This is the first report of this organism from Iran.
Kondrashov, Alexander; Duc Hoang, Minh; Smith, James G W; Bhagwan, Jamie R; Duncan, Gary; Mosqueira, Diogo; Munoz, Maria Barbadillo; Vo, Nguyen T N; Denning, Chris
2018-03-15
Modeling disease with human pluripotent stem cells (hPSCs) is hindered because the impact on cell phenotype from genetic variability between individuals can be greater than from the pathogenic mutation. While "footprint-free" Cas9/CRISPR editing solves this issue, existing approaches are inefficient or lengthy. In this study, a simplified PiggyBac strategy shortened hPSC editing by 2 weeks and required one round of clonal expansion and genotyping rather than two, with similar efficiencies to the longer conventional process. Success was shown across four cardiac-associated loci (ADRB2, GRK5, RYR2, and ACTC1) by genomic cleavage and editing efficiencies of 8%-93% and 8%-67%, respectively, including mono- and/or biallelic events. Pluripotency was retained, as was differentiation into high-purity cardiomyocytes (CMs; 88%-99%). Using the GRK5 isogenic lines as an exemplar, chronic stimulation with the β-adrenoceptor agonist, isoprenaline, reduced beat rate in hPSC-CMs expressing GRK5-Q41 but not GRK5-L41; this was reversed by the β-blocker, propranolol. This shortened, footprint-free approach will be useful for mechanistic studies.
Armand, B; Motazedian, M H; Asgari, Q
2016-01-01
Free-living amoebae (FLA) are the most abundant and widely distributed protozoa in the environment. An investigation was conducted to determine the presence of free-living amoebae (FLA), Acanthamoeba and Vermamoeba in waterfronts of parks and squares and tap water of Shiraz City, Iran. FLA are considered pathogenic for human. These ubiquitous organisms have been isolated from different environments such as water, soil, and air. Eighty-two water samples were collected from different places of Shiraz City during the summer of 2013. All samples were processed in Dept. of Parasitology and Mycology, Shiraz University of Medical Sciences, Fars, Iran. Samples were screened for FLA and identified by morphological characters in the cultures, PCR amplification targeting specific genes for each genus and sequencing determined frequent species and genotypes base on NCBI database. Overall, 48 samples were positive for Acanthamoeba and Vermamoeba in non-nutrient agar culture based on morphological characteristics. The PCR examination was done successfully. Sequencing results were revealed T4 (62.96 %) genotypes as the most common genotype of Acanthamoeba in the Shiraz water sources. In addition, T5 (33.33 %) and T15 (3.71 %) were isolated from water supplies. Vermamoeba vermiformis was known the dominant species from this genus. The high frequency of Acanthamoeba spp. and Vermamoeba in different environmental water sources of Shiraz is an alert for the public health related to water sources. The result highlights a need for taking more attention to water supplies in order to prevent illnesses related to free-living amoebae.
Samir, M; Hamed, M; Abdallah, F; Kinh Nguyen, V; Hernandez-Vargas, E A; Seehusen, F; Baumgärtner, W; Hussein, A; Ali, A A H; Pessler, F
2018-06-01
The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade. © 2018 Blackwell Verlag GmbH.
Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia
2012-01-01
An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and humans at risk and, therefore, this practice should be closely monitored.
Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia
2012-01-01
An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and humans at risk and, therefore, this practice should be closely monitored. PMID:22427819
Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.
Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J
2012-11-01
We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparative pathology of nocardiosis in marine mammals.
St Leger, J A; Begeman, L; Fleetwood, M; Frasca, S; Garner, M M; Lair, S; Trembley, S; Linn, M J; Terio, K A
2009-03-01
Nocardia spp. infections in mammals cause pyogranulomatous lesions in a variety of organs, most typically the lung. Members of the Nocardia asteroides complex are the most frequently recognized pathogens. Nine cases of nocardiosis in free-ranging pinnipeds and 10 cases of nocardiosis in cetaceans were evaluated. Host species included the hooded seal (Cystophora cristata, n = 8), leopard seal (Hydrurga leptonyx, n = 1), Atlantic bottlenose dolphin (Tursiops truncatus, n = 4), beluga whale (Delphinapterus leucas, n = 4), and killer whale (Orcinus orca, n = 2). The most common presentation of nocardiosis in both pinnipeds and cetaceans was the systemic form, involving 2 or more organs. Organs most frequently affected were lung and thoracic lymph nodes in 7 of 9 cases in pinnipeds and 8 of 10 cases in cetaceans. Molecular identification and bacterial isolation demonstrated a variety of pathogenic species. N. asteroides, N. farcinica, N. brasiliensis, and N. otitisdiscaviarum are pathogenic for pinnipeds. In cetaceans N. asteroides, N. farcinica, N. brasiliensis, N. cyriacigeorgica, and N. levis are pathogenic. Hematoxylin and eosin and acid fast staining failed to reveal bacteria in every case, whereas modified acid fast and Grocott's methenamine silver consistently demonstrated the characteristic organisms. In both pinnipeds and cetaceans, juvenile animals were affected more often than adults. Hooded seals demonstrated more cases of nocardiosis than other pinnipeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaborin, Alexander; Smith, Daniel; Garfield, Kevin
We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less
Zaborin, Alexander; Smith, Daniel; Garfield, Kevin; ...
2014-09-23
We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less
Gene expression platform for synthetic biology in the human pathogen Streptococcus pneumoniae.
Sorg, Robin A; Kuipers, Oscar P; Veening, Jan-Willem
2015-03-20
The human pathogen Streptococcus pneumoniae (pneumococcus) is a bacterium that owes its success to complex gene expression regulation patterns on both the cellular and the population level. Expression of virulence factors enables a mostly hazard-free presence of the commensal, in balance with the host and niche competitors. Under specific circumstances, changes in this expression can result in a more aggressive behavior and the reversion to the invasive form as pathogen. These triggering conditions are very difficult to study due to the fact that environmental cues are often unknown or barely possible to simulate outside the host (in vitro). An alternative way of investigating expression patterns is found in synthetic biology approaches of reconstructing regulatory networks that mimic an observed behavior with orthogonal components. Here, we created a genetic platform suitable for synthetic biology approaches in S. pneumoniae and characterized a set of standardized promoters and reporters. We show that our system allows for fast and easy cloning with the BglBrick system and that reliable and robust gene expression after integration into the S. pneumoniae genome is achieved. In addition, the cloning system was extended to allow for direct linker-based assembly of ribosome binding sites, peptide tags, and fusion proteins, and we called this new generally applicable standard "BglFusion". The gene expression platform and the methods described in this study pave the way for employing synthetic biology approaches in S. pneumoniae.
Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract.
Vötsch, Désirée; Willenborg, Maren; Weldearegay, Yenehiwot B; Valentin-Weigand, Peter
2018-01-01
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis -free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The "two faces" of S. suis , one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis , as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.
Streptococcus suis – The “Two Faces” of a Pathobiont in the Porcine Respiratory Tract
Vötsch, Désirée; Willenborg, Maren; Weldearegay, Yenehiwot B.; Valentin-Weigand, Peter
2018-01-01
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans. PMID:29599763
Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan
2018-04-01
During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.
Virus-like infectious agent (VLIA) is a novel pathogenic mycoplasma: Mycoplasma incognitus.
Lo, S C; Shih, J W; Newton, P B; Wong, D M; Hayes, M M; Benish, J R; Wear, D J; Wang, R Y
1989-11-01
The newly recognized pathogenic virus-like infectious agent (VLIA), originally reported in patients with AIDS but also known to be pathogenic in previously healthy non-AIDS patients and in non-human primates, was cultured in cell-free conditions using a modified SP-4 medium and classified as a member of the order Mycoplasmatales, class Mollicutes. The infectious microorganism is tentatively referred to as Mycoplasma incognitus. M. incognitus has the unique biochemical properties of utilizing glucose both aerobically and anaerobically, as well as having the ability to metabolize arginine. Among all known human mycoplasmas, these specific biochemical characteristics were found previously only in a rarely isolated species, M. fermentans. In comparison with M. fermentans, M. incognitus appears to be even more fastidious in cultivation requirements and fails to grow in all tested mycoplasma media other than modified SP-4 medium. In addition, M. incognitus grows much more slowly, has a smaller spherical particle size and occasional filamentous morphology, and forms only irregular and very small colonies with diffuse edges on agar plates. Antigenic analysis using polyclonal and monoclonal antibodies and DNA analysis of sequence homology and restriction enzyme mappings in M. incognitus, M. orale, M. hyorhinis, M. hominis, M. pneumoniae, M. fermentans, M. arginini, M. genitalium, M. salivarium, Ureaplasma urealyticum, and Acholeplasma laidlawii revealed that M. incognitus is distinct from other mycoplasmas, but is most closely related to M. fermentans.
Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef
2014-02-01
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Leal, Diego Averaldo Guiguet; Souza, Doris Sobral Marques; Caumo, Karin Silva; Fongaro, Gislaine; Panatieri, Lua Ferreira; Durigan, Maurício; Rott, Marilise Brittes; Barardi, Célia Regina Monte; Franco, Regina Maura Bueno
2018-06-15
Waterborne, food-borne and sewage-borne pathogens are a major global concern, with the annual recurrence, most notably during the summer, of outbreaks of gastroenteritis of unconfirmed etiology associated with recreational activities in marine environments. The consumption of contaminated water-based foodstuffs is also related to outbreaks of human illness. The main goals of the present study were: i) to identify the genetic assemblages of Giardia duodenalis cysts in growing and depurated oysters destined for human consumption on the southern coast of São Paulo, Brazil; ii) to verify the main circulating G. duodenalis assemblages and their subtypes in different brackish waters used for the production of mollusks and for recreational purposes; iii) to track the contamination of growing and depurated oysters by the human adenovirus and identify the infectivity of adenoviral particles recovered from oysters before and after depuration; iv) to evaluate the occurrence and genotype of the free-living amoebae of the genus Acanthamoeba in brackish water and oysters from all the sites described above. Four sampling sites in the Cananeia estuary were selected to search for pathogenic and amphizoic protozoa (Giardia and Acanthamoeba respectively): site 1: oyster growth, site 2: catchment water (before UV depuration procedure), site 3: filter backwash (filtration stage of water treatment) and site 4: oyster depuration tank. Oysters at sites 1 and 4 were evaluated for the presence of adenovirus (HAdV). Analysis consisted of conventional microbiological as well as molecular methods. Giardia duodenalis were detected in all the water sites analyzed and the molecular analysis revealed that sub-assemblage AII was the most frequently distributed throughout the estuarine environment, although one sample was identified as belonging to the assemblage C. Acanthamoeba were also isolated from different locations of the estuarine area, and were detected at all the analyzed sites. The majority of isolates belonged to the T3 genotype, while the T4 genotype was identified once. The sequencing reaction of Giardia duodenalis revealed the contamination of three batches of depurated oysters by the sub-assemblage AII. With respect to viruses, seven batches of oysters (four growing and three depurated) were found to be harboring infectious HAdV particles when submitted to plaque assay. Overall, the results of the sequencing reactions combined with the plaque assay revealed that the isolates of Giardia duodenalis and the infectious HAdV particles identified in oyster tissues have the potential to infect humans and pose a threat if consumed raw or lightly cooked. This is the first report on the sub-assemblage AII identified in oysters which are submitted to a cleaning and disinfection procedure prior to human consumption in Brazil. Acanthamoeba specific genotypes were also identified for the first time in a recreational estuarine area in Brazil, contributing to knowledge of their molecular and environmental epidemiology, which is considered scarce even in marine and estuarine areas of the world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cap, Andrew P; Pidcoke, Heather F; Keil, Shawn D; Staples, Hilary M; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A; Frazer-Abel, Ashley; Taylor, Audra L; Gonzales, Richard; Patterson, Jean L; Goodrich, Raymond P
2016-03-01
Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated. © 2016 AABB.
Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua
2017-01-01
ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2001-D-0066] (Formerly Docket No. 2001D-0107) Expedited Review for New Animal Drug Applications for Human Pathogen... Review for New Animal Drug Applications for Human Pathogen Reduction Claims.'' The guidance predates the...
Tan, Liang; Tao, Yunliang; Wang, Ting; Zou, Feng; Zhang, Shuhua; Kou, Qunhuan; Niu, Ao; Chen, Qian; Chu, Wenjing; Chen, Xiaoyan; Wang, Haidong; Yang, Yushe
2017-04-13
Conjugating a siderophore to an antibiotic is a promising strategy to overcome the permeability-mediated resistance of Gram-negative pathogens. On the basis of the structure of BAL30072, novel pyridone-conjugated monosulfactams incorporating diverse substituents into the methylene linker between the 1,3-dihydroxypyridin-4(1H)-one and the aminothiazole oxime were designed and synthesized. Structure-activity relationship studies revealed that a variety of substituents were tolerated, with isopropyl (compound 12c) and methylthiomethyl (compound 16a) showing the best efficacy against multidrug-resistant (MDR) Gram-negative pathogens. In addition, compound 12c exhibits a good free fraction rate in an in vitro human plasma protein binding test, along with a low clearance and favorable plasma exposure in vivo. In a murine systemic infection model with MDR Klebsiella pneumoniae, compound 12c shows an ED 50 of 10.20 mg/kg. Taken together, the results indicate that compound 12c is a promising drug candidate for the treatment of serious infections caused by MDR Gram-negative pathogens.
Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens
Haudecoeur, E.; Planamente, S.; Cirou, A.; Tannières, M.; Shelp, B. J.; Moréra, S.; Faure, D.
2009-01-01
Plants accumulate free L-proline (Pro) in response to abiotic stresses (drought and salinity) and presence of bacterial pathogens, including the tumor-inducing bacterium Agrobacterium tumefaciens. However, the function of Pro accumulation in host-pathogen interaction is still unclear. Here, we demonstrated that Pro antagonizes plant GABA-defense in the A. tumefaciens C58-induced tumor by interfering with the import of GABA and consequently the GABA-induced degradation of the bacterial quorum-sensing signal, 3-oxo-octanoylhomoserine lactone. We identified a bacterial receptor Atu2422, which is implicated in the uptake of GABA and Pro, suggesting that Pro acts as a natural antagonist of GABA-signaling. The Atu2422 amino acid sequence contains a Venus flytrap domain that is required for trapping GABA in human GABAB receptors. A constructed atu2422 mutant was more virulent than the wild type bacterium; moreover, transgenic plants with a low level of Pro exhibited less severe tumor symptoms than did their wild-type parents, revealing a crucial role for Venus flytrap GABA-receptor and relative abundance of GABA and Pro in host-pathogen interaction. PMID:19706545
VERY LOW INFLUENZA A VIRUS PREVALENCE IN CERVIDS IN GERMAN NATIONAL PARKS.
Soilemetzidou, Sanatana-Eirini; Greenwood, Alex D; Czirják, Gábor Á
2018-03-01
Influenza A viruses are one of the most important and most studied pathogens in humans and domestic animals but little is known about viral prevalence in non-avian wildlife. Serum samples from three free-ranging cervid species (red [ Cervus elaphus], fallow [ Dama dama] , and roe deer [ Capreolus capreolus]) were collected from six German national parks between 2000 and 2002. The serum was tested for the presence of influenza A antibodies using a commercial competitive enzyme-linked immunosorbent assay. Only one of 137 samples tested positive.
Discovery and characterization of sialic acid O-acetylation in group B Streptococcus.
Lewis, Amanda L; Nizet, Victor; Varki, Ajit
2004-07-27
Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac residues of the GBS type III capsule are O-acetylated at carbon position 7, 8, or 9, a major modification evidently missed in previous studies. Data are consistent with initial O-acetylation at position 7, and subsequent migration of the O-acetyl ester at positions 8 and 9. O-acetylation was also present on several other GBS serotypes (Ia, Ib, II, V, and VI). Deletion of the CMP-Neu5Ac synthase gene neuA by precise, in-frame allelic replacement gave intracellular accumulation of O-acetylated Neu5Ac, whereas overexpression markedly decreased O-acetylation. Given the known GBS Neu5Ac biosynthesis pathway, these data indicate that O-acetylation occurs on free Neu5Ac, competing with the CMP-Neu5Ac synthase. O-acetylation often generates immunogenic epitopes on bacterial capsular polysaccharides and can modulate human alternate pathway complement activation. Thus, our discovery has important implications for GBS pathogenicity, immunogenicity, and vaccine design.
Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F
2017-03-14
Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.
Chapter 9. Sanitation for Management of Florists' Crops Diseases
USDA-ARS?s Scientific Manuscript database
Sanitation involves efforts aimed to prevent entrance of pathogens into production areas, eliminate pathogens from production areas, and reduce production and spread of pathogen propagules to limit disease damage in a current crop. Sanitation includes many practices such as purchasing disease-free c...
Ruiz-Fons, F
2017-02-01
Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.
Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism.
Tang, Chengyuan; Chen, Xiang; Chi, Jingwei; Yang, Dawei; Liu, Shu; Liu, Mujun; Pan, Qian; Fan, Jianbing; Wang, Danling; Zhang, Zhuohua
2015-11-01
Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Viau, Sabrina; Chabrand, Lucie; Eap, Sandy; Lorant, Judith; Rouger, Karl; Goudaliez, Francis; Sumian, Chryslain; Delorme, Bruno
2017-01-01
We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications.
Viau, Sabrina; Chabrand, Lucie; Eap, Sandy; Lorant, Judith; Rouger, Karl; Goudaliez, Francis; Sumian, Chryslain; Delorme, Bruno
2017-01-01
Background We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). Methodology / Principal findings We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. Conclusion / Significance We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications. PMID:28763452
Evaluation of Galleria mellonella larvae for studying the virulence of Streptococcus suis.
Velikova, Nadya; Kavanagh, Kevin; Wells, Jerry M
2016-12-15
Streptococcus suis is an encapsulated Gram-positive bacterium and the leading cause of sepsis and meningitis in young pigs, resulting in considerable economic losses in the porcine industry. S. suis is considered an emerging zoonotic agent with increasing numbers of human cases over the last years. In the environment, both avirulent and virulent strains occur in pigs, with no evidence for consistent adapatation of virulent strains to the human host. Currently, there is an urgent need for a convenient, reliable and standardised animal model to rapidly assess S. suis virulence. Wax moth (Galleria mellonella) larvae have successfully been used in human and animal infectious disease studies. Here, we developed G. mellonella larvae as a model to assess virulence of S. suis strains. Fourteen isolates of S. suis belonging to different serotypes killed G. mellonella larvae in a dose-dependent manner. Larvae infected with the virulent serotype 2 strain, S. suis S3881/S10, were rescued by antibiotic therapy. Crucially, the observed virulence of the different serotypes and mutants was in agreement with virulence observed in piglets (Sus scrofa) and the zebrafish larval infection model. Infection with heat-inactivated bacteria or bacteria-free culture supernatants showed that in most cases live bacteria are needed to cause mortality in G. mellonella. The G. mellonella model is simple, cost-efficient, and raises less ethical issues than experiments on vertebrates and reduces infrastructure requirements. Furthermore, it allows experiments to be performed at the host temperature (37 °C). The results reported here, indicate that the G. mellonella model may aid our understanding of veterinary microbial pathogens such as the emerging zoonotic pathogen S. suis and generate hypotheses for testing in the target animal host. Ultimately, this might lead to the timely introduction of new effective remedies for infectious diseases. Last but not least, use of the G. mellonella infection model to study S. suis virulence adheres to the principles of replacement, reduction and refinement (3Rs) and can potentially reduce the number of vertebrates used for experimental infection studies.
Ghamrawi, Sarah; Rénier, Gilles; Saulnier, Patrick; Cuenot, Stéphane; Zykwinska, Agata; Dutilh, Bas E.; Thornton, Christopher; Faure, Sébastien; Bouchara, Jean-Philippe
2014-01-01
Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory secretions of CF patients. It is commonly believed that infection by this fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the adherence of Pseudallescheria to the host epithelial cells and its escape from the host immune defenses remain largely unknown. Given that the cell wall orchestrates all these processes, we were interested in studying its dynamic changes in conidia as function of the age of cultures. We found that the surface hydrophobicity and electronegative charge of conidia increased with the age of culture. Melanin that can influence the cell surface properties, was extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also directly examined and compared using electron paramagnetic resonance (EPR) that determines the production of free radicals. Consistent with the increased amount of melanin, the EPR signal intensity decreased suggesting polymerization of melanin. These results were confirmed by flow cytometry after studying the effect of melanin polymerization on the surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A. In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the age of culture increased. Using atomic force microscopy, we were unable to find rodlet-forming hydrophobins, molecules that can also affect conidial surface properties. In conclusion, the changes in surface properties and biochemical composition of the conidial wall with the age of culture highlight the process of conidial maturation. Mannose-containing glycoconjugates that are involved in immune recognition, are progressively masked by polymerization of melanin, an antioxidant that is commonly thought to allow fungal escape from the host immune defenses. PMID:24950099
Discovery of a Novel Hepatovirus (Phopivirus of Seals) Related to Human Hepatitis A Virus
St. Leger, J. A.; Liang, E.; Hicks, A. L.; Sanchez-Leon, M. D.; Jain, K.; Lefkowitch, J. H.; Navarrete-Macias, I.; Knowles, N.; Goldstein, T.; Pugliares, K.; Rowles, T.; Lipkin, W. I.
2015-01-01
ABSTRACT Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV. PMID:26307166
Spoor, Laura E.; McAdam, Paul R.; Weinert, Lucy A.; Rambaut, Andrew; Hasman, Henrik; Aarestrup, Frank M.; Kearns, Angela M.; Larsen, Anders R.; Skov, Robert L.; Fitzgerald, J. Ross
2013-01-01
ABSTRACT The importance of livestock as a source of bacterial pathogens with the potential for epidemic spread in human populations is unclear. In recent years, there has been a global increase in community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections of healthy humans, but an understanding of the different evolutionary origins of CA-MRSA clones and the basis for their recent expansion is lacking. Here, using a high-resolution phylogenetic approach, we report the discovery of two emergent clones of human epidemic CA-MRSA which resulted from independent livestock-to-human host jumps by the major bovine S. aureus complex, CC97. Of note, one of the new clones was isolated from human infections on four continents, demonstrating its global dissemination since the host jump occurred over 40 years ago. The emergence of both human S. aureus clones coincided with the independent acquisition of mobile genetic elements encoding antimicrobial resistance and human-specific mediators of immune evasion, consistent with an important role for these genetic events in the capacity to survive and transmit among human populations. In conclusion, we provide evidence that livestock represent a reservoir for the emergence of new human-pathogenic S. aureus clones with the capacity for pandemic spread. These findings have major public health implications highlighting the importance of surveillance for early identification of emergent clones and improved transmission control measures at the human-livestock interface. PMID:23943757
Hall, Miquette; Chattaway, Marie A.; Reuter, Sandra; Savin, Cyril; Strauch, Eckhard; Carniel, Elisabeth; Connor, Thomas; Van Damme, Inge; Rajakaruna, Lakshani; Rajendram, Dunstan; Jenkins, Claire; Thomson, Nicholas R.
2014-01-01
The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica. PMID:25339391
Biofilms in Water, Its role and impact in human disease transmission
2008-01-01
increasing realization of the importance of the world’s oceans as a source of potentially pathogenic microorganisms. Human bacterial pathogens...colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 2008, 46:249-254. A new microplate model for...Polz M: Diversity, sources, and detection of human bacterial pathogens in the marine environment. In Oceans and Health: Pathogens in the Marine
Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters
Hanni, K.D.; Mazet, J.A.K.; Gulland, F.M.D.; Estes, James A.; Staedler, M.; Murray, M.J.; Miller, M.; Jessup, David A.
2003-01-01
The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the naïveté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.
Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters.
Hanni, Krista D; Mazet, Jonna A K; Gulland, Frances M D; Estes, James; Staedler, Michelle; Murray, Michael J; Miller, Melissa; Jessup, David A
2003-10-01
The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the naïveté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.
Infection reduces anti-predator behaviors in house finches
Adelman, James S.; Mayer, Corinne; Hawley, Dana M.
2017-01-01
Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti-predator behavior is among the most-studied causes of indirect mortality during infection, particularly for systems in which a parasite’s life-cycle requires transmission from prey to predator. Significantly less work has examined whether directly-transmitted parasites and pathogens also reduce anti-predator behaviors. Here we test whether the directly-transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation-related stimuli in house finches (Haemorhous mexicanus). MG causes conjunctivitis and reduces survival among free-living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild-caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper’s Hawk (Accipiter cooperii)) or control object (a vase or a stuffed, mounted mallard duck (Anas platyrhynchos)), 2) vocalizations of the same predator and non-predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti-predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG-induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating. PMID:29242677
Infection reduces anti-predator behaviors in house finches.
Adelman, James S; Mayer, Corinne; Hawley, Dana M
2017-04-01
Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti-predator behavior is among the most-studied causes of indirect mortality during infection, particularly for systems in which a parasite's life-cycle requires transmission from prey to predator. Significantly less work has examined whether directly-transmitted parasites and pathogens also reduce anti-predator behaviors. Here we test whether the directly-transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation-related stimuli in house finches ( Haemorhous mexicanus ). MG causes conjunctivitis and reduces survival among free-living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild-caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper's Hawk ( Accipiter cooperii )) or control object (a vase or a stuffed, mounted mallard duck ( Anas platyrhynchos )), 2) vocalizations of the same predator and non-predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti-predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG-induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating.
Gopal, Judy; Wu, Hui-Fen; Lee, Chia-Hsun; Manikandan, Muthu
2012-01-21
Ants and humans coexist closely and for the most part happily. We consider ants to be harmless, small beings--we have no problem picking them out of our tea cups or sugar jars, throwing them away and continuing to consume the food. This paper is an eye-opener that these ants are not as harmless as they may seem. In particular, our relationship with those present in bacteria-rich environments (e.g. a microbiological lab) need to be reconsidered. From an analytical point of view we have applied the physical preconcentration coupled ZnO NPs assisted MALDI-MS (PP-MALDI-MS) as a novel and sensitive technique for detecting bacteria on the surface of a species of ant present in our laboratory. The preconcentration methods consist of simple techniques comprising of vortex combined with centrifugation or ultrasonication resulting in increasing sample concentration up to the MALDI-MS detection limit. ZnO NPs were used to further enhance the bacterial signals for culture free rapid analysis using MALDI-MS. The importance of a vortex-combined centrifugation approach, using a large number of samples (large number of ants) and decreasing the suspension volume and addition of sample to ZnO NPs (3.5g L(-1)) were found to be crucial prerequisites for increasing MALDI-MS detection of bacteria on ants. We were able to identify the pathogenic clinically important Staphylococcus aureus on the surface of the ants. The bacterial identification was validated using ClinPro 2.1.
Human Streptococcus agalactiae strains in aquatic mammals and fish
2013-01-01
Background In humans, Streptococcus agalactiae or group B streptococcus (GBS) is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26), seals (n = 6), a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST) 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host-associated genome content of S. agalactiae strains. PMID:23419028
Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia
2017-07-15
The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens. Copyright © 2017 Sobel Leonard et al.
Swayne, D E; Beck, J R; Kinney, N
2000-01-01
Vaccines against mildly pathogenic avian influenza (AI) have been used in turkeys within the United States as part of a comprehensive control strategy. Recently, AI vaccines have been used in control programs against highly pathogenic (HP) AI of chickens in Pakistan and Mexico. A recombinant fowl pox-AI hemagglutinin subtype (H) 5 gene insert vaccine has been shown to protect specific-pathogen-free chickens from HP H5 AI virus (AIV) challenge and has been licensed by the USDA for emergency use. The ability of the recombinant fowl pox vaccine to protect chickens preimmunized against fowl pox is unknown. In the current study, broiler breeders (BB) and white leghorn (WL) pullets vaccinated with a control fowl poxvirus vaccine (FP-C) and/or a recombinant fowl poxvirus vaccine containing an H5 hemagglutinin gene insert (FP-HA) were challenged with a HP H5N2 AIV isolated from chickens in Mexico. When used alone, the FP-HA vaccine protected BB and WL chickens from lethal challenge, but when given as a secondary vaccine after a primary FP-C immunization, protection against a HP AIV challenge was inconsistent. Both vaccines protected against virulent fowl pox challenge. This lack of consistent protection against HPAI may limit use to chickens without previous fowl pox vaccinations. In addition, prior exposure to field fowl poxvirus could be expected to limit protection induced by this vaccine.
Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease
USDA-ARS?s Scientific Manuscript database
Pathogens can exert a large influence on the evolution of hosts via selection for alleles or genotypes that moderate pathogen virulence. Inconsistent interactions between parasites and the host genome, such as those resulting from genetic linkages and environmental stochasticity, have largely preven...
Geographic setting influences Great Lakes beach microbiological water quality
Haack, Sheridan K.; Fogarty, Lisa R.; Stelzer, Erin A.; Fuller, Lori M.; Brennan, Angela K.; Isaacs, Natasha M.; Johnson, Heather E.
2013-01-01
Understanding of factors that influence Escherichia coli (EC) and enterococci (ENT) concentrations, pathogen occurrence, and microbial sources at Great Lakes beaches comes largely from individual beach studies. Using 12 representative beaches, we tested enrichment cultures from 273 beach water and 22 tributary samples for EC, ENT, and genes indicating the bacterial pathogens Shiga-toxin producing E. coli (STEC), Shigella spp., Salmonella spp, Campylobacter jejuni/coli, and methicillin-resistant Staphylococcus aureus, and 108–145 samples for Bacteroides human, ruminant, and gull source-marker genes. EC/ENT temporal patterns, general Bacteroides concentration, and pathogen types and occurrence were regionally consistent (up to 40 km), but beach catchment variables (drains/creeks, impervious surface, urban land cover) influenced exceedances of EC/ENT standards and detections of Salmonella and STEC. Pathogen detections were more numerous when the EC/ENT Beach Action Value (but not when the Geometric Mean and Statistical Threshold Value) was exceeded. EC, ENT, and pathogens were not necessarily influenced by the same variables. Multiple Bacteroides sources, varying by date, occurred at every beach. Study of multiple beaches in different geographic settings provided new insights on the contrasting influences of regional and local variables, and a broader-scale perspective, on significance of EC/ENT exceedances, bacterial sources, and pathogen occurrence.
Younan, Mary; Poh, Mee Kian; Elassal, Emad; Davis, Todd; Rivailler, Pierre; Balish, Amanda L.; Simpson, Natosha; Jones, Joyce; Deyde, Varough; Loughlin, Rosette; Perry, Ije; Gubareva, Larisa; ElBadry, Maha A.; Truelove, Shaun; Gaynor, Anne M.; Mohareb, Emad; Amin, Magdy; Cornelius, Claire; Pimentel, Guillermo; Earhart, Kenneth; Naguib, Amel; Abdelghani, Ahmed S.; Refaey, Samir; Klimov, Alexander I.; Kandeel, Amr
2013-01-01
We analyzed highly pathogenic avian influenza A(H5N1) viruses isolated from humans infected in Egypt during 2007–2011. All analyzed viruses evolved from the lineage of subtype H5N1 viruses introduced into Egypt in 2006; we found minimal evidence of reassortment and no exotic introductions. The hemagglutinin genes of the viruses from 2011 formed a monophyletic group within clade 2.2.1 that also included human viruses from 2009 and 2010 and contemporary viruses from poultry; this finding is consistent with zoonotic transmission. Although molecular markers suggestive of decreased susceptibility to antiviral drugs were detected sporadically in the neuraminidase and matrix 2 proteins, functional neuraminidase inhibition assays did not identify resistant viruses. No other mutations suggesting a change in the threat to public health were detected in the viral proteomes. However, a comparison of representative subtype H5N1 viruses from 2011 with older subtype H5N1 viruses from Egypt revealed substantial antigenic drift. PMID:23260983
Pathogenic traits of Salmonella Montevideo in experimental infections in vivo and in vitro
Lalsiamthara, Jonathan; Lee, John Hwa
2017-01-01
Salmonella serovar Montevideo (SM) is frequently associated with human Salmonella infections and causes gastrointestinal disease, cases are common particularly among individuals who come in close contact with live poultry or poultry meat products. To characterize SM disease in chickens, the pathogenic traits and tissue predilections of the disease were investigated. Dissemination of fluorescent-tagged SM (JOL1575GFP) was monitored after oral and intramuscular mock infections of specific-pathogen-free chickens. The spleen was predominantly affected by intramuscular infection while the cecum, spleen, and minimally liver were affected by oral infection. No conspicuous illness was observed in infected birds, and histopathological examination showed minimal damage of the intestinal epithelium and splenic parenchyma though SM was readily isolated from these tissues. Levels of SM internalization by primary chicken peritoneal macrophages were similar to that of Salmonella Typhimurium. SM was more sensitive to chicken than rabbit serum complement killing. Internal egg contamination of SM mock infected layers also occurred at trace levels and lasted for a week after inoculation. This study also confirmed that SM infection in chickens is sub-clinical and asymptomatic, which suggests that latent asymptomatic carriers may excrete a large number of bacteria and transmit the pathogen by contaminating water or food sources. PMID:28387311
NASA Astrophysics Data System (ADS)
McReynolds, Naomi; Cooke, Fiona G. M.; Chen, Mingzhou; Powis, Simon J.; Dholakia, Kishan
2017-02-01
Moving towards label-free techniques for cell identification is essential for many clinical and research applications. Raman spectroscopy and digital holographic microscopy (DHM) are both label-free, non-destructive optical techniques capable of providing complimentary information. We demonstrate a multi-modal system which may simultaneously take Raman spectra and DHM images to provide both a molecular and a morphological description of our sample. In this study we use Raman spectroscopy and DHM to discriminate between three immune cell populations CD4+ T cells, B cells, and monocytes, which together comprise key functional immune cell subsets in immune responses to invading pathogens. Various parameters that may be used to describe the phase images are also examined such as pixel value histograms or texture analysis. Using our system it is possible to consider each technique individually or in combination. Principal component analysis is used on the data set to discriminate between cell types and leave-one-out cross-validation is used to estimate the efficiency of our method. Raman spectroscopy provides specific chemical information but requires relatively long acquisition times, combining this with a faster modality such as DHM could help achieve faster throughput rates. The combination of these two complimentary optical techniques provides a wealth of information for cell characterisation which is a step towards achieving label free technology for the identification of human immune cells.
Invasive mold infections: virulence and pathogenesis of mucorales.
Morace, Giulia; Borghi, Elisa
2012-01-01
Mucorales have been increasingly reported as cause of invasive fungal infections in immunocompromised subjects, particularly in patients with haematological malignancies or uncontrolled diabetes mellitus and in those under deferoxamine treatment or undergoing dialysis. The disease often leads to a fatal outcome, but the pathogenesis of the infection is still poorly understood as well as the role of specific virulence determinants and the interaction with the host immune system. Members of the order Mucorales are responsible of almost all cases of invasive mucormycoses, the majority of the etiological agents belonging to the Mucoraceae family. Mucorales are able to produce various proteins and metabolic products toxic to animals and humans, but the pathogenic role of these potential virulence factors is unknown. The availability of free iron in plasma and tissues is believed to be crucial for the pathogenesis of these mycoses. Vascular invasion and neurotropism are considered common pathogenic features of invasive mucormycoses.
Siderophore-mediated iron acquisition mechanisms in Vibrio vulnificus biotype 2.
Biosca, E G; Fouz, B; Alcaide, E; Amaro, C
1996-01-01
Vibrio vulnificus biotype 2 is a primary pathogen for eels and, as has recently been suggested, an opportunistic pathogen for humans. In this study we have investigated the ability of V. vulnificus biotype 2 to obtain iron by siderophore-mediated mechanisms and evaluated the importance of free iron in vibriosis. The virulence degree for eels was dependent on iron availability from host fluids, as was revealed by a reduction in the 50% lethal dose for iron-overloaded eels. This biotype produced both phenolate- and hydroxamate-type siderophores of an unknown nature and two new outer membrane proteins of around 84 and 72 kDa in response to iron starvation. No alterations in lipopolysaccharide patterns were detected in response to iron stress. Finally, our data suggest that V. vulnificus biotype 2 uses the hydroxamate-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein. PMID:8975620
Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun
2014-01-01
Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. Copyright © 2014 Elsevier Inc. All rights reserved.
Duncan, C; Dougall, H; Johnston, P; Green, S; Brogan, R; Leifert, C; Smith, L; Golden, M; Benjamin, N
1995-06-01
High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.
Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity
Aballay, Alejandro
2010-01-01
The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed. PMID:19270528
Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke
2011-01-01
Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.
Using the H-index to assess disease priorities for salmon aquaculture.
Murray, Alexander G; Wardeh, Maya; McIntyre, K Marie
2016-04-01
Atlantic salmon's (Salmo salar) annual aquaculture production exceeds 2M tonnes globally, and for the UK forms the largest single food export. However, aquaculture production is negatively affected by a range of different diseases and parasites. Effort to control pathogens should be focused on those which are most "important" to aquaculture. It is difficult to specify what makes a pathogen important; this is particularly true in the aquatic sector where data capture systems are less developed than for human or terrestrial animal diseases. Mortality levels might be one indicator, but these can cause a range of different problems such as persistent endemic losses, occasional large epidemics or control/treatment costs. Economic and multi-criteria decision methods can incorporate this range of impacts, however these have not been consistently applied to aquaculture and the quantity and quality of data required is large, so their potential for comparing aquatic pathogens is currently limited. A method that has been developed and applied to both human and terrestrial animal diseases is the analysis of published scientific literature using the H-index method. We applied this method to salmon pathogens using Web of Science searches for 23 pathogens. The top 3 H-indices were obtained for: sea lice, furunculosis, and infectious salmon anaemia; post 2000, Amoebic Gill Disease (AGD) replaced furunculosis. The number of publications per year describing bacterial disease declined significantly, while those for viruses and sea lice increased significantly. This reflects effective bacterial control by vaccination, while problems related to viruses and sea lice have increased. H-indices by country reflected different national concerns (e.g. AGD ranked top for Australia). Averaged national H-indices for salmon diseases tend to increase with log of salmon production; countries with H-Indices significantly below the trend line have suffered particularly large disease losses. The H-index method, supported by other literature analyses, is consistent with the nature and history of salmon diseases and so provides a useful quantitative measure for comparing different diseases in the absence of other measures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Rasch, Janine; Ünal, Can M; Steinert, Michael
2014-12-01
Legionella pneumophila, typically a parasite of free-living protozoa, can also replicate in human alveolar macrophages and lung epithelial cells causing Legionnaires' disease in humans, a severe atypical pneumonia. The pathogen encodes six peptidylprolyl cis-trans isomerases (PPIases), which generally accelerate folding of prolyl peptide bonds, and influence protein folding. PPIases can be divided into three classes, cyclophilins, parvulins and FK506-binding proteins (FKBPs). They contribute to a multitude of cellular functions including bacterial virulence. In the present review, we provide an overview of L. pneumophila PPIases, discussing their known and anticipated functions as well as moonlighting phenomena. By taking the example of the macrophage infectivity potentiator (Mip) of L. pneumophila, we highlight the potential of PPIases as promising drug targets.
Development of the normal gastrointestinal microflora of specific pathogen-free chickens.
Coloe, P J; Bagust, T J; Ireland, L
1984-02-01
The development of the normal intestinal microflora of the small intestine, caecum and large intestine of specific pathogen-free (SPF) chickens, was studied in the period from hatching to 84 days of age. No bacteria were detected in any of the sites at hatchery (day 1), but by day 3 significant levels of faecal streptococci and coliforms were isolated from all sites. The flora of the small intestine was limited to faecal streptococci and coliforms for the first 40 days and then lactobacilli became established and dominated the flora. A large variety of facultative and strictly anaerobic organisms colonized the caecum. Many of these species were transient and were only present for a limited period; after 40 days the flora stabilized to consist predominantly of faecal streptococci, Escherichia coli, Bacteroides spp. and Lactobacillus sp. The flora of the large intestine was composed of organisms also present in the small intestine or the caecum. These findings differ from previously published studies on conventionally reared chickens in that the number of species isolated and the population levels of organisms are much lower. This probably reflects the absence of continuous environmental challenge to the chickens because of the housing and feeding facilities in which the chickens were maintained.
Electrochemical Methodologies for the Detection of Pathogens.
Amiri, Mandana; Bezaatpour, Abolfazl; Jafari, Hamed; Boukherroub, Rabah; Szunerits, Sabine
2018-05-25
Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.
From rags to riches: insights from the first genomic sequence of a plant pathogenic bacterium
Keen, Noel T; Korsi Dumenyo, C; Yang, Ching-Hong; Cooksey, Donald A
2000-01-01
The recently published genomic sequence of Xylella fastidiosa is the first for a free-living plant pathogen and provides clues to mechanisms of pathogenesis and survival in insect vectors. The sequence data should lead to improved control of this pathogen. PMID:11178244
This project focuses on providing basic data to bound risk estimates resulting from pathogens associated with pipe biofilms. Researchers will compare biofilm pathogen effects under two different disinfection scenarios (free chlorine or chloramines) for a conventionally treated s...
Promoter-Based Theranostics for Prostate Cancer
2016-06-01
diagnosis vector consists of the tumor-specific PEG-promoter (PEG-Prom) and cDNA of human chorionic gonadotropin β chain (βhCG) as a reporter. We...transfection efficiency. We also used CpG-free cDNA of Figure 5. pCpGfree-PEGwt-HSV1-tk-neo vector expressed functional thymidine kinase in human
Fitzgerald, Kevin T; Shipley, Bryon K; Newquist, Kristin L; Vera, Rebecca; Flood, Aryn A
2013-11-01
On account of their unique anatomy, physiology, natural history, ecology, and behavior, rattlesnakes make ideal subjects for a variety of different scientific disciplines. The prairie rattlesnake (Crotalus viridis) in Colorado was selected for investigation of its relationship to colonies of black-tailed prairie dogs (Cynomys ludovicianus) with regard to spatial ecology. A total of 31 snakes were anesthetized and had radiotransmitters surgically implanted. In addition, at the time of their capture, all snakes underwent the following: (1) they had bacterial culture taken from their mouths for potential isolation of pathogenic bacteria; (2) similarly, they had cloacal bacterial cultures taken to assess potentially harmful bacteria passed in the feces; and (3) they had blood samples drawn to investigate the presence of any zoonotic agents in the serum of the snakes. The results of the study and their implications are discussed here. Traditionally, a low incidence of bacterial wound infection has been reported following snakebite. Nevertheless, the oral cavity of snakes has long been known to house a wide variety of bacterial flora. In our study, 10 different bacterial species were isolated from the mouths of the rattlesnakes, 6 of which are capable of being zoonotic pathogens and inducing human disease. More studies are necessary to see why more rattlesnake bites do not become infected despite the presence of such pathogenic bacteria. The results of fecal bacteria isolated revealed 13 bacterial species, 12 of which can cause disease in humans. Of the snakes whose samples were cultured, 26% were positive for the presence of the pathogen Salmonella arizonae, one of the causative agents of reptile-related salmonellosis in humans. It has long been reported that captive reptiles have a much higher incidence than wild, free-ranging species. This study shows the incidence of Salmonella in a wild, free-ranging population of rattlesnakes. In addition, Stenotrophomonas maltophilia was isolated. This bacterium is associated with wound and soft tissue infections that can lead to sepsis, endocarditis, meningitis, and peritonitis. In addition, this bacterium has been increasingly implicated as an opportunistic pathogen to humans during pregnancies, hospitalizations, malignancies and chemotherapy, chronic respiratory diseases, and presurgical endotracheal intubation. Furthermore, S. maltophilia has an intense resistance to broad-spectrum antibiotics, the results of our study showed the bacterium was resistant to multiple antibiotics. Our results indicate that anyone working with snake feces, dead skin, or their carcasses must follow reasonable hygiene protocols. Rattlesnakes tested for West Nile antibodies had positive results but these were invalidated owing to possible cross-reactivity with other unknown viruses, interference with snake serum proteins, and the fact that the test was not calibrated for rattlesnake serum. Still, the interesting implication remains, should we be regularly testing these animals as sentinels against potentially zoonotic diseases. The results of this study clearly show the value of veterinarians in a multidisciplinary study of this sort and the particular skill set they can offer. Veterinarians must get involved in conservation studies if the biodiversity of the planet is to be preserved. © 2013 Published by Elsevier Inc.
Airborne pathogens from dairy manure aerial irrigation and the human health risk
Borchardt, Mark A.; Burch, Tucker R
2016-01-01
Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.
Gomes-Solecki, Maria
2014-01-01
Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.
Gomes-Solecki, Maria
2014-01-01
Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans. PMID:25309883
Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens
Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric
2015-01-01
Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336
Olias, Philipp; Gruber, Achim D; Hafez, Hafez M; Lierz, Michael; Slesiona, Silvia; Brock, Matthias; Jacobsen, Ilse D
2011-03-24
Aspergillus fumigatus is a common pathogen in poultry and captive wild birds and an emerging opportunistic fungal pathogen in immunocompromised humans. Although invasive aspergillosis is frequently reported in free-ranging wild birds, the incidence and epidemiology of the disease in a natural setting is unknown. We recently reported endemic outbreaks of invasive aspergillosis at white stork nesting sites close to human habitation in Germany with significant subsequent breeding losses. Therefore, we hypothesized that A. fumigatus strains with higher virulence in birds may have evolved in this environment and performed the first epidemiological analysis of invasive aspergillosis in free-ranging wild birds. Sixty-one clinical and environmental A. fumigatus isolates from six affected nesting sites were genotyped by microsatellite analysis using the STRAf-assay. The isolates showed a remarkable high genomic diversity and, contrary to the initial hypothesis, clinical and environmental isolates did not cluster significantly. Interestingly, storks were infected with two to four different genotypes and in most cases both mating types MAT-1.1 and MAT-1.2 were present within the same specimen. The majority of selected clinical and environmental strains exhibited similar virulence in an in vivo infection model using embryonated chicken eggs. Noteworthy, virulence was not associated with one distinct fungal mating type. These results further support the assumption that the majority of A. fumigatus strains have the potential to cause disease in susceptible hosts. In white storks, immaturity of the immune system during the first three weeks of age may enhance susceptibility to invasive aspergillosis. Copyright © 2010 Elsevier B.V. All rights reserved.
Free will and paranormal beliefs
Mogi, Ken
2014-01-01
Free will is one of the fundamental aspects of human cognition. In the context of cognitive neuroscience, various experiments on time perception, sensorimotor coordination, and agency suggest the possibility that it is a robust illusion (a feeling independent of actual causal relationship with actions) constructed by neural mechanisms. Humans are known to suffer from various cognitive biases and failures, and the sense of free will might be one of them. Here I report a positive correlation between the belief in free will and paranormal beliefs (UFO, reincarnation, astrology, and psi). Web questionnaires involving 2076 subjects (978 males, 1087 females, and 11 other genders) were conducted, which revealed significant positive correlations between belief in free will (theory and practice) and paranormal beliefs. There was no significant correlation between belief in free will and knowledge in paranormal phenomena. Paranormal belief scores for females were significantly higher than those for males, with corresponding significant (albeit weaker) difference in belief in free will. These results are consistent with the view that free will is an illusion which shares common cognitive elements with paranormal beliefs. PMID:24765084
Free will and paranormal beliefs.
Mogi, Ken
2014-01-01
Free will is one of the fundamental aspects of human cognition. In the context of cognitive neuroscience, various experiments on time perception, sensorimotor coordination, and agency suggest the possibility that it is a robust illusion (a feeling independent of actual causal relationship with actions) constructed by neural mechanisms. Humans are known to suffer from various cognitive biases and failures, and the sense of free will might be one of them. Here I report a positive correlation between the belief in free will and paranormal beliefs (UFO, reincarnation, astrology, and psi). Web questionnaires involving 2076 subjects (978 males, 1087 females, and 11 other genders) were conducted, which revealed significant positive correlations between belief in free will (theory and practice) and paranormal beliefs. There was no significant correlation between belief in free will and knowledge in paranormal phenomena. Paranormal belief scores for females were significantly higher than those for males, with corresponding significant (albeit weaker) difference in belief in free will. These results are consistent with the view that free will is an illusion which shares common cognitive elements with paranormal beliefs.
Abad, F X; Pintó, R M; Diez, J M; Bosch, A
1994-01-01
The efficacy of copper and silver ions, in combination with low levels of free chlorine (FC), was evaluated for the disinfection of hepatitis A virus (HAV), human rotavirus (HRV), human adenovirus, and poliovirus (PV) in water. HAV and HRV showed little inactivation in all conditions. PV showed more than a 4 log10 titer reduction in the presence of copper and silver combined with 0.5 mg of FC per liter or in the presence of 1 mg of FC per liter alone. Human adenovirus persisted longer than PV with the same treatments, although it persisted significantly less than HRV or HAV. The addition of 700 micrograms of copper and 70 micrograms of silver per liter did not enhance the inactivation rates after the exposure to 0.5 or 0.2 mg of FC per liter, although on some occasions it produced a level of inactivation similar to that induced by a higher dose of FC alone. Virus aggregates were observed in the presence of copper and silver ions, although not in the presence of FC alone. Our data indicate that the use of copper and silver ions in water systems may not provide a reliable alternative to high levels of FC for the disinfection of viral pathogens. Gene probe-based procedures were not adequate to monitor the presence of infectious HAV after disinfection. PV does not appear to be an adequate model viral strain to be used in disinfection studies. Bacteroides fragilis bacteriophages were consistently more resistant to disinfection than PV, suggesting that they would be more suitable indicators, although they survived significantly less than HAV or HRV. Images PMID:8074518
Moon, Jiyun M; Aronoff, David M; Capra, John A; Abbot, Patrick; Rokas, Antonis
2018-03-28
Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that significantly deviated from neutrality either experienced soft sweeps or population-specific hard sweeps. Interestingly, while most hard sweeps occurred on genes involved in sialic acid recognition, most soft sweeps involved genes associated with recycling, degradation and activation, transport, and transfer functions. We propose that the lack of signatures of recent positive selection for the majority of the sialic acid biology genes is consistent with the view that these genes regulate immune responses against ancient rather than contemporary cosmopolitan or geographically restricted pathogens. Copyright © 2018 Moon et al.
Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans
Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo
2012-01-01
Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122
Muchesa, P.; Mwamba, O.; Barnard, T. G.; Bartie, C.
2014-01-01
Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria. PMID:25530964
75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
...We are adopting as a final rule, with changes, an interim rule that amended the regulations by establishing, under the auspices of the National Poultry Improvement Plan, a voluntary program for the control of the H5/H7 subtypes of low pathogenic avian influenza in commercial poultry. As amended by this document, the rule provides that the amount of indemnity for which contract growers are eligible will be reduced by any payment they have already received on their contracts when poultry in their care are destroyed, clarifies the roles of cooperating State agencies with respect to H5/H7 low pathogenic avian influenza outbreaks, provides that consistency with humane euthanasia guidelines will be considered when selecting a method for the destruction of poultry, and provides additional guidance for cleaning and disinfecting an affected premises. The control program and indemnity provisions established by the interim rule are necessary to help ensure that the H5/H7 subtypes of low pathogenic avian influenza are detected and eradicated when they occur within the United States.
Skelly, Chris; Weinstein, Phil
2003-01-01
Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis. PMID:12515674
Wiel, Laurens; Venselaar, Hanka; Veltman, Joris A.; Vriend, Gert
2017-01-01
Abstract Whole exomes of patients with a genetic disorder are nowadays routinely sequenced but interpretation of the identified genetic variants remains a major challenge. The increased availability of population‐based human genetic variation has given rise to measures of genetic tolerance that have been used, for example, to predict disease‐causing genes in neurodevelopmental disorders. Here, we investigated whether combining variant information from homologous protein domains can improve variant interpretation. For this purpose, we developed a framework that maps population variation and known pathogenic mutations onto 2,750 “meta‐domains.” These meta‐domains consist of 30,853 homologous Pfam protein domain instances that cover 36% of all human protein coding sequences. We find that genetic tolerance is consistent across protein domain homologues, and that patterns of genetic tolerance faithfully mimic patterns of evolutionary conservation. Furthermore, for a significant fraction (68%) of the meta‐domains high‐frequency population variation re‐occurs at the same positions across domain homologues more often than expected. In addition, we observe that the presence of pathogenic missense variants at an aligned homologous domain position is often paired with the absence of population variation and vice versa. The use of these meta‐domains can improve the interpretation of genetic variation. PMID:28815929
Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F
2013-02-01
Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced with the permission of the Controller of Her Majesty’s Stationery Office and Cefas, Aquatic Animal Disease Group.
Ferrell, A Michelle; Brinkerhoff, R Jory; Bernal, Juan; Bermúdez, Sergio E
2017-04-01
Systematic acarological surveys are useful tools in assessing risk to tick-borne infections, especially in areas where consistent clinical surveillance for tick-borne disease is lacking. Our goal was to identify environmental predictors of tick burdens on dogs and tick-borne infectious agents in dog-derived ticks in the Chiriquí Province of western Panama to draw inferences about spatio-temporal variation in human risk to tick-borne diseases. We used a model-selection approach to test the relative importance of elevation, human population size, vegetative cover, and change in landuse on patterns of tick parasitism on dogs. We collected 2074 ticks, representing four species (Rhipicephalus sanguineus, R. microplus, Amblyomma ovale, and Ixodes boliviensis) from 355 dogs. Tick prevalence ranged from 0 to 74% among the sites we sampled, and abundance ranged from 0 to 20.4 ticks per dog with R. sanguineus s.l. being the most commonly detected tick species (97% of all ticks sampled). Whereas elevation was the best single determinant of tick prevalence and abundance on dogs, the top models also included predictor variables describing vegetation cover and landuse change. Specifically, low-elevation areas associated with decreasing vegetative cover were associated with highest tick occurrence on dogs, potentially because of the affinity of R. sanguineus for human dwellings. Although we found low prevalence of tick-borne pathogen genera (two Rickettsia-positive ticks, no R. rickettsia or Ehrlichia spp.) in our study, all of the tick species we collected from dogs are known vectors of zoonotic pathogens. In areas where epidemiological surveillance infrastructure is limited, field-based assessments of acarological risk can be useful and cost-effective tools in efforts to identify high-risk environments for tick-transmitted pathogens.
Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania.
Andersson, Martin O; Marga, Georgeta; Banu, Teofilia; Dobler, Gerhard; Chitimia-Dobler, Lidia
2018-05-01
Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.
Histopathological investigation in porcine infected with torque teno sus virus type 2 by inoculation
2011-01-01
Background Porcine torque teno sus virus (TTSuV) is a small icosahedral and non-enveloped virus which contains a single-stranded (ssDNA), circular and negative DNA genome and infects mainly vertebrates and is currently classified into the 'floating' genus Anellovirus of Circoviridae with two species. Viral DNA of both porcine TTSuV species has a high prevalence in both healthy and diseased pigs worldwide and multiple infections of TTSuV with distinct genotypes or subtypes of the same species has been documented in the United States, Europe and Asia. However, there exists no information about histopathological lesions caused by infection with porcine TTSuV2. Methods Porcine liver tissue homogenate with 1 ml of 6.91 × 107genomic copies viral loads of porcine TTSuV2 that had positive result for torque teno sus virus type 2 and negative result for torque teno sus virus type 1 and porcine pseudorabies virus type 2 were used to inoculate specific pathogen-free piglets by intramuscular route and humanely killed at 3,7,10,14,17,21 and 24 days post inoculation (dpi), the control pigs were injected intramuscularly with 1 ml of sterile DMEM and humanely killed the end of the study for histopathological examination routinely processed, respectively. Results All porcine TTSuV2 inoculated piglets were clinic asymptomatic but developed myocardial fibroklasts and endocardium, interstitial pneumonia, membranous glomerular nephropathy, and modest inflammatory cells infiltration in portal areas in the liver, foci of hemorrhage in some pancreas islet, a tiny amount red blood cells in venule of muscularis mucosae and outer longitudinal muscle, rarely red blood cells in the microvasculation and infiltration of inflammatory cells (lymphocytes and eosinophils) of tonsil and hilar lymph nodes, infiltration of inflammatory lymphocytes and necrosis or degeneration and focal gliosis of lymphocytes in the paracortical zone after inoculation with porcine TTSuV2-containing tissue homogenate. Conclusions Analysis of these presentations revealed that porcine TTSuV2 was readily transmitted to TTSuV-negative swine and that infection was associated with characteristic pathologic changes in specific pathogen-free piglets inoculated with porcine TTSuV2. Those results indicated no markedly histopathological changes happened in those parenchymatous organs, especially the digestive system and immune system when the specific pathogen-free pigs were infected with porcine TTSuV2, hence, to some extent, it was not remarkable pathological agent for domestic pigs at least. So, porcine TTSuV2 could be an unrecognized pathogenic viral infectious etiology of swine. This study indicated a directly related description of lesions responsible for TTSuV2 infection in swine. PMID:22171963
Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick
2009-01-01
Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529
Argimón, Silvia; Konganti, Kranti; Chen, Hao; Alekseyenko, Alexander V.; Brown, Stuart; Caufield, Page W.
2014-01-01
Comparative genomics is a popular method for the identification of microbial virulence determinants, especially since the sequencing of a large number of whole bacterial genomes from pathogenic and non-pathogenic strains has become relatively inexpensive. The bioinformatics pipelines for comparative genomics usually include gene prediction and annotation and can require significant computer power. To circumvent this, we developed a rapid method for genome-scale in silico subtractive hybridization, based on blastn and independent of feature identification and annotation. Whole genome comparisons by in silico genome subtraction were performed to identify genetic loci specific to Streptococcus mutans strains associated with severe early childhood caries (S-ECC), compared to strains isolated from caries-free (CF) children. The genome similarity of the 20 S. mutans strains included in this study, calculated by Simrank k-mer sharing, ranged from 79.5 to 90.9%, confirming this is a genetically heterogeneous group of strains. We identified strain-specific genetic elements in 19 strains, with sizes ranging from 200 bp to 39 kb. These elements contained protein-coding regions with functions mostly associated with mobile DNA. We did not, however, identify any genetic loci consistently associated with dental caries, i.e., shared by all the S-ECC strains and absent in the CF strains. Conversely, we did not identify any genetic loci specific with the healthy group. Comparison of previously published genomes from pathogenic and carriage strains of Neisseria meningitidis with our in silico genome subtraction yielded the same set of genes specific to the pathogenic strains, thus validating our method. Our results suggest that S. mutans strains derived from caries active or caries free dentitions cannot be differentiated based on the presence or absence of specific genetic elements. Our in silico genome subtraction method is available as the Microbial Genome Comparison (MGC) tool, with a user-friendly JAVA graphical interface. PMID:24291226
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9311-4] Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F...
Modeling Fanconi Anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs
Montserrat, Nuria; Tarantino, Carolina; Gu, Ying; Yi, Fei; Xu, Xiuling; Zhang, Weiqi; Ruiz, Sergio; Plongthongkum, Nongluk; Zhang, Kun; Masuda, Shigeo; Nivet, Emmanuel; Tsunekawa, Yuji; Soligalla, Rupa Devi; Goebl, April; Aizawa, Emi; Kim, Na Young; Kim, Jessica; Dubova, Ilir; Li, Ying; Ren, Ruotong; Benner, Chris; del Sol, Antonio; Bueren, Juan; Trujillo, Juan Pablo; Surralles, Jordi; Cappelli, Enrico; Dufour, Carlo; Esteban, Concepcion Rodriguez; Belmonte, Juan Carlos Izpisua
2014-01-01
Fanconi Anemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration-free induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA-patient bone marrow cells. PMID:24999918
Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs.
Liu, Guang-Hui; Suzuki, Keiichiro; Li, Mo; Qu, Jing; Montserrat, Nuria; Tarantino, Carolina; Gu, Ying; Yi, Fei; Xu, Xiuling; Zhang, Weiqi; Ruiz, Sergio; Plongthongkum, Nongluk; Zhang, Kun; Masuda, Shigeo; Nivet, Emmanuel; Tsunekawa, Yuji; Soligalla, Rupa Devi; Goebl, April; Aizawa, Emi; Kim, Na Young; Kim, Jessica; Dubova, Ilir; Li, Ying; Ren, Ruotong; Benner, Chris; Del Sol, Antonio; Bueren, Juan; Trujillo, Juan Pablo; Surralles, Jordi; Cappelli, Enrico; Dufour, Carlo; Esteban, Concepcion Rodriguez; Belmonte, Juan Carlos Izpisua
2014-07-07
Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.
Morales, Jorge; Hashimoto, Muneaki; Williams, Tom A; Hirawake-Mogi, Hiroko; Makiuchi, Takashi; Tsubouchi, Akiko; Kaga, Naoko; Taka, Hikari; Fujimura, Tsutomu; Koike, Masato; Mita, Toshihiro; Bringaud, Frédéric; Concepción, Juan L; Hashimoto, Tetsuo; Embley, T Martin; Nara, Takeshi
2016-05-11
The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives. © 2016 The Author(s).
Lorenzo-Morales, Jacob; Machin, Rubén P.; López-Arencibia, Atteneri; García-Castellano, José Manuel; de Fuentes, Isabel; Loftus, Brendan; Maciver, Sutherland K.; Valladares, Basilio; Piñero, José E.
2013-01-01
Acanthamoeba is an opportunistic pathogen in humans, whose infections most commonly manifest as Acanthamoeba keratitis or, more rarely, granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba, they are generally lengthy and/or have limited efficacy. Therefore, there is a requirement for the identification, validation, and development of novel therapeutic targets against these pathogens. Recently, RNA interference (RNAi) has been widely used for these validation purposes and has proven to be a powerful tool for Acanthamoeba therapeutics. Ergosterol is one of the major sterols in the membrane of Acanthamoeba. 3-Hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase is an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, one of the precursors for the production of cholesterol in humans and ergosterol in plants, fungi, and protozoa. Statins are compounds which inhibit this enzyme and so are promising as chemotherapeutics. In order to validate whether this enzyme could be an interesting therapeutic target in Acanthamoeba, small interfering RNAs (siRNAs) against HMG-CoA were developed and used to evaluate the effects induced by the inhibition of Acanthamoeba HMG-CoA. It was found that HMG-CoA is a potential drug target in these pathogenic free-living amoebae, and various statins were evaluated in vitro against three clinical strains of Acanthamoeba by using a colorimetric assay, showing important activities against the tested strains. We conclude that the targeting of HMG-CoA and Acanthamoeba treatment using statins is a novel powerful treatment option against Acanthamoeba species in human disease. PMID:23114753
Migrating microbes: what pathogens can tell us about population movements and human evolution.
Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J
2017-08-01
The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.
Klapwijk, Maartje J; Hopkins, Anna J M; Eriksson, Louise; Pettersson, Maria; Schroeder, Martin; Lindelöw, Åke; Rönnberg, Jonas; Keskitalo, E Carina H; Kenis, Marc
2016-02-01
Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens.
Gong, Shiping; Wang, Fumin; Shi, Haitao; Zhou, Peng; Ge, Yan; Hua, Liushuai; Liu, Wenhua
2014-01-15
Salmonella Pomona, a highly pathogenic serotype, can cause severe human salmonellosis, especially in children. Turtles and other reptiles are reservoirs for S. Pomona, and these cold-blooded animals remain a source of human Salmonella infections. Since the 1980s, this serotype has become a significant public health concern because of the increasing number of cases of S. Pomona infection in humans. To date, outbreaks of Salmonella Pomona infection in humans have mainly occurred in the United States, with some in other countries (e.g. Belgium, Germany, Canada), and most of the infections in humans were associated with turtles and other reptiles. In China, S. Pomona was first isolated from the feces of an infant in Shanghai in 2000, and two further cases of S. Pomona infection in humans were later found in Guangzhou. No one knew the source of S. Pomona in China. In this study, for the first time we isolated S. Pomona from free-living exotic red-eared sliders in the wild in China. Salmonella serotype (S. Pomona) was isolated from 16 turtle samples. The total carrying rate of S. Pomona in the collected red-eared sliders was 39% (n = 41) overall: 40% (n = 25) in juveniles and 38% (n = 16) in adult turtles. This study suggests that the widespread exotic red-eared sliders may impact on public health and ecosystems of China by transmitting S. Pomona. Additional steps should be considered by the governments and public health agencies to prevent the risk of turtle-associated Salmonella infections in humans in China. © 2013.
Zhang, Boce; Luo, Yaguang; Zhou, Bin; Wang, Qin; Millner, Patricia D
2015-08-01
Determination of the minimum free chlorine concentration needed to prevent pathogen survival/cross-contamination during produce washing is essential for the development of science-based food safety regulations and practices. Although the trend of chlorine concentration-contact time on pathogen inactivation is generally understood, specific information on chlorine and the kinetics of pathogen inactivation at less than 1.00 s is urgently needed by the produce processing industry. However, conventional approaches to obtain this critical data have been unable to adequately measure very rapid responses. This paper reports our development, fabrication, and test of a novel microfluidic device, and its application to obtain the necessary data on pathogen inactivation by free chlorine in produce wash solution in times as short as 0.10 s. A novel microfluidic mixer with the capability to accurately determine the reaction time and control the chlorine concentration was designed with three inlets for bacterial, chlorine and dechlorinating solutions, and one outlet for effluent collection. The master mold was fabricated on a silicon wafer with microchannels via photopolymerization. Polydimethylsiloxane replicas with patterned microchannels were prototyped via soft lithography. The replicas were further assembled into the micromixer on glass via O2 plasma treatment, and the inlets were connected to a syringe pump for solution delivery. To determine the kinetics of free chlorine on pathogen inactivation, chlorine solutions of varying concentrations were first pumped into the micromixer, together with the addition of bacterial suspension of Escherichia coli O157:H7 through a separate inlet. This was followed by injection of dechlorinating solution to stop the chlorine-pathogen reaction. The effluent was collected and the surviving bacteria cells were enumerated using a modified 'Most Probable Number' method. Free chlorine concentration was determined using a standard colorimetric method. The contact time was experimentally set by adjusting the solution flow rate, and was estimated by computational fluid dynamics modeling. Results showed that 1) pathogen inactivation was significantly affected by free chlorine concentration (P < 0.0001) and subsecond reaction time (P < 0.0001) and their interactions (P < 0.0001); and 2) the current industry practice of using 1.0 mg/L free chlorine will require more than 1.00 s total contact to achieve a 5-log10 reduction in an E. coli O157:H7 population, whereas a 10.0 mg/L free chlorine solution will achieve 5-log10 reduction in as little as 0.25 s. Information obtained from this study will provide critical insight on kinetics of bacterial inactivation for a broad range of sanitizers and produce wash operational conditions, thus facilitating the development and implementation of science-based food safety regulations and practices for improving food safety. Published by Elsevier Ltd.
Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus
Murray, Susan; Pascoe, Ben; Méric, Guillaume; Mageiros, Leonardos; Yahara, Koji; Hitchings, Matthew D.; Friedmann, Yasmin; Wilkinson, Thomas S.; Gormley, Fraser J.; Mack, Dietrich; Bray, James E.; Lamble, Sarah; Bowden, Rory; Jolley, Keith A.; Maiden, Martin C.J.; Wendlandt, Sarah; Schwarz, Stefan; Corander, Jukka; Fitzgerald, J. Ross
2017-01-01
Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septicaemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a population of genome-sequenced S. aureus isolates of poultry and human origin. Genealogical analysis identified a dominant poultry-associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each other and more recombination events were detected in the poultry isolates. We identified 44 recombination events in 33 genes along the branch extending to the poultry-specific CC5 cluster, and 47 genes were found more often in CC5 poultry isolates compared with those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated genes, poultry isolates showed enhanced growth at 42 °C and greater erythrocyte lysis on chicken blood agar in comparison with human isolates. By combining phenotype information with evolutionary analyses of staphylococcal genomes, we provide evidence of adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of new pathogenic clones associated with modern agriculture. PMID:28338786
Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.
Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J
2009-04-01
Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.
Zhang, Ruijun; Alam, S. Munir; Yu, Jae-Sung; Scearce, Richard; Lockwood, Bradley; Hwang, Kwan-Ki; Parks, Robert; Permar, Sallie; Brandtzaeg, Per; Haynes, Barton F.
2016-01-01
Immunoglobulin A (IgA) antibodies exist in monomeric, dimeric, and secretory forms. Dimerization of IgA depends on a 15-kD polypeptide termed “joining (J) chain,” which is also part of the binding site for an epithelial glycoprotein called “secretory component (SC),” whether this after apical cleavage on secretory epithelia is ligand bound in secretory IgA (SIgA) or in a free form. Uncleaved membrane SC, also called the “polymeric Ig receptor,” is thus crucial for transcytotic export of SIgA to mucosal surfaces, where it interacts with and modulates commensal bacteria and mediates protective immune responses against exogenous pathogens. To evaluate different forms of IgA, we have produced mouse monoclonal antibodies (MAbs) against human J-chain and free SC. We found that J-chain MAb 9A8 and SC MAb 9H7 identified human dimeric IgA and SIgA in enzyme-linked immunoassay and western blot analysis, as well as functioning in immunohistochemistry to identify cytoplasmic IgA of intestinal lamina propria plasmablasts/plasma cells and crypt epithelium of distal human intestine. Finally, we demonstrated that SC MAb 9H7 cross-reacted with rhesus macaque SIgA. These novel reagents should be of use in the study of the biology of various forms of IgA in humans and SIgA in macaques, as well as in monitoring the production and/or isolation of these forms of IgA. PMID:27386924
Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.
Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine
2015-01-01
Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Shrivastava, Sajal; Lee, Won-Il; Lee, Nae-Eung
2018-06-30
A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source. Our results showed quantitative detection capability with a minimum detectable concentration as low as 10 cfu/ml by counting individual bacteria cells, efficiently capturing S. aureus cells directly from a peanut milk sample within 10 min. When the selectivity of detection was investigated using samples spiked with other pathogenic bacteria, no significant non-specific detection occurred. Furthermore, strains of S. aureus from various origins showed comparable results, ensuring that the approach can be widely adopted. Therefore, the quantitative fluorescence imaging platform on a smartphone could allow on-site detection of bacteria, providing great potential assistance during major infectious disease outbreaks in remote and resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iain J.; Watkins, Russell F.; Samuelson, John
Acanthamoeba castellanii is a free-living amoeba found in soil, freshwater, and marine environments and an important predator of bacteria. Acanthamoeba castellanii is also an opportunistic pathogen of clinical interest, responsible for several distinct diseases in humans. In order to provide a genomic platform for the study of this ubiquitous and important protist, we generated a sequence survey of approximately 0.5 x coverage of the genome. The data predict that A. castellanii exhibits a greater biosynthetic capacity than the free-living Dictyostelium discoideum and the parasite Entamoeba histolytica, providing an explanation for the ability of A. castellanii to inhabit adversity of environments.more » Alginate lyase may provide access to bacteria within biofilms by breaking down the biofilm matrix, and polyhydroxybutyrate depolymerase may facilitate utilization of the bacterial storage compound polyhydroxybutyrate as a food source. Enzymes for the synthesis and breakdown of cellulose were identified, and they likely participate in encystation and excystation as in D. discoideum. Trehalose-6-phosphate synthase is present, suggesting that trehalose plays a role in stress adaptation. Detection and response to a number of stress conditions is likely accomplished with a large set of signal transduction histidine kinases and a set of putative receptorserine/threonine kinases similar to those found in E. histolytica. Serine, cysteine and metalloproteases were identified, some of which are likely involved in pathogenicity.« less
Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen
Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick
2015-01-01
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228
Genetic recombination between human and animal parasites creates novel strains of human pathogen.
Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick
2015-03-01
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.
Bodelón, Gustavo; Montes-García, Verónica; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel
2018-01-01
Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field. PMID:29868499
Belkorchia, Abdel; Biderre, Corinne; Militon, Cécile; Polonais, Valérie; Wincker, Patrick; Jubin, Claire; Delbac, Frédéric; Peyretaillade, Eric; Peyret, Pierre
2008-03-01
Brachiola algerae has a broad host spectrum from human to mosquitoes. The successful infection of two mosquito cell lines (Mos55: embryonic cells and Sua 4.0: hemocyte-like cells) and a human cell line (HFF) highlights the efficient adaptive capacity of this microsporidian pathogen. The molecular karyotype of this microsporidian species was determined in the context of the B. algerae genome sequencing project, showing that its haploid genome consists of 30 chromosomal-sized DNAs ranging from 160 to 2240 kbp giving an estimated genome size of 23 Mbp. A contig of 12,269 bp including the DNA sequence of the B. algerae ribosomal transcription unit has been built from initial genomic sequences and the secondary structure of the large subunit rRNA constructed. The data obtained indicate that B. algerae should be an excellent parasitic model to understand genome evolution in relation to infectious capacity.
Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans
Douglas, Lois M.; Konopka, James. B.
2017-01-01
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878
Human Calprotectin Is an Iron-Sequestering Host-Defense Protein
Nakashige, Toshiki G.; Zhang, Bo; Krebs, Carsten; Nolan, Elizabeth M.
2015-01-01
Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. The current working model states that CP sequesters manganese and zinc from pathogens. We report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of manganese, iron, and zinc. Microbial growth studies reveal that iron depletion by CP contributes to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of 57Fe(II)-bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits sub-picomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron and support a previously unappreciated role for CP in mammalian iron homeostasis. PMID:26302479
Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.
Douglas, Lois M; Konopka, James B
2016-03-01
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.
A network approach to predict pathogenic genes for Fusarium graminearum.
Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan
2010-10-04
Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum.
Role of Antioxidants and Natural Products in Inflammation
Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh
2016-01-01
Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762
Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing
2014-01-01
Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application. PMID:24599183
Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing
2014-03-06
Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.
Porcel, Betina M; Denoeud, France; Opperdoes, Fred; Noel, Benjamin; Madoui, Mohammed-Amine; Hammarton, Tansy C; Field, Mark C; Da Silva, Corinne; Couloux, Arnaud; Poulain, Julie; Katinka, Michael; Jabbari, Kamel; Aury, Jean-Marc; Campbell, David A; Cintron, Roxana; Dickens, Nicholas J; Docampo, Roberto; Sturm, Nancy R; Koumandou, V Lila; Fabre, Sandrine; Flegontov, Pavel; Lukeš, Julius; Michaeli, Shulamit; Mottram, Jeremy C; Szöőr, Balázs; Zilberstein, Dan; Bringaud, Frédéric; Wincker, Patrick; Dollet, Michel
2014-02-01
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.
Porcel, Betina M.; Denoeud, France; Opperdoes, Fred; Noel, Benjamin; Madoui, Mohammed-Amine; Hammarton, Tansy C.; Field, Mark C.; Da Silva, Corinne; Couloux, Arnaud; Poulain, Julie; Katinka, Michael; Jabbari, Kamel; Aury, Jean-Marc; Campbell, David A.; Cintron, Roxana; Dickens, Nicholas J.; Docampo, Roberto; Sturm, Nancy R.; Koumandou, V. Lila; Fabre, Sandrine; Flegontov, Pavel; Lukeš, Julius; Michaeli, Shulamit; Mottram, Jeremy C.; Szöőr, Balázs; Zilberstein, Dan; Bringaud, Frédéric; Wincker, Patrick; Dollet, Michel
2014-01-01
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. PMID:24516393
Changes associated with Ebola virus adaptation to novel species.
Pappalardo, Morena; Reddin, Ian G; Cantoni, Diego; Rossman, Jeremy S; Michaelis, Martin; Wass, Mark N
2017-07-01
Ebola viruses are not pathogenic but can be adapted to replicate and cause disease in rodents. Here, we used a structural bioinformatics approach to analyze the mutations associated with Ebola virus adaptation to rodents to elucidate the determinants of host-specific Ebola virus pathogenicity. We identified 33 different mutations associated with Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24 and VP35. Only VP24, GP and NP were consistently found mutated in rodent-adapted Ebola virus strains. Fewer than five mutations in these genes seem to be required for the adaptation of Ebola viruses to a new species. The role of mutations in GP and NP is not clear. However, three VP24 mutations located in the protein interface with karyopherin α5 may enable VP24 to inhibit karyopherins and subsequently the host interferon response. Three further VP24 mutations change hydrogen bonding or cause conformational changes. Hence, there is evidence that few mutations including crucial mutations in VP24 enable Ebola virus adaptation to new hosts. Since Reston virus, the only non-human pathogenic Ebolavirus species circulates in pigs in Asia, this raises concerns that few mutations may result in novel human pathogenic Ebolaviruses. m.n.wass@kent.ac.uk , m.michaelis@kent.ac.uk or j.s.rossman@kent.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Selective induction of phospholipase D1 in pathogen-activated human monocytes.
Locati, M; Riboldi, E; Bonecchi, R; Transidico, P; Bernasconi, S; Haribabu, B; Morris, A J; Mantovani, A; Sozzani, S
2001-08-15
Phospholipase D (PLD) activation is part of the complex signalling cascade induced during phagocyte activation. Two PLD isoforms have been cloned, but their role in phagocyte functions is still poorly defined. We report that resting fresh circulating human monocytes expressed PLD1. PLD1 protein expression was rapidly down-regulated during cell culture. Lipopolysaccharide and pathogen-derived agonists (Candida albicans, arabinoside-terminated lipoarabinomannan and Gram-positive bacteria, but not mannose-capped lipoarabinomannan or double-stranded RNA) strongly induced PLD1 expression at both the mRNA and protein levels. Pro-inflammatory cytokines [interleukin (IL)-1beta and tumour necrosis factor alpha] had only a weak effect, whereas immune cytokines (IL-6 and interferon gamma), anti-inflammatory cytokines (IL-13 and IL-10) and chemoattractants (fMet-Leu-Phe and macrophage chemoattractant protein 1) were inactive. None of the agonists tested induced significant changes in the basal expression of PLD2 mRNA. Consistent with PLD1 up-regulation was the observation that PLD enzymic activity was higher in monocytes treated with active-pathogen-derived agonists than in control cells, when stimulated with PMA or with chemotactic agonists (fMet-Leu-Phe and C5a). Thus PLD2 seems to be a constitutive enzyme in circulating monocytes. Conversely, PLD1 is an inducible protein, rapidly regulated during culture conditions and selectively induced during cell activation. Therefore PLD1 might have a relevant role in immune responses against pathogens and in chronic inflammation.
Szmolka, Ama; Szabó, Móni; Kiss, János; Pászti, Judit; Adrián, Erzsébet; Olasz, Ferenc; Nagy, Béla
2018-05-01
Salmonella Infantis (SI) became endemic in Hungary where the PFGE cluster B, characterized by a large multiresistance (MDR) plasmid emerged among broilers leading to an increased occurrence in humans. We hypothesized that this plasmid (pSI54/04) assisted dissemination of SI. Indeed, Nal-Sul-Tet phenotypes carrying pSI54/04 occurred increasingly between 2011 and 2013 among SI isolates from broilers and humans. Characterization of pSI54/04 based on genome sequence data of the MDR strain SI54/04 indicated a size of ∼277 kb and a high sequence similarity with the megaplasmid pESI of SI predominant in Israel. Molecular characterization of 78 representative broiler and human isolates detected the prototype plasmid pSI54/04 and its variants together with novel plasmid associations within the emerging cluster B. To test in vitro and in vivo pathogenicity of pSI54/04 we produced plasmidic transconjugant of the plasmid-free pre-emergent strain SI69/94. This parental strain and its transconjugant have been tested on chicken embryo fibroblasts (CEFs) and in orally infected day old chicks. The uptake of pSI54/04 did not increase the pathogenicity of the strain SI69/94 in these systems. Thus, dissemination of SI in poultry could be assisted by antimicrobial resistance rather than by virulence modules of the endemic plasmid pSI54/04 in Hungary. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jacquet, Maxime; Margos, Gabriele; Fingerle, Volker; Voordouw, Maarten J
2016-12-16
Transmission from the vertebrate host to the arthropod vector is a critical step in the life-cycle of any vector-borne pathogen. How the probability of host-to-vector transmission changes over the duration of the infection is an important predictor of pathogen fitness. The Lyme disease pathogen Borrelia afzelii is transmitted by Ixodes ricinus ticks and establishes a chronic infection inside rodent reservoir hosts. The present study compares the temporal pattern of host-to-tick transmission between two strains of B. afzelii. Laboratory mice were experimentally infected via tick bite with one of two strains of B. afzelii: A3 and A10. Mice were repeatedly infested with pathogen-free larval Ixodes ricinus ticks over a period of 4 months. Engorged larval ticks moulted into nymphal ticks that were tested for infection with B. afzelii using qPCR. The proportion of infected nymphs was used to characterize the pattern of host-to-tick transmission over time. Both strains of B. afzelii followed a similar pattern of host-to-tick transmission. Transmission decreased from the acute to the chronic phase of the infection by 16.1 and 29.3% for strains A3 and A10, respectively. Comparison between strains found no evidence of a trade-off in transmission between the acute and chronic phase of infection. Strain A10 had higher lifetime fitness and established a consistently higher spirochete load in nymphal ticks than strain A3. Quantifying the relationship between host-to-vector transmission and the age of infection in the host is critical for estimating the lifetime fitness of vector-borne pathogens.
Vogler, Amy J; Chan, Fabien; Nottingham, Roxanne; Andersen, Genevieve; Drees, Kevin; Beckstrom-Sternberg, Stephen M; Wagner, David M; Chanteau, Suzanne; Keim, Paul
2013-02-12
A cluster of human plague cases occurred in the seaport city of Mahajanga, Madagascar, from 1991 to 1999 following 62 years with no evidence of plague, which offered insights into plague pathogen dynamics in an urban environment. We analyzed a set of 44 Mahajanga isolates from this 9-year outbreak, as well as an additional 218 Malagasy isolates from the highland foci. We sequenced the genomes of four Mahajanga strains, performed whole-genome sequence single-nucleotide polymorphism (SNP) discovery on those strains, screened the discovered SNPs, and performed a high-resolution 43-locus multilocus variable-number tandem-repeat analysis of the isolate panel. Twenty-two new SNPs were identified and defined a new phylogenetic lineage among the Malagasy isolates. Phylogeographic analysis suggests that the Mahajanga lineage likely originated in the Ambositra district in the highlands, spread throughout the northern central highlands, and was then introduced into and became transiently established in Mahajanga. Although multiple transfers between the central highlands and Mahajanga occurred, there was a locally differentiating and dominant subpopulation that was primarily responsible for the 1991-to-1999 Mahajanga outbreaks. Phylotemporal analysis of this Mahajanga subpopulation revealed a cycling pattern of diversity generation and loss that occurred during and after each outbreak. This pattern is consistent with severe interseasonal genetic bottlenecks along with large seasonal population expansions. The ultimate extinction of plague pathogens in Mahajanga suggests that, in this environment, the plague pathogen niche is tenuous at best. However, the temporary large pathogen population expansion provides the means for plague pathogens to disperse and become ecologically established in more suitable nonurban environments. Maritime spread of plague led to the global dissemination of this disease and affected the course of human history. Multiple historical plague waves resulted in massive human mortalities in three classical plague pandemics: Justinian (6th and 7th centuries), Middle Ages (14th to 17th centuries), and third (mid-1800s to the present). Key to these events was the pathogen's entry into new lands by "plague ships" via seaport cities. Although initial disease outbreaks in ports were common, they were almost never sustained for long and plague pathogens survived only if they could become established in ecologically suitable habitats. Although plague pathogens' ability to invade port cities has been essential for intercontinental spread, these regions have not proven to be a suitable long-term niche. The disease dynamics in port cities such as Mahajanga are thus critical to plague pathogen amplification and dispersal into new suitable ecological niches for the observed global long-term maintenance of plague pathogens.
Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.
2010-07-19
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here wemore » report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.« less
Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
Daniell, Henry
2006-10-01
Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Johnson, Timothy J; Youmans, Bonnie P; Noll, Sally; Cardona, Carol; Evans, Nicholas P; Karnezos, T Peter; Ngunjiri, John M; Abundo, Michael C; Lee, Chang-Won
2018-06-15
Defining the baseline bacterial microbiome is critical to understanding its relationship with health and disease. In broiler chickens, the core microbiome and its possible relationships with health and disease have been difficult to define, due to high variability between birds and flocks. Presented here are data from a large, comprehensive microbiota-based study in commercial broilers. The primary goals of this study included understanding what constitutes the core bacterial microbiota in the broiler gastrointestinal, respiratory, and barn environments; how these core players change across age, geography, and time; and which bacterial taxa correlate with enhanced bird performance in antibiotic-free flocks. Using 2,309 samples from 37 different commercial flocks within a vertically integrated broiler system and metadata from these and an additional 512 flocks within that system, the baseline bacterial microbiota was defined using 16S rRNA gene sequencing. The effects of age, sample type, flock, and successive flock cycles were compared, and results indicate a consistent, predictable, age-dependent bacterial microbiota, irrespective of flock. The tracheal bacterial microbiota of broilers was comprehensively defined, and Lactobacillus was the dominant bacterial taxon in the trachea. Numerous bacterial taxa were identified, which were strongly correlated with broiler chicken performance across multiple tissues. While many positively correlated taxa were identified, negatively associated potential pathogens were also identified in the absence of clinical disease, indicating that subclinical dynamics occur that impact performance. Overall, this work provides necessary baseline data for the development of effective antibiotic alternatives, such as probiotics, for sustainable poultry production. IMPORTANCE Multidrug-resistant bacterial pathogens are perhaps the greatest medical challenge we will face in the 21st century and beyond. Antibiotics are necessary in animal production to treat disease. As such, animal production is a contributor to the problem of antibiotic resistance. Efforts are underway to reduce antibiotic use in animal production. However, we are also challenged to feed the world's increasing population, and sustainable meat production is paramount to providing a safe and quality protein source for human consumption. In the absence of antibiotics, alternative approaches are needed to maintain health and prevent disease, and probiotics have great promise as one such approach. This work paves the way for the development of alternative approaches to raising poultry by increasing our understandings of what defines the poultry microbiome and of how it can potentially be modulated to improve animal health and performance. Copyright © 2018 American Society for Microbiology.
Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.
Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.
2014-01-01
Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270
Hernández-León, Fernando; Acosta-Dibarrat, Jorge; Vázquez-Chagoyán, Juan Carlos; Rosas, Pomposo Fernandez; de Oca-Jiménez, Roberto Montes
2016-07-22
Corynebacterium xerosis is a commensal organism found in skin and mucous membranes of humans. It is considered an unusual pathogen, and it is rarely found in human and animal clinical samples. Here we describe the isolation of C. xerosis from a 4-months-old Pelifolk lamb located in Tesistán, central western Mexico. This microorganism should be considered for differential diagnosis in cutaneous abscessed lesions in sheep, as it represents a zoonotic risk factor for human infection in sheep farms. The animal exhibited a hard-consistency, 5 cm diameter abscess, without drainage, in the neck. The presumptive clinical diagnosis was caseous lymphadenitis, caused by Corynebacterium pseudotuberculosis. Samples were obtained by puncture and cultured in 8 % sheep blood agar under microaerophilic conditions. Colonies were non-haemolytic, brown-yellowish and showed microscopic and biochemical features similar to C. pseudotuberculosis, except for the urea test. A multiplex-PCR for the amplification of partial sequences of the pld, rpoB and intergenic fragment from 16S to 23S genes suggested that isolate could be C. xerosis, which was later confirmed by sequencing analysis of the rpoB gene. This study shows for the first time isolation and molecular characterization of C. xerosis from a clinical sample of an ovine cutaneous abscess in Mexico. This finding highlights the need for differential diagnosis of this pathogen in ovine skin abscesses, as well as epidemiological and control studies of this pathogen in sheep farms.
Hersperger, Adam R; Siciliano, Nicholas A; Eisenlohr, Laurence C
2012-07-01
Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (∼80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.
Leptospira Species in Feral Cats and Black Rats from Western Australia and Christmas Island.
Dybing, Narelle A; Jacobson, Caroline; Irwin, Peter; Algar, David; Adams, Peter J
2017-05-01
Leptospirosis is a neglected, re-emerging bacterial disease with both zoonotic and conservation implications. Rats and livestock are considered the usual sources of human infection, but all mammalian species are capable of carrying Leptospira spp. and transmitting pathogenic leptospires in their urine, and uncertainty remains about the ecology and transmission dynamics of Leptospira in different regions. In light of a recent case of human leptospirosis on tropical Christmas Island, this study aimed to investigate the role of introduced animals (feral cats and black rats) as carriers of pathogenic Leptospira spp. on Christmas Island and to compare this with two different climatic regions of Western Australia (one island and one mainland). Kidney samples were collected from black rats (n = 68) and feral cats (n = 59) from Christmas Island, as well as feral cats from Dirk Hartog Island (n = 23) and southwest Western Australia (n = 59). Molecular (PCR) screening detected pathogenic leptospires in 42.4% (95% confidence interval 29.6-55.9) of cats and 2.9% (0.4-10.2) of rats from Christmas Island. Sequencing of cat- and rat-positive samples from Christmas Island showed 100% similarity for Leptospira interrogans. Pathogenic leptospires were not detected in cats from Dirk Hartog Island or southwest Western Australia. These findings were consistent with previous reports of higher Leptospira spp. prevalence in tropical regions compared with arid and temperate regions. Despite the abundance of black rats on Christmas Island, feral cats appear to be the more important reservoir species for the persistence of pathogenic L. interrogans on the island. This research highlights the importance of disease surveillance and feral animal management to effectively control potential disease transmission.
Leulmi, Hamza; Bitam, Idir; Berenger, Jean Michel; Lepidi, Hubert; Rolain, Jean Marc; Almeras, Lionel; Raoult, Didier; Parola, Philippe
2015-01-01
Background Bartonella quintana, the etiologic agent of trench fever and other human diseases, is transmitted by the feces of body lice. Recently, this bacterium has been detected in other arthropod families such as bed bugs, which begs the question of their involvement in B. quintana transmission. Although several infectious pathogens have been reported and are suggested to be transmitted by bed bugs, the evidence regarding their competence as vectors is unclear. Methodology/Principal Findings Bed bugs at the adult and instar developmental stages were fed three successive human blood meals inoculated with B. quintana bacterium from day one (D1) to D5; subsequently they were fed with pathogen-free human blood until the end of the experiment. Bed bugs and feces were collected in time series, to evaluate their capacities to acquire, multiply and expel viable B. quintana using molecular biology, immunohistochemistry and cultures assays. B. quintana was detected molecularly in 100% of randomly selected experimentally infected bed bug specimens (D3). The monitoring of B. quintana in bed bug feces showed that the bacterium was detectable starting on the 3rd day post-infection (pi) and persisted until day 18±1 pi. Although immunohistochemistry assays localized the bacteria to the gastrointestinal bed bug gut, the detection of B. quintana in the first and second instar larva stages suggested a vertical non-transovarial transmission of the bacterium. Conclusion The present work demonstrated for the first time that bed bugs can acquire, maintain for more than 2 weeks and release viable B. quintana organisms following a stercorarial shedding. We also observed the vertical transmission of the bacterium to their progeny. Although the biological role of bed bugs in the transmission of B. quintana under natural conditions has yet to be confirmed, the present work highlights the need to reconsider monitoring of these arthropods for the transmission of human pathogens. PMID:26000974
Experimental Infection of Syrian Hamsters with Aerosolized Nipah virus.
Escaffre, Olivier; Hill, Terence; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Perez, David E; Atkins, Colm; Park, Arnold; Lawrence, William S; Sivasubramani, Satheesh K; Peel, Jennifer E; Peterson, Johnny W; Lee, Benhur; Freiberg, Alexander N
2018-06-15
Nipah virus (NiV) is a paramyxovirus (genus henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small particle aerosol exposure is still limited. infectivity, pathogenicity and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-Fluc NP). both viruses had an equivalent pathogenicity in hamsters that developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. Finally, we show that virus replication was predominantly initiated in the lower respiratory tract, and although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 post-infection. hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.
Colonna, William; Brehm-Stecher, Byron; Shetty, Kalidas; Pometto, Anthony
2017-12-01
This study focused on advancing a rapid turbidimetric bioassay to screen antimicrobials using specific cocktails of targeted foodborne bacterial pathogens. Specifically, to show the relevance of this rapid screening tool, the antimicrobial potential of generally recognized as safe calcium diacetate (DAX) and blends with cranberry (NC) and oregano (OX) natural extracts was evaluated. Furthermore, the same extracts were evaluated against beneficial lactic acid bacteria. The targeted foodborne pathogens evaluated were Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using optimized initial cocktails (∼10 8 colony-forming unit/mL) containing strains isolated from human food outbreaks. Of all extracts evaluated, 0.51% (w/v) DAX in ethanol was the most effective against all four pathogens. However, DAX when reduced to 0.26% and with added blends from ethanol extractions consisting of DAX:OX (3:1), slightly outperformed or was equal to same levels of DAX alone. Subculture of wells in which no growth occurred after 1 week indicated that all water and ethanol extracts were bacteriostatic against the pathogens tested. All the targeted antimicrobials had no effect on the probiotic organism Lactobacillus plantarum. The use of such rapid screening methods combined with the use of multistrain cocktails of targeted foodborne pathogens from outbreaks will allow rapid large-scale screening of antimicrobials and enable further detailed studies in targeted model food systems.
Modeling effect of cover condition and soil type on rotavirus transport in surface flow.
Bhattarai, Rabin; Davidson, Paul C; Kalita, Prasanta K; Kuhlenschmidt, Mark S
2017-08-01
Runoff from animal production facilities contains various microbial pathogens which pose a health hazard to both humans and animals. Rotavirus is a frequently detected pathogen in agricultural runoff and the leading cause of death among children around the world. Diarrheal infection caused by rotavirus causes more than two million hospitalizations and death of more than 500,000 children every year. Very little information is available on the environmental factors governing rotavirus transport in surface runoff. The objective of this study is to model rotavirus transport in overland flow and to compare the model results with experimental observations. A physically based model, which incorporates the transport of infective rotavirus particles in both liquid (suspension or free-floating) and solid phase (adsorbed to soil particles), has been used in this study. Comparison of the model results with experimental results showed that the model could reproduce the recovery kinetics satisfactorily but under-predicted the virus recovery in a few cases when multiple peaks were observed during experiments. Similarly, the calibrated model had a good agreement between observed and modeled total virus recovery. The model may prove to be a promising tool for developing effective management practices for controlling microbial pathogens in surface runoff.
Prevalence of protozoa species in drinking and environmental water sources in Sudan.
Shanan, Salah; Abd, Hadi; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar
2015-01-01
Protozoa are eukaryotic cells distributed worldwide in nature and are receiving increasing attention as reservoirs and potential vectors for the transmission of pathogenic bacteria. In the environment, on the other hand, many genera of the protozoa are human and animal pathogens. Only limited information is available on these organisms in developing countries and so far no information on their presence is available from Sudan. It is necessary to establish a molecular identification of species of the protozoa from drinking and environmental water. 600 water samples were collected from five states (Gadarif, Khartoum, Kordofan, Juba, and Wad Madani) in Sudan and analysed by polymerase chain reaction (PCR) and sequencing. 57 out of 600 water samples were PCR positive for protozoa. 38 out of the 57 positive samples were identified by sequencing to contain 66 protozoa species including 19 (28.8%) amoebae, 17 (25.7%) Apicomplexa, 25 (37.9%) ciliates, and 5 (7.6%) flagellates. This study utilized molecular methods identified species belonging to all phyla of protozoa and presented a fast and accurate molecular detection and identification of pathogenic as well as free-living protozoa in water uncovering hazards facing public health.
Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon
2008-12-01
Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.
Kim, Jong-Hyun
2008-01-01
Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increasse of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death. PMID:19127326
Alterations in choice behavior by manipulations of world model
Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.
2010-01-01
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507
Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture
Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.
2009-01-01
Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487
Combinatorial drug approaches to tackle Candida albicans biofilms.
De Cremer, Kaat; Staes, Ines; Delattin, Nicolas; Cammue, Bruno P A; Thevissen, Karin; De Brucker, Katrijn
2015-08-01
The human fungal opportunistic pathogen Candida albicans resides in the human gut, genitourinary tract and on the skin. The majority of infections caused by C. albicans are biofilm-related. In the first part of this review, we discuss new insights into C. albicans biofilm characteristics, concentrating on the extracellular matrix, phenotypic switching, efflux pumps and persister cells. It is widely accepted that this multicellular lifestyle is more resistant to traditional antifungal treatment compared to free-living cells. Therefore, much effort is put in the search for combinations of drugs leading to synergistic interactions against microbial biofilms to achieve lower effective doses of the drugs. In the second part of this manuscript, we review all recently identified compounds that act synergistically with azoles, echinocandins and/or polyenes against C. albicans biofilms.
Visualizing interactions between Sindbis virus and cells by single particle tracking
NASA Astrophysics Data System (ADS)
Williard, Mary
2005-03-01
Sindbis virus infects both mammalian and insect cells. Though not pathogenic in humans, Sindbis is a model for many mosquito- borne viruses that cause human disease, such as West Nile virus. We have used real-time single particle fluorescence microscopy to observe individual Sindbis virus particles as they infect living cells. Fluorescent labels were incorporated into both the viral coat proteins and the lipid envelope of the virus. Kinetics characteristic of free diffusion in solution, slower diffusion inside cells, attachment to spots on the cell surface, and motor protein transport inside cells have been observed. Dequenching of the membrane label is used to report membrane fusion events during the infection process. Tracking individual viral particles allows multiple pathways to be determined without the requirement of synchronicity.
Weng, ShihChi; Jacangelo, Joseph G.
2017-01-01
ABSTRACT Human noroviruses (hNoVs) are a known public health concern associated with the consumption of leafy green vegetables. While a number of studies have investigated pathogen reduction on the surfaces of leafy greens during the postharvest washing process, there remains a paucity of data on the level of treatment needed to inactivate viruses in the wash water, which is critical for preventing cross-contamination. The objective of this study was to quantify the susceptibility of hNoV genotype I (GI), hNoV GII, murine norovirus (MNV), and bacteriophage MS2 to free chlorine in whole leaf, chopped romaine, and shredded iceberg lettuce industrial leafy green wash waters, each sampled three times over a 4-month period. A suite of kinetic inactivation models was fit to the viral reduction data to aid in quantification of concentration-time (CT) values. Results indicate that 3-log10 infectivity reduction was achieved at CT values of less than 0.2 mg · min/liter for MNV and 2.5 mg · min/liter for MS2 in all wash water types. CT values for 2-log10 molecular reduction of hNoV GI in whole leaf and chopped romaine wash waters were 1.5 and 0.9 mg · min/liter, respectively. For hNoV GII, CT values were 13.0 and 7.5 mg · min/liter, respectively. In shredded iceberg wash water, 3-log10 molecular reduction was not observed for any virus over the time course of experiments. These findings demonstrate that noroviruses may exhibit genogroup-dependent resistance to free chlorine and emphasize the importance of distinguishing between genogroups in hNoV persistence studies. IMPORTANCE Postharvest washing of millions of pounds of leafy greens is performed daily in industrial processing facilities with the intention of removing dirt, debris, and pathogenic microorganisms prior to packaging. Modest inactivation of pathogenic microorganisms (less than 2 log10) is known to occur on the surfaces of leafy greens during washing. Therefore, the primary purpose of the sanitizing agent is to maintain microbial quality of postharvest processing water in order to limit cross-contamination. This study modeled viral inactivation data and quantified the free-chlorine CT values that processing facilities must meet in order to achieve the desired level of hNoV GI and GII reduction. Disinfection experiments were conducted in industrial leafy green wash water collected from a full-scale fresh produce processing facility in the United States, and hNoV GI and GII results were compared with surrogate molecular and infectivity data. PMID:28887415
Conway, Lucian Gideon; Bongard, Kate; Plaut, Victoria; Gornick, Laura Janelle; Dodds, Daniel P; Giresi, Thomas; Tweed, Roger G; Repke, Meredith A; Houck, Shannon C
2017-10-01
What kinds of physical environments make for free societies? The present research investigates the effect of three different types of ecological stressors (climate stress, pathogen stress, and frontier topography) on two measurements of governmental restriction: Vertical restriction involves select persons imposing asymmetrical laws on others, while horizontal restriction involves laws that restrict most members of a society equally. Investigation 1 validates our measurements of vertical and horizontal restriction. Investigation 2 demonstrates that, across both U.S. states and a sample of nations, ecological stressors tend to cause more vertically restrictive societies but less horizontally restrictive societies. Investigation 3 demonstrates that assortative sociality partially mediates ecological stress→restriction relationships across nations, but not in U.S. states. Although some stressor-specific effects emerged (most notably, cold stress consistently showed effects in the opposite direction), these results in the main suggest that ecological stress simultaneously creates opposing pressures that push freedom in two different directions.
Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F).
Manilal, Aseer; Idhayadhulla, Akbar
2014-01-01
To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F)
Manilal, Aseer; Idhayadhulla, Akbar
2014-01-01
Objective To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. Methods In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. Results The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Conclusions Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. PMID:24144126
Corrieri, Luca; Adda, Marco; Miklósi, Ádám; Kubinyi, Enikő
2018-01-01
Dogs living on Bali Island have been free-ranging for thousands of years. A large group of expatriates sometimes adopt Bali dogs and keep them restricted to their houses and backyards, as is typical in modern western cultures. This provides us with the unique opportunity to compare the personality traits of dogs to their lifestyle either living as human companions or as free-ranging animals, exploring at the same time the impact of demographic variables (such as age, sex, and neutered status) on personality. After controlling for internal consistency of the scales and between-observer variation, we found that free-ranging Bali dogs were rated as less active, less excitable, less aggressive towards animals, and less inclined to chase animals or humans than Bali dogs living as human companions. Among free-ranging dogs, females were found to be more excitable. Females in the whole sample were also more fearful of people. The results of this preliminary study suggest that a change in lifestyle, i.e. being adopted, and living in a confined environment has negative consequences on some canine personality traits, such as activity/excitability, aggression towards animals, and prey drive.
Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans
Caza, Mélissa; Kronstad, James W.
2013-01-01
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900
White, Lauren A; Forester, James D; Craft, Meggan E
2018-05-01
Individual differences in contact rate can arise from host, group and landscape heterogeneity and can result in different patterns of spatial spread for diseases in wildlife populations with concomitant implications for disease control in wildlife of conservation concern, livestock and humans. While dynamic disease models can provide a better understanding of the drivers of spatial spread, the effects of landscape heterogeneity have only been modelled in a few well-studied wildlife systems such as rabies and bovine tuberculosis. Such spatial models tend to be either purely theoretical with intrinsic limiting assumptions or individual-based models that are often highly species- and system-specific, limiting the breadth of their utility. Our goal was to review studies that have utilized dynamic, spatial models to answer questions about pathogen transmission in wildlife and identify key gaps in the literature. We begin by providing an overview of the main types of dynamic, spatial models (e.g., metapopulation, network, lattice, cellular automata, individual-based and continuous-space) and their relation to each other. We investigate different types of ecological questions that these models have been used to explore: pathogen invasion dynamics and range expansion, spatial heterogeneity and pathogen persistence, the implications of management and intervention strategies and the role of evolution in host-pathogen dynamics. We reviewed 168 studies that consider pathogen transmission in free-ranging wildlife and classify them by the model type employed, the focal host-pathogen system, and their overall research themes and motivation. We observed a significant focus on mammalian hosts, a few well-studied or purely theoretical pathogen systems, and a lack of studies occurring at the wildlife-public health or wildlife-livestock interfaces. Finally, we discuss challenges and future directions in the context of unprecedented human-mediated environmental change. Spatial models may provide new insights into understanding, for example, how global warming and habitat disturbance contribute to disease maintenance and emergence. Moving forward, better integration of dynamic, spatial disease models with approaches from movement ecology, landscape genetics/genomics and ecoimmunology may provide new avenues for investigation and aid in the control of zoonotic and emerging infectious diseases. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun
2016-01-01
Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.
Prithika, Udayakumar; Vikneswari, Ramaraj; Balamurugan, Krishnaswamy
2017-04-01
One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bats prove to be rich reservoirs for emerging viruses
Calisher, Charles H.; Holmes, Kathryn V.; Dominguez, Samuel R.; Schountz, Tony; Cryan, Paul M.
2008-01-01
Emerging pathogens, many of them viruses, continue to surprise us, providing many newly recognized diseases to study and to try to control. Many of these emergent viruses are zoonotic, transmitted from reservoirs in wild or domestic animals to humans, either by insect vectors or by exposure to the droppings or tissues of such animals. One rich- but, until recently, underappreciated-source of emergent viruses is bats (Chiroptera, meaning "hand wing"). Accounting for 1,116, or nearly one fourth, of the 4,600 recognized species of mammals, bats are grouped into two suborders Megachiroptera, which contains a single family, Pteropodidae, consisting of 42 genera and 186 species, and Microchiroptera, which contains 17 families, 160 genera, and 930 species. Although bats are among the most abundant, diverse, and geographically dispersed orders of terrestrial mammals, research on these flying mammals historically focused more on their habits and outward characteristics than on their role in carrying microorganisms and transmitting pathogens to other species. Even in those cases where bats were known to carry particular pathogens, the microbiologists who studied those pathogens typically knew little about the bat hosts. Hence, investigators now are seeking to explain how variations of anatomy, physiology, ecology, and behavior influence the roles of bats as hosts for viral pathogens.
Sex-biased avian host use by arbovirus vectors.
Burkett-Cadena, Nathan D; Bingham, Andrea M; Unnasch, Thomas R
2014-11-01
Prevalence of arthropod-borne parasites often differs drastically between host sexes. This sex-related disparity may be related to physiological (primarily hormonal) differences that facilitate or suppress replication of the pathogen in host tissues. Alternately, differences in pathogen prevalence between host sexes may be owing to differential exposure to infected vectors. Here, we report on the use of PCR-based assays recognizing bird sex chromosomes to investigate sex-related patterns of avian host use from field-collected female mosquitoes from Florida, USA. Mosquitoes took more bloodmeals from male birds (64.0% of 308 sexed samples) than female birds (36.0%), deviating significantly from a hypothetical 1:1 sex ratio. In addition, male-biased host use was consistent across mosquito species (Culex erraticus (64.4%); Culex nigripalpus (61.0%) and Culiseta melanura (64.9%)). Our findings support the hypothesis that sex-biased exposure to vector-borne pathogens contributes to disparities in parasite/pathogen prevalence between the sexes. While few studies have yet to investigate sex-biased host use by mosquitoes, the methods used here could be applied to a variety of mosquito-borne disease systems, including those that affect health of humans, domestic animals and wildlife. Understanding the mechanisms that drive sex-based disparities in host use may lead to novel strategies for interrupting pathogen/parasite transmission.
Bacterial biofilm composition in caries and caries-free subjects.
Wolff, D; Frese, C; Maier-Kraus, T; Krueger, T; Wolff, B
2013-01-01
Certain major pathogens such as Streptococcus mutans, Lactobacillus spp. and others have been reported to be involved in caries initiation and progression. Yet, in addition to those leading pathogens, microbial communities seem to be much more diverse and individually differing. The aim of this study, therefore, was to analyze the bacterial composition of carious dentin and the plaque of caries-free patients by using a custom-made, real-time quantitative polymerase chain reaction assay (RQ-PCR). The study included 26 patients with caries and 28 caries-free controls. Decayed tooth substance and plaque samples were harvested. Bacterial DNA was extracted and tested for the presence of 43 bacterial species or species groups using RQ-PCR. Relative quantification revealed that Propionibacterium acidifaciens was significantly more abundant in caries samples than were other microorganisms (fold change 169.12, p = 0.023). In the caries-free samples, typical health-associated species were significantly more prevalent. Unsupervised hierarchical cluster analysis showed a high abundance of P. acidifaciens in caries subjects and distinct but individually differing bacterial clusters in the caries-free subjects. The distribution of 11 bacteria allowed full discrimination between caries and caries-free subjects. Within the investigated cohort, P. acidifaciens was the only pathogen significantly more abundant in caries subjects. Cluster analysis yielded a diverse flora in caries-free subjects, whereas it was narrowed down to a small range of a few outcompeting members in caries subjects. Copyright © 2012 S. Karger AG, Basel.
Comparison of the h-Index Scores Among Pathogens Identified as Emerging Hazards in North America.
Cox, R; McIntyre, K M; Sanchez, J; Setzkorn, C; Baylis, M; Revie, C W
2016-02-01
Disease surveillance must assess the relative importance of pathogen hazards. Here, we use the Hirsch index (h-index) as a novel method to identify and rank infectious pathogens that are likely to be a hazard to human health in the North American region. This bibliometric index was developed to quantify an individual's scientific research output and was recently used as a proxy measure for pathogen impact. Analysis of more than 3000 infectious organisms indicated that 651 were human pathogen species that had been recorded in the North American region. The h-index of these pathogens ranged from 0 to 584. The h-index of emerging pathogens was greater than non-emerging pathogens as was the h-index of frequently pathogenic pathogens when compared to non-pathogenic pathogens. As expected, the h-index of pathogens varied over time between 1960 and 2011. We discuss how the h-index can contribute to pathogen prioritization and as an indicator of pathogen emergence. © 2014 Blackwell Verlag GmbH.
Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.
2016-01-01
Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022
Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.
Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark
2008-06-07
Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.
Borges, Clarissa A; Maluta, Renato P; Beraldo, Lívia G; Cardozo, Marita V; Guastalli, Elisabete A L; Kariyawasam, Subhashinie; DebRoy, Chitrita; Ávila, Fernando A
2017-01-01
Thirty Escherichia coli isolates from captive and free-living pigeons in Brazil were characterised. Virulence-associated genes identified in pigeons included those which occur relatively frequently in avian pathogenic E. coli (APEC) from commercial poultry worldwide. Eleven of 30 E. coli isolates from pigeons, belonging mainly to B1 and B2 phylogenetic groups, had high or intermediate pathogenicity for 1-day-old chicks. The frequency of multi-drug resistant (MDR) E. coli in captive pigeons was relatively high and included one isolate positive for the extended-spectrum β-lactamase (ESBL) gene bla CTX-M-8 . Pulsed field gel electrophoresis (PFGE) showed high heterogeneity among isolates. There is potential for pigeons to transmit antibiotic resistant pathogenic E. coli to other species through environmental contamination or direct contact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human soil-borne pathogens and risks associated with land use change
NASA Astrophysics Data System (ADS)
Pereg, Lily
2017-04-01
Soil is a source of pathogenic, neutral and beneficial microorganisms. Natural events and anthropogenic activity can affect soil biodiversity and influence the balance and distribution of soil-borne human pathogens. Important bacterial and fungal pathogens, such as Bacillus anthracis, Coxiella bernetii, Clostridium tetani, Escherichia coli 0157:H7, Listeria monocytogenes, Aspergillus fumigatus and Sporothrix schenckii will be discussed. This presentation will concentrate on soil pathogenic microorganisms and the effects of land use change on their prevalence and distribution. In particular, the potential of agricultural soil cultivation to enhance pathogen transmission to human through the release of soil microbes into the air attached to dust particles, contamination of waterways and infection of food plants and animal. Emerging solutions, such as biocontrol and probiotics, will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yunhuang; Hoyt, David W.; Wang, Jianjun
2007-07-28
Apolipoprotein A-I (apoAI) is the major protein component of the high-density lipoprotein (HDL) that has been a hot subject of interests because of its anti-atherogenic properties. Upon lipid-binding, apoAI undergoes conformational changes from lipid-free to several different HDL-associated states (1). These different conformational states regulate HDL formation, maturation and transportation. Recent crystal structure of lipid-free human apoAI represents a major progress of structural study of lipid-free apoAI (2). However, no structural is available for lipid-free mouse apoAI (240-residues). Since mouse HDL is homogenous with only HDL2-like size, whereas human HDL is heterogeneous, containing HDL2/HDL3 as its main species, a structuralmore » comparison between human and mouse apoAI may allow us to identify structure basis of HDL size distribution difference between human and mouse. We carried out an NMR structure determination of lipid-free mouse apoAI (1-216) and completely assigned backbone atoms (except backbone amide proton and nitrogen atoms for residues D1, N48, W107, K108, K132, E135, F147, R148, M169 and K203). Secondary structure prediction using backbone NMR parameters indicates that lipid-free mouse apoAI consists of a four helical segments in the N-terminal domain, residues 1-180. In addition, two short helices are also observed between residues 190-195 and 210-215. The helix locations are significantly different from those in the crystal structure of human apoAI, suggesting that mouse apoAI may have a different conformational adaptation upon lipid-binding. BMRB deposit with accession number: 15091.« less
Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela
2013-01-01
Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884
Coniosporium epidermidis sp. nov., a new species from human skin
Li, D. M.; de Hoog, G.S.; Saunte, D.M. Lindhardt; van den Ende, A.H.G. Gerrits; Chen, X. R.
2008-01-01
Coniosporium epidermidis sp. nov. is described from a superficial skin lesion with blackish discolouration in an 80-yr-old Chinese patient. The species produces dark, thick-walled, inflated, reluctantly liberating arthroconidia without longitudinal septa. Sequences of the ribosomal operon, as well as of the translation elongation factor 1-α support its novelty. The species is found in a lineage basal to the order Chaetothyriales, amidst relatives from rock, but also species repeatedly isolated from human skin and nails and eventually causing mild cutaneous infections. Coniosporium epidermidis is consistently found on humans, either asymptomatic or symptomatic. The species indicates a change of life style towards human pathogenicity, which is a recurrent type of ecology in derived Chaetothyriales. Superficial and cutaneous infection by melanized fungi is a new category in dermatology. PMID:19287535
Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M. Dolores; Roque, Ana
2015-01-01
Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast. PMID:26284033
McIntyre, K M; Setzkorn, C; Wardeh, M; Hepworth, P J; Radford, A D; Baylis, M
2014-10-01
What are all the species of pathogen that affect our livestock? As 6 out of every 10 human pathogens came from animals, with a good number from livestock and pets, it seems likely that the majority that emerge in the future, and which could threaten or devastate human health, will come from animals. Only 10 years ago, the first comprehensive pathogen list was compiled for humans; we still have no equivalent for animals. Here we describe the creation of a novel pathogen database, and present outputs from the database that demonstrate its value. The ENHanCEd Infectious Diseases database (EID2) is open-access and evidence-based, and it describes the pathogens of humans and animals, their host and vector species, and also their global occurrence. The EID2 systematically collates information on pathogens into a single resource using evidence from the NCBI Taxonomy database, the NCBI Nucleotide database, the NCBI MeSH (Medical Subject Headings) library and PubMed. Information about pathogens is assigned using data-mining of meta-data and semi-automated literature searches. Here we focus on 47 mammalian and avian hosts, including humans and animals commonly used in Europe as food or kept as pets. Currently, the EID2 evidence suggests that: • Within these host species, 793 (30.5%) pathogens were bacteria species, 395 (15.2%) fungi, 705 (27.1%) helminths, 372 (14.3%) protozoa and 332 (12.8%) viruses. • The odds of pathogens being emerging compared to not emerging differed by taxonomic division, and increased when pathogens had greater numbers of host species associated with them, and were zoonotic rather than non-zoonotic. • The odds of pathogens being zoonotic compared to non-zoonotic differed by taxonomic division and also increased when associated with greater host numbers. • The pathogens affecting the greatest number of hosts included: Escherichia coli, Giardia intestinalis, Toxoplasma gondii, Anaplasma phagocytophilum, Cryptosporidium parvum, Rabies virus, Staphylococcus aureus, Neospora caninum and Echinococcus granulosus. • The pathogens of humans and domestic animal hosts are characterised by 4223 interactions between pathogen and host species, with the greatest number found in: humans, sheep/goats, cattle, small mammals, pigs, dogs and equids. • The number of pathogen species varied by European country. The odds of a pathogen being found in Europe compared to the rest of the world differed by taxonomic division, and increased if they were emerging compared to not emerging, or had a larger number of host species associated with them. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Chen, Crystal Y.; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Kouiavskaia, Diana; Nathanson, Neal; Macadam, Andrew J.; Andino, Raul; Kew, Olen; Xu, Junfa
2017-01-01
ABSTRACT Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines. PMID:28356537
A distributed national network for label-free rapid identification of emerging pathogens
NASA Astrophysics Data System (ADS)
Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.
2011-05-01
Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.
Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review
Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.
2017-01-01
Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to monitor the evolution of AMR in poultry bacterial pathogens. PMID:28848739
Isolation of Escherichia coli and Salmonella spp. from free-ranging wild animals.
Iovine, Renata de Oliveira; Dejuste, Catia; Miranda, Flávia; Filoni, Claudia; Bueno, Marina Galvão; de Carvalho, Vania Maria
2015-01-01
Increasing interactions between humans, domestic animals and wildlife may result in inter-species transmission of infectious agents. To evaluate the presence of pathogenic E. coli and Salmonella spp. and to test the antimicrobial susceptibility of isolates, rectal swabs from 36 different free-ranging wild mammals were taken from two distinct natural sites in Brazil: Cantareira State Park (CSP, state of São Paulo) and Santa Isabel do Rio Negro Region (SIRNR, state of Amazonas). The swabs were randomly collected and processed for bacterial isolation, identification, characterization and antimicrobial resistance. Eighteen E. coli strains from CSP and 20 from SIRNR were recovered from 14 and 22 individuals, respectively. Strains from animals captured in CSP, the site with the greatest anthropization, exhibited a higher range and percentage of virulence genes, including an eae+/bfpA+ strain. Antimicrobial resistance was verified in strains originating from both sites; however, in strains from SIRNR, aminopenicillins were almost the exclusive antimicrobial class to which strains exhibited resistance, whereas in CSP there were strains resistant to cephalosporins, sulfonamide, aminoglycoside, tetracycline and fluoroquinolone, in addition to strains exhibiting multidrug resistance. Two strains of Salmonella enterica that are known to be associated with reptiles, serotypes Belem and 60:r:e,n,z15, were recovered only from Amazonian animals and showed susceptibility to all classes of antimicrobials that were tested. Although the potential impact of these pathogens on wildlife remains unknown, bacteria isolated from free-ranging wild animals may provide relevant information about environmental health and should therefore be more deeply studied.
Sattar, S A; Springthorpe, V S; Karim, Y; Loro, P
1989-06-01
The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were selected for this study based on the findings of an earlier investigation with a human rotavirus. After 1 min exposure to 20 microliters of the disinfectant, the virus from the disks was immediately eluted into tryptose phosphate broth and plaque assayed. Using an efficacy criterion of a 3 log10 or greater reduction in virus infectivity titre and irrespective of the virus suspending medium, only the following five disinfectants proved to be effective against all the four viruses tested: (1) 2% glutaraldehyde normally used as an instrument soak, (2) a strongly alkaline mixture of 0.5% sodium o-benzyl-p-chlorophenate and 0.6% sodium lauryl sulphate, generally used as a domestic disinfectant cleaner for hard surfaces, (3) a 0.04% solution of a quaternary ammonium compound containing 7% hydrochloric acid, which is the basis of many toilet bowl cleaners, (4) chloramine T at a minimum free chlorine level of 3000 p.p.m. and (5) sodium hypochlorite at a minimum free chlorine concentration of 5000 p.p.m. Of those chemicals suitable for use as topical antiseptics, 70% ethanol alone or products containing at least 70% ethanol were ineffective only against coxsackievirus B3. These results emphasize the care needed in selecting chemical disinfectants for routine use in infection control.
A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents.
Mechaly, Adva; Cohen, Hila; Cohen, Ofer; Mazor, Ohad
2016-08-01
Biolayer interferometry (BLI) is an optical technique that uses fiber-optic biosensors for label-free real-time monitoring of protein-protein interactions. In this study, we coupled the advantages of the Octet Red BLI system (automation, fluidics-free, and on-line monitoring) with a signal enhancement step and developed a rapid and sensitive immunological-based method for detection of biowarfare agents. As a proof of concept, we chose to demonstrate the efficacy of this novel assay for the detection of agents representing two classes of biothreats, proteinaceous toxins, and bacterial pathogens: ricin, a lethal plant toxin, and the gram-negative bacterium Francisella tularensis, the causative agent of tularemia. The assay setup consisted of biotinylated antibodies immobilized to the biosensor coupled with alkaline phosphatase-labeled antibodies as the detection moiety to create nonsoluble substrate crystals that precipitate on the sensor surface, thereby inducing a significant wavelength interference. It was found that this BLI-based assay enables sensitive detection of these pathogens (detection limits of 10 pg/ml and 1 × 10(4) pfu/ml ricin and F. tularensis, respectively) within a very short time frame (17 min). Owing to its simplicity, this assay can be easily adapted to detect other analytes in general, and biowarfare agents in particular, in a rapid and sensitive manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Luo, Yaguang; Zhou, Bin; Van Haute, Sam; Nou, Xiangwu; Zhang, Boce; Teng, Zi; Turner, Ellen R; Wang, Qin; Millner, Patricia D
2018-04-01
Determining the minimal effective free chlorine (FC) concentration for preventing pathogen survival and cross-contamination during produce washing is critical for developing science- and risk-based food safety practices. The correlation between dynamic FC concentrations and bacterial survival was investigated during commercial washing of chopped Romaine lettuce, shredded Iceberg lettuce, and diced cabbage as pathogen inoculation study during commercial operation is not feasible. Wash water was sampled every 30 min and assayed for organic loading, FC, and total aerobic mesophilic bacteria after chlorine neutralization. Water turbidity, chemical oxygen demand, and total dissolved solids increased significantly over time, with more rapid increases in diced cabbage water. Combined chlorine increased consistently while FC fluctuated in response to rates of chlorine dosing, product loading, and water replenishment. Total bacterial survival showed a strong correlation with real-time FC concentration. Under approximately 10 mg/L, increasing FC significantly reduced the frequency and population of surviving bacteria detected. Increasing FC further resulted in the reduction of the aerobic plate count to below the detection limit (50 CFU/100 mL), except for a few sporadic positive samples with low cell counts. This study confirms that maintaining at least 10 mg/L FC in wash water strongly reduced the likelihood of bacterial survival and thus potential cross contamination of washed produce. Published by Elsevier Ltd.
1978-01-01
The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237
Short- and long-term effects of oral vancomycin on the human intestinal microbiota.
Isaac, Sandrine; Scher, Jose U; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R; Abramson, Steven B; Pamer, Eric G; Ubeda, Carles
2017-01-01
Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Short- and long-term effects of oral vancomycin on the human intestinal microbiota
Isaac, Sandrine; Scher, Jose U.; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R.; Abramson, Steven B.; Pamer, Eric G.; Ubeda, Carles
2017-01-01
Background Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. Methods We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. Results During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Conclusions Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost–benefit equation for antibiotic prescription. PMID:27707993
Towards a New Paradigm of Non-Captive Research on Cetacean Cognition
Marino, Lori; Frohoff, Toni
2011-01-01
Contemporary knowledge of impressive neurophysiology and behavior in cetaceans, combined with increasing opportunities for studying free-ranging cetaceans who initiate sociable interaction with humans, are converging to highlight serious ethical considerations and emerging opportunities for a new era of progressive and less-invasive cetacean research. Most research on cetacean cognition has taken place in controlled captive settings, e.g., research labs, marine parks. While these environments afford a certain amount of experimental rigor and logistical control they are fraught with limitations in external validity, impose tremendous stress on the part of the captive animals, and place burdens on populations from which they are often captured. Alternatively, over the past three decades, some researchers have sought to focus their attention on the presence of free-ranging cetacean individuals and groups who have initiated, or chosen to participate in, sociable interactions with humans in the wild. This new approach, defined as Interspecies Collaborative Research between cetacean and human, involves developing novel ways to address research questions under natural conditions and respecting the individual cetacean's autonomy. It also offers a range of potential direct benefits to the cetaceans studied, as well as allowing for unprecedented cognitive and psychological research on sociable mysticetes. Yet stringent precautions are warranted so as to not increase their vulnerability to human activities or pathogens. When conducted in its best and most responsible form, collaborative research with free-ranging cetaceans can deliver methodological innovation and invaluable new insights while not necessitating the ethical and scientific compromises that characterize research in captivity. Further, it is representative of a new epoch in science in which research is designed so that the participating cetaceans are the direct recipients of the benefits. PMID:21915286
Gorham, T J; Lee, J
2016-05-01
Canada geese (Branta canadensis) faeces have been shown to contain pathogenic protozoa and bacteria in numerous studies over the past 15 years. Further, increases in both the Canada geese populations and their ideal habitat requirements in the United States (US) translate to a greater presence of these human pathogens in public areas, such as recreational freshwater beaches. Combining these factors, the potential health risk posed by Canada geese faeces at freshwater beaches presents an emerging public health issue that warrants further study. Here, literature concerning human pathogens in Canada geese faeces is reviewed and the potential impacts these pathogens may have on human health are discussed. Pathogens of potential concern include Campylobacter jejuni, Salmonella Typhimurium, Listeria monocytogenes, Helicobacter canadensis, Arcobacter spp., Enterohemorragic Escherichia coli pathogenic strains, Chlamydia psitacci, Cryptosporidium parvum and Giardia lamblia. Scenarios presenting potential exposure to pathogens eluted from faeces include bathers swimming in lakes, children playing with wet and dry sand impacted by geese droppings and other common recreational activities associated with public beaches. Recent recreational water-associated disease outbreaks in the US support the plausibility for some of these pathogens, including Cryptosporidium spp. and C. jejuni, to cause human illness in this setting. In view of these findings and the uncertainties associated with the real health risk posed by Canada geese faecal pathogens to users of freshwater lakes, it is recommended that beach managers use microbial source tracking and conduct a quantitative microbial risk assessment to analyse the local impact of Canada geese on microbial water quality during their decision-making process in beach and watershed management. © 2015 Blackwell Verlag GmbH.
Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques
2017-01-01
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Investigation of pathogen infiltration into produce using Xradia Bio MicroCT
USDA-ARS?s Scientific Manuscript database
The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...
Cross, Karissa L; Chirania, Payal; Xiong, Weili; Beall, Clifford J; Elkins, James G; Giannone, Richard J; Griffen, Ann L; Guss, Adam M; Hettich, Robert L; Joshi, Snehal S; Mokrzan, Elaine M; Martin, Roman K; Zhulin, Igor B; Leys, Eugene J; Podar, Mircea
2018-03-13
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis , the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis , a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome "dark matter," cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.
Butler, James R A; Brown, Wendy Y; du Toit, Johan T
2018-04-27
As the global population of free-ranging domestic dogs grows, there is increasing concern about impacts on human health and wildlife conservation. Effective management of dog populations requires reliable information on their diet, feeding behavior, and social ecology. Free-ranging dogs are reliant on humans, but anthropogenic food subsidies, particularly human faeces (i.e., coprophagy) have not previously been fully quantified. In this study we assess the contributions of different food types to the diet, and their influences on the social behaviour of free-ranging dogs in communal lands of rural Zimbabwe, with a focus on coprophagy. Free-ranging dog diets, body condition, and sociology were studied amongst 72 dogs over 18 months using scat analysis and direct observations. Human faeces constituted the fourth most common item in scats (56% occurrence) and contributed 21% by mass to the observed diet. Human faeces represented a valuable resource because relative to other food items it was consistently available, and of higher nutritional value than ‘sadza’ (maize porridge, the human staple and primary human-derived food), yielding 18.7% crude protein and 18.7 KJ/kg gross energy, compared to 8.3% and 18.5 KJ/kg for sadza, respectively. Human faeces had protein and energy values equivalent to mammal remains, another important food item. Dog condition was generally good, with 64% of adult females and 74% of adult males in the highest two body condition scores (on a five point scale), suggesting a plentiful and high quality food supply. Dogs largely fed alone, perhaps as a consequence of the small, inert, and spatially dispersed items that comprise their diet, and its abundance. We discuss the relationships between sanitation, human development, the supply of human faeces, female dog fertility, and population control.
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932
Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Cristea, Violeta Corina; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica
2016-06-01
The gastrointestinal microbiota contributes to the consolidation of the anti-infectious barrier against enteric pathogens. The purpose of this study was to investigate the influence of Bifidobacterium sp. strains, recently isolated from infant gastrointestinal microbiota on the in vitro growth and virulence features expression of enteropathogenic bacterial strains. The antibacterial activity of twelve Bifidobacterium sp. strains isolated from human feces was examined in vitro against a wide range of Gram negative pathogenic strains isolated from 30 infant patients (3 days to 5 years old) with diarrhea. Both potential probiotic strains (Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium catenulatum, Bifidobacterium breve, Bifidobacterium ruminantium) and enteropathogenic strains (EPEC, EIEC, Klebsiella pneumoniae, Salmonella sp., Yersinia enterocolitica, Pseudomonas aeruginosa) were identified by MALDI-TOF and confirmed serologically when needed. The bactericidal activity, growth curve, adherence to the cellular HEp-2 substratum and production of soluble virulence factors have been assessed in the presence of different Bifidobacterium sp. cultures and fractions (whole culture and free-cell supernatants). Among the twelve Bifidobacterium sp. strains, the largest spectrum of antimicrobial activity against 9 of the 18 enteropathogenic strains was revealed for a B. breve strain recently isolated from infant intestinal feces. The whole culture and free-cell supernatant of B. breve culture decreased the multiplication rate, shortened the log phase and the total duration of the growth curve, with an earlier entrance in the decline phase and inhibited the adherence capacity to a cellular substratum and the swimming/swarming motility too. These results indicate the significant probiotic potential of the B. breve strain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reyher, K K; Dohoo, I R; Scholl, D T; Keefe, G P
2012-07-01
Major mastitis pathogens such as Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium spp. and coagulase-negative staphylococci (CNS). The current literature comprises several studies (n=38) detailing analyses with conflicting results as to whether intramammary infections (IMI) with the minor pathogens decrease, increase, or have no effect on the risk of a quarter acquiring a new IMI (NIMI) with a major pathogen. The Canadian Bovine Mastitis Research Network has a large mastitis database derived from a 2-yr data collection on a national cohort of dairy farms, and data from this initiative were used to further investigate the effect of IMI with minor pathogens on the acquisition of new major pathogen infections (defined as a culture-positive quarter sample in a quarter that had been free of that major pathogen in previous samples in the sampling period). Longitudinal milk samplings of clinically normal udders taken over several 6-wk periods as well as samples from cows pre-dry-off and postcalving were used to this end (n=80,397 quarter milk samples). The effects of CNS and Corynebacterium spp. on the major mastitis pathogens Staph. aureus, Strep. uberis, Strep. dysgalactiae, and coliform bacteria (Escherichia coli and Klebsiella spp.) were investigated using risk ratio analyses and multilevel logistic regression models. Quarter-, cow- and herd-level susceptibility parameters were also evaluated and were able to account for the increased susceptibility that exists within herds, cows and quarters, removing it from estimates for the effects of the minor pathogens. Increased quarter-level susceptibility was associated with increased risk of major pathogen NIMI for all pathogens except the coliforms. Increased somatic cell count was consistently associated with elevated risk of new major pathogen infections, but this was assumed to be a result of low sensitivity of bacteriology to diagnose major pathogen NIMI expediently and accurately. The presence of CNS in the sample 2 samplings before the occurrence of a NIMI increased the odds of experiencing a Staph. aureus NIMI 2.0 times, making the presence of CNS a risk factor for acquiring a Staph. aureus NIMI. Even with this extensive data set, power was insufficient to make a definitive statement about the effect of minor pathogen IMI on the acquisition of major pathogen NIMI. Definitively answering questions of this nature are likely to require an extremely large data set dedicated particularly to minor pathogen presence and NIMI with major pathogens. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Battle for Iron between Humans and Microbes.
Carver, Peggy L
2018-01-01
Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Antibacterial peptides from plants: what they are and how they probably work.
Barbosa Pelegrini, Patrícia; Del Sarto, Rafael Perseghini; Silva, Osmar Nascimento; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima
2011-01-01
Plant antibacterial peptides have been isolated from a wide variety of species. They consist of several protein groups with different features, such as the overall charge of the molecule, the content of disulphide bonds, and structural stability under environmental stress. Although the three-dimensional structures of several classes of plant peptides are well determined, the mechanism of action of some of these molecules is still not well defined. However, further studies may provide new evidences for their function on bacterial cell wall. Therefore, this paper focuses on plant peptides that show activity against plant-pathogenic and human-pathogenic bacteria. Furthermore, we describe the folding of several peptides and similarities among their three-dimensional structures. Some hypotheses for their mechanisms of action and attack on the bacterial membrane surface are also proposed.
Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract.
Burnham, Philip; Dadhania, Darshana; Heyang, Michael; Chen, Fanny; Westblade, Lars F; Suthanthiran, Manikkam; Lee, John Richard; De Vlaminck, Iwijn
2018-06-20
Urinary tract infections are one of the most common infections in humans. Here we tested the utility of urinary cell-free DNA (cfDNA) to comprehensively monitor host and pathogen dynamics in bacterial and viral urinary tract infections. We isolated cfDNA from 141 urine samples from a cohort of 82 kidney transplant recipients and performed next-generation sequencing. We found that urinary cfDNA is highly informative about bacterial and viral composition of the microbiome, antimicrobial susceptibility, bacterial growth dynamics, kidney allograft injury, and host response to infection. These different layers of information are accessible from a single assay and individually agree with corresponding clinical tests based on quantitative PCR, conventional bacterial culture, and urinalysis. In addition, cfDNA reveals the frequent occurrence of pathologies that remain undiagnosed with conventional diagnostic protocols. Our work identifies urinary cfDNA as a highly versatile analyte to monitor infections of the urinary tract.
Morgan, Matthew J; Halstrom, Samuel; Wylie, Jason T; Walsh, Tom; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J
2016-03-15
Free-living amoebae, such as Naegleria fowleri, Acanthamoeba spp., and Vermamoeba spp., have been identified as organisms of concern due to their role as hosts for pathogenic bacteria and as agents of human disease. In particular, N. fowleri is known to cause the disease primary amoebic meningoencephalitis (PAM) and can be found in drinking water systems in many countries. Understanding the temporal dynamics in relation to environmental and biological factors is vital for developing management tools for mitigating the risks of PAM. Characterizing drinking water systems in Western Australia with a combination of physical, chemical and biological measurements over the course of a year showed a close association of N. fowleri with free chlorine and distance from treatment over the course of a year. This information can be used to help design optimal management strategies for the control of N. fowleri in drinking-water-distribution systems.
Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses
Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping
2015-01-01
Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773
Mycoplasma genitalium: An Overlooked Sexually Transmitted Pathogen in Women?
Ona, Samsiya; Molina, Rose L.; Diouf, Khady
2016-01-01
Mycoplasma genitalium is a facultative anaerobic organism and a recognized cause of nongonococcal urethritis in men. In women, M. genitalium has been associated with cervicitis, endometritis, pelvic inflammatory disease (PID), infertility, susceptibility to human immunodeficiency virus (HIV), and adverse birth outcomes, indicating a consistent relationship with female genital tract pathology. The global prevalence of M. genitalium among symptomatic and asymptomatic sexually active women ranges between 1 and 6.4%. M. genitalium may play a role in pathogenesis as an independent sexually transmitted pathogen or by facilitating coinfection with another pathogen. The long-term reproductive consequences of M. genitalium infection in asymptomatic individuals need to be investigated further. Though screening for this pathogen is not currently recommended, it should be considered in high-risk populations. Recent guidelines from the Centers for Disease Control regarding first-line treatment for PID do not cover M. genitalium but recommend considering treatment in patients without improvement on standard PID regimens. Prospective studies on the prevalence, pathophysiology, and long-term reproductive consequences of M. genitalium infection in the general population are needed to determine if screening protocols are necessary. New treatment regimens need to be investigated due to increasing drug resistance. PMID:27212873
Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.
Collado, M C; Meriluoto, J; Salminen, S
2007-10-01
The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.
Miller, Ryan S.; Sweeney, Steven J.; Slootmaker, Chris; Grear, Daniel A.; DiSalvo, Paul A.; Kiser, Deborah; Shwiff, Stephanie A.
2017-01-01
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Miller, Ryan S; Sweeney, Steven J; Slootmaker, Chris; Grear, Daniel A; Di Salvo, Paul A; Kiser, Deborah; Shwiff, Stephanie A
2017-08-10
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Nithya, Angamuthu; Babu, Subramanian
2017-03-14
The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.
Cold plasma inactivation of human pathogens on foods and regulatory status update
USDA-ARS?s Scientific Manuscript database
Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...
Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.
Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn
2016-04-01
The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more binding inhibition than by the same amount of intact human lactoferrin or by the plant-derived N-glycans released from the rice recombinant lactoferrin; 3) pre-incubation of the bacteria with N-linked glycans released from human tear proteins inhibiting the adhesion of the ocular P. aeruginosa strains to immobilised tear proteins; 4) inhibition by the N-glycans from lactoferrin of the ability of an ocular strain of P. aeruginosa to invade corneal epithelial cells; 5) removal of terminal sialic acid and fucose moieties from the tear glycoproteins with α2-3,6,8 neuraminidase (sialidase) and α1-2,3,4 fucosidase resulting in a reduction in binding of the UTI P. aeruginosa isolate, but not the adhesion of the ocular cytotoxic (6206) or invasive (6294) isolates. Glycosidase activity was validated by mass spectrometry. In all cases, the magnitude of inhibition of bacterial adhesion by the N-glycans was consistently greater for the cytotoxic ocular strain than for the invasive ocular strain. Ocular P. aeruginosa isolates seems to exhibit different adhesion mechanism than previously known PAI and PAII lectin adhesion. The work may contribute towards the development of glycan-focused therapies to prevent P. aeruginosa infection of the eye. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Abdel-Moein, Khaled A; Hamza, Dalia A
2016-01-01
The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.
Pathogens and host immunity in the ancient human oral cavity
Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico
2014-01-01
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188
van de Ven, Rieneke; Thon, Maria; Gibbs, Susan; de Gruijl, Tanja D.
2017-01-01
Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies. PMID:28704477
Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG).
Chávez-Munguía, Bibiana; Villatoro, Lizbeth Salazar; Omaña-Molina, Maritza; Rodríguez-Monroy, Marco Aurelio; Segovia-Gamboa, Norma; Martínez-Palomo, Adolfo
2014-07-01
The free living amoeba Naegleria fowleri is pathogenic to humans but also to other mammalians. These amoebae may invade the nasal mucosa and migrate into the brain causing cerebral hemorrhagic necrosis, a rapidly fatal infection. Knowledge of the cytolytic mechanism involved in the destruction of brain tissues by Naegleria trophozoites is limited. In other amoebic species, such as Entamoeba histolytica, we have previously reported the possible lytic role of small cytoplasmic components endowed with proteolytic activities, known as electrondense granules (EDG). Using transmission electron microscopy we now report that EDG, seldom found in long term cultured N. fowleri, are present in abundance in trophozoites recovered from experimental mice brain lesions. Numerous EDG were also observed in amoebae incubated with collagen substrates or cultured epithelial cells. SDS-PAGE assays of concentrated supernatants of these trophozoites, containing EDG, revealed proteolytic activities. These results suggest that EDG may have a clear role in the cytopathic mechanisms of this pathogenic amoeba. Copyright © 2014 Elsevier Inc. All rights reserved.
Serosurvey of free-ranging Amur tigers in the Russian Far East.
Goodrich, John M; Quigley, Kathy S; Lewis, John C M; Astafiev, Anatoli A; Slabi, Evgeny V; Miquelle, Dale G; Smirnov, Evgeney N; Kerley, Linda L; Armstrong, Douglas L; Quigley, Howard B; Hornocker, Maurice G
2012-01-01
Wild Amur tigers (Panthera tigris altaica, n=44) from the Russian Far East were tested for antibodies to feline leukemia virus, feline corona virus (FCoV), feline immunodeficiency virus, feline parvovirus (FPV), canine distemper virus (CDV), Toxoplasma gondii, and Bartonella henselae. Antibodies to FCoV, CDV, FPV, and T. gondii were detected in 43, 15, 68, and 42% of tigers, respectively. No differences were detected in antibody prevalence estimates between tigers captured as part of a research program and those captured to mitigate human-tiger conflicts. Domestic dogs (Canis familiaris) were tested as a potential source for CDV; 16% were vaccinated against CDV and 58% of unvaccinated dogs were antibody positive for CDV. A high percentage of tigers were exposed to potential pathogens that could affect the survival of this species. We recommend continued monitoring of wild tigers throughout Asia, development of standardized sampling and postmortem examination procedures, and additional research to better understand potential domestic and wild animal sources for these pathogens.
How to keep punishment to maintain cooperation: Introducing social vaccine
NASA Astrophysics Data System (ADS)
Yamamoto, Hitoshi; Okada, Isamu
2016-02-01
Although there is much support for the punishment system as a sophisticated approach to resolving social dilemmas, more than a few researchers have also pointed out the limitations of such an approach. Second-order free riding is a serious issue facing the punishment system. Various pioneering works have suggested that an anti-social behavior or noise stemming from a mutation may, surprisingly, be helpful for avoiding second-order freeloaders. In this work, we show through mathematical analysis and an agent-based simulation of a model extending the meta-norms game that the coercive introduction of a small number of non-cooperators can maintain a cooperative regime robustly. This paradoxical idea was inspired by the effect of a vaccine, which is a weakened pathogen injected into a human body to create antibodies and ward off infection by that pathogen. Our expectation is that the coercive introduction of a few defectors, i.e., a social vaccine, will help maintain a highly cooperative regime because it will ensure that the punishment system works.
Targeting channels and transporters in protozoan parasite infections
NASA Astrophysics Data System (ADS)
Meier, Anna; Erler, Holger; Beitz, Eric
2018-03-01
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Taniguchi, Takako; Misawa, Naoaki
2016-01-01
ABSTRACT Helicobacter cinaedi is an emerging opportunistic pathogen associated with infections of diverse anatomic sites. Nevertheless, the species demonstrates fastidious axenic growth; it has been described as requiring a microaerobic atmosphere, along with a strong preference for supplemental H2 gas. In this context, we examined the hypothesis that in vitro growth of H. cinaedi could be enhanced by coculture with human epithelial cells. When inoculated (in Ham's F12 medium) over Caco-2 monolayers, the type strain (ATCC BAA-847) gained the ability to proliferate under H2-free aerobic conditions. Identical results were observed during coculture with several other monolayer types (LS-174T, AGS, and HeLa). Under chemically defined conditions, 40 amino acids and carboxylates were screened for their effect on the organism's atmospheric requirements. Several molecules promoted H2-free aerobic proliferation, although it occurred most prominently with millimolar concentrations of l-lactate. The growth response of H. cinaedi to Caco-2 cells and l-lactate was confirmed with a collection of 12 human-derived clinical strains. mRNA sequencing was next performed on the type strain under various growth conditions. In addition to providing a whole-transcriptome profile of H. cinaedi, this analysis demonstrated strong constitutive expression of the l-lactate utilization locus, as well as differential transcription of terminal respiratory proteins as a function of Caco-2 coculture and l-lactate supplementation. Overall, these findings challenge traditional views of H. cinaedi as an obligate microaerophile. IMPORTANCE H. cinaedi is an increasingly recognized pathogen in people with compromised immune systems. Atypical among other members of its bacterial class, H. cinaedi has been associated with infections of diverse anatomic sites. Growing H. cineadi in the laboratory is quite difficult, due in large part to the need for a specialized atmosphere. The suboptimal growth of H. cinaedi is an obstacle to clinical diagnosis, and it also limits investigation into the organism's biology. The current work shows that H. cinaedi has more flexible atmospheric requirements in the presence of host cells and a common host-derived molecule. This nutritional interplay raises new questions about how the organism behaves during human infections and provides insights for how to optimize its laboratory cultivation. PMID:27613684
Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism
Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark
2008-01-01
Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies. PMID:18302996
Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans.
Mora, Azucena; Viso, Susana; López, Cecilia; Alonso, María Pilar; García-Garrote, Fernando; Dabhi, Ghizlane; Mamani, Rosalía; Herrera, Alexandra; Marzoa, Juan; Blanco, Miguel; Blanco, Jesús E; Moulin-Schouleur, Maryvonne; Schouler, Catherine; Blanco, Jorge
2013-12-27
Escherichia coli strains O45:K1:H7 are implicated in severe human infections such as meningitis. Since an increasing prevalence of serogroup O45 among avian pathogenic (APEC) and human extraintestinal pathogenic (ExPEC) E. coli strains isolated in Spain have been noticed, the aims of the present study were to investigate similarities between poultry and human O45 isolates, and to investigate the evolutionary relationship of ST95 types. The genetic relatedness and virulence gene profiles of 55 O45 APEC obtained from an avian colibacillosis collection (1991-2011) and 19 human O45 ExPEC from a human septicemic/uropathogenic (UPEC) E. coli collection (1989-2010) were determined by multilocus sequence typing (MLST), pulsed-field-gel-electrophoresis (PFGE), ECOR phylogrouping, and PCR-based genotyping. Two main clonal groups were established. The most prevalent and highly pathogenic O45:K1:H7-B2-ST95 shows a successful persistence since the 90s to the present, with parallel evolution both in human and poultry, on the basis of their PFGE and virulence gene profile similarities (9 human strains and 15 avian strains showed ≥85% PFGE identity). Comparison of this group with other ST95 closely related members (O1:K1:H7 and O18:K1:H7 isolates from our collections) shows pathogenic specialization through conserved virulence genotypes. The other prevalent O45 clonal group characterized in this study, the O45:HNM/H19-D-ST371/ST2676 was only detected in APEC strains suggesting host specificity. In conclusion, poultry could be acting as a reservoir of O45:K1:H7-B2-ST95 and other pathogenic ST95 serotypes in humans. Further studies would be necessary to clarify if pathogenic mechanisms used by ST95 strains are the same in avian and human hosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Quispe Calla, Nirk E.; Pavelko, Stephen D.; Cherpes, Thomas L.
2016-01-01
While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response. PMID:27606424
Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.
2009-01-01
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880
Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines
Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria
2014-01-01
ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These results suggest that slightly pathogenic IAVs may prove to be effective for oncolytic virotherapy of PDA and provide grounds for further studies to develop specific and targeted viruses, with the aim of testing their efficacy in clinical contexts. PMID:24899201
Amoeba provide insight into the origin of virulence in pathogenic fungi.
Casadevall, Arturo
2012-01-01
Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.
Xing, Junji; Ly, Hinh
2014-01-01
ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708
76 FR 47148 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... work in microbiology and pathology, to study biological materials in order to identify bacterial or viral pathogens with clinical significance in veterinary medicine. Justification for Duty-Free Entry: No...
We evaluate the influence of multiple sources of faecal indicator bacteria in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrat...
Pathogenesis of leptospirosis: cellular and molecular aspects.
Adler, Ben
2014-08-27
Leptospirosis is arguably the most widespread zoonosis; it is also a major cause of economic loss in production animals worldwide. At the level of the host animal or human, the progression of infection and the onset of disease are well documented. However, the mechanisms of pathogenesis at the cellular and molecular level remain poorly understood, mainly as a result of the lack of modern genetic tools for mutagenesis of pathogenic Leptospira spp. The recent development of transposon mutagenesis and the construction of a very small number of directed leptospiral mutants have identified a limited number of essential virulence factors. Perhaps surprisingly, many leptospiral proteins with characteristics consistent with a role in virulence have been shown to not be required for virulence in animal models, consistent with a high degree of functional redundancy in pathogenic Leptospira. A large number of putative adhesins has been reported in Leptospira, which interact with a range of host tissue components; however, almost none of these have been genetically confirmed as having an essential role in pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata
Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.
2011-01-01
Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132
Haack, Sheridan K.; Duris, Joseph W.
2013-01-01
Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.