Sample records for consistent theoretical model

  1. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    NASA Astrophysics Data System (ADS)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  2. Modeling Theory of Mind and Cognitive Appraisal with Decision-Theoretic Agents

    DTIC Science & Technology

    2011-04-07

    following key factors: Consistency: People expect, prefer, and are driven to maintain consistency, and avoid cognitive dissonance , be- tween beliefs...Modeling Theory of Mind and Cognitive Appraisal with Decision-Theoretic Agents David V. Pynadath1, Mei Si2, and Stacy C. Marsella1 1Institute for...capacity in appraisal and social emotions, as well as arguing for a uniform process for emotion and cognition . 1 Report Documentation Page Form

  3. An Explanatory Model of Teacher Movement within Ontario School Boards

    ERIC Educational Resources Information Center

    Sibbald, Timothy M.

    2017-01-01

    Teacher movement within school boards is examined using multiple case study. Emergent themes achieved theoretical saturation and are consistent with the research literature. In this paper, the relationships between the themes are used to develop a substantive theoretical model of teacher movement within school boards. The model uses a two-phase…

  4. EOSlib, Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Nathan; Menikoff, Ralph

    2017-02-03

    Equilibrium thermodynamics underpins many of the technologies used throughout theoretical physics, yet verification of the various theoretical models in the open literature remains challenging. EOSlib provides a single, consistent, verifiable implementation of these models, in a single, easy-to-use software package. It consists of three parts: a software library implementing various published equation-of-state (EOS) models; a database of fitting parameters for various materials for these models; and a number of useful utility functions for simplifying thermodynamic calculations such as computing Hugoniot curves or Riemann problem solutions. Ready availability of this library will enable reliable code-to- code testing of equation-of-state implementations, asmore » well as a starting point for more rigorous verification work. EOSlib also provides a single, consistent API for its analytic and tabular EOS models, which simplifies the process of comparing models for a particular application.« less

  5. A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Quereshi, A. H.

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  6. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  7. Theoretical modeling and experimental analyses of laminated wood composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  8. Coupling biology and oceanography in models.

    PubMed

    Fennel, W; Neumann, T

    2001-08-01

    The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.

  9. Consistent three-equation model for thin films

    NASA Astrophysics Data System (ADS)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  10. Theoretical model for optical properties of porphyrin

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Nga, Do T.; Phan, The-Long; Thanh, Le T. M.; Anh, Chu T.; Bernad, Sophie; Viet, N. A.

    2014-12-01

    We propose a simple model to interpret the optical absorption spectra of porphyrin in different solvents. Our model successfully explains the decrease in the intensity of optical absorption at maxima of increased wavelengths. We also prove the dependence of the intensity and peak positions in the absorption spectra on the environment. The nature of the Soret band is supposed to derive from π plasmon. Our theoretical calculations are consistent with previous experimental studies.

  11. Development of global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1985-01-01

    The improvement of an understanding of the variation of the aerosol backscattering at 10.6 micron within the free troposphere and the development model to describe this was undertaken. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets are obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained, which describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season. Most data are available and greatest consistency is found inside the Northern Hemisphere.

  12. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    PubMed

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  13. Hypnosis in the Treatment of Alcoholism: A Theoretical Perspective.

    ERIC Educational Resources Information Center

    Steffenhagen, R. A.

    1983-01-01

    Reviews the history and theory of alcoholism and hypnosis and proposes a theoretical model of alcholism based on self-esteem. Suggets that hypnosis may be an effective tool in the treatment of alcoholism with cure as the goal, and calls for more consistency in theory and practice. (JAC)

  14. The Prevailing Construct in Civic Education and Its Problems

    ERIC Educational Resources Information Center

    Gutierrez, Robert

    2010-01-01

    This article presents the natural rights construct as the perspective used in civic education, by outlining its moral, theoretical, and curricular elements. Morally, the construct holds a liberal view of individual rights and liberty from subjugation. The theoretical element consists of a description of the political systems model, which…

  15. Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit

    NASA Astrophysics Data System (ADS)

    Wu, Jufei; Wang, Qian; Han, Yunfei

    2017-12-01

    In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.

  16. Assessing the formability of metallic sheets by means of localized and diffuse necking models

    NASA Astrophysics Data System (ADS)

    Comşa, Dan-Sorin; Lǎzǎrescu, Lucian; Banabic, Dorel

    2016-10-01

    The main objective of the paper consists in elaborating a unified framework that allows the theoretical assessment of sheet metal formability. Hill's localized necking model and the Extended Maximum Force Criterion proposed by Mattiasson, Sigvant, and Larsson have been selected for this purpose. Both models are thoroughly described together with their solution procedures. A comparison of the theoretical predictions with experimental data referring to the formability of a DP600 steel sheet is also presented by the authors.

  17. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the electromagnetic radiation. The theoretical results delivered by the proposed model agree quite well with the experimental measurements in many aspects. Therefore, the proposed self-consistent model provides an efficient and reliable means for designing ICP sources in various applications such as VLSI fabrication and electrodeless light sources.

  18. A New String Model: NEXUS 3

    NASA Astrophysics Data System (ADS)

    Werner, K.; Liu, F. M.; Ostapchenko, S.; Pierog, T.

    2004-11-01

    After discussing conceptual problems with the conventional string model, we present a new approach, based on a theoretically consistent multiple scattering formalism. First results for proton-proton scattering at 158 GeV are discussed.

  19. Electrical conductivity of metal powders under pressure

    NASA Astrophysics Data System (ADS)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  20. Thermal Dissociation and Roaming Isomerization of Nitromethane: Experiment and Theory.

    PubMed

    Annesley, Christopher J; Randazzo, John B; Klippenstein, Stephen J; Harding, Lawrence B; Jasper, Ahren W; Georgievskii, Yuri; Ruscic, Branko; Tranter, Robert S

    2015-07-16

    The thermal decomposition of nitromethane provides a classic example of the competition between roaming mediated isomerization and simple bond fission. A recent theoretical analysis suggests that as the pressure is increased from 2 to 200 Torr the product distribution undergoes a sharp transition from roaming dominated to bond-fission dominated. Laser schlieren densitometry is used to explore the variation in the effect of roaming on the density gradients for CH3NO2 decomposition in a shock tube for pressures of 30, 60, and 120 Torr at temperatures ranging from 1200 to 1860 K. A complementary theoretical analysis provides a novel exploration of the effects of roaming on the thermal decomposition kinetics. The analysis focuses on the roaming dynamics in a reduced dimensional space consisting of the rigid-body motions of the CH3 and NO2 radicals. A high-level reduced-dimensionality potential energy surface is developed from fits to large-scale multireference ab initio calculations. Rigid body trajectory simulations coupled with master equation kinetics calculations provide high-level a priori predictions for the thermal branching between roaming and dissociation. A statistical model provides a qualitative/semiquantitative interpretation of the results. Modeling efforts explore the relation between the predicted roaming branching and the observed gradients. Overall, the experiments are found to be fairly consistent with the theoretically proposed branching ratio, but they are also consistent with a no-roaming scenario and the underlying reasons are discussed. The theoretical predictions are also compared with prior theoretical predictions, with a related statistical model, and with the extant experimental data for the decomposition of CH3NO2, and for the reaction of CH3 with NO2.

  1. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels.

    PubMed

    Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik

    2011-01-01

    We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Diagnosing and dealing with multicollinearity.

    PubMed

    Schroeder, M A

    1990-04-01

    The purpose of this article was to increase nurse researchers' awareness of the effects of collinear data in developing theoretical models for nursing practice. Collinear data distort the true value of the estimates generated from ordinary least-squares analysis. Theoretical models developed to provide the underpinnings of nursing practice need not be abandoned, however, because they fail to produce consistent estimates over repeated applications. It is also important to realize that multicollinearity is a data problem, not a problem associated with misspecification of a theorectical model. An investigator must first be aware of the problem, and then it is possible to develop an educated solution based on the degree of multicollinearity, theoretical considerations, and sources of error associated with alternative, biased, least-square regression techniques. Decisions based on theoretical and statistical considerations will further the development of theory-based nursing practice.

  3. Information-Processing Models and Curriculum Design

    ERIC Educational Resources Information Center

    Calfee, Robert C.

    1970-01-01

    "This paper consists of three sections--(a) the relation of theoretical analyses of learning to curriculum design, (b) the role of information-processing models in analyses of learning processes, and (c) selected examples of the application of information-processing models to curriculum design problems." (Author)

  4. The tell-tale look: viewing time, preferences, and prices.

    PubMed

    Gunia, Brian C; Murnighan, J Keith

    2015-01-01

    Even the simplest choices can prompt decision-makers to balance their preferences against other, more pragmatic considerations like price. Thus, discerning people's preferences from their decisions creates theoretical, empirical, and practical challenges. The current paper addresses these challenges by highlighting some specific circumstances in which the amount of time that people spend examining potential purchase items (i.e., viewing time) can in fact reveal their preferences. Our model builds from the gazing literature, in a purchasing context, to propose that the informational value of viewing time depends on prices. Consistent with the model's predictions, four studies show that when prices are absent or moderate, viewing time provides a signal that is consistent with a person's preferences and purchase intentions. When prices are extreme or consistent with a person's preferences, however, viewing time is a less reliable predictor of either. Thus, our model highlights a price-contingent "viewing bias," shedding theoretical, empirical, and practical light on the psychology of preferences and visual attention, and identifying a readily observable signal of preference.

  5. Rheological properties of simulated debris flows in the laboratory environment

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung; Jan, Chyan-Deng; ,

    1990-01-01

    Steady debris flows with or without a snout are simulated in a 'conveyor-belt' flume using dry glass spheres of a uniform size, 5 or 14 mm in diameter, and their rheological properties described quantitatively in constants in a generalized viscoplastic fluid (GVF) model. Close agreement of the measured velocity profiles with the theoretical ones obtained from the GVF model strongly supports the validity of a GVF model based on the continuum-mechanics approach. Further comparisons of the measured and theoretical velocity profiles along with empirical relations among the shear stress, the normal stress, and the shear rate developed from the 'ring-shear' apparatus determine the values of the rheological parameters in the GVF model, namely the flow-behavior index, the consistency index, and the cross-consistency index. Critical issues in the evaluation of such rheological parameters using the conveyor-belt flume and the ring-shear apparatus are thus addressed in this study.

  6. Some Aspects of Advanced Tokamak Modeling in DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.

    2000-10-01

    We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.

  7. Analytical and scale model research aimed at improved hangglider design

    NASA Technical Reports Server (NTRS)

    Kroo, I.; Chang, L. S.

    1979-01-01

    Research consisted of a theoretical analysis which attempts to predict aerodynamic characteristics using lifting surface theory and finite-element structural analysis as well as an experimental investigation using 1/5 scale elastically similar models in the NASA Ames 2m x 3m (7' x 10') wind tunnel. Experimental data were compared with theoretical results in the development of a computer program which may be used in the design and evaluation of ultralight gliders.

  8. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  9. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  10. A model-based analysis of a display for helicopter landing approach. [control theoretical model of human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wheat, L. W.

    1975-01-01

    A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.

  11. Influence of structural parameters of deep groove ball bearings on vibration

    NASA Astrophysics Data System (ADS)

    Yu, Guangwei; Wu, Rui; Xia, Wei

    2018-04-01

    Taking 6201 bearing as the research object, a dynamic model of 4 degrees of freedom is established to solve the vibration characteristics such as the displacement, velocity and acceleration of deep groove ball bearings by MATLAB and Runge-Kutta method. By calculating the theoretical value of the frequency of the rolling element passing through the outer ring and the simulation value of the model, it can be known that the theoretical calculation value and the simulation value have good consistency. By the experiments, the measured values and simulation values are consistent. Using the mathematical model, the effect of structural parameters on vibration is obtained. The method in the paper is testified to be feasible and the results can be used as references for the design, manufacturing and testing of deep groove ball bearings.

  12. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  13. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  14. Theoretical accuracy in cosmological growth estimation

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya; Hellwing, Wojciech A.; Zhao, Gong-Bo; Winther, Hans A.

    2017-07-01

    We elucidate the importance of the consistent treatment of gravity-model specific nonlinearities when estimating the growth of cosmological structures from redshift space distortions (RSD). Within the context of standard perturbation theory (SPT), we compare the predictions of two theoretical templates with redshift space data from COLA (comoving Lagrangian acceleration) simulations in the normal branch of DGP gravity (nDGP) and general relativity (GR). Using COLA for these comparisons is validated using a suite of full N-body simulations for the same theories. The two theoretical templates correspond to the standard general relativistic perturbation equations and those same equations modeled within nDGP. Gravitational clustering nonlinear effects are accounted for by modeling the power spectrum up to one-loop order and redshift space clustering anisotropy is modeled using the Taruya, Nishimichi and Saito (TNS) RSD model. Using this approach, we attempt to recover the simulation's fiducial logarithmic growth parameter f . By assigning the simulation data with errors representing an idealized survey with a volume of 10 Gpc3/h3 , we find the GR template is unable to recover fiducial f to within 1 σ at z =1 when we match the data up to kmax=0.195 h /Mpc . On the other hand, the DGP template recovers the fiducial value within 1 σ . Further, we conduct the same analysis for sets of mock data generated for generalized models of modified gravity using SPT, where again we analyze the GR template's ability to recover the fiducial value. We find that for models with enhanced gravitational nonlinearity, the theoretical bias of the GR template becomes significant for stage IV surveys. Thus, we show that for the future large data volume galaxy surveys, the self-consistent modeling of non-GR gravity scenarios will be crucial in constraining theory parameters.

  15. Processing Speed in Children: Examination of the Structure in Middle Childhood and Its Impact on Reading

    ERIC Educational Resources Information Center

    Gerst, Elyssa H.

    2017-01-01

    The primary aim of this study was to examine the structure of processing speed (PS) in middle childhood by comparing five theoretically driven models of PS. The models consisted of two conceptual models (a unitary model, a complexity model) and three methodological models (a stimulus material model, an output modality model, and a timing modality…

  16. A Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success

    ERIC Educational Resources Information Center

    Luong, Ming; Stevens, Jeff

    2015-01-01

    The Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success, a theoretical stages-of-growth model, explains long-term success in IT outsourcing relationships. Research showed the IT outsourcing relationship life cycle consists of four distinct, sequential stages: contract, transition, support, and partnership. The model was…

  17. THE HYDROCARBON SPILL SCREENING MODEL (HSSM), VOLUME 2: THEORETICAL BACKGROUND AND SOURCE CODES

    EPA Science Inventory

    A screening model for subsurface release of a nonaqueous phase liquid which is less dense than water (LNAPL) is presented. The model conceptualizes the release as consisting of 1) vertical transport from near the surface to the capillary fringe, 2) radial spreading of an LNAPL l...

  18. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1990-01-01

    The research described consisted of developing and refining the continuous flow laser model program including the creation of a working model. The mathematical development of a two pass amplifier for an iodine laser is summarized. A computer program for the amplifier's simulation is included with output from the simulation model.

  19. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.

  20. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  1. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  2. Essays on oil and business cycles in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Aba Alkhail, Bandar A.

    This dissertation consists of three chapters. Chapter one presents a theoretical model using a dynamic stochastic general equilibrium (DSGE) approach to investigate the role of world oil prices in explaining the business cycle in Saudi Arabia. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. However, this model has some unfavorable features that are associated with both investment and labor hours. The second chapter presents a modified theoretical model using DSGE approach to examine the role of world oil prices versus productivity shocks in explaining the business cycles in Saudi Arabia. To overcome the unfavorable features of the baseline model, the alternative model adds friction to the model by incorporating investment portfolio adjustment cost. Thus, the alternative model produces similar dynamics to that of the baseline model but the unfavorable characteristics are eliminated. Also, this chapter conducts sensitivity analysis. The objective of the third chapter is to empirically investigate how real world oil price and productivity shocks affect output, consumption, investment, labor hours, and trade balance/output ratio for Saudi Arabia. This chapter complements the theoretical model of the previous chapters. In addition, this study builds a foundation for future studies in examining the impact of real world oil price shocks on the economies of key trade partners of Saudi Arabia. The results of the third chapter show that productivity shocks matter more for macroeconomic fluctuations than oil shocks for the Saudis' primary trade partners. Therefore, fears of oil importing countries appear to be overstated. As a whole, this research is important for the following reasons. First, the empirical model is consistent with the predictions of our theoretical model in that productivity is a driving force of business cycles in Saudi Arabia. Second, the policymakers in Saudi Arabia should be more concerned with increasing productivity through adopting new technologies that increase economic prosperity. Therefore, the policymakers should continue diversifying economic resources and reduce their reliance on oil.

  3. A variational data assimilation system for the range dependent acoustic model using the representer method: Theoretical derivations.

    PubMed

    Ngodock, Hans; Carrier, Matthew; Fabre, Josette; Zingarelli, Robert; Souopgui, Innocent

    2017-07-01

    This study presents the theoretical framework for variational data assimilation of acoustic pressure observations into an acoustic propagation model, namely, the range dependent acoustic model (RAM). RAM uses the split-step Padé algorithm to solve the parabolic equation. The assimilation consists of minimizing a weighted least squares cost function that includes discrepancies between the model solution and the observations. The minimization process, which uses the principle of variations, requires the derivation of the tangent linear and adjoint models of the RAM. The mathematical derivations are presented here, and, for the sake of brevity, a companion study presents the numerical implementation and results from the assimilation simulated acoustic pressure observations.

  4. Phase behavior of ternary polymer brushes

    DOE PAGES

    Simocko, Chester K.; Frischknecht, Amalie L.; Huber, Dale L.

    2016-01-07

    Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. As a result, all phase behaviors observed experimentally correlate well with the theoretical model.

  5. The theoretical cognitive process of visualization for science education.

    PubMed

    Mnguni, Lindelani E

    2014-01-01

    The use of visual models such as pictures, diagrams and animations in science education is increasing. This is because of the complex nature associated with the concepts in the field. Students, especially entrant students, often report misconceptions and learning difficulties associated with various concepts especially those that exist at a microscopic level, such as DNA, the gene and meiosis as well as those that exist in relatively large time scales such as evolution. However the role of visual literacy in the construction of knowledge in science education has not been investigated much. This article explores the theoretical process of visualization answering the question "how can visual literacy be understood based on the theoretical cognitive process of visualization in order to inform the understanding, teaching and studying of visual literacy in science education?" Based on various theories on cognitive processes during learning for science and general education the author argues that the theoretical process of visualization consists of three stages, namely, Internalization of Visual Models, Conceptualization of Visual Models and Externalization of Visual Models. The application of this theoretical cognitive process of visualization and the stages of visualization in science education are discussed.

  6. Validating the Mexican American Intergenerational Caregiving Model

    ERIC Educational Resources Information Center

    Escandon, Socorro

    2011-01-01

    The purpose of this study was to substantiate and further develop a previously formulated conceptual model of Role Acceptance in Mexican American family caregivers by exploring the theoretical strengths of the model. The sample consisted of women older than 21 years of age who self-identified as Hispanic, were related through consanguinal or…

  7. A Model for Ferroelectric Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Qureshi, A. Haq

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstrip lines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  8. Optimizing Biorefinery Design and Operations via Linear Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LPmore » models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for maximizing the potential benefits of biomass utilization for production of fuels, chemicals and power.« less

  9. On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1997-01-01

    The final report discusses work completed on proposals to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. We suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical, chromosphere-wind models, and investigate the origin of "dividing lines" in the H-R diagram. In the report, we list the following six specific goals for the first and second year of the proposed research and then describe the completed work: (1) To calculate the acoustic and magnetic wave energy fluxes for stars located in different regions of the H-R diagram; (2) To investigate the transfer of this non-radiative energy through stellar photospheres and to estimate the amount of energy that reaches the chromosphere; (3) To identify major sources of radiative losses in stellar chromospheres and calculate the amount of emitted energy; (4) To use (1) through (3) to construct purely theoretical, two-component, chromospheric models based on the local energy balance. The models will be constructed for stars of different spectral types and different evolutionary status; (5) To explain theoretically the "basal flux", the location of stellar temperature minima and the observed range of chromospheric activity for stars of the same spectral type; and (6) To construct self-consistent, time-dependent stellar wind models based on the momentum deposition by finite amplitude Alfven waves.

  10. The Drainage of Thin, Vertical, Model Polyurethane Liquid Films

    NASA Astrophysics Data System (ADS)

    Snow, Steven; Pernisz, Udo; Braun, Richard; Naire, Shailesh

    1999-11-01

    We have successfully measured the drainage rate of thin, vertically-aligned, liquid films prepared from model polyurethane foam formulations. The pattern of interference fringes in these films was consistent with a wedge-shaped film profile. The time evolution of this wedge shape (the ``collapsing wedge") obeyed a power law relationship between fringe density s and time t of s = k t^m. Experimentally, m ranged from -0.47 to -0.92. The lower bound for m represented a case where the surface viscosity of the film was very high (a ``rigid" surface). Theoretical modeling of this case yielded m = -0.5, in excellent agreement with experiment. Instantaneous film drainage rate (dV/dt) could be extracted from the ``Collapsing Wedge" model. As expected, dV/dt scaled inversely with bulk viscosity. As surfactant concentration was varied at constant bulk viscosity, dV/dt passed through a maximum value, consistent with a model where the rigidity of the surface was a function of both the intensity of surface tension gradients and the surface viscosity of the film. The influence of surface viscosity on dV/dt was also modeled theoretically.

  11. Theoretical and simulation analysis of piezoelectric liquid resistance captor filled with pipeline

    NASA Astrophysics Data System (ADS)

    Zheng, Li; Zhigang, Yang; Junwu, Kan; Lisheng; Bo, Yan; Dan, Lu

    2018-03-01

    This paper designs a kind of Piezoelectric liquid resistance capture energy device, by using the superposition theory of the sheet deformation, the calculation model of the displacement curve of the circular piezoelectric vibrator and the power generation capacity under the concentrated load is established. The results show that the radius ratio, thickness ratio and Young’s modulus of the circular piezoelectric vibrator have greater influence on the power generation capacity. When the material of piezoelectric oscillator is determined, the best radius ratio and thickness ratio make the power generation capacity the largest. Excessive or small radius ratio and thickness ratio will reduce the generating capacity and even generate zero power. In addition, the electromechanical equivalent model is established. Equivalent analysis is made by changing the circuit impedance. The results are consistent with the theoretical simulation results, indicating that the established circuit model can truly reflect the characteristics of the theoretical model.

  12. [Theoretical model study about the application risk of high risk medical equipment].

    PubMed

    Shang, Changhao; Yang, Fenghui

    2014-11-01

    Research for establishing a risk monitoring theoretical model of high risk medical equipment at applying site. Regard the applying site as a system which contains some sub-systems. Every sub-system consists of some risk estimating indicators. After quantizing of each indicator, the quantized values are multiplied with corresponding weight and then the products are accumulated. Hence, the risk estimating value of each subsystem is attained. Follow the calculating method, the risk estimating values of each sub-system are multiplied with corresponding weights and then the product is accumulated. The cumulative sum is the status indicator of the high risk medical equipment at applying site. The status indicator reflects the applying risk of the medical equipment at applying site. Establish a risk monitoring theoretical model of high risk medical equipment at applying site. The model can monitor the applying risk of high risk medical equipment at applying site dynamically and specially.

  13. Localized excitations in hydrogen-bonded molecular crystals

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Krumhansl, J. A.

    1986-05-01

    Localized excitations analogous to the small Holstein polaron, to localized modes in alkali halides, and to localized excitonic states, are postulated for a set of internal vibrational modes in crystalline acetanilide. The theoretical framework in which one can describe the characteristics of the ir and Raman spectroscopy peaks associated with these localized states is adequately provided by the Davydov model (formally equivalent to the Holstein polaron model). The possible low-lying excitations arising from this model are determined using a variational approach. Hence, the contribution to the spectral function due to each type of excitation can be calculated. The internal modes of chief concern here are the amide-I (CO stretch) and the N-H stretch modes for which we demonstrate consistency of the theoretical model with the available ir data. Past theoretical approaches will be discussed and reasons why one should prefer one description over another will be examined.

  14. Studies of the dependence of the microwave radar cross section on ocean surface variables during the FASINEX experiment

    NASA Technical Reports Server (NTRS)

    Weissman, D. A.; Li, Fuk

    1988-01-01

    The ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions was studied using experimental data from the FASINEX Experiment. This consists of RCS data from a Ku-band scatterometer mounted on an aircraft (10 separate flights were conducted), a wide variety of atmospheric measurements (including stress) and sea conditions. Theoretical models are tested. Where discrepancies are observed, revisions are hypothesized and evaluated.

  15. Studies of the dependence of the microwave radar cross section on ocean surface variables during the FASINEX experiment

    NASA Astrophysics Data System (ADS)

    Weissman, D. A.; Li, Fuk

    1988-08-01

    The ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions was studied using experimental data from the FASINEX Experiment. This consists of RCS data from a Ku-band scatterometer mounted on an aircraft (10 separate flights were conducted), a wide variety of atmospheric measurements (including stress) and sea conditions. Theoretical models are tested. Where discrepancies are observed, revisions are hypothesized and evaluated.

  16. The Safety Culture Enactment Questionnaire (SCEQ): Theoretical model and empirical validation.

    PubMed

    de Castro, Borja López; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2017-06-01

    This paper presents the Safety Culture Enactment Questionnaire (SCEQ), designed to assess the degree to which safety is an enacted value in the day-to-day running of nuclear power plants (NPPs). The SCEQ is based on a theoretical safety culture model that is manifested in three fundamental components of the functioning and operation of any organization: strategic decisions, human resources practices, and daily activities and behaviors. The extent to which the importance of safety is enacted in each of these three components provides information about the pervasiveness of the safety culture in the NPP. To validate the SCEQ and the model on which it is based, two separate studies were carried out with data collection in 2008 and 2014, respectively. In Study 1, the SCEQ was administered to the employees of two Spanish NPPs (N=533) belonging to the same company. Participants in Study 2 included 598 employees from the same NPPs, who completed the SCEQ and other questionnaires measuring different safety outcomes (safety climate, safety satisfaction, job satisfaction and risky behaviors). Study 1 comprised item formulation and examination of the factorial structure and reliability of the SCEQ. Study 2 tested internal consistency and provided evidence of factorial validity, validity based on relationships with other variables, and discriminant validity between the SCEQ and safety climate. Exploratory Factor Analysis (EFA) carried out in Study 1 revealed a three-factor solution corresponding to the three components of the theoretical model. Reliability analyses showed strong internal consistency for the three scales of the SCEQ, and each of the 21 items on the questionnaire contributed to the homogeneity of its theoretically developed scale. Confirmatory Factor Analysis (CFA) carried out in Study 2 supported the internal structure of the SCEQ; internal consistency of the scales was also supported. Furthermore, the three scales of the SCEQ showed the expected correlation patterns with the measured safety outcomes. Finally, results provided evidence of discriminant validity between the SCEQ and safety climate. We conclude that the SCEQ is a valid, reliable instrument supported by a theoretical framework, and it is useful to measure the enactment of safety culture in NPPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of a global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1986-01-01

    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season.

  18. Variable screening via quantile partial correlation

    PubMed Central

    Ma, Shujie; Tsai, Chih-Ling

    2016-01-01

    In quantile linear regression with ultra-high dimensional data, we propose an algorithm for screening all candidate variables and subsequently selecting relevant predictors. Specifically, we first employ quantile partial correlation for screening, and then we apply the extended Bayesian information criterion (EBIC) for best subset selection. Our proposed method can successfully select predictors when the variables are highly correlated, and it can also identify variables that make a contribution to the conditional quantiles but are marginally uncorrelated or weakly correlated with the response. Theoretical results show that the proposed algorithm can yield the sure screening set. By controlling the false selection rate, model selection consistency can be achieved theoretically. In practice, we proposed using EBIC for best subset selection so that the resulting model is screening consistent. Simulation studies demonstrate that the proposed algorithm performs well, and an empirical example is presented. PMID:28943683

  19. Observing the epoch of galaxy formation.

    PubMed

    Steidel, C C

    1999-04-13

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

  20. A New Model of Educational Innovation: Exploring the Nexus of Organizational Learning, Distributed Leadership, and Digital Technologies

    ERIC Educational Resources Information Center

    Rikkerink, Marleen; Verbeeten, Henk; Simons, Robert-Jan; Ritzen, Henk

    2016-01-01

    This study presents the development process of a new model of educational innovation, that involves the use of digital technologies. The model is based on a broad theoretical framework together with research involving this long-term case study. The backbone of the model consists of a fundamental revision of a multi-level Organizational Learning…

  1. Aligning Grammatical Theories and Language Processing Models

    ERIC Educational Resources Information Center

    Lewis, Shevaun; Phillips, Colin

    2015-01-01

    We address two important questions about the relationship between theoretical linguistics and psycholinguistics. First, do grammatical theories and language processing models describe separate cognitive systems, or are they accounts of different aspects of the same system? We argue that most evidence is consistent with the one-system view. Second,…

  2. A simple analytical model for dynamics of time-varying target leverage ratios

    NASA Astrophysics Data System (ADS)

    Lo, C. F.; Hui, C. H.

    2012-03-01

    In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.

  3. Blue Stragglers and Other Stars of Mass Consumption in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Panurach, Teresa; Leigh, Nathan

    2018-01-01

    Simulations of globular clusters suggest that collisions between main-sequence (MS) stars happen frequently. Stellar evolution models show that these collision products can be photometrically identified, appearing off the MS locus. These collision products can appear brighter and bluer than the MS turnoff, called “blue stragglers,” or even less massive and redder than the MS. We use proper motion-cleaned photometry from the Hubble Space Telescope of 38 globular clusters to identify candidate collision products. We compare the spectral energy distributions of our candidates to theoretical templates for single and multiple star systems, to constrain the possible presence of a binary companion and test consistency with theoretical stellar evolution models for collision products. For the BSs, we also compare the observed velocities from the proper motion catalog along with mass estimates derived from isochrone-fitting to theoretical predictions for both the collision and binary mass transfer models and find better agreement with the former.

  4. Fitting observed and theoretical choices - women's choices about prenatal diagnosis of Down syndrome.

    PubMed

    Seror, Valerie

    2008-05-01

    Choices regarding prenatal diagnosis of Down syndrome - the most frequent chromosomal defect - are particularly relevant to decision analysis, since women's decisions are based on the assessment of their risk of carrying a child with Down syndrome, and involve tradeoffs (giving birth to an affected child vs procedure-related miscarriage). The aim of this study, based on face-to-face interviews with 78 women aged 25-35 with prior experience of pregnancy, was to compare the women' expressed choices towards prenatal diagnosis with those derived from theoretical models of choice (expected utility theory, rank-dependent theory, and cumulative prospect theory). The main finding obtained in this study was that the cumulative prospect model fitted the observed choices best: both subjective transformation of probabilities and loss aversion, which are basic features of the cumulative prospect model, have to be taken into account to make the observed choices consistent with the theoretical ones.

  5. Observing the epoch of galaxy formation

    PubMed Central

    Steidel, Charles C.

    1999-01-01

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years. PMID:10200244

  6. Trade Agreements: Impact on the U.S. Economy

    DTIC Science & Technology

    2010-03-11

    the models have been criticized for lacking a strong theoretical basis, recent work has demonstrated that the model is consistent with the Ricardian ...structure and organization, production technology, investment, and capital flows in the form of foreign direct investment. General equilibrium models ...given sector or industry and assess the impact of the change on employment, production , and economic welfare. The Michigan Model and Estimates One

  7. The family living the child recovery process after hospital discharge.

    PubMed

    Pinto, Júlia Peres; Mandetta, Myriam Aparecida; Ribeiro, Circéa Amalia

    2015-01-01

    to understand the meaning attributed by the family to its experience in the recovery process of a child affected by an acute disease after discharge, and to develop a theoretical model of this experience. Symbolic interactionism was adopted as a theoretical reference, and grounded theory was adopted as a methodological reference. data were collected through interviews and participant observation with 11 families, totaling 15 interviews. A theoretical model consisting of two interactive phenomena was formulated from the analysis: Mobilizing to restore functional balance and Suffering from the possibility of a child's readmission. the family remains alert to identify early changes in the child's health, in an attempt to avoid rehospitalization. the effects of the disease and hospitalization continue to manifest in family functioning, causing suffering even after the child's discharge and recovery.

  8. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  9. The Family Resemblance Model and Communicative Competence. Lektos: Interdisciplinary Working Papers in Language Sciences, Vol. 1, No. 2.

    ERIC Educational Resources Information Center

    St. Clair, Robert

    The concept of a speech community is investigated within the theoretical frameworks of sociology and linguistics, and it is concluded that the collective competence models of Ferdinand de Saussure and Noam Chomsky are inadequate. They fail in that they are limited as linguistic models which have consistently overlooked the sociological importance…

  10. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  11. Aligning grammatical theories and language processing models.

    PubMed

    Lewis, Shevaun; Phillips, Colin

    2015-02-01

    We address two important questions about the relationship between theoretical linguistics and psycholinguistics. First, do grammatical theories and language processing models describe separate cognitive systems, or are they accounts of different aspects of the same system? We argue that most evidence is consistent with the one-system view. Second, how should we relate grammatical theories and language processing models to each other?

  12. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations.

    PubMed

    Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua

    2016-04-01

    In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.

  13. The Extended Parallel Process Model: Illuminating the Gaps in Research

    ERIC Educational Resources Information Center

    Popova, Lucy

    2012-01-01

    This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…

  14. Research Vitality as Sustained Excellence: What Keeps the Plates Spinning?

    ERIC Educational Resources Information Center

    Gilstrap, J. Bruce; Harvey, Jaron; Novicevic, Milorad M.; Buckley, M. Ronald

    2011-01-01

    Purpose: Research vitality addresses the perseverance that faculty members in the organization sciences experience in maintaining their research quantity and quality over an extended period of time. The purpose of this paper is to offer a theoretical model of research vitality. Design/methodology/approach: The authors propose a model consisting of…

  15. Economic impacts of hurricanes on forest owners

    Treesearch

    Jeffrey P. Prestemon; Thomas P. Holmes

    2010-01-01

    We present a conceptual model of the economic impacts of hurricanes on timber producers and consumers, offer a framework indicating how welfare impacts can be estimated using econometric estimates of timber price dynamics, and illustrate the advantages of using a welfare theoretic model, which includes (1) welfare estimates that are consistent with neo-classical...

  16. On the physical basis of a theory of human thermoregulation.

    NASA Technical Reports Server (NTRS)

    Iberall, A. S.; Schindler, A. M.

    1973-01-01

    Theoretical study of the physical factors which are responsible for thermoregulation in nude resting humans in a physical steady state. The behavior of oxidative metabolism, evaporative and convective thermal fluxes, fluid heat transfer, internal and surface temperatures, and evaporative phase transitions is studied by physiological/physical modeling techniques. The modeling is based on the theories that the body has a vital core with autothermoregulation, that the vital core contracts longitudinally, that the temperature of peripheral regions and extremities decreases towards the ambient, and that a significant portion of the evaporative heat may be lost underneath the skin. A theoretical basis is derived for a consistent modeling of steady-state thermoregulation on the basis of these theories.

  17. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  18. Microcirculation and the physiome projects.

    PubMed

    Bassingthwaighte, James B

    2008-11-01

    The Physiome projects comprise a loosely knit worldwide effort to define the Physiome through databases and theoretical models, with the goal of better understanding the integrative functions of cells, organs, and organisms. The projects involve developing and archiving models, providing centralized databases, and linking experimental information and models from many laboratories into self-consistent frameworks. Increasingly accurate and complete models that embody quantitative biological hypotheses, adhere to high standards, and are publicly available and reproducible, together with refined and curated data, will enable biological scientists to advance integrative, analytical, and predictive approaches to the study of medicine and physiology. This review discusses the rationale and history of the Physiome projects, the role of theoretical models in the development of the Physiome, and the current status of efforts in this area addressing the microcirculation.

  19. The Tell-Tale Look: Viewing Time, Preferences, and Prices

    PubMed Central

    Gunia, Brian C.; Murnighan, J. Keith

    2015-01-01

    Even the simplest choices can prompt decision-makers to balance their preferences against other, more pragmatic considerations like price. Thus, discerning people’s preferences from their decisions creates theoretical, empirical, and practical challenges. The current paper addresses these challenges by highlighting some specific circumstances in which the amount of time that people spend examining potential purchase items (i.e., viewing time) can in fact reveal their preferences. Our model builds from the gazing literature, in a purchasing context, to propose that the informational value of viewing time depends on prices. Consistent with the model’s predictions, four studies show that when prices are absent or moderate, viewing time provides a signal that is consistent with a person’s preferences and purchase intentions. When prices are extreme or consistent with a person’s preferences, however, viewing time is a less reliable predictor of either. Thus, our model highlights a price-contingent “viewing bias,” shedding theoretical, empirical, and practical light on the psychology of preferences and visual attention, and identifying a readily observable signal of preference. PMID:25581382

  20. Modeling Remineralization of Desalinated Water by Micronized Calcite Dissolution.

    PubMed

    Hasson, David; Fine, Larissa; Sagiv, Abraham; Semiat, Raphael; Shemer, Hilla

    2017-11-07

    A widely used process for remineralization of desalinated water consists of dissolution of calcite particles by flow of acidified desalinated water through a bed packed with millimeter-size calcite particles. An alternative process consists of calcite dissolution by slurry flow of micron-size calcite particles with acidified desalinated water. The objective of this investigation is to provide theoretical models enabling design of remineralization by calcite slurry dissolution with carbonic and sulfuric acids. Extensive experimental results are presented displaying the effects of acid concentration, slurry feed concentration, and dissolution contact time. The experimental data are shown to be in agreement within less than 10% with theoretical predictions based on the simplifying assumption that the slurry consists of uniform particles represented by the surface mean diameter of the powder. Agreement between theory and experiment is improved by 1-8% by taking into account the powder size distribution. Apart from the practical value of this work in providing a hitherto lacking design tool for a novel technology. The paper has the merit of being among the very few publications providing experimental confirmation to the theory describing reaction kinetics in a segregated flow system.

  1. Flow process in combustors

    NASA Technical Reports Server (NTRS)

    Gouldin, F. C.

    1982-01-01

    Fluid mechanical effects on combustion processes in steady flow combustors, especially gas turbine combustors were investigated. Flow features of most interest were vorticity, especially swirl, and turbulence. Theoretical analyses, numerical calculations, and experiments were performed. The theoretical and numerical work focused on noncombusting flows, while the experimental work consisted of both reacting and nonreacting flow studies. An experimental data set, e.g., velocity, temperature and composition, was developed for a swirl flow combustor for use by combustion modelers for development and validation work.

  2. Mechanism of unpinning spirals by a series of stimuli

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Hong

    2014-06-01

    Antitachycardia pacing (ATP) is widely used to terminate tachycardia before it proceeds to lethal fibrillation. The important prerequisite for successful ATP is unpinning of the spirals anchored to the obstacle by a series of stimuli. Here, to understand the mechanism of unpinning spirals by ATP, we propose a theoretical explanation based on a nonlinear eikonal relation and a kinematical model. The theoretical results are quantitatively consistent with the numerical simulations in both weak and high excitabilities.

  3. Solvent dependent frequency shift and Raman noncoincidence effect of S=O stretching mode of Dimethyl sulfoxide in liquid binary mixtures.

    PubMed

    Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R

    2013-05-15

    The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.

  4. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  5. Is Jupiter's magnetosphere like a pulsar's or earth's?

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1974-01-01

    The application of pulsar physics to determine the magnetic structure in the planet Jupiter outer magnetosphere is discussed. A variety of theoretical models are developed to illuminate broad areas of consistency and conflict between theory and experiment. Two possible models of Jupiter's magnetosphere, a pulsar-like radial outflow model and an earth-like convection model, are examined. A compilation of the simple order of magnitude estimates derivable from the various models is provided.

  6. A theoretical approach to artificial intelligence systems in medicine.

    PubMed

    Spyropoulos, B; Papagounos, G

    1995-10-01

    The various theoretical models of disease, the nosology which is accepted by the medical community and the prevalent logic of diagnosis determine both the medical approach as well as the development of the relevant technology including the structure and function of the A.I. systems involved. A.I. systems in medicine, in addition to the specific parameters which enable them to reach a diagnostic and/or therapeutic proposal, entail implicitly theoretical assumptions and socio-cultural attitudes which prejudice the orientation and the final outcome of the procedure. The various models -causal, probabilistic, case-based etc. -are critically examined and their ethical and methodological limitations are brought to light. The lack of a self-consistent theoretical framework in medicine, the multi-faceted character of the human organism as well as the non-explicit nature of the theoretical assumptions involved in A.I. systems restrict them to the role of decision supporting "instruments" rather than regarding them as decision making "devices". This supporting role and, especially, the important function which A.I. systems should have in the structure, the methods and the content of medical education underscore the need of further research in the theoretical aspects and the actual development of such systems.

  7. Writing Became a Chore Like the Laundry: The Realities of Using Journals To Encourage a Reflective Approach to Practice.

    ERIC Educational Resources Information Center

    Lewison, Mitzi

    This action research study investigated a model of professional development designed to encourage elementary language arts teachers to adopt a more reflective approach to literacy instruction. The model consisted of monthly negotiated-topic study group sessions, theoretically-based reading, and dialogue journal writing. This paper focuses on the…

  8. Advancements in Theoretical Models of Confined Vortex Flowfields

    DTIC Science & Technology

    2007-03-29

    blades, curved vanes, vortex generators, twisted tape inserts, triangular winglets , propellers, coiled wires, tangential injectors, and other...Corresponding boundary conditions consist of the no slip at the wall and blending with the composite inner solution in the outer domain. Following similar

  9. Theoretical prediction of honeycomb carbon as Li-ion batteries anode material

    NASA Astrophysics Data System (ADS)

    Hu, Junping; Zhang, Xiaohang

    2018-05-01

    First principles calculations are performed to study the electronic properties and Li storage capability of honeycomb carbon. We find its right model consistent with the experimental result, the honeycomb carbon and its Li-intercalated configurations are all metallic which is beneficial to the electrode materials for lithium-ion batteries. The model 1 configuration shows fast Li diffusion and theoretical Li storage capacity of 319 mAh/g. Moreover, the average intercalation potentials for honeycomb carbon material is calculated to be low relatively. Our results suggest that the honeycomb carbon would be a new promising pure carbon anode material for Li-ion batteries.

  10. Theory of the Origin, Evolution, and Nature of Life

    PubMed Central

    Andrulis, Erik D.

    2011-01-01

    Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe. PMID:25382118

  11. Biological Aging - Criteria for Modeling and a New Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Pletcher, Scott D.; Neuhauser, Claudia

    To stimulate interaction and collaboration across scientific fields, we introduce a minimum set of biological criteria that theoretical models of aging should satisfy. We review results of several recent experiments that examined changes in age-specific mortality rates caused by genetic and environmental manipulation. The empirical data from these experiments is then used to test mathematical models of aging from several different disciplines, including molecular biology, reliability theory, physics, and evolutionary biology/population genetics. We find that none of the current models are consistent with all of the published experimental findings. To provide an example of how our criteria might be applied in practice, we develop a new conceptual model of aging that is consistent with our observations.

  12. Theoretical analysis of the rotational barrier of ethane.

    PubMed

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  13. The weapons effect.

    PubMed

    Benjamin, Arlin James; Bushman, Brad J

    2018-02-01

    In some societies, weapons are plentiful and highly visible. This review examines recent trends in research on the weapons effect, which is the finding that the mere presence of weapons can prime people to behave aggressively. The General Aggression Model provides a theoretical framework to explain why the weapons effect occurs. This model postulates that exposure to weapons increases aggressive thoughts and hostile appraisals, thus explaining why weapons facilitate aggressive behavior. Data from meta-analytic reviews are consistent with the General Aggression Model. These findings have important practical as well as theoretical implications. They suggest that the link between weapons and aggression is very strong in semantic memory, and that merely seeing a weapon can make people more aggressive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Equations of state for hydrogen and deuterium.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, Gerald Irwin

    2003-12-01

    This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixturemore » models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.« less

  15. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.

    PubMed

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-09-01

    The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.

  16. Group size effect on cooperation in one-shot social dilemmas

    PubMed Central

    Barcelo, Hélène; Capraro, Valerio

    2015-01-01

    Social dilemmas are central to human society. Depletion of natural resources, climate protection, security of energy supply, and workplace collaborations are all examples of social dilemmas. Since cooperative behaviour in a social dilemma is individually costly, Nash equilibrium predicts that humans should not cooperate. Yet experimental studies show that people do cooperate even in anonymous one-shot interactions. In spite of the large number of participants in many modern social dilemmas, little is known about the effect of group size on cooperation. Does larger group size favour or prevent cooperation? We address this problem both experimentally and theoretically. Experimentally, we find that there is no general answer: it depends on the strategic situation. Specifically, we find that larger groups are more cooperative in the Public Goods game, but less cooperative in the N-person Prisoner's dilemma. Theoretically, we show that this behaviour is not consistent with either the Fehr & Schmidt model or (a one-parameter version of) the Charness & Rabin model, but it is consistent with the cooperative equilibrium model introduced by the second author. PMID:25605124

  17. On Utilizing Optimal and Information Theoretic Syntactic Modeling for Peptide Classification

    NASA Astrophysics Data System (ADS)

    Aygün, Eser; Oommen, B. John; Cataltepe, Zehra

    Syntactic methods in pattern recognition have been used extensively in bioinformatics, and in particular, in the analysis of gene and protein expressions, and in the recognition and classification of bio-sequences. These methods are almost universally distance-based. This paper concerns the use of an Optimal and Information Theoretic (OIT) probabilistic model [11] to achieve peptide classification using the information residing in their syntactic representations. The latter has traditionally been achieved using the edit distances required in the respective peptide comparisons. We advocate that one can model the differences between compared strings as a mutation model consisting of random Substitutions, Insertions and Deletions (SID) obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a Support Vector Machine (SVM)-based peptide classifier, referred to as OIT_SVM, can be devised.

  18. Theoretical and Field Experimental Investigation of an Arrayed Solar Thermoelectric Flat-Plate Generator

    NASA Astrophysics Data System (ADS)

    Rehman, Naveed ur; Siddiqui, Mubashir Ali

    2018-05-01

    This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.

  19. Corrigendum to "Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams"

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15% and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50-57% of the cell faces were pentagonal while 24-28% were quadrilateral and 15-22% were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 Matzke cell

  20. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    NASA Astrophysics Data System (ADS)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement Number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  1. Modeling of information diffusion in Twitter-like social networks under information overload.

    PubMed

    Li, Pei; Li, Wei; Wang, Hui; Zhang, Xin

    2014-01-01

    Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations.

  2. Theoretical and computational analyses of LNG evaporator

    NASA Astrophysics Data System (ADS)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  3. Modeling of Information Diffusion in Twitter-Like Social Networks under Information Overload

    PubMed Central

    Li, Wei

    2014-01-01

    Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations. PMID:24795541

  4. Model of twelve properties of a set of organic solvents with graph-theoretical and/or experimental parameters.

    PubMed

    Pogliani, Lionello

    2010-01-30

    Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.

  5. Family-Supportive Organization Perceptions, Multiple Dimensions of Work-Family Conflict, and Employee Satisfaction: A Test of Model across Five Samples

    ERIC Educational Resources Information Center

    Lapierre, Laurent M.; Spector, Paul E.; Allen, Tammy D.; Poelmans, Steven; Cooper, Cary L.; O'Driscoll, Michael P.; Sanchez, Juan I.; Brough, Paula; Kinnunen, Ulla

    2008-01-01

    Using samples of managers drawn from five Western countries, we tested a theoretical model linking employees' perceptions of their work environment's family-supportiveness to six different dimensions of work-family conflict (WFC), and to their job satisfaction, family satisfaction, and life satisfaction. Our results are consistent with a causal…

  6. Do the Teacher and School Factors of the Dynamic Model Affect High- and Low-Achieving Student Groups to the Same Extent? A Cross-Country Study

    ERIC Educational Resources Information Center

    Vanlaar, Gudrun; Kyriakides, Leonidas; Panayiotou, Anastasia; Vandecandelaere, Machteld; McMahon, Léan; De Fraine, Bieke; Van Damme, Jan

    2016-01-01

    Background: The dynamic model of educational effectiveness (DMEE) is a comprehensive theoretical framework including factors that are important for school learning, based on consistent findings within educational effectiveness research. Purpose: This study investigates the impact of teacher and school factors of DMEE on mathematics and science…

  7. Assessing Students' Abilities in Processes of Scientific Inquiry in Biology Using a Paper-and-Pencil Test

    ERIC Educational Resources Information Center

    Nowak, Kathrin Helena; Nehring, Andreas; Tiemann, Rüdiger; Upmeier zu Belzen, Annette

    2013-01-01

    The aim of the study was to describe, categorise and analyse students' (aged 14-16) processes of scientific inquiry in biology and chemistry education. Therefore, a theoretical structure for scientific inquiry for both biology and chemistry, the VerE model, was developed. This model consists of nine epistemological acts, which combine processes of…

  8. Blending the CoI Model with Jigsaw Technique for Pre-Service Foreign Language Teachers' Continuing Professional Development Using Open Sim and Sloodle

    ERIC Educational Resources Information Center

    Pellas, Nikolaos; Boumpa, Anna

    2017-01-01

    This study seeks to investigate the effect of pre-service foreign language teachers' interactions on their continuing professional development (CPD), using a theoretical instructional design framework consisted of the three presence indicators of a Community of Inquiry (CoI) model and the Jigsaw teaching technique. The investigation was performed…

  9. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.

    PubMed

    Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-10-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. Copyright © 2015 the American Physiological Society.

  10. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion

    PubMed Central

    Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-01-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. PMID:26245321

  11. Theoretical Foundations of Appeals Used in Alcohol-Abuse and Drunk-Driving Public Service Announcements in the United States, 1995-2010.

    PubMed

    Niederdeppe, Jeff; Avery, Rosemary J; Miller, Emily Elizabeth Namaste

    2018-05-01

    The study identifies the extent to which theoretical constructs drawn from well-established message effect communication theories are reflected in the content of alcohol-related public service announcements (PSAs) airing in the United States over a 16-year period. Content analysis of 18 530 141 alcohol-abuse (AA) and drunk-driving (DD) PSAs appearing on national network and local cable television stations in the 210 largest designated marketing areas (DMAs) from January 1995 through December 2010. The authors developed a detailed content analytic codebook and trained undergraduate coders to reliably identify the extent to which theoretical constructs and other creative ad elements are reflected in the PSAs. We show these patterns using basic descriptive statistics. Although both classes of alcohol-related PSAs used strategies that are consistent with major message effect theories, their specific theoretical orientations differed dramatically. The AA PSAs were generally consistent with constructs emphasized by the Extended Parallel Process Model (EPPM), whereas DD PSAs were more likely to use normative strategies emphasized by the Focus Theory of Narrative Conduct (FTNC) or source credibility appeals central to the Elaboration Likelihood Model. Having identified message content, future research should use deductive approaches to determine if volume and message content of alcohol-control PSAs have an impact on measures of alcohol consumption and/or measures of drunk driving, such as fatalities or driving while intoxicated/driving under the influence arrests.

  12. On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period–Luminosity–Metallicity Relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeley, Jillian R.; Marengo, Massimo; Trueba, Nicolas

    2017-06-01

    We present new theoretical period–luminosity–metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances ( Z = 0.0001–0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ {submore » 0}, and extinction, A {sub V}, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia ’ s first data release. For M4, we find a distance modulus of μ {sub 0} = 11.257 ± 0.035 mag with A {sub V}= 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths.« less

  13. Measuring implementation behaviour of menu guidelines in the childcare setting: confirmatory factor analysis of a theoretical domains framework questionnaire (TDFQ).

    PubMed

    Seward, Kirsty; Wolfenden, Luke; Wiggers, John; Finch, Meghan; Wyse, Rebecca; Oldmeadow, Christopher; Presseau, Justin; Clinton-McHarg, Tara; Yoong, Sze Lin

    2017-04-04

    While there are number of frameworks which focus on supporting the implementation of evidence based approaches, few psychometrically valid measures exist to assess constructs within these frameworks. This study aimed to develop and psychometrically assess a scale measuring each domain of the Theoretical Domains Framework for use in assessing the implementation of dietary guidelines within a non-health care setting (childcare services). A 75 item 14-domain Theoretical Domains Framework Questionnaire (TDFQ) was developed and administered via telephone interview to 202 centre based childcare service cooks who had a role in planning the service menu. Confirmatory factor analysis (CFA) was undertaken to assess the reliability, discriminant validity and goodness of fit of the 14-domain theoretical domain framework measure. For the CFA, five iterative processes of adjustment were undertaken where 14 items were removed, resulting in a final measure consisting of 14 domains and 61 items. For the final measure: the Chi-Square goodness of fit statistic was 3447.19; the Standardized Root Mean Square Residual (SRMR) was 0.070; the Root Mean Square Error of Approximation (RMSEA) was 0.072; and the Comparative Fit Index (CFI) had a value of 0.78. While only one of the three indices support goodness of fit of the measurement model tested, a 14-domain model with 61 items showed good discriminant validity and internally consistent items. Future research should aim to assess the psychometric properties of the developed TDFQ in other community-based settings.

  14. A Comprehensive Validation Methodology for Sparse Experimental Data

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Blattnig, Steve R.

    2010-01-01

    A comprehensive program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as models are developed over time. The models are placed under configuration control, and automated validation tests are used so that comparisons can readily be made as models are improved. Though direct comparisons between theoretical results and experimental data are desired for validation purposes, such comparisons are not always possible due to lack of data. In this work, two uncertainty metrics are introduced that are suitable for validating theoretical models against sparse experimental databases. The nuclear physics models, NUCFRG2 and QMSFRG, are compared to an experimental database consisting of over 3600 experimental cross sections to demonstrate the applicability of the metrics. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by analyzing subsets of the model parameter space.

  15. New theoretical framework for designing nonionic surfactant mixtures that exhibit a desired adsorption kinetics behavior.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2010-12-21

    How does one design a surfactant mixture using a set of available surfactants such that it exhibits a desired adsorption kinetics behavior? The traditional approach used to address this design problem involves conducting trial-and-error experiments with specific surfactant mixtures. This approach is typically time-consuming and resource-intensive and becomes increasingly challenging when the number of surfactants that can be mixed increases. In this article, we propose a new theoretical framework to identify a surfactant mixture that most closely meets a desired adsorption kinetics behavior. Specifically, the new theoretical framework involves (a) formulating the surfactant mixture design problem as an optimization problem using an adsorption kinetics model and (b) solving the optimization problem using a commercial optimization package. The proposed framework aims to identify the surfactant mixture that most closely satisfies the desired adsorption kinetics behavior subject to the predictive capabilities of the chosen adsorption kinetics model. Experiments can then be conducted at the identified surfactant mixture condition to validate the predictions. We demonstrate the reliability and effectiveness of the proposed theoretical framework through a realistic case study by identifying a nonionic surfactant mixture consisting of up to four alkyl poly(ethylene oxide) surfactants (C(10)E(4), C(12)E(5), C(12)E(6), and C(10)E(8)) such that it most closely exhibits a desired dynamic surface tension (DST) profile. Specifically, we use the Mulqueen-Stebe-Blankschtein (MSB) adsorption kinetics model (Mulqueen, M.; Stebe, K. J.; Blankschtein, D. Langmuir 2001, 17, 5196-5207) to formulate the optimization problem as well as the SNOPT commercial optimization solver to identify a surfactant mixture consisting of these four surfactants that most closely exhibits the desired DST profile. Finally, we compare the experimental DST profile measured at the surfactant mixture condition identified by the new theoretical framework with the desired DST profile and find good agreement between the two profiles.

  16. The pressure distribution for biharmonic transmitting array: theoretical study

    NASA Astrophysics Data System (ADS)

    Baranowska, A.

    2005-03-01

    The aim of the paper is theoretical analysis of the finite amplitude waves interaction problem for the biharmonic transmitting array. We assume that the array consists of 16 circular pistons of the same dimensions that regrouped in two sections. Two different arrangements of radiating elements were considered. In this situation the radiating surface is non-continuous without axial symmetry. The mathematical model was built on the basis of the Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation. To solve the problem the finite-difference method was applied. On-axis pressure amplitude for different frequency waves as a function of distance from the source, transverse pressure distribution of these waves at fixed distances from the source and pressure amplitude distribution for them at fixed planes were examined. Especially changes of normalized pressure amplitude for difference frequency were studied. The paper presents mathematical model and some results of theoretical investigations obtained for different values of source parameters.

  17. Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang

    In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.

  18. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  19. Understanding HIV disclosure: A review and application of the Disclosure Processes Model

    PubMed Central

    Chaudoir, Stephenie R.; Fisher, Jeffrey D.; Simoni, Jane M.

    2014-01-01

    HIV disclosure is a critical component of HIV/AIDS prevention and treatment efforts, yet the field lacks a comprehensive theoretical framework with which to study how HIV-positive individuals make decisions about disclosing their serostatus and how these decisions affect them. Recent theorizing in the context of the Disclosure Processes Model has suggested that the disclosure process consists of antecedent goals, the disclosure event itself, mediating processes and outcomes, and a feedback loop. In this paper, we apply this new theoretical framework to HIV disclosure in order to review the current state of the literature, identify gaps in existing research, and highlight the implications of the framework for future work in this area. PMID:21514708

  20. Evaluation of Simulation Models that Estimate the Effect of Dietary Strategies on Nutritional Intake: A Systematic Review.

    PubMed

    Grieger, Jessica A; Johnson, Brittany J; Wycherley, Thomas P; Golley, Rebecca K

    2017-05-01

    Background: Dietary simulation modeling can predict dietary strategies that may improve nutritional or health outcomes. Objectives: The study aims were to undertake a systematic review of simulation studies that model dietary strategies aiming to improve nutritional intake, body weight, and related chronic disease, and to assess the methodologic and reporting quality of these models. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guided the search strategy with studies located through electronic searches [Cochrane Library, Ovid (MEDLINE and Embase), EBSCOhost (CINAHL), and Scopus]. Study findings were described and dietary modeling methodology and reporting quality were critiqued by using a set of quality criteria adapted for dietary modeling from general modeling guidelines. Results: Forty-five studies were included and categorized as modeling moderation, substitution, reformulation, or promotion dietary strategies. Moderation and reformulation strategies targeted individual nutrients or foods to theoretically improve one particular nutrient or health outcome, estimating small to modest improvements. Substituting unhealthy foods with healthier choices was estimated to be effective across a range of nutrients, including an estimated reduction in intake of saturated fatty acids, sodium, and added sugar. Promotion of fruits and vegetables predicted marginal changes in intake. Overall, the quality of the studies was moderate to high, with certain features of the quality criteria consistently reported. Conclusions: Based on the results of reviewed simulation dietary modeling studies, targeting a variety of foods rather than individual foods or nutrients theoretically appears most effective in estimating improvements in nutritional intake, particularly reducing intake of nutrients commonly consumed in excess. A combination of strategies could theoretically be used to deliver the best improvement in outcomes. Study quality was moderate to high. However, given the lack of dietary simulation reporting guidelines, future work could refine the quality tool to harmonize consistency in the reporting of subsequent dietary modeling studies. © 2017 American Society for Nutrition.

  1. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.

  2. Temperature Induced Syllable Breaking Unveils Nonlinearly Interacting Timescales in Birdsong Motor Pathway

    PubMed Central

    Goldin, Matías A.; Alonso, Leandro M.; Alliende, Jorge A.; Goller, Franz; Mindlin, Gabriel B.

    2013-01-01

    The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior. PMID:23818988

  3. Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway.

    PubMed

    Goldin, Matías A; Alonso, Leandro M; Alliende, Jorge A; Goller, Franz; Mindlin, Gabriel B

    2013-01-01

    The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.

  4. Empirical resistive-force theory for slender biological filaments in shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Riley, Emily E.; Lauga, Eric

    2017-06-01

    Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.

  5. Theoretical analysis of factors controlling the nonalternating CO/C(2)H(4) copolymerization.

    PubMed

    Haras, Alicja; Michalak, Artur; Rieger, Bernhard; Ziegler, Tom

    2005-06-22

    A [P-O]Pd catalyst based on o-alkoxy derivatives of diphenylphosphinobenzene sulfonic acid (I) has recently been shown by Drent et al. to perform nonalternating CO/C(2)H(4) copolymerization with subsequent incorporation of ethylene units into the polyketone chain. The origin of the nonalternation is investigated in a theoretical study of I, where calculated activation barriers and reaction heats of all involved elementary steps are used to generate a complete kinetic model. The kinetic model is able to account for the observed productivity and degree of nonalternation as a function of temperature. Consistent with the energy changes obtained for the real catalyst model, the selectivity toward a nonalternating distribution of both comonomers appears to be mainly a result of a strong destabilization of the Pd-acyl complex.

  6. The pricing behavior comparison of Canada and Australia exporter in wheat international market using Pricing to Market (PTM) and Residual Demand Elasticity (RDE)

    NASA Astrophysics Data System (ADS)

    Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri

    2018-02-01

    This paper try to identify and examined the degree of market power on wheat international market by 2 major exporting countries comprising Canada and Australia by using the Pricing to Market (PTM) method and Residual Demand Elasticity (RDE) method. The PTM method found that Canada impose noncompetitive strategy by applying price discrimination and apply market power to their importing. Different results come from Australian exporter as they are not using their market power to the importing. Conflicting result arise from estimation using RDE and PTM method suggest that the need to extend the theoretical model of both model by expand its economic and econometric model to have consistent expected result theoretically and empirically.

  7. Tsallis’ non-extensive free energy as a subjective value of an uncertain reward

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2009-03-01

    Recent studies in neuroeconomics and econophysics revealed the importance of reward expectation in decision under uncertainty. Behavioral neuroeconomic studies have proposed that the unpredictability and the probability of an uncertain reward are distinctly encoded as entropy and a distorted probability weight, respectively, in the separate neural systems. However, previous behavioral economic and decision-theoretic models could not quantify reward-seeking and uncertainty aversion in a theoretically consistent manner. In this paper, we have: (i) proposed that generalized Helmholtz free energy in Tsallis’ non-extensive thermostatistics can be utilized to quantify a perceived value of an uncertain reward, and (ii) empirically examined the explanatory powers of the models. Future study directions in neuroeconomics and econophysics by utilizing the Tsallis’ free energy model are discussed.

  8. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    PubMed

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  9. Student Affairs Professionals' Self-Report of Multicultural Competence: Understanding Awareness, Knowledge, and Skills

    ERIC Educational Resources Information Center

    Castellanos, Jeanett; Gloria, Alberta M.; Mayorga, Melissa M.; Salas, Christina

    2008-01-01

    Pope and Reynolds' (1997) theoretical model of multicultural competence for student affairs was empirically tested with 100 student affairs professionals. The domain subscales of awareness, knowledge, and skills revealed high internal consistency and intercorrelation. Males reported significantly higher multicultural awareness in their…

  10. Refinements in the hierarchical structure of externalizing psychiatric disorders: Patterns of lifetime liability from mid-adolescence through early adulthood.

    PubMed

    Farmer, Richard F; Seeley, John R; Kosty, Derek B; Lewinsohn, Peter M

    2009-11-01

    Research on hierarchical modeling of psychopathology has frequently identified 2 higher order latent factors, internalizing and externalizing. When based on the comorbidity of psychiatric diagnoses, the externalizing domain has usually been modeled as a single latent factor. Multivariate studies of externalizing symptom features, however, suggest multidimensionality. To address this apparent contradiction, confirmatory factor analytic methods and information-theoretic criteria were used to evaluate 4 theoretically plausible measurement models based on lifetime comorbidity patterns of 7 putative externalizing disorders. Diagnostic information was collected at 4 assessment waves from an age-based cohort of 816 persons between the ages of 14 and 33. A 2-factor model that distinguished oppositional behavior disorders (attention-deficit/hyperactivity disorder, oppositional defiant disorder) from social norm violation disorders (conduct disorder, adult antisocial behavior, alcohol use disorder, cannabis use disorder, hard drug use disorder) demonstrated consistently good fit and superior approximating abilities. Analyses of psychosocial outcomes measured at the last assessment wave supported the validity of this 2-factor model. Implications of this research for the theoretical understanding of domain-related disorders and the organization of classification systems are discussed. PsycINFO Database Record 2009 APA, all rights reserved.

  11. Post sunset behavior of the 6300 A atomic oxygen airglow emission

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1976-01-01

    A theoretical model of the 6300 A OI airglow emission was developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of 6300 A OI emission line were calculated using electron density true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler broadened 6300 A emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere were varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 A emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer. Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. Theoretical calculations indicate that contamination of the 6300 A OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 A OI intensity. This combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann--Runge continuum and associated absorption cross sections. Results show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more closely agree with the observed intensities than all the other combinations.

  12. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  13. Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster

    NASA Astrophysics Data System (ADS)

    Le, YANG; Tianping, ZHANG; Juanjuan, CHEN; Yanhui, JIA

    2018-07-01

    A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the low-frequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons, the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.

  14. Allometric scaling theory applied to FIA biomass estimation

    Treesearch

    David C. Chojnacky

    2002-01-01

    Tree biomass estimates in the Forest Inventory and Analysis (FIA) database are derived from numerous methodologies whose abundance and complexity raise questions about consistent results throughout the U.S. A new model based on allometric scaling theory ("WBE") offers simplified methodology and a theoretically sound basis for improving the reliability and...

  15. Sexual Resourcefulness and the Impact of Family, Sex Education, Media and Peers

    ERIC Educational Resources Information Center

    Kennett, Deborah J.; Humphreys, Terry P.; Schultz, Kristen E.

    2012-01-01

    Building on a recently developed theoretical model of sexual self-control, 178 undergraduate women completed measures of learned resourcefulness, reasons for consenting to unwanted advances, and sexual self-efficacy--variables consistently shown to be unique predictors of sexual resourcefulness. Additional measures assessed in this investigation…

  16. The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules

    NASA Technical Reports Server (NTRS)

    Cheremisin, F. G.

    1972-01-01

    Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.

  17. The Neurobiology of Autism: Theoretical Applications

    ERIC Educational Resources Information Center

    Schroeder, Jessica H.; Desrocher, Mary; Bebko, James M.; Cappadocia, M. Catherine

    2010-01-01

    Autism spectrum disorders (ASD) are complex neurological disorders characterized by heterogeneity in skills and impairments. A variety of models have been developed to describe the disorders and a wide range of brain processes have been implicated. This review attempts to integrate some of the consistent neurological findings in the research with…

  18. Theoretical Bases for Using Virtual Reality in Education

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  19. Evaluating nurse staffing patterns and neonatal intensive care unit outcomes using Levine's Conservation Model of Nursing.

    PubMed

    Mefford, Linda C; Alligood, Martha R

    2011-11-01

    To explore the influences of intensity of nursing care and consistency of nursing caregivers on health and economic outcomes using Levine's Conservation Model of Nursing as the guiding theoretical framework. Professional nursing practice models are increasingly being used although limited research is available regarding their efficacy. A structural equation modelling approach tested the influence of intensity of nursing care (direct care by professional nurses and patient-nurse ratio) and consistency of nursing caregivers on morbidity and resource utilization in a neonatal intensive care unit (NICU) setting using primary nursing. Consistency of nursing caregivers served as a powerful mediator of length of stay and the duration of mechanical ventilation, supplemental oxygen therapy and parenteral nutrition. Analysis of nursing intensity indicators revealed that a mix of professional nurses and assistive personnel was effective. Providing consistency of nursing caregivers may significantly improve both health and economic outcomes. New evidence was found to support the efficacy of the primary nursing model in the NICU. Designing nursing care delivery systems in acute inpatient settings with an emphasis on consistency of nursing caregivers could improve health outcomes, increase organizational effectiveness, and enhance satisfaction of nursing staff, patients, and families. © 2011 Blackwell Publishing Ltd.

  20. Gatekeeper Training for Suicide Prevention: A Theoretical Model and Review of the Empirical Literature

    DTIC Science & Technology

    2015-01-01

    effectiveness of such trainings or of intervention behaviors. The model is consistent with Bandura’s social cognitive theory , which posits that...interactions between environmental and personal factors influence the learning of new behav- ior ( Bandura , 2001). The model is depicted in Figure 1. In the...A., “ Social Cognitive Theory : An Agentic Perspective,” Annual Review of Clinical Psychology, Vol. 52, 2001, pp. 1–26. Bean, G., and K. M. Baber

  1. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2010-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use the three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 cell.

  2. On the Formation of Rifts in Ice Shelves

    NASA Astrophysics Data System (ADS)

    Sayag, R.; Worster, G.

    2017-12-01

    Ice calving accounts for significant part in the mass loss of present ice sheets. Several processes could lead to calving, among them is the formation of rifts near the fronts of ice shelves. Here we combine laboratory-scale experiments of ice sheets together with theoretical modeling to investigate the formation of rifts in ice shelves. We model the deformation of ice with a thin viscous film that is driven axisymmetrically by buoyancy. When the viscous fluid intrudes a bath of an inviscid fluid that represents the ocean, the circular symmetry of the front breaks up into a set of tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Theoretically, we model the formation of rifts as a hydrodynamic instability of powerlaw fluid. Our model demonstrates the formation of rifts and the coarsening of the characteristic wavelength, and predicts coarsening transition times that are consistent with our experimental measurements.

  3. Theoretical Commitment and Implicit Knowledge: Why Anomalies do not Trigger Learning

    NASA Astrophysics Data System (ADS)

    Ohlsson, Stellan

    A theory consists of a mental model, laws that specify parameters of the model and one or more explanatory schemas. Models represent by being isomorphic to real systems. To explain an event is to reenact its genesis by executing the relevant model in the mind's eye. Schemas capture recurring structural features of explanations. To subscribe to a theory is to be committed to explaining a particular class of events with that theory (and nothing else). Given theoretical commitment, an anomaly, i.e., an event that cannot be explained, is an occasion for theory change, but in the absence of commitment, the response is instead to exclude the anomalous event from the domain of application of the theory. Lay people and children hold their theories implicitly and hence without commitment. These observations imply that the analogy between scientist's theories and children's knowledge is valid, but that the analogy between theory change and learning is not.

  4. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  5. Indications of the Mineralogy of Callisto and Mars from Reflectance Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Calvin, Wendy Marie

    1991-02-01

    Remotely sensed reflectance spectra contain information on mineral identities, grain sizes, and abundances. This thesis consists of analysis of such spectra for two planetary objects, Callisto and Mars. Theoretical modeling of telescopic spectra of Callisto indicates that the surface consists of 20 to 45 wt% water ice at large grain sizes. In the spectral region beyond 3 μm absorption by hydrated mineral phases is dominant. The non-ice material is spectrally similar to hydrous alteration minerals that are commonly found in certain petrologic types of meteorites. New high-resolution data of Callisto are consistent with the findings of the modeling study. In addition, these new data have identified the presence of a small amount of fine-grained water ice on the leading hemisphere, through a characteristic absorption near 3.4 mum. Variations in the depth of this absorption feature indicate dynamic competition between processes which create and erode fine -grained water ice. Calibration and analysis of spectrometer data from the Mariner 6 and 7 space-craft has provided new information regarding the mineralogy of Mars. Laboratory measurements and theoretical calculations of CO_2 frosts have allowed an analysis of spectra taken over the martian south polar cap. The grain sizes in the seasonal cap are quite large and there may be evidence of contamination by water frost or dust. Analysis of Mariner spectra in non-polar regions have tentatively identified absorption features near 2.76 μm and 5.4 mum. The location of these features, and other absorptions identified from terrestrial observations, are consistent with the spectra of hydrous magnesium carbonates. The hydrous carbonates do not have strong spectral features typically associated with carbonates. Theoretical calculations of mixtures indicates that 10-30wt% of these minerals can be included and still be consistent with spectral observations. These minerals form on earth through weathering of mafic minerals with the production of amorphous iron oxides as byproducts, consistent with both present and inferred past martian environments. The presence of hydrous carbonates can provide a mechanism for having abundant carbonates on Mars while spectral searches for (anhydrous) carbonates will not find any evidence for them.

  6. Optimization of diode-pumped doubly QML laser with neodymium-doped vanadate crystals at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Jiao, Zhiyong

    2018-05-01

    We present a theoretical model for a diode-pumped, 1.34 μm V3+:YAG laser that is equipped with an acoustic-optic modulator. The model includes the loss introduced by the acoustic-optic modulator combined with the physical properties of the laser resonator, the neodymium-doped vanadate crystals and the output coupler. The parameters are adjusted within a reasonable range to optimize the pulse output characteristics. A typical Q-switched and mode-locked Nd:Lu0.15Y0.85VO4 laser at 1.34 μm with acoustic-optic modulator and V3+:YAG is set up, and the experimental output characteristics are consistent with the theoretical simulation results.

  7. An analytical model of prominence dynamics

    NASA Astrophysics Data System (ADS)

    Routh, Swati; Saha, Snehanshu; Bhat, Atul; Sundar, M. N.

    2018-01-01

    Solar prominences are magnetic structures incarcerating cool and dense gas in an otherwise hot solar corona. Prominences can be categorized as quiescent and active. Their origin and the presence of cool gas (∼104 K) within the hot (∼106K) solar corona remains poorly understood. The structure and dynamics of solar prominences was investigated in a large number of observational and theoretical (both analytical and numerical) studies. In this paper, an analytic model of quiescent solar prominence is developed and used to demonstrate that the prominence velocity increases exponentially, which means that some gas falls downward towards the solar surface, and that Alfvén waves are naturally present in the solar prominences. These theoretical predictions are consistent with the current observational data of solar quiescent prominences.

  8. Diffusion in randomly perturbed dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer

    2014-11-01

    Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.

  9. Quasi-particle properties from tunneling in the v = 5/2 fractional quantum Hall state.

    PubMed

    Radu, Iuliana P; Miller, J B; Marcus, C M; Kastner, M A; Pfeiffer, L N; West, K W

    2008-05-16

    Quasi-particles with fractional charge and statistics, as well as modified Coulomb interactions, exist in a two-dimensional electron system in the fractional quantum Hall (FQH) regime. Theoretical models of the FQH state at filling fraction v = 5/2 make the further prediction that the wave function can encode the interchange of two quasi-particles, making this state relevant for topological quantum computing. We show that bias-dependent tunneling across a narrow constriction at v = 5/2 exhibits temperature scaling and, from fits to the theoretical scaling form, extract values for the effective charge and the interaction parameter of the quasi-particles. Ranges of values obtained are consistent with those predicted by certain models of the 5/2 state.

  10. Mirror neurons, language, and embodied cognition.

    PubMed

    Perlovsky, Leonid I; Ilin, Roman

    2013-05-01

    Basic mechanisms of the mind, cognition, language, its semantic and emotional mechanisms are modeled using dynamic logic (DL). This cognitively and mathematically motivated model leads to a dual-model hypothesis of language and cognition. The paper emphasizes that abstract cognition cannot evolve without language. The developed model is consistent with a joint emergence of language and cognition from a mirror neuron system. The dual language-cognition model leads to the dual mental hierarchy. The nature of cognition embodiment in the hierarchy is analyzed. Future theoretical and experimental research is discussed. Published by Elsevier Ltd.

  11. Exploring the relation between masculinity and mental illness stigma using the stereotype content model and BIAS map.

    PubMed

    Boysen, Guy A

    2017-01-01

    The current research explored the association of masculinity and stigma toward mental illness using theoretical predictions stemming from the stereotype content model and BIAS map. Two correlational studies (Ns = 245, 163) measured stereotypes, emotions, and behavioral intentions in relation to masculine, feminine, and gender-neutral disorders. Participants perceived masculine disorders as lacking personal warmth and competence. Masculine disorders also elicited more negative emotions and behavioral intentions. Two experimental studies (Ns = 161, 431) manipulated personal warmth, sex, and type of disorder in descriptions of people with mental illness. Low warmth and stereotypically masculine disorders consistently elicited negative emotions and behavioral intentions, but sex had limited effects. Overall, the results supported the theoretical models and illustrated the importance of warmth and symptomatic behavior in explaining the masculinity-stigma relation.

  12. Standard model with a complex scalar singlet: Cosmological implications and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Ramsey-Musolf, Michael J.; Senaha, Eibun

    2018-01-01

    We analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative treatment of the phase transition dynamics.

  13. Impact of DNA twist accumulation on progressive helical wrapping of torsionally constrained DNA.

    PubMed

    Li, Wei; Wang, Peng-Ye; Yan, Jie; Li, Ming

    2012-11-21

    DNA wrapping is an important mechanism for chromosomal DNA packaging in cells and viruses. Previous studies of DNA wrapping have been performed mostly on torsionally unconstrained DNA, while in vivo DNA is often under torsional constraint. In this study, we extend a previously proposed theoretical model for wrapping of torsionally unconstrained DNA to a new model including the contribution of DNA twist energy, which influences DNA wrapping drastically. In particular, due to accumulation of twist energy during DNA wrapping, it predicts a finite amount of DNA that can be wrapped on a helical spool. The predictions of the new model are tested by single-molecule study of DNA wrapping under torsional constraint using magnetic tweezers. The theoretical predictions and the experimental results are consistent with each other and their implications are discussed.

  14. TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor

    PubMed Central

    Ghosh, Arunabha; Le, Viet Thong; Bae, Jung Jun; Lee, Young Hee

    2013-01-01

    Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs−1 scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model. PMID:24145831

  15. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  16. Promoting compliance: the patient-provider partnership.

    PubMed

    Wilson, B M

    1995-07-01

    Compliance has been defined traditionally in terms of how well a patient follows through with the recommendations of a health care provider. Patient education has often consisted of a one-way communication of provider to patient. This article advocates a multifaceted approach to compliance issues in which patients and health care providers set mutually agreed upon treatment goals. These goals must be consistent with patients' priorities and lifestyles. Patient compliance issues are examined in the context of three theoretical frameworks: (1) the Health-Belief Model, (2) Locus of Control Theory, and (3) Piaget's Theory of Cognitive Development. The insights gained from these models are then used to provide practical suggestions for enhancing compliance.

  17. Theoretical nuclear physics

    NASA Astrophysics Data System (ADS)

    Rost, E.; Shephard, J. R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self-consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the (triangle)-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to (bar p)p yields (bar lambda)lambda reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

  18. Theoretical dissociation energies for ionic molecules

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.

  19. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  20. Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions

    NASA Astrophysics Data System (ADS)

    Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.

    2018-02-01

    We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.

  1. Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.

    PubMed

    Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E

    2018-01-01

    We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.

  2. Network meta-analysis, electrical networks and graph theory.

    PubMed

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuo, Rui; Wu, C. F. Jeff

    Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.

  4. Use of piezoelectric actuators in active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald

    1990-01-01

    Theoretical and test results for the development of piezoelectric-actuator-based active vibration control (AVC) are presented. The evolution of this technology starts with an ideal model of the actuator and progresses to a more sophisticated model where the pushers force the squirrel cage ball bearing supports of a rotating shaft. The piezoelectric pushers consist of a stack of piezoelectric ceramic disks that are arranged on top of one another and connected in parallel electrically. This model consists of a prescribed displacement that is proportional to the input voltage and a spring that represents the stiffness of the stack of piezoelectric disks. System tests were carried out to stabilize the AVC system, verify its effectiveness in controlling vibration, and confirm the theory presented.

  5. Part 1: Classical laser. Part 2: The effect of velocity changing collisions on the output of a gas laser. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Borenstein, M.

    1972-01-01

    A classical model for laser action is discussed, in which an active medium consisting of anharmonic oscillators interacts with an electromagnetic field in a resonant cavity. Comparison with the case of a medium consisting of harmonic oscillators shows the significance of nonlinearities for producing self-sustained oscillations in the radiation field. A theoretical model is presented for the pressure dependence of the intensity of a gas laser, in which only velocity-changing collisions with foreign gas atoms are included. A collision model for hard sphere, repulsive interactions was derived. Collision theory was applied to a third-order expansion of the polarization in powers of the cavity electric field (weak signal theory).

  6. Reinterpreting Lifelong Learning: Meanings of Adult Education Policy in Portugal, 1999-2010

    ERIC Educational Resources Information Center

    Guimaraes, Paula

    2013-01-01

    This article analyses Portugal's adult education policy between 1999 and 2010. Our empirical material consists of Portuguese as well as supranational policy documents. We use a theoretical framework which distinguishes three models of public policy, with different views on the roles of public policy and of education: (1) participative…

  7. Giftedness and Genetics: The Emergenic-Epigenetic Model and Its Implications

    ERIC Educational Resources Information Center

    Simonton, Dean Keith

    2005-01-01

    The genetic endowment underlying giftedness may operate in a far more complex manner than often expressed in most theoretical accounts of the phenomenon. First, an endowment may be emergenic. That is, a gift may consist of multiple traits (multidimensional) that are inherited in a multiplicative (configurational), rather than an additive (simple)…

  8. Self-Regulated Learning Procedure for University Students: The "Meaningful Text-Reading" Strategy

    ERIC Educational Resources Information Center

    Roman Sanchez, Jose Maria

    2004-01-01

    Introduction: Experimental validation of a self-regulated learning procedure for university students, i.e. the "meaningful text-reading" strategy, is reported in this paper. The strategy's theoretical framework is the "ACRA Model" of learning strategies. The strategy consists of a flexible, recurring sequence of five mental operations of written…

  9. The Impact of Poland's 1990 Bill on Schools of Higher Education

    ERIC Educational Resources Information Center

    Butler, Norman L.

    2006-01-01

    This article is the product of the writer's deliberations about the impact of Poland's 1990 Bill on Schools of Higher Education using an information technology theoretical model consisting of three parts: (1) participation; (2) feedback; and (3) partnership. The main findings of the investigation revealed that: (1) there is wide participation in…

  10. A computational method for optimizing fuel treatment locations

    Treesearch

    Mark A. Finney

    2006-01-01

    Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...

  11. A Quantitative Study of the Relationship between Leadership Practice and Strategic Intentions to Use Cloud Computing

    ERIC Educational Resources Information Center

    Castillo, Alan F.

    2014-01-01

    The purpose of this quantitative correlational cross-sectional research study was to examine a theoretical model consisting of leadership practice, attitudes of business process outsourcing, and strategic intentions of leaders to use cloud computing and to examine the relationships between each of the variables respectively. This study…

  12. A THEORETICAL MODEL FOR RESEARCH IN EDUCATION.

    ERIC Educational Resources Information Center

    ARMSTRONG, JENNY R.

    THE FAILURE OF EDUCATIONAL RESEARCH TO CONTRIBUTE LARGE CONSISTENT BODIES OF KNOWLEDGE ABOUT THE EDUCATIONAL PROCESS HAS BEEN DUE TO FIVE MAJOR FACTORS--(1) FAULTY EXPERIMENTAL DESIGN, (2) FAILURE TO CONSIDER ALL OF THE MAJOR INPUT ELEMENTS OF THE EDUCATIONAL PROCESS, (3) FAILURE TO MAKE MEANINGFUL COMPARISONS (FOR EXAMPLE THE CONTROL GROUP IS NOT…

  13. Academic Procrastinators, Strategic Delayers and Something Betwixt and Between: An Interview Study

    ERIC Educational Resources Information Center

    Lindblom-Ylänne, Sari; Saariaho, Emmi; Inkinen, Mikko; Haarala-Muhonen, Anne; Hailikari, Telle

    2015-01-01

    The study explored university undergraduates' dilatory behaviour, more precisely, procrastination and strategic delaying. Using qualitative interview data, we applied a theory-driven and person-oriented approach to test the theoretical model of Klingsieck (2013). The sample consisted of 28 Bachelor students whose study pace had been slow during…

  14. Alternative models of recreational off-highway vehicle site demand

    Treesearch

    Jeffrey Englin; Thomas Holmes; Rebecca Niell

    2006-01-01

    A controversial recreation activity is off-highway vehicle use. Off-highway vehicle use is controversial because it is incompatible with most other activities and is extremely hard on natural eco-systems. This study estimates utility theoretic incomplete demand systems for four off-highway vehicle sites. Since two sets of restrictions are equally consistent with...

  15. Increasing Urban Students' Engagement with School: Toward the Expeditionary Learning Model

    ERIC Educational Resources Information Center

    Ikpeze, Chinwe

    2013-01-01

    This paper documents the findings of a case study of one K-10 urban expeditionary learning (EL) school. Drawing on theoretical perspectives consistent with the sociocultural theory, data were collected from a variety of sources that included a survey, interviews, field notes from classroom observations and other school activities. Thematic…

  16. Theoretical and experimental models of the diffuse radar backscatter from Mars

    NASA Technical Reports Server (NTRS)

    England, A. W.

    1995-01-01

    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.

  17. A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Z. M.; Wang, B.

    2018-06-01

    Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.

  18. Experimental and theoretical NMR and IR studies of the side-chain orientation effects on the backbone conformation of dehydrophenylalanine residue.

    PubMed

    Buczek, Aneta M; Ptak, Tomasz; Kupka, Teobald; Broda, Małgorzata A

    2011-06-01

    Conformation of N-acetyl-(E)-dehydrophenylalanine N', N'-dimethylamide (Ac-(E)-ΔPhe-NMe(2)) in solution, a member of (E)-α, β-dehydroamino acids, was studied by NMR and infrared spectroscopy and the results were compared with those obtained for (Z) isomer. To support the spectroscopic interpretation, the Φ, Ψ potential energy surfaces were calculated at the MP2/6-31 + G(d,p) level of theory in chloroform solution modeled by the self-consistent reaction field-polarizable continuum model method. All minima were fully optimized by the MP2 method and their relative stabilities were analyzed in terms of π-conjugation, internal H-bonds and dipole interactions between carbonyl groups. The obtained NMR spectral features were compared with theoretical nuclear magnetic shieldings, calculated using Gauge Independent Atomic Orbitals (GIAO) approach and rescaled to theoretical chemical shifts using benzene as reference. The calculated indirect nuclear spin-spin coupling constants were compared with available experimental parameters. Copyright © 2011 John Wiley & Sons, Ltd.

  19. The calculation and evaluation for n+54,56,57,58Fe reactions

    NASA Astrophysics Data System (ADS)

    Han, Yinlu; Xu, Yongli; Guo, Hairui; Zhang, Zhengjun; Liang, Haiying; Cai, Chonghai; Shen, Qingbiao

    2017-09-01

    All cross sections of neutron-induced reactions, angular distributions, double differential cross sections, angle-integrated spectra, γ-ray production cross sections and energy spectra for 54,56,57,58Fe are calculated by using theoretical models at incident neutron energies from 0.1 to 200 MeV. The present consistent theoretical calculated results are in good agreement with recent experimental data. The present evaluated data are compared with the existing experimental data and evaluated results from ENDF/B-VII, JENDL-4, JEFF-3, and the results are given in ENDF/B format.

  20. The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective

    NASA Astrophysics Data System (ADS)

    Deng, Xiaohui; Zeng, Jing; Si, Mingsu; Lu, Wei

    2016-10-01

    A theoretical model is presented that reveals the mechanism of spontaneous boron doping of graphene and is consistent with the microwave plasma experiment choosing trimethylboron as the doping source (Tang et al. (2012) [19]). The spontaneous boron doping originates from the synergistic effect of B and other groups (C, H, CH, CH2 or CH3) decomposing from trimethylboron. This work successfully explains the above experimental phenomenon and proposes a novel and feasible method aiming at B doping of graphene. The mechanism presented here may be also suitable for other two-dimensional carbon-based materials.

  1. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    PubMed

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  2. Using a modified technology acceptance model to evaluate healthcare professionals' adoption of a new telemonitoring system.

    PubMed

    Gagnon, Marie Pierre; Orruño, Estibalitz; Asua, José; Abdeljelil, Anis Ben; Emparanza, José

    2012-01-01

    To examine the factors that could influence the decision of healthcare professionals to use a telemonitoring system. A questionnaire, based on the Technology Acceptance Model (TAM), was developed. A panel of experts in technology assessment evaluated the face and content validity of the instrument. Two hundred and thirty-four questionnaires were distributed among nurses and doctors of the cardiology, pulmonology, and internal medicine departments of a tertiary hospital. Cronbach alpha was calculated to measure the internal consistency of the questionnaire items. Construct validity was evaluated using interitem correlation analysis. Logistic regression analysis was performed to test the theoretical model. Adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were computed. A response rate of 39.7% was achieved. With the exception of one theoretical construct (Habit) that corresponds to behaviors that become automatized, Cronbach alpha values were acceptably high for the remaining constructs. Theoretical variables were well correlated with each other and with the dependent variable. The original TAM was good at predicting telemonitoring usage intention, Perceived Usefulness being the only significant predictor (OR: 5.28, 95% CI: 2.12-13.11). The model was still significant and more powerful when the other theoretical variables were added. However, the only significant predictor in the modified model was Facilitators (OR: 4.96, 95% CI: 1.59-15.55). The TAM is a good predictive model of healthcare professionals' intention to use telemonitoring. However, the perception of facilitators is the most important variable to consider for increasing doctors' and nurses' intention to use the new technology.

  3. Factors influencing nurse-assessed quality nursing care: A cross-sectional study in hospitals.

    PubMed

    Liu, Ying; Aungsuroch, Yupin

    2018-04-01

    To propose a hypothesized theoretical model and apply it to examine the structural relationships among work environment, patient-to-nurse ratio, job satisfaction, burnout, intention to leave and quality nursing care. Improving quality nursing care is a first consideration in nursing management globally. A better understanding of factors influencing quality nursing care can help hospital administrators implement effective programmes to improve quality of services. Although certain bivariate correlations have been found between selected factors and quality nursing care in different study models, no studies have examined the relationships among work environment, patient-to-nurse ratio, job satisfaction, burnout, intention to leave and quality nursing care in a more comprehensive theoretical model. A cross-sectional survey. The questionnaires were collected from 510 Chinese nurses in four Chinese tertiary hospitals in January 2015. The validity and internal consistency reliability of research instruments were evaluated. Structural equation modelling was used to test a theoretical model. The findings revealed that the data supported the theoretical model. Work environment had a large total effect size on quality nursing care. Burnout largely and directly influenced quality nursing care, which was followed by work environment and patient-to-nurse ratio. Job satisfaction indirectly affected quality nursing care through burnout. This study shows how work environment past burnout and job satisfaction influences quality nursing care. Apart from nurses' work conditions of work environment and patient-to-nurse ratio, hospital administrators should pay more attention to nurse outcomes of job satisfaction and burnout when designing intervention programmes to improve quality nursing care. © 2017 John Wiley & Sons Ltd.

  4. The assumption of equilibrium in models of migration.

    PubMed

    Schachter, J; Althaus, P G

    1993-02-01

    In recent articles Evans (1990) and Harrigan and McGregor (1993) (hereafter HM) scrutinized the equilibrium model of migration presented in a 1989 paper by Schachter and Althaus. This model used standard microeconomics to analyze gross interregional migration flows based on the assumption that gross flows are in approximate equilibrium. HM criticized the model as theoretically untenable, while Evans summoned empirical as well as theoretical objections. HM claimed that equilibrium of gross migration flows could be ruled out on theoretical grounds. They argued that the absence of net migration requires that either all regions have equal populations or that unsustainable regional migration propensities must obtain. In fact some moves are inter- and other are intraregional. It does not follow, however, that the number of interregional migrants will be larger for the more populous region. Alternatively, a country could be divided into a large number of small regions that have equal populations. With uniform propensities to move, each of these analytical regions would experience in equilibrium zero net migration. Hence, the condition that net migration equal zero is entirely consistent with unequal distributions of population across regions. The criticisms of Evans were based both on flawed reasoning and on misinterpretation of the results of a number of econometric studies. His reasoning assumed that the existence of demand shifts as found by Goldfarb and Yezer (1987) and Topel (1986) invalidated the equilibrium model. The equilibrium never really obtains exactly, but economic modeling of migration properly begins with a simple equilibrium model of the system. A careful reading of the papers Evans cited in support of his position showed that in fact they affirmed rather than denied the appropriateness of equilibrium modeling. Zero net migration together with nonzero gross migration are not theoretically incompatible with regional heterogeneity of population, wages, or amenities.

  5. A utility-theoretic model for QALYs and willingness to pay.

    PubMed

    Klose, Thomas

    2003-01-01

    Despite the widespread use of quality-adjusted life years (QALY) in economic evaluation studies, their utility-theoretic foundation remains unclear. A model for preferences over health, money, and time is presented in this paper. Under the usual assumptions of the original QALY-model, an additive separable presentation of the utilities in different periods exists. In contrast to the usual assumption that QALY-weights do solely depend on aspects of health-related quality of life, wealth-standardized QALY-weights might vary with the wealth level in the presented extension of the original QALY-model resulting in an inconsistent measurement of QALYs. Further assumptions are presented to make the measurement of QALYs consistent with lifetime preferences over health and money. Even under these strict assumptions, QALYs and WTP (which also can be defined in this utility-theoretic model) are not equivalent preference-based measures of the effects of health technologies on an individual level. The results suggest that the individual WTP per QALY can depend on the magnitude of the QALY-gain as well as on the disease burden, when health influences the marginal utility of wealth. Further research seems to be indicated on this structural aspect of preferences over health and wealth and to quantify its impact. Copyright 2002 John Wiley & Sons, Ltd.

  6. Progress in Developing a New Field-theoretical Crossover Equation-of-State

    NASA Technical Reports Server (NTRS)

    Rudnick, Joseph; Barmatz, M.; Zhong, Fang

    2003-01-01

    A new field-theoretical crossover equation-of-state model is being developed. This model of a liquid-gas critical point provides a bridge between the asymptotic equation-of-state behavior close to the transition, obtained by the Guida and Zinn-Justin parametric model [J. Phys. A: Math. Gen. 31, 8103 (1998)], and the expected mean field behavior farther away. The crossover is based on the beta function for the renormalized fourth-order coupling constant and incorporates the correct crossover exponents and critical amplitude ratios in both regimes. A crossover model is now being developed that is consistent with predictions along the critical isochore and along the coexistence curve of the minimal subtraction renormalization approach developed by Dohm and co-workers and recently applied to the O(1) universality class [Phys. Rev. E, 67, 021106 (2003)]. Experimental measurements of the heat capacity at constant volume, isothermal susceptibility, and coexistence curve near the He-3 critical point are being compared to the predictions of this model. The results of these comparisons will be presented.

  7. Modeling and optimum time performance for concurrent processing

    NASA Technical Reports Server (NTRS)

    Mielke, Roland R.; Stoughton, John W.; Som, Sukhamoy

    1988-01-01

    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example.

  8. An Earth Albedo Model: A Mathematical Model for the Radiant Energy Input to an Orbiting Spacecraft Due to the Diffuse Reflectance of Solar Radiation from the Earth Below

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Moore, Wendy A.

    1994-01-01

    Past missions have shown that the earth's albedo can have a significant effect on the sun sensors used for spacecraft attitude control information. In response to this concern, an algorithm was developed to simulate this phenomenon, consisting of two parts, the physical model of albedo and its effect on the sun sensors. This paper contains the theoretical development of this model, practical operational notes, and its implementation in a FORTRAN subroutine.

  9. Efficient calibration for imperfect computer models

    DOE PAGES

    Tuo, Rui; Wu, C. F. Jeff

    2015-12-01

    Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.

  10. A fluctuating quantum model of the CO vibration in carboxyhemoglobin.

    PubMed

    Falvo, Cyril; Meier, Christoph

    2011-06-07

    In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results. © 2011 American Institute of Physics

  11. Political Dynamics Affected by Turncoats

    NASA Astrophysics Data System (ADS)

    Di Salvo, Rosa; Gorgone, Matteo; Oliveri, Francesco

    2017-11-01

    An operatorial theoretical model based on raising and lowering fermionic operators for the description of the dynamics of a political system consisting of macro-groups affected by turncoat-like behaviors is presented. The analysis of the party system dynamics is carried on by combining the action of a suitable quadratic Hamiltonian operator with specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the conservative model to the political environment.

  12. A new approach to plasmasphere refilling: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1991-01-01

    During the last 10 months of the grant, both laminar and anomalous plasma processes occurring during the refilling of the outer plasmasphere after magnetic storms are investigated. Theoretical investigations were based on two types of models: (1) two-stream hydrodynamic model in which plasma flows from the conjugate ionospheres are treated as separate fluids and the ion temperature anisotropies are treated self-consistently; and (2) large-scale particle-in-cell code.

  13. Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu

    2014-01-21

    Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustratemore » that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.« less

  14. Model for Increasing the Power Obtained from a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng

    2014-06-01

    We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and the environment.

  15. Distinguishing integrative from eclectic practice in cognitive behavioral therapies.

    PubMed

    Petrik, Alexandra M; Kazantzis, Nikolaos; Hofmann, Stefan G

    2013-09-01

    In psychotherapy research, practice, and training, there remains marked controversy about the merits of theoretical purism (i.e., model specific), versus integration, as well as how such principles may be represented in practice. Adding to the confusion is that many attributes of the therapeutic relationship, processes in therapy, and techniques have been popularized in the context of one or two theoretical approaches, but are incorporated into the practice of many approaches. This article demonstrates the various ways in which three core interventions (i.e., activity scheduling, self-monitoring, and identification, evaluation, and modification of thoughts) can be applied within the context of different cognitive and behavioral therapeutic models. It also demonstrates the role of in-session therapist language in describing the theoretical basis and processes underpinning therapeutic interventions. Case examples are presented to illustrate therapy provided by two hypothetical clinicians, Therapist A and Therapist B. Whether or not a practitioner elects to practice integrative psychotherapy, we advocate for consistency in the theoretical approach through the course of a service for a particular patient. Implications are outlined and discussed within the context of the current state of cognitive and behaviorally focused psychotherapies and integrative psychotherapy. 2013 APA, all rights reserved

  16. A Theoretical Framework for Calibration in Computer Models: Parametrization, Estimation and Convergence Properties

    DOE PAGES

    Tuo, Rui; Jeff Wu, C. F.

    2016-07-19

    Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less

  17. The Bereavement Guilt Scale.

    PubMed

    Li, Jie; Stroebe, Magaret; Chan, Cecilia L W; Chow, Amy Y M

    2017-06-01

    The rationale, development, and validation of the Bereavement Guilt Scale (BGS) are described in this article. The BGS was based on a theoretically developed, multidimensional conceptualization of guilt. Part 1 describes the generation of the item pool, derived from in-depth interviews, and review of the scientific literature. Part 2 details statistical analyses for further item selection (Sample 1, N = 273). Part 3 covers the psychometric properties of the emergent-BGS (Sample 2, N = 600, and Sample 3, N = 479). Confirmatory factor analysis indicated that a five-factor model fit the data best. Correlations of BGS scores with depression, anxiety, self-esteem, self-forgiveness, and mode of death were consistent with theoretical predictions, supporting the construct validity of the measure. The internal consistency and test-retest reliability were also supported. Thus, initial testing or examination suggests that the BGS is a valid tool to assess multiple components of bereavement guilt. Further psychometric testing across cultures is recommended.

  18. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  19. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhuwen, E-mail: zzwwdxy@gznc.edu.cn; Key Laboratory of Photoelectron Materials Design and Simulation in Guizhou Province, Guiyang 550018; Scientific Research Innovation Team in Plasma and Functional Thin Film Materials in Guizhou Province, Guiyang 550018

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, themore » IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.« less

  20. The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.

    PubMed

    Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S

    2016-10-01

    The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.

  1. Measurements of thermal conductivity and the coefficient of thermal expansion for polysilicon thin films by using double-clamped beams

    NASA Astrophysics Data System (ADS)

    Liu, Haiyun; Wang, Lei

    2018-01-01

    In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96  ±  0.92) W · m · K-1 and (2.65  ±  0.03)  ×  10-6 K-1, respectively, with temperature ranging from 300-400 K.

  2. Piezo-Phototronic Effect in a Quantum Well Structure.

    PubMed

    Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin

    2016-05-24

    With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.

  3. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-03-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  4. TIE: an ability test of emotional intelligence.

    PubMed

    Śmieja, Magdalena; Orzechowski, Jarosław; Stolarski, Maciej S

    2014-01-01

    The Test of Emotional Intelligence (TIE) is a new ability scale based on a theoretical model that defines emotional intelligence as a set of skills responsible for the processing of emotion-relevant information. Participants are provided with descriptions of emotional problems, and asked to indicate which emotion is most probable in a given situation, or to suggest the most appropriate action. Scoring is based on the judgments of experts: professional psychotherapists, trainers, and HR specialists. The validation study showed that the TIE is a reliable and valid test, suitable for both scientific research and individual assessment. Its internal consistency measures were as high as .88. In line with theoretical model of emotional intelligence, the results of the TIE shared about 10% of common variance with a general intelligence test, and were independent of major personality dimensions.

  5. Induced seismicity provides insight into why earthquake ruptures stop.

    PubMed

    Galis, Martin; Ampuero, Jean Paul; Mai, P Martin; Cappa, Frédéric

    2017-12-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  6. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  7. A theoretical model of co-worker responses to work reintegration processes.

    PubMed

    Dunstan, Debra A; Maceachen, Ellen

    2014-06-01

    Emerging research has shown that co-workers have a significant influence on the return-to-work outcomes of partially fit ill or injured employees. By drawing on theoretical findings from the human resource and wider behavioral sciences literatures, our goal was to formulate a theoretical model of the influences on and outcomes of co-worker responses within work reintegration. From a search of 15 data bases covering the social sciences, business and medicine, we identified articles containing models of the factors that influence co-workers' responses to disability accommodations; and, the nature and impact of co-workers' behaviors on employee outcomes. To meet our goal, we combined identified models to form a comprehensive model of the relevant factors and relationships. Internal consistency and externally validity were assessed. The combined model illustrates four key findings: (1) co-workers' behaviors towards an accommodated employee are influenced by attributes of that employee, the illness or injury, the co-worker themselves, and the work environment; (2) the influences-behaviour relationship is mediated by perceptions of the fairness of the accommodation; (3) co-workers' behaviors affect all work reintegration outcomes; and (4) co-workers' behaviours can vary from support to antagonism and are moderated by type of support required, the social intensity of the job, and the level of antagonism. Theoretical models from the wider literature are useful for understanding the impact of co-workers on the work reintegration process. To achieve optimal outcomes, co-workers need to perceive the arrangements as fair. Perceptions of fairness might be supported by co-workers' collaborative engagement in the planning, monitoring and review of work reintegration activities.

  8. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Shang, De-Yi; Zhong, Liang-Cai

    2017-01-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  9. Infant Perception of Non-Native Consonant Contrasts that Adults Assimilate in Different Ways*

    PubMed Central

    Best, Catherine C.; McRoberts, Gerald W.

    2009-01-01

    Numerous findings suggest that non-native speech perception undergoes dramatic changes before the infant’s first birthday. Yet the nature and cause of these changes remain uncertain. We evaluated the predictions of several theoretical accounts of developmental change in infants’ perception of non-native consonant contrasts. Experiment 1 assessed English-learning infants’ discrimination of three isiZulu distinctions that American adults had categorized and discriminated quite differently, consistent with the Perceptual Assimilation Model (PAM: Best, 1995; Best et al., 1988). All involved a distinction employing a single articulatory organ, in this case the larynx. Consistent with all theoretical accounts, 6–8 month olds discriminated all contrasts. However, 10–12 month olds performed more poorly on each, consistent with the Articulatory-Organ-matching hypothesis (AO) derived from PAM and Articulatory Phonology (Studdert-Kennedy & Goldstein, 2003), specifically that older infants should show a decline for non-native distinctions involving a single articulatory organ. However, the results may also be open to other interpretations. The converse AO hypothesis, that non-native between-organ distinctions will remain highly discriminate to older infants, was tested in Experiment 2. using a non-native Tigrinya distinction involving lips versus tongue tip. Both ages discriminated this between-organ contrast well, further supporting the AO hypothesis. Implications for theoretical accounts of infant speech perception are discussed. PMID:14748444

  10. Self-consistent approach for neutral community models with speciation

    NASA Astrophysics Data System (ADS)

    Haegeman, Bart; Etienne, Rampal S.

    2010-03-01

    Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.

  11. Tidal disruption of Periodic Comet Shoemaker-Levy 9 and a constraint on its mean density

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1994-01-01

    The apparent tidal disruption of Periodic Comet Shoemaker-Levy 9 (1993e) during a close encounter within approximately 1.62 planetary radii of Jupiter can be used along with theoretical models of tidal disruption to place an upper bound on the density of the predisruption body. Depending on the theoretical model used, these upper bounds range from rho(sub c) less than 0.702 +/- 0.080 g/cu cm for a simple analytical model calibrated by numerical smoothed particle hydrodynamics (SPH) simulations to rho(sub c) less than 1.50 +/- 0.17 g/cu cm for a detailed semianalytical model. The quoted uncertainties stem from an assumed uncertainty in the perijove radius. However, the uncertainty introduced by the different theoretical models is the major source of error; this uncertainty could be eliminated by future SPH simulations specialized to cometary disruptions, including the effects of initially prolate, spinning comets. If the SPH-based upper bound turns out to be most appropriate, it would be consistent with the predisruption body being a comet with a relatively low density and porous structure, as has been asserted previously based on observations of cometary outgassing. Regardless of which upper bound is preferable, the models all agree that the predisruption body could not have been a relatively high-density body, such as an asteroid with rho approximately = 2 g/cu cm.

  12. The Role of Person Versus Situation in Life Satisfaction: A Critical Examination

    ERIC Educational Resources Information Center

    Heller, Daniel; Watson, David; Hies, Remus

    2004-01-01

    Two main theoretical approaches have been put forward to explain individual differences in life satisfaction: top-down (i.e., personological) and bottom-up (i.e., situational). The authors examine the relative merit of these 2 approaches and the psychological processes underlying top-down models. Consistent with a top-down approach, meta-analytic…

  13. Developing the Language of Thinking within a Classroom Community of Inquiry: Pre-Service Teachers' Experiences

    ERIC Educational Resources Information Center

    Green, Lena; Condy, Janet; Chigona, Agnes

    2012-01-01

    We argue that the "community of inquiry" approach, using reading materials modelled on Lipman's Philosophy for Children programme, is a theoretically justified and teacher-friendly means of promoting effective thinking skills. The stimulus materials, used by the pre-service teachers, consist of short stories of classroom life designed to…

  14. Weaknesses of South African Education in the Mirror Image of International Educational Development

    ERIC Educational Resources Information Center

    Wolhuter, C. C.

    2014-01-01

    The aim of this article is to present a systematic, holistic evaluation of the South African education system, using international benchmarks as the yardstick. A theoretical model for the evaluation of a national education project is constructed. This consists of three dimensions, namely: a quantitative dimension, a qualitative dimension, and an…

  15. Input Consistency in the Acquisition of Questions in Bulgarian and English: A Hypothesis Testing Model

    ERIC Educational Resources Information Center

    Tornyova, Lidiya

    2011-01-01

    The goal of this dissertation is to address several major empirical and theoretical issues related to English-speaking children's difficulties with auxiliary use and inversion in questions. The empirical data on English question acquisition are inconsistent due to differences in methods and techniques used. A range of proposals about the source of…

  16. Consistent searches for SMEFT effects in non-resonant dijet events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alte, Stefan; Konig, Matthias; Shepherd, William

    Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less

  17. Consistent searches for SMEFT effects in non-resonant dijet events

    DOE PAGES

    Alte, Stefan; Konig, Matthias; Shepherd, William

    2018-01-19

    Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less

  18. Happy but still focused: failures to find evidence for a mood-induced widening of visual attention.

    PubMed

    Bruyneel, Lynn; van Steenbergen, Henk; Hommel, Bernhard; Band, Guido P H; De Raedt, Rudi; Koster, Ernst H W

    2013-05-01

    In models of affect and cognition, it is held that positive affect broadens the scope of attention. Consistent with this claim, previous research has indeed suggested that positive affect is associated with impaired selective attention as evidenced by increased interference of spatially distant distractors. However, several recent findings cast doubt on the reliability of this observation. In the present study, we examined whether selective attention in a visual flanker task is influenced by positive mood induction. Across three experiments, positive affect consistently failed to exert any impact on selective attention. The implications of this null-finding for theoretical models of affect and cognition are discussed.

  19. Anatomy of the Higgs fits: A first guide to statistical treatments of the theoretical uncertainties

    NASA Astrophysics Data System (ADS)

    Fichet, Sylvain; Moreau, Grégory

    2016-04-01

    The studies of the Higgs boson couplings based on the recent and upcoming LHC data open up a new window on physics beyond the Standard Model. In this paper, we propose a statistical guide to the consistent treatment of the theoretical uncertainties entering the Higgs rate fits. Both the Bayesian and frequentist approaches are systematically analysed in a unified formalism. We present analytical expressions for the marginal likelihoods, useful to implement simultaneously the experimental and theoretical uncertainties. We review the various origins of the theoretical errors (QCD, EFT, PDF, production mode contamination…). All these individual uncertainties are thoroughly combined with the help of moment-based considerations. The theoretical correlations among Higgs detection channels appear to affect the location and size of the best-fit regions in the space of Higgs couplings. We discuss the recurrent question of the shape of the prior distributions for the individual theoretical errors and find that a nearly Gaussian prior arises from the error combinations. We also develop the bias approach, which is an alternative to marginalisation providing more conservative results. The statistical framework to apply the bias principle is introduced and two realisations of the bias are proposed. Finally, depending on the statistical treatment, the Standard Model prediction for the Higgs signal strengths is found to lie within either the 68% or 95% confidence level region obtained from the latest analyses of the 7 and 8 TeV LHC datasets.

  20. Measuring the Reliability of Picture Story Exercises like the TAT

    PubMed Central

    Gruber, Nicole; Kreuzpointner, Ludwig

    2013-01-01

    As frequently reported, psychometric assessments on Picture Story Exercises, especially variations of the Thematic Apperception Test, mostly reveal inadequate scores for internal consistency. We demonstrate that the reason for this apparent shortcoming is not caused by the coding system itself but from the incorrect use of internal consistency coefficients, especially Cronbach’s α. This problem could be eliminated by using the category-scores as items instead of the picture-scores. In addition to a theoretical explanation we prove mathematically why the use of category-scores produces an adequate internal consistency estimation and examine our idea empirically with the origin data set of the Thematic Apperception Test by Heckhausen and two additional data sets. We found generally higher values when using the category-scores as items instead of picture-scores. From an empirical and theoretical point of view, the estimated reliability is also superior to each category within a picture as item measuring. When comparing our suggestion with a multifaceted Rasch-model we provide evidence that our procedure better fits the underlying principles of PSE. PMID:24348902

  1. Modeling NAPL dissolution from pendular rings in idealized porous media

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.

    2015-10-01

    The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.

  2. Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach

    PubMed Central

    Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei

    2015-01-01

    Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies. PMID:26705505

  3. Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach.

    PubMed

    Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei

    2015-08-01

    Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies.

  4. Solvable model for chimera states of coupled oscillators.

    PubMed

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  5. The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models.

    PubMed

    Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni

    2013-11-20

    The consistency of the frequency response predicted by a class of electrochemical impedance expressions is analytically checked by invoking the Kramers-Kronig (KK) relations. These expressions are obtained in the context of Poisson-Nernst-Planck usual or anomalous diffusional models that satisfy Poisson's equation in a finite length situation. The theoretical results, besides being successful in interpreting experimental data, are also shown to obey the KK relations when these relations are modified accordingly.

  6. Realized Volatility Analysis in A Spin Model of Financial Markets

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    We calculate the realized volatility of returns in the spin model of financial markets and examine the returns standardized by the realized volatility. We find that moments of the standardized returns agree with the theoretical values of standard normal variables. This is the first evidence that the return distributions of the spin financial markets are consistent with a finite-variance of mixture of normal distributions that is also observed empirically in real financial markets.

  7. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    NASA Technical Reports Server (NTRS)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  8. Effect of differentiation of self on adolescent risk behavior: test of the theoretical model.

    PubMed

    Knauth, Donna G; Skowron, Elizabeth A; Escobar, Melicia

    2006-01-01

    Innovative theoretical models are needed to explain the occurrence of high-risk sexual behaviors, alcohol and other-drug (AOD) use, and academic engagement among ethnically diverse, inner-city adolescents. The aim of this study was to test the credibility of a theoretical model based on the Bowen family systems theory to explain adolescent risk behavior. Specifically tested was the relationship between the predictor variables of differentiation of self, chronic anxiety, and social problem solving and the dependent variables of high-risk sexual behaviors, AOD use, and academic engagement. An ex post facto cross-sectional design was used to test the usefulness of the theoretical model. Data were collected from 161 racially/ethnically diverse, inner-city high school students, 14 to 19 years of age. Participants completed self-report written questionnaires, including the Differentiation of Self Inventory, State-Trait Anxiety Inventory, Social Problem Solving for Adolescents, Drug Involvement Scale for Adolescents, and the Sexual Behavior Questionnaire. Consistent with the model, higher levels of differentiation of self related to lower levels of chronic anxiety (p < .001) and higher levels of social problem solving (p < .01). Higher chronic anxiety was related to lower social problem solving (p < .001). A test of mediation showed that chronic anxiety mediates the relationship between differentiation of self and social problem solving (p < .001), indicating that differentiation influences social problem solving through chronic anxiety. Higher levels of social problem solving were related to less drug use (p < .05), less high-risk sexual behaviors (p < .01), and an increase in academic engagement (p < .01). Findings support the theoretical model's credibility and provide evidence that differentiation of self is an important cognitive factor that enables adolescents to manage chronic anxiety and motivates them to use effective problem solving, resulting in less involvement in health-comprising behaviors and increased academic engagement.

  9. Psychometric properties of the Brief Symptom Inventory-18 in a Spanish breast cancer sample.

    PubMed

    Galdón, Ma José; Durá, Estrella; Andreu, Yolanda; Ferrando, Maite; Murgui, Sergio; Pérez, Sandra; Ibañez, Elena

    2008-12-01

    The objective of this work was to study the psychometric and structural properties of the Brief Symptom Inventory-18 (BSI-18) in a sample of breast cancer patients (N=175). Confirmatory factor analyses were conducted. Two models were tested: the theoretical model with the original structure (three-dimensional), and the empirical model (a four-factor structure) obtained through exploratory factor analysis initially performed by the authors of the BSI-18. The eligible structure was the original proposal consisting of three dimensions: somatization, depression, and anxiety scores. These measures also showed good internal consistency. The results of this study support the reliability and structural validity of the BSI-18 as a standardized instrument for screening purposes in breast cancer patients, with the added benefits of simplicity and ease of application.

  10. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  11. Diagnosing a Strong-Fault Model by Conflict and Consistency

    PubMed Central

    Zhou, Gan; Feng, Wenquan

    2018-01-01

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods. PMID:29596302

  12. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  13. Measurements and calculations of transport AC loss in second generation high temperature superconducting pancake coils

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry

    2011-12-01

    Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.

  14. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  15. A theoretical model of continuity in anxiety and links to academic achievement in disaster-exposed school children.

    PubMed

    Weems, Carl F; Scott, Brandon G; Taylor, Leslie K; Cannon, Melinda F; Romano, Dawn M; Perry, Andre M

    2013-08-01

    This study tested a theoretical model of continuity in anxious emotion and its links to academic achievement in disaster-exposed youth. An urban school based sample of youths (n = 191; Grades 4-8) exposed to Hurricane Katrina were assessed at 24 months (Time 1) and then again at 30 months (Time 2) postdisaster. Academic achievement was assessed through end of the school year standardized test scores (~31 months after Katrina). The results suggest that the association of traumatic stress to academic achievement was indirect via linkages from earlier (Time 1) posttraumatic stress disorder symptoms that predicted later (Time 2) test anxiety. Time 2 test anxiety was then negatively associated with academic achievement. Age and gender invariance testing suggested strong consistency across gender and minor developmental variation in the age range examined. The model presented advances the developmental understanding of the expression of anxious emotion and its links to student achievement among disaster-exposed urban school children. The findings highlight the importance of identifying heterotypic continuity in anxiety and suggest potential applied and policy directions for disaster-exposed youth. Avenues for future theoretical refinement are also discussed.

  16. Information Presentation in Decision and Risk Analysis: Answered, Partly Answered, and Unanswered Questions.

    PubMed

    Keller, L Robin; Wang, Yitong

    2017-06-01

    For the last 30 years, researchers in risk analysis, decision analysis, and economics have consistently proven that decisionmakers employ different processes for evaluating and combining anticipated and actual losses, gains, delays, and surprises. Although rational models generally prescribe a consistent response, people's heuristic processes will sometimes lead them to be inconsistent in the way they respond to information presented in theoretically equivalent ways. We point out several promising future research directions by listing and detailing a series of answered, partly answered, and unanswered questions. © 2016 Society for Risk Analysis.

  17. Field-theoretic approach to fluctuation effects in neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buice, Michael A.; Cowan, Jack D.; Mathematics Department, University of Chicago, Chicago, Illinois 60637

    A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governedmore » by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience.« less

  18. A solar photovoltaic system with ideal efficiency close to the theoretical limit.

    PubMed

    Zhao, Yuan; Sheng, Ming-Yu; Zhou, Wei-Xi; Shen, Yan; Hu, Er-Tao; Chen, Jian-Bo; Xu, Min; Zheng, Yu-Xiang; Lee, Young-Pak; Lynch, David W; Chen, Liang-Yao

    2012-01-02

    In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.

  19. Experimental and theoretical study of magnetohydrodynamic ship models.

    PubMed

    Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  20. Experimental and theoretical study of magnetohydrodynamic ship models

    PubMed Central

    Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques. PMID:28665941

  1. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  2. Derivation of an applied nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  3. Thermo-electric transport in gauge/gravity models with momentum dissipation

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele

    2014-09-01

    We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.

  4. Diffusion measurement from observed transverse beam echoes

    DOE PAGES

    Sen, Tanaji; Fischer, Wolfram

    2017-01-09

    For this research, we study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in RHIC and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.

  5. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    NASA Astrophysics Data System (ADS)

    Ishida, Tateki

    2015-01-01

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monaghan, P; Shneor, R; Subedi, R

    The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.

  7. Fluid Dynamics and Solidification of Molten Solder Droplets Impacting on a Substrate in Microgravity

    NASA Technical Reports Server (NTRS)

    Megardis, C. M.; Poulikakos, D.; Diversiev, G.; Boomsma, K.; Xiong, B.; Nayagam, V.

    1999-01-01

    This program investigates the fluid dynamics and simultaneous solidification of molten solder droplets impacting on a flat smooth substrate. The problem of interest is directly relevant to the printing of microscopic solder droplets in surface mounting of microelectronic devices. The study consists of a theoretical and an experimental component. The theoretical work uses axisymmetric Navier-Stokes models based on finite element techniques. The experimental work will be ultimately performed in microgravity in order to allow for the use of larger solder droplets which make feasible the performance of accurate measurements, while maintaining similitude of the relevant fluid dynamics groups (Re, We).

  8. Fluid Dynamics and Solidification of Molten Solder Droplets Impacting on a Substrate in Microgravity

    NASA Technical Reports Server (NTRS)

    Poulikakos, Dimos; Megaridis, Constantine M.; Vedha-Nayagam, M.

    1996-01-01

    This program investigates the fluid dynamics and simultaneous solidification of molten solder droplets impacting on a flat substrate. The problem of interest is directly relevant to the printing of microscopic solder droplets in surface mounting of microelectronic devices. The study consists of a theoretical and an experimental component. The theoretical work uses axisymmetric Navier-Stokes models based on finite element techniques. The experimental work is performed in microgravity to allow for the use of larger solder droplets that make feasible the performance of accurate measurements while maintaining similitude of the relevant fluid dynamics groups (Re, We) and keeping the effect of gravity negligible.

  9. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams. Revision 1

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with three quadrilateral, six pentagonal faces and two hexagonal faces consistent with the 3-6-2 Matzke cell. A compilation of 90 years of experimental data reveals that the average number of cell faces decreases linearly with the increasing ratio of quadrilateral to pentagonal faces. It is concluded that the Kelvin model is not supported by these experimental data.

  10. Automation of reliability evaluation procedures through CARE - The computer-aided reliability estimation program.

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    Description of an on-line interactive computer program called CARE (Computer-Aided Reliability Estimation) which can model self-repair and fault-tolerant organizations and perform certain other functions. Essentially CARE consists of a repository of mathematical equations defining the various basic redundancy schemes. These equations, under program control, are then interrelated to generate the desired mathematical model to fit the architecture of the system under evaluation. The mathematical model is then supplied with ground instances of its variables and is then evaluated to generate values for the reliability-theoretic functions applied to the model.

  11. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    NASA Astrophysics Data System (ADS)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  12. Modeling the effects of inflammation in bone fracture healing

    NASA Astrophysics Data System (ADS)

    Kojouharov, H. V.; Trejo, I.; Chen-Charpentier, B. M.

    2017-10-01

    A new mathematical model is presented to study the early inflammatory effects in bone healing. It consists of a system of nonlinear ordinary differential equations that represents the interactions among macrophages, mesenchymal stem cells, and osteoblasts. A qualitative analysis of the model is performed to determine the equilibria and their corresponding stability properties. A set of numerical simulations is performed to support the theoretical results. The model is also used to numerically monitor the evolution of a broken bone for different types of fractures and to explore possible treatments to accelerate bone healing by administrating anti-inflammatory drugs.

  13. Quantum gravity model with fundamental spinor fields

    NASA Astrophysics Data System (ADS)

    Obukhov, Yu. N.; Hehl, F. W.

    2014-01-01

    We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.

  14. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01006c

  15. Relativistic GLONASS and geodesy

    NASA Astrophysics Data System (ADS)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  16. Studying the complex spectral line profiles in the spectra of hot emission stars and quasars .

    NASA Astrophysics Data System (ADS)

    Danezis, E.; Lyratzi, E.; Antoniou, A.; Popović, L. Č.; Dimitrijević, M. S.

    Some Hot Emission Stars and AGNs present peculiar spectral line profiles which are due to DACs and SACs phenomena. The origin and the mechanisms which are responsible for the creation of DACs/SACs is an important problem that has been studied by many researchers. This paper is a review of our efforts to study the origin and the mechanisms of these phenomena. At first we present a theoretic ad hoc picture for the structure of the plasma that surrounds the specific category of hot emission stars that present DACs or SACs. Then we present the mathematical model that we constructed, which is based on the properties of the above ad hoc theoretical structure. Finally, we present some results from our statistical studies that prove the consistency of our model with the classical physical theory.

  17. TIE: An Ability Test of Emotional Intelligence

    PubMed Central

    Śmieja, Magdalena; Orzechowski, Jarosław; Stolarski, Maciej S.

    2014-01-01

    The Test of Emotional Intelligence (TIE) is a new ability scale based on a theoretical model that defines emotional intelligence as a set of skills responsible for the processing of emotion-relevant information. Participants are provided with descriptions of emotional problems, and asked to indicate which emotion is most probable in a given situation, or to suggest the most appropriate action. Scoring is based on the judgments of experts: professional psychotherapists, trainers, and HR specialists. The validation study showed that the TIE is a reliable and valid test, suitable for both scientific research and individual assessment. Its internal consistency measures were as high as .88. In line with theoretical model of emotional intelligence, the results of the TIE shared about 10% of common variance with a general intelligence test, and were independent of major personality dimensions. PMID:25072656

  18. Hydrodynamic Impact of a System with a Single Elastic Mode II : Comparison of Experimental Force and Response with Theory

    NASA Technical Reports Server (NTRS)

    Miller, Robert W; Merten, Kenneth F

    1952-01-01

    Hydrodynamic impact tests were made on an elastic model approximating a two-mass spring system to determine experimentally the effects of structural flexibility on the hydrodynamic loads encountered during seaplane landing impacts and to correlate the results with theory. A flexible seaplane was represented by a two-mass spring system consisting of a rigid prismatic float connected to a rigid upper mass by an elastic structure. The model had a ratio of sprung mass to hull mass of 0.6 and a natural frequency of 3.0 cycles per second. The tests were conducted in smooth water at fixed trims and included both high and low flight-path angles and a range of velocity. Theoretical and experimental comparisons indicated that the theoretical results agreed well with the experimental results.

  19. Induced seismicity provides insight into why earthquake ruptures stop

    PubMed Central

    Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin; Cappa, Frédéric

    2017-01-01

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures. PMID:29291250

  20. Application of advanced computational procedures for modeling solar-wind interactions with Venus: Theory and computer code

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.

    1980-01-01

    Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.

  1. Learning by Doing: Concepts and Models for Service-Learning in Accounting. AAHE's Series on Service-Learning in the Disciplines.

    ERIC Educational Resources Information Center

    Rama, D. V., Ed.

    This volume is part of a series of 18 monographs on service learning and the academic disciplines. It is designed to (1) develop a theoretical framework for service learning in accounting consistent with the goals identified by accounting educators and the recent efforts toward curriculum reform, and (2) describe specific active learning…

  2. Evaluation of the Professional Development Program on Web Based Content Development

    ERIC Educational Resources Information Center

    Yurdakul, Bünyamin; Uslu, Öner; Çakar, Esra; Yildiz, Derya G.

    2014-01-01

    The aim of this study is to evaluate the professional development program on web based content development (WBCD) designed by the Ministry of National Education (MoNE). Based on the theoretical CIPP model by Stufflebeam and Guskey's levels of evaluation, the study was carried out as a case study. The study group consisted of the courses that…

  3. Strange particles from NEXUS 3

    NASA Astrophysics Data System (ADS)

    Werner, K.; Liu, F. M.; Ostapchenko, S.; Pierog, T.

    2004-01-01

    After discussing conceptual problems with the conventional string model, we present a new approach, based on a theoretically consistent multiple scattering formalism. First results for strange particle production in proton-proton scattering at 158 GeV and 200 GeV centre-of-mass (cms) are discussed. This paper was presented at Strange Quark Matter Conference, Atlantic Beach, North Carolina, 12-17 March 2003.

  4. The Effect of Automatic Thoughts on Hopelessness: Role of Self-Esteem as a Mediator

    ERIC Educational Resources Information Center

    Cakar, Firdevs Savi

    2014-01-01

    The purpose of this study is to test a theoretical model concerning the role of self-esteem as a mediator between university students' automatic thoughts and their levels of hopelessness. The participants consisted of 338 students (197 females (58.3%) and 141 males (41.7%) from various departments at the Celal Bayar University. The research data…

  5. Income Inequality, the Median Voter, and the Support for Public Education. NBER Working Paper No. 16097

    ERIC Educational Resources Information Center

    Corcoran, Sean; Evans, William N.

    2010-01-01

    Using a panel of U.S. school districts spanning 1970-2000, we examine the relationship between income inequality and fiscal support for public education. In contrast with recent theoretical and empirical work suggesting a negative relationship between inequality and public spending, we find results consistent with a median voter model, in which…

  6. Neutron scattering studies of the RENi 2B 2C (RE = Lu, Y, Ho, Er): Lattice dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, Max

    1998-02-23

    The first chapter gives a brief overview of the system discussed in this dissertation. Chapters 2-5 and Appendix B of this dissertation consist of papers that are published, or have been submitted, which show experimental data regarding the phonon softening of LuNi 2B 2C. These papers have been removed and processed separately. Chapter 6 will contain a summary of the conclusions up to date. Appendix A will consist of a brief derivation of χ(q) which is talked about in the introduction of the dissertation. Appendix B will contain a Born-von Karman model fit to the experimental LuNi 2B 2C datamore » and a comparison with experimental data. Appendix C will contain a brief summary of the work done on LuNi 2B 2C as well as a complete listing of experimental data taken on the crystals which may be needed later for theoretical models of this system. Appendix D will outline a brief introduction covering some of the field theory used in the theoretical work for this thesis.« less

  7. Dynamics of macroautophagy: Modeling and oscillatory behavior

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kwon, Hyun Woong; Kang, Hyuk; Kim, Jinwoong; Lee, Myung-Shik; Choi, M. Y.

    2012-02-01

    We propose a model for macroautophagy and study the resulting dynamics of autophagy in a system isolated from its extra-cellular environment. It is found that the intracellular concentrations of autophagosomes and autolysosomes display oscillations with their own natural frequencies. Such oscillatory behaviors, which are interrelated to the dynamics of intracellular ATP, amino acids, and proteins, are consistent with the very recent biological observations. Implications of this theoretical study of autophagy are discussed, with regard to the possibility of guiding molecular studies of autophagy.

  8. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Manski, Detlef; Martin, James A.

    1988-07-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  9. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Manski, Detlef; Martin, James A.

    1988-01-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  10. Theory and simulation of electrolyte mixtures

    NASA Astrophysics Data System (ADS)

    Lee, B. Hribar; Vlachy, V.; Bhuiyan, L. B.; Outhwaite, C. W.; Molero, M.

    Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10-4 to 1.0 M, and in a few cases up to I = M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w0 and w1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KCl and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KCl-KF mixture.

  11. Theoretical Study of the Photolysis Mechanisms of Methylpentaphenyldimetallanes (Ph₃MM'Ph₂Me; M, M' = Si and Ge).

    PubMed

    Su, Shih-Hao; Su, Ming-Der

    2018-06-04

    The mechanisms of the photolysis reactions are studied theoretically at the M06-2X/6-311G(d) level of theory, using the four types of group 14 molecules that have the general structure, Ph₃M⁻M'Ph₂Me (M and M' = Si and Ge), as model systems. This study provides the first theoretical evidence for the mechanisms of these photorearrangements of compounds that contain a M⁻M' single bond. The model investigations indicate that the preferred reaction route for the photolysis reactions is, as follows: reactant → Franck-Condon (FC) region → minimum (triplet) → transition state (triplet) → triplet/singlet intersystem crossing → photoproducts (both di-radicals and singlets). The theoretical findings demonstrate that the formation of radicals results from reactions of the triplet states of these reactants. This could be because both the atomic radius and the chemical properties of silicon and germanium are quite similar to each other and compared to other group 14 elements, their photolytic mechanisms are nearly the same. The results for the photolytic mechanisms that are studied in this work are consistent with the available experimental observations and allow for a number of predictions for other group 14 dimetallane analogues to be made.

  12. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  13. The Supernovae Analysis Application (SNAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayless, Amanda J.; Fryer, Christopher Lee; Wollaeger, Ryan Thomas

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginningmore » to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.« less

  14. The Supernovae Analysis Application (SNAP)

    DOE PAGES

    Bayless, Amanda J.; Fryer, Christopher Lee; Wollaeger, Ryan Thomas; ...

    2017-09-06

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginningmore » to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.« less

  15. The Supernovae Analysis Application (SNAP)

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.; Fryer, Chris L.; Wollaeger, Ryan; Wiggins, Brandon; Even, Wesley; de la Rosa, Janie; Roming, Peter W. A.; Frey, Lucy; Young, Patrick A.; Thorpe, Rob; Powell, Luke; Landers, Rachel; Persson, Heather D.; Hay, Rebecca

    2017-09-01

    The SuperNovae Analysis aPplication (SNAP) is a new tool for the analysis of SN observations and validation of SN models. SNAP consists of a publicly available relational database with observational light curve, theoretical light curve, and correlation table sets with statistical comparison software, and a web interface available to the community. The theoretical models are intended to span a gridded range of parameter space. The goal is to have users upload new SN models or new SN observations and run the comparison software to determine correlations via the website. There are problems looming on the horizon that SNAP is beginning to solve. For example, large surveys will discover thousands of SNe annually. Frequently, the parameter space of a new SN event is unbounded. SNAP will be a resource to constrain parameters and determine if an event needs follow-up without spending resources to create new light curve models from scratch. Second, there is no rapidly available, systematic way to determine degeneracies between parameters, or even what physics is needed to model a realistic SN. The correlations made within the SNAP system are beginning to solve these problems.

  16. Linking Theoretical Decision-making Mechanisms in the Simon Task with Electrophysiological Data: A Model-based Neuroscience Study in Humans.

    PubMed

    Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís

    2016-10-01

    A current challenge for decision-making research is in extending models of simple decisions to more complex and ecological choice situations. Conflict tasks (e.g., Simon, Stroop, Eriksen flanker) have been the focus of much interest, because they provide a decision-making context representative of everyday life experiences. Modeling efforts have led to an elaborated drift diffusion model for conflict tasks (DMC), which implements a superimposition of automatic and controlled decision activations. The DMC has proven to capture the diversity of behavioral conflict effects across various task contexts. This study combined DMC predictions with EEG and EMG measurements to test a set of linking propositions that specify the relationship between theoretical decision-making mechanisms involved in the Simon task and brain activity. Our results are consistent with a representation of the superimposed decision variable in the primary motor cortices. The decision variable was also observed in the EMG activity of response agonist muscles. These findings provide new insight into the neurophysiology of human decision-making. In return, they provide support for the DMC model framework.

  17. Numerical Experiments Based on the Catastrophe Model of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.

    2017-11-01

    On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which is predicted by the Lin-Forbes model and observations. Formation of the fast mode shock ahead of the flux rope is observed in our experiments. Outward motions of the flux rope are smooth, and magnetic energy is continuously converted into the other types of energy because both the diffusions are considered in calculations, and magnetic reconnection is allowed to occur successively in the current sheet behind the flux rope.

  18. Analysis and development of adjoint-based h-adaptive direct discontinuous Galerkin method for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Yue, Huiqiang; Yu, Shengjiao; Liu, Tiegang

    2018-06-01

    In this paper, an adjoint-based high-order h-adaptive direct discontinuous Galerkin method is developed and analyzed for the two dimensional steady state compressible Navier-Stokes equations. Particular emphasis is devoted to the analysis of the adjoint consistency for three different direct discontinuous Galerkin discretizations: including the original direct discontinuous Galerkin method (DDG), the direct discontinuous Galerkin method with interface correction (DDG(IC)) and the symmetric direct discontinuous Galerkin method (SDDG). Theoretical analysis shows the extra interface correction term adopted in the DDG(IC) method and the SDDG method plays a key role in preserving the adjoint consistency. To be specific, for the model problem considered in this work, we prove that the original DDG method is not adjoint consistent, while the DDG(IC) method and the SDDG method can be adjoint consistent with appropriate treatment of boundary conditions and correct modifications towards the underlying output functionals. The performance of those three DDG methods is carefully investigated and evaluated through typical test cases. Based on the theoretical analysis, an adjoint-based h-adaptive DDG(IC) method is further developed and evaluated, numerical experiment shows its potential in the applications of adjoint-based adaptation for simulating compressible flows.

  19. Semileptonic decays of B and D mesons in the light-front formalism

    NASA Astrophysics Data System (ADS)

    Jaus, W.

    1990-06-01

    The light-front formalism is used to present a relativistic calculation of form factors for semileptonic D and B decays in the constituent quark model. The quark-antiquark wave functions of the mesons can be obtained, in principle, from an analysis of the meson spectrum, but are approximated in this work by harmonic-oscillator wave functions. The predictions of the model are consistent with the experimental data for B decays. The Kobayashi-Maskawa (KM) matrix element ||Vcs|| is determined by a comparison of the experimental and theoretical rates for D0-->K-e+ν, and is consistent with a unitary KM matrix for three families. The predictions for D-->K* transitions are in conflict with the data.

  20. Non-convex Statistical Optimization for Sparse Tensor Graphical Model

    PubMed Central

    Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang

    2016-01-01

    We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459

  1. MSSM-inspired multifield inflation

    NASA Astrophysics Data System (ADS)

    Dubinin, M. N.; Petrova, E. Yu.; Pozdeeva, E. O.; Sumin, M. V.; Vernov, S. Yu.

    2017-12-01

    Despite the fact that experimentally with a high degree of statistical significance only a single Standard Model-like Higgs boson is discovered at the LHC, extended Higgs sectors with multiple scalar fields not excluded by combined fits of the data are more preferable theoretically for internally consistent realistic models of particle physics. We analyze the inflationary scenarios which could be induced by the two-Higgs-doublet potential of the Minimal Supersymmetric Standard Model (MSSM) where five scalar fields have non-minimal couplings to gravity. Observables following from such MSSM-inspired multifield inflation are calculated and a number of consistent inflationary scenarios are constructed. Cosmological evolution with different initial conditions for the multifield system leads to consequences fully compatible with observational data on the spectral index and the tensor-to-scalar ratio. It is demonstrated that the strong coupling approximation is precise enough to describe such inflationary scenarios.

  2. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model.

    PubMed

    Gomez, Rapson; Watson, Shaun D

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants ( N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed.

  3. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model

    PubMed Central

    Gomez, Rapson; Watson, Shaun D.

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants (N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed. PMID:28210232

  4. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.

    PubMed

    Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F

    2012-11-01

    Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.

  5. Preliminary Results from Ultrahigh Vacuum and Cryogenic Dust Adhesion Experiments

    NASA Astrophysics Data System (ADS)

    Perko, H. A.; Green, J. R.; Nelson, J. D.

    2000-10-01

    Dust adhesion is a major factor affecting the design and performance of spacecraft for planetary surface and comet exploration. Dust adhesion is caused by a combination of electrostatic and van der Waals forces. A theoretical model has been constructed that indicates the magnitude of these forces is a function of pressure, temperature, and ambient gas composition1. A laboratory investigation is in progress to verify the theoretical model over a broad range of planetary environments from Earth-like to comet-like conditions. The experiments being conducted consist of depositing dust onto various spacecraft materials under different environmental conditions and attempting to mechanically shake the dust off to obtain a measure of adhesion. More specifically, the materials being used include pairs of aluminum, glass, stainless steel, and black painted specimens. One of the specimens from each pair is mounted to an electrometer and is used to witness accumulated dust mass and charge. The other specimen from each pair is affixed to a vibrating cantilever beam used to induce dust separation. Dust is sifted onto the specimens in the vacuum and cryogenic chamber. Dust adhesion force is determined from the amplitude and frequency of beam vibrations and the mass and size of dust particles. In order to enable comparison with the theoretical model, which assumes ideal spheres resting on a surface, the predominant dust material being used consists of 50 to 70 μ m glass spheres. This size glass sphere exerts an adhesive force that is capable of being measured by the experimental apparatus. The intent of this research is to increase our fundamental understanding of the effects of environmental conditions on dust adhesion and improve our ability to develop suitable dust mitigation techniques for the exploration of comet, asteroid and planetary surfaces. 1 Perko, H.A. (1998) ``Surface Cleanliness Based Dust Adhesion Model" Proceedings of the International Conference on Construction, Operations and Sciences in Space, American Society of Civil Engineers, Albuquerque, NM.

  6. A theoretical study on hot charge-transfer states and dimensional effects of organic photocells based on an ideal diode model.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2017-05-21

    This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

  7. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Song, Kai; Shi, Qiang

    2018-03-01

    The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.

  8. Role of word-of-mouth for programs of voluntary vaccination: A game-theoretic approach.

    PubMed

    Bhattacharyya, Samit; Bauch, Chris T; Breban, Romulus

    2015-11-01

    We propose a model describing the synergetic feedback between word-of-mouth (WoM) and epidemic dynamics controlled by voluntary vaccination. The key feature consists in combining a game-theoretic model for the spread of WoM and a compartmental model describing VSIR disease dynamics in the presence of a program of voluntary vaccination. We evaluate and compare two scenarios for determinants of behavior, depending on what WoM disseminates: (1) vaccine advertising, which may occur whether or not an epidemic is ongoing and (2) epidemic status, notably disease prevalence. Understanding the synergy between the two strategies could be particularly important for designing voluntary vaccination campaigns. We find that, in the initial phase of an epidemic, vaccination uptake is determined more by vaccine advertising than the epidemic status. As the epidemic progresses, epidemic status becomes increasingly important for vaccination uptake, considerably accelerating vaccination uptake toward a stable vaccination coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Extension of the hole-drilling method to birefringent composites

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    1982-01-01

    A complete stress analysis and reliable failure criteria are essential for important structural applications of composites in order to fully utilize their unique properties. The inhomogeneity, anisotropy and inelasticity of many composites make the use of experimental methods indispensable. Among the experimental techniques, transmission photoelasticity has been extended to birefringent composites in recent years. The extension is not straight-forward, in view of the complex nature of the photoelastic response of such model materials. This paper very briefly reviews the important developments in the subject and then describes the theoretical basis for a new method of determining the individual values of principal stresses in composite models. The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are then described which verify the theoretical predictions. The limitations of the method are pointed out and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.

  10. Study of discrete-particle effects in a one-dimensional plasma simulation with the Krook type collision model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Po-Yen; Chen, Liu; Institute for Fusion Theory and Simulation, Zhejiang University, 310027 Hangzhou

    2015-09-15

    The thermal relaxation time of a one-dimensional plasma has been demonstrated to scale with N{sub D}{sup 2} due to discrete particle effects by collisionless particle-in-cell (PIC) simulations, where N{sub D} is the particle number in a Debye length. The N{sub D}{sup 2} scaling is consistent with the theoretical analysis based on the Balescu-Lenard-Landau kinetic equation. However, it was found that the thermal relaxation time is anomalously shortened to scale with N{sub D} while externally introducing the Krook type collision model in the one-dimensional electrostatic PIC simulation. In order to understand the discrete particle effects enhanced by the Krook type collisionmore » model, the superposition principle of dressed test particles was applied to derive the modified Balescu-Lenard-Landau kinetic equation. The theoretical results are shown to be in good agreement with the simulation results when the collisional effects dominate the plasma system.« less

  11. Background noise in piezoresistive, electret condenser, and ceramic microphones.

    PubMed

    Zuckerwar, Allan J; Kuhn, Theodore R; Serbyn, Roman M

    2003-06-01

    Background noise studies have been extended from air condenser microphones to piezoresistive, electret condenser, and ceramic microphones. Theoretical models of the respective noise sources within each microphone are developed and are used to derive analytical expressions for the noise power spectral density for each type. Several additional noise sources for the piezoresistive and electret microphones, beyond what had previously been considered, were applied to the models and were found to contribute significantly to the total noise power spectral density. Experimental background noise measurements were taken using an upgraded acoustic isolation vessel and data acquisition system, and the results were compared to the theoretically obtained expressions. The models were found to yield power spectral densities consistent with the experimental results. The measurements reveal that the 1/f noise coefficient is strongly correlated with the diaphragm damping resistance, irrespective of the detection technology, i.e., air condenser, piezoresistive, etc. This conclusion has profound implications upon the expected 1/f noise component of micromachined (MEMS) microphones.

  12. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  13. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  14. The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties.

    PubMed

    Usman, Muhammad; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; O'Reilly, Eoin P; Klimeck, Gerhard; Passaseo, Adriana

    2012-04-27

    III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.

  15. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Wang, Chao; Ma, Jiangwei; Zhao, Nan

    2018-06-01

    Ambient mechanical energy is one of the most abundant energy sources around us. It is a promising approach to solve the problem of energy and environment by harvesting such energy due to its cost-effectiveness, environmental friendliness and sustainability. Recently, triboelectric nanogenerator (TENG) has been proposed as an effective and promising technology for harvesting ambient mechanical energy. Herein, a coaxial rotatory-freestanding TENG (CRF-TENG) was developed and its theoretical model was constructed. An approximate V–Q–α relationship was derived and the explicit analytical solutions of the transferred charge, output current, voltage and average power are obtained from numerically calculation. Finally, to verify the theoretical results, the real output performances of as-fabricated CRF-TENG were measured. The experimental results are consistent with the theoretical ones. The newly developed TENG mode greatly expands the applicability of TENGs for harvesting energy from ambient rotating mechanical motion.

  16. Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.

    2018-02-01

    Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.

  17. Spatial and temporal variations of the fine-structure constant in the Finslerian universe

    NASA Astrophysics Data System (ADS)

    Li, Xin; Lin, Hai-Nan

    2017-06-01

    Recent observations show that the electromagnetic fine-structure constant, α e , may vary with space and time. In the framework of Finsler spacetime, we propose here an anisotropic cosmological model, in which both spatial and temporal variations of α e are allowed. Our model naturally leads to the dipole structure of α e , and predicts that the dipole amplitude increases with time. We fit our model to the most up-to-date measurements of α e from the quasar absorption lines. It is found that the dipole direction points towards (l,b) = (330.2°±7.3°,-13.0°±5.6°) in galactic coordinates, and the anisotropic parameter is b 0 = (0.47±0.09) × 10-5, which corresponds to a dipole amplitude (7.2±1.4)×10-8 at redshift z = 0.015. This is consistent with the upper limit of the variation of α e measured in the Milky Way. We also fit our model to Union2.1 type Ia supernovae, and find that the preferred direction of Union2.1 is consistent with the dipole direction of α e . Supported by Fundamental Research Funds for Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547035, 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1).

  18. Geometry of an outcrop-scale duplex in Devonian flysch, Maine

    USGS Publications Warehouse

    Bradley, D.C.; Bradley, L.M.

    1994-01-01

    We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.

  19. Therapists' thoughts on therapy: clinicians' perceptions of the therapy processes that distinguish schema, cognitive behavioural and psychodynamic approaches.

    PubMed

    Boterhoven De Haan, Katrina L; Lee, Christopher W

    2014-01-01

    Debates continue over shared factors in therapy processes between different theoretical orientations. By seeking the opinions of practicing clinicians, this study aimed to elucidate the similarities and differences between cognitive-behavioural (CBT), psychodynamic (PDT), and schema therapy (ST) approaches. Forty-eight practitioners aligning with one of the three approaches were asked to identify crucial processes in their therapy using a modified online version of the Psychotherapy Process Q-set. Distinct differences between each theoretical orientation with few shared common factors were found. A comparison with ratings from previous studies indicated that CBT therapists have not changed over the last 20 years, whereas PDT therapists have changed and the differences appeared consistent with modern PDT theory. The differences between the therapy approaches were consistent with theories underlying each model. PDT therapists valued a neutral relationship, CBT therapists emphasized a didactic interaction, and therapists form a ST orientation placed a greater emphasis on emotional involvement.

  20. A Consideration of the Impact of Poland's 1990 Bill on Schools of Higher Education Using an Information Technology Conceptual Framework

    ERIC Educational Resources Information Center

    Butler, Norman L.

    2004-01-01

    This article is the product of the writer's deliberations about the impact of Poland's 1990 Bill on Schools of Higher Education using an information technology theoretical model consisting of three parts: (1) participation; (2) feedback; and (3) partnership. The main findings of the investigation revealed that: (1) there is wide participation in…

  1. Longitudinal Invariance of the Center for Epidemiologic Studies-Depression Scale among Girls and Boys in Middle School

    ERIC Educational Resources Information Center

    Motl, Robert W.; Dishman, Rod K.; Birnbaum, Amanda S.; Lytle, Leslie A.

    2005-01-01

    This study tested the longitudinal factorial invariance of a theoretically consistent, higher-order model for Center for Epidemiologic Studies-Depression (CES-D) scores among adolescent girls and boys in middle school. Data were collected from 2,416 adolescents who completed a survey containing the CES-D in the fall of 1998, spring of 1999, and…

  2. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Tateki

    2015-01-22

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF{sub 6}]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  3. Lifting primordial non-Gaussianity above the noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico, E-mail: welling@strw.leidenuniv.nl, E-mail: D.C.vanderWoude@uu.nl, E-mail: enrico.pajer@gmail.com

    2016-08-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approachmore » and discuss the details of its implementation in Fisher forecasts.« less

  4. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  5. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Boxiang; Yao, Yuhan; Groenewald, Roelof E.

    Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. In this paper, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. Finally, the experimental results are consistent with previous findings as well as with amore » straightforward theoretical model that is presented here.« less

  6. Field theory of hyperfluid

    NASA Astrophysics Data System (ADS)

    Ariki, Taketo

    2018-02-01

    A hyperfluid model is constructed on the basis of its action entirely free from external constraints, regarding the hyperfluid as a self-consistent classical field. Intrinsic hypermomentum is no longer a supplemental variable given by external constraints, but arises purely from the diffeomorphism covariance of dynamical field. The field-theoretic approach allows natural classification of a hyperfluid on the basis of its symmetry group and corresponding homogeneous space; scalar, spinor, vector, and tensor fluids are introduced as simple examples. Apart from phenomenological constraints, the theory predicts the hypermomentum exchange of fluid via field-theoretic interactions of various classes; fluid–fluid interactions, minimal and non-minimal SU(n) -gauge couplings, and coupling with metric-affine gravity are all successfully formulated within the classical regime.

  7. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers

    DOE PAGES

    Song, Boxiang; Yao, Yuhan; Groenewald, Roelof E.; ...

    2017-06-09

    Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. In this paper, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. Finally, the experimental results are consistent with previous findings as well as with amore » straightforward theoretical model that is presented here.« less

  8. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.

    PubMed

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-04

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  9. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random-phase approximation

    NASA Astrophysics Data System (ADS)

    Gambacurta, D.; Grasso, M.; Vasseur, O.

    2018-02-01

    The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  10. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes.

    PubMed

    Xie, Ping

    2009-09-16

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  11. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  12. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  13. Determinants of Thailand household healthcare expenditure: the relevance of permanent resources and other correlates.

    PubMed

    Okunade, Albert A; Suraratdecha, Chutima; Benson, David A

    2010-03-01

    Several papers in the leading health economics journals modeled the determinants of healthcare expenditure using household survey or family budgets data of developed countries. Past work largely used self-reported current income as the core determinant, whereas the theoretically correct concept of household resource constraint is permanent or long-run income (á lá Milton Friedman). This paper strives to rectify the theoretical oversight of using current income by augmenting the model with household asset. Using longitudinal data, we constructed 'wealth index' as a distinct covariate to capture the households' tendency to liquidate assets when defraying necessary healthcare liabilities after exhausting cash incomes. (Current income and assets together capture the household expanded resource base). Using 98 632 household observations from Thailand Socio-Economic Surveys (1994-2000 biennial data cycles) we found, using a double-hurdle model with dependent errors, that out-of-pocket healthcare spending behaves as a technical necessity across income quintiles and household sizes. Pre-1997 economic shock income elasticities are smaller than the post-shock estimates across income quintiles for large and small households. Proximity to death, median age, and assets are also among other significant determinants. Our novel findings extend the theoretical consistency of a multi-level decision model in household healthcare expenditure in the developing Asian country context. (c) 2009 John Wiley & Sons, Ltd.

  14. Modeling the CH Stretch Vibrational Spectroscopy of M(+)[Cyclohexane] (M = Li, Na, and K) Ions.

    PubMed

    Sibert, Edwin L; Tabor, Daniel P; Lisy, James M

    2015-10-15

    The CH stretch vibrations of M(+)[cyclohexane][Ar] (M = Li, Na, and K) cluster ions were theoretically modeled. Results were compared to the corresponding infrared photodissociation spectra of Patwari and Lisy [ J. Chem. Phys A 2007 , 111 , 7585 ]. The experimental spectra feature a substantial spread in CH stretch vibration frequencies due to the alkali metal cation binding to select hydrogens of cyclohexane. This spread was observed to increase with decreasing metal ion size. Exploring the potential energy landscape revealed the presence of three conformers whose energy minima lie within ∼1 kcal of each other. It was determined that in all conformers the metal ion interacts with three hydrogen atoms; these hydrogen atoms can be either equatorial or axial. The corresponding spectra for these conformers were obtained with a theoretical model Hamiltonian [ J. Chem. Phys. 2013 , 138 , 064308 ] that consists of local mode CH stretches bilinearly coupled to each other and Fermi coupled to lower frequency modes. Frequencies and coupling parameters were obtained from electronic structure calculations that were subsequently scaled on the basis of previous studies. Theoretical spectra of a single low energy conformer were found to match well with the experimental spectra. The relative frequency shifts with changing metal ion size were accurately modeled with parameters generated by using ωB97X-D/6-311++(2d,p) calculations.

  15. Observation of temperatures and emission rates from the OH and O 2 nightglow over a southern high latitude station

    NASA Astrophysics Data System (ADS)

    Chung, J.-K.; Kim, Y. H.; Won, Y.-I.; Moon, B. K.; Oh, T. H.

    2006-01-01

    A Spectral Airglow Temperature Imager (SATI) was operated at King Sejong Station (62°13'S, 58°47'W), Korea Antarctic Research Station during the period of March, 2002-September, 2003. We analyze rotational temperatures and emission rates of the O 2 (0-1) and OH (6-2) nightglows obtained at 67 nights with clear sky lasting more than 4 h. A spectral analysis of the dataset shows two dominant oscillations with periods of 4 and 6 h. The 6-h oscillations have a nearly constant phase, whereas the 4-h oscillations have nearly random phases. Although the harmonic periods of both oscillations are suggestive of tidal origin, the 4-h oscillation may have interference by other sources such as gravity waves. The 6-h oscillations could be interpreted as zonally symmetric non-migrating tides because migrating tides except high order modes have very weak amplitudes at high latitudes according to the classical tidal theory. For most cases of the observed oscillations the temperature peak leads the intensity peak, which is consistent with theoretical models for zonally symmetric tides, but contrary to other theoretical models for waves. It is needed to resolve among theoretical models whether or not zonally symmetric tide cause temperature variation prior to intensity variation in mesospheric airglows.

  16. A theoretical model of water and trade

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie

    2016-03-01

    Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.

  17. Understanding controlled drug release from mesoporous silicates: theory and experiment.

    PubMed

    Ukmar, T; Maver, U; Planinšek, O; Kaučič, V; Gaberšček, M; Godec, A

    2011-11-07

    Based on the results of carefully designed experiments upgraded with appropriate theoretical modeling, we present clear evidence that the release curves from mesoporous materials are significantly affected by drug-matrix interactions. In experimental curves, these interactions are manifested as a non-convergence at long times and an inverse dependence of release kinetics on pore size. Neither of these phenomena is expected in non-interacting systems. Although both phenomena have, rather sporadically, been observed in previous research, they have not been explained in terms of a general and consistent theoretical model. The concept is demonstrated on a model drug indomethacin embedded into SBA-15 and MCM-41 porous silicates. The experimental release curves agree exceptionally well with theoretical predictions in the case of significant drug-wall attractions. The latter are described using a 2D Fokker-Planck equation. One could say that the interactions affect the relative cross-section of pores where the local flux has a non-vanishing axial component and in turn control the effective transfer of drug into bulk solution. Finally, we identify the critical parameters determining the pore size dependence of release kinetics and construct a dynamic phase diagram of the various resulting transport regimes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Identification of damping in a bridge using a moving instrumented vehicle

    NASA Astrophysics Data System (ADS)

    González, A.; OBrien, E. J.; McGetrick, P. J.

    2012-08-01

    In recent years, there has been a significant increase in the number of bridges which are being instrumented and monitored on an ongoing basis. This is in part due to the introduction of bridge management systems designed to provide a high level of protection to the public and early warning if the bridge becomes unsafe. This paper investigates a novel alternative; a low-cost method consisting of the use of a vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the damping ratio of the bridge. The method is tested for a range of bridge spans and vehicle velocities using theoretical simulations and the influences of road roughness, initial vibratory condition of the vehicle, signal noise, modelling errors and frequency matching on the accuracy of the results are investigated.

  19. Some new ideas for the study of the complex spectral line profiles of hot emission stars and quasars

    NASA Astrophysics Data System (ADS)

    Danezis, E.

    2013-01-01

    Some Hot Emission Stars and AGNs present peculiar spectral line profiles which are due to DACs and SACs phenomena. The origin and the mechanisms which are responsible for the creation of DACs/SACs is an important problem that has been studied by many researchers. This paper is a review of our efforts to study the origin and the mechanisms of these phenomena. At first we present a theoretic ad hoc picture for the structure of the plasma that surrounds the specific category of hot emission stars that present DACs or SACs. Then we present the mathematical model that we constructed, which is based on the properties of the above ad hoc theoretical structure. Finally, we present some results from our statistical studies that prove the consistency of our model with the classical physical theory.

  20. Information Diffusion in Facebook-Like Social Networks Under Information Overload

    NASA Astrophysics Data System (ADS)

    Li, Pei; Xing, Kai; Wang, Dapeng; Zhang, Xin; Wang, Hui

    2013-07-01

    Research on social networks has received remarkable attention, since many people use social networks to broadcast information and stay connected with their friends. However, due to the information overload in social networks, it becomes increasingly difficult for users to find useful information. This paper takes Facebook-like social networks into account, and models the process of information diffusion under information overload. The term view scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated is proposed to characterize the information diffusion efficiency. Through theoretical analysis, we find that factors such as network structure and view scope number have no impact on the information diffusion efficiency, which is a surprising result. To verify the results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly.

  1. Numerical detection of the Gardner transition in a mean-field glass former.

    PubMed

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  2. Altering rainfall patterns through aerosol dispersion

    NASA Astrophysics Data System (ADS)

    Emetere, M. E.; Bakeko, M.; Onyechekwa, L.; Ayara, W.

    2017-05-01

    The possibility of recirculation mechanism on rainfall patterns is salient for sustenance of the human race through agricultural produce. The peculiarity of the lower atmosphere of south west region of Nigeria was explored using theoretical and experimental approach. In the theoretical approach, the reconstruction of 1D model as an extraction from the 3D aerosol dispersion model was used to examine the physics of the recirculation theory. The experimental approach which consists of obtaining dataset from ground instruments was used to provide on-site guide for developing the new recirculation theories. The data set was obtained from the Davis weather station, Nigeria Meteorological agency and Multi-angle Imaging Spectro-radiometer (MISR). We looked at the main drivers of recirculation and propounded that recirculation is a complex process which triggers a reordering of the mixing layer- a key factor for initiating the type of rainfall in this region.

  3. Self-efficacy in weight management.

    PubMed

    Clark, M M; Abrams, D B; Niaura, R S; Eaton, C A; Rossi, J S

    1991-10-01

    Self-efficacy is an important mediating mechanism in advancing understanding of the treatment of obesity. This study developed and validated the Weight Efficacy Life-Style Questionnaire (WEL), improving on previous studies by the use of clinical populations, cross-validation of the initial factor analysis, exploration of the best fitting theoretical model of self-efficacy, and examination of change in treatment. The resulting 20-item WEL consists of five situational factors: Negative Emotions, Availability, Social Pressure, Physical Discomfort, and Positive Activities. A hierarchical model was found to provide the best fit to the data. Results from two separate clinical treatment studies (total N = 382) show that the WEL is sensitive to changes in global scores as well as to a subset of the five situational factor scores. Treatment programs may be incomplete if they change only a subset of the situational dimensions of self-efficacy. Theoretical and clinical implications are discussed.

  4. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier

    2017-12-01

    Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for the dual-thermal spectra of ULXs. We find that the best-fit derived parameters of our model, are in excellent agreement with recent theoretical predictions that favour super-critically accreting NSs as the engines of a large fraction of ULXs. Nevertheless, the considerable degeneracy between models and the lack of unequivocal evidence cannot rule out other equally plausible interpretations. Deeper broadband observations and time-resolved spectroscopy are warranted to further explore this newly emerging framework.

  5. On the velocity distribution of ion jets during substorm recovery

    NASA Technical Reports Server (NTRS)

    Birn, J.; Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Paschmann, G.

    1981-01-01

    The velocity distribution of earthward jetting ions that are observed principally during substorm recovery by satellites at approximately 15-35 earth radii in the magnetotail is quantitatively compared with two different theoretical models - the 'adiabatic deformation' of an initially flowing Maxwellian moving into higher magnetic field strength (model A) and the field-aligned electrostatic acceleration of an initially nonflowing isotropic Maxwellian including adiabatic deformation effects (model B). The assumption is made that the ions are protons or, more generally, that they consist of only one species. It is found that both models can explain the often observed concave-convex shape of isodensity contours of the distribution function.

  6. Property Values as a Measure of Neighborhoods: An Application of Hedonic Price Theory.

    PubMed

    Leonard, Tammy; Powell-Wiley, Tiffany M; Ayers, Colby; Murdoch, James C; Yin, Wenyuan; Pruitt, Sandi L

    2016-07-01

    Researchers measuring relationships between neighborhoods and health have begun using property appraisal data as a source of information about neighborhoods. Economists have developed a rich tool kit to understand how neighborhood characteristics are quantified in appraisal values. This tool kit principally relies on hedonic (implicit) price models and has much to offer regarding the interpretation and operationalization of property appraisal data-derived neighborhood measures, which goes beyond the use of appraisal data as a measure of neighborhood socioeconomic status. We develop a theoretically informed hedonic-based neighborhood measure using residuals of a hedonic price regression applied to appraisal data in a single metropolitan area. We describe its characteristics, reliability in different types of neighborhoods, and correlation with other neighborhood measures (i.e., raw neighborhood appraisal values, census block group poverty, and observed property characteristics). We examine the association between all neighborhood measures and body mass index. The hedonic-based neighborhood measure was correlated in the expected direction with block group poverty rate and observed property characteristics. The neighborhood measure and average raw neighborhood appraisal value, but not census block group poverty, were associated with individual body mass index. We draw theoretically consistent methodology from the economics literature on hedonic price models to demonstrate how to leverage the implicit valuation of neighborhoods contained in publicly available appraisal data. Consistent measurement and application of the hedonic-based neighborhood measures in epidemiology will improve understanding of the relationships between neighborhoods and health. Researchers should proceed with a careful use of appraisal values utilizing theoretically informed methods such as this one.

  7. Inversion of Surface-wave Dispersion Curves due to Low-velocity-layer Models

    NASA Astrophysics Data System (ADS)

    Shen, C.; Xia, J.; Mi, B.

    2016-12-01

    A successful inversion relies on exact forward modeling methods. It is a key step to accurately calculate multi-mode dispersion curves of a given model in high-frequency surface-wave (Rayleigh wave and Love wave) methods. For normal models (shear (S)-wave velocity increasing with depth), their theoretical dispersion curves completely match the dispersion spectrum that is generated based on wave equation. For models containing a low-velocity-layer, however, phase velocities calculated by existing forward-modeling algorithms (e.g. Thomson-Haskell algorithm, Knopoff algorithm, fast vector-transfer algorithm and so on) fail to be consistent with the dispersion spectrum at a high frequency range. They will approach a value that close to the surface-wave velocity of the low-velocity-layer under the surface layer, rather than that of the surface layer when their corresponding wavelengths are short enough. This phenomenon conflicts with the characteristics of surface waves, which results in an erroneous inverted model. By comparing the theoretical dispersion curves with simulated dispersion energy, we proposed a direct and essential solution to accurately compute surface-wave phase velocities due to low-velocity-layer models. Based on the proposed forward modeling technique, we can achieve correct inversion for these types of models. Several synthetic data proved the effectiveness of our method.

  8. Impact of the rail-pad multi-discrete model upon the prediction of the rail response

    NASA Astrophysics Data System (ADS)

    Mazilu, T.; Leu, M.

    2017-08-01

    Wheel/rail vibration has many technical effects such as wear of the rolling surfaces, rolling noise, settlement of the ballast and subgrade etc. This vibration is depending on the rail pad characteristic and subsequently, it is important to have an accurate overview on the relation between the rail pad characteristic and the level of the wheel/rail vibration. To this end, much theoretical and experimental research has been developed in the past, and for the theoretical approach the track model, in general, and, particularly, the rail pad model is of crucial importance. Usually, the rail pad model is discrete model one, neglecting the length of the rail pad. This fact is questionable because the sleepers span is only 4 times the rail pad length. Using the rail pad discrete model, the rail response is overestimated when the frequency of the excitation equals the pinned-pinned resonance frequency. In this paper, a multi-discrete model for the rail pad, consisting in many Kelvin-Voigt parallel systems, is inserted into an analytical model of the track. The track model is reduced to a rail taken as infinite Timoshenko beam, discretely supported via rail pad, sleeper and ballast. The influence of the number of Kelvin-Voigt systems of the rail pad model on the rail response is analysed.

  9. By-product mutualism and the ambiguous effects of harsher environments - A game-theoretic model.

    PubMed

    De Jaegher, Kris; Hoyer, Britta

    2016-03-21

    We construct two-player two-strategy game-theoretic models of by-product mutualism, where our focus lies on the way in which the probability of cooperation among players is affected by the degree of adversity facing the players. In our first model, cooperation consists of the production of a public good, and adversity is linked to the degree of complementarity of the players׳ efforts in producing the public good. In our second model, cooperation consists of the defense of a public, and/or a private good with by-product benefits, and adversity is measured by the number of random attacks (e.g., by a predator) facing the players. In both of these models, our analysis confirms the existence of the so-called boomerang effect, which states that in a harsh environment, the individual player has few incentives to unilaterally defect in a situation of joint cooperation. Focusing on such an effect in isolation leads to the "common-enemy" hypothesis that a larger degree of adversity increases the probability of cooperation. Yet, we also find that a sucker effect may simultaneously exist, which says that in a harsh environment, the individual player has few incentives to unilaterally cooperate in a situation of joint defection. Looked at in isolation, the sucker effect leads to the competing hypothesis that a larger degree of adversity decreases the probability of cooperation. Our analysis predicts circumstances in which the "common enemy" hypothesis prevails, and circumstances in which the competing hypothesis prevails. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Self-assembly in Dipolar Fluids

    NASA Astrophysics Data System (ADS)

    Ronti, Michela; Kantorovich, Sofia

    We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  11. Understanding sexual harassment using aggregate construct models.

    PubMed

    Nye, Christopher D; Brummel, Bradley J; Drasgow, Fritz

    2014-11-01

    Sexual harassment has received a substantial amount of empirical attention over the past few decades, and this research has consistently shown that experiencing these behaviors has a detrimental effect on employees' well-being, job attitudes, and behaviors at work. However, these findings, and the conclusions that are drawn from them, make the implicit assumption that the empirical models used to examine sexual harassment are properly specified. This article presents evidence that properly specified aggregate construct models are more consistent with theoretical structures and definitions of sexual harassment and can result in different conclusions about the nomological network of harassment. Results from 3 large samples, 2 military and 1 from a civilian population, are used to illustrate the differences between aggregate construct and reflective indicator models of sexual harassment. These analyses suggested that the factor structure and the nomological network of sexual harassment differ when modeling harassment as an aggregate construct. The implications of these results for the continued study of sexual harassment are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  12. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters

    USGS Publications Warehouse

    Tinker, M. Tim; Guimarães, Paulo R.; Novak, Mark; Marquitti, Flavia Maria Darcie; Bodkin, James L.; Staedler, Michelle; Bentall, Gena B.; Estes, James A.

    2012-01-01

    Studies of consumer-resource interactions suggest that individual diet specialisation is empirically widespread and theoretically important to the organisation and dynamics of populations and communities. We used weighted networks to analyze the resource use by sea otters, testing three alternative models for how individual diet specialisation may arise. As expected, individual specialisation was absent when otter density was low, but increased at high-otter density. A high-density emergence of nested resource-use networks was consistent with the model assuming individuals share preference ranks. However, a density-dependent emergence of a non-nested modular network for ‘core’ resources was more consistent with the ‘competitive refuge’ model. Individuals from different diet modules showed predictable variation in rank-order prey preferences and handling times of core resources, further supporting the competitive refuge model. Our findings support a hierarchical organisation of diet specialisation and suggest individual use of core and marginal resources may be driven by different selective pressures.

  13. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 1: Theoretical developments and applications

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, Wei

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the report, we focus on the theoretical developments, and discussions of the results of numerical-performance studies using the integration schemes for GVIPS and NAV models.

  14. Theoretical Studies of Strongly Interacting Fine Particle Systems

    NASA Astrophysics Data System (ADS)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  15. Evaluation of DNA Force Fields in Implicit Solvation

    PubMed Central

    Gaillard, Thomas; Case, David A.

    2011-01-01

    DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178

  16. A model for capillary rise in micro-tube restrained by a sticky layer

    NASA Astrophysics Data System (ADS)

    Shen, Anqi; Xu, Yun; Liu, Yikun; Cai, Bo; Liang, Shuang; Wang, Fengjiao

    2018-06-01

    Fluid transport in a microscopic capillary under the effects of a sticky layer was theoretically investigated. A model based on the classical Lucas-Washburn (LW) model is proposed for the meniscus rise with the sticky layer present. The sticky layer consists of two parts: a fixed (located at the wall) and a movable part (located on the inside of the capillary), affecting the micro-capillary flow in different ways. Within our model, the movable layer is defined by the capillary radius and pressure gradient. From the model it follows that the fixed sticky layer leads to a decrease of capillary radius, while the movable sticky layer increases flow resistance. The movable layer thickness varies with the pressure gradient, which in turn varies with the rising of the meniscus. The results of our theoretical calculation also prove that the capillary radius has a greater effect on the meniscus height, rather than the additional resistance caused by the movable layer. Moreover, the fixed sticky layer, which affects the capillary radius, has a greater influence than the movable sticky layer. We conclude that the sticky layer causes a lower imbibition height than the LW model predicts.

  17. MHD Modeling of the Sympathetic Eruptions Observed on August 1, 2010

    NASA Astrophysics Data System (ADS)

    Mikic, Z.; Torok, T.; Titov, V. S.; Downs, C.; Linker, J.; Lionello, R.; Riley, P.

    2013-12-01

    The multiple solar eruptions observed by SDO on August 1, 2010 present a special challenge to theoretical models of CME initiation. SDO captured in detail a remarkable chain of sympathetic eruptions that involved the entire visible hemisphere of the Sun (Schrijver et al. 2011). It consisted of several flares and six filament eruptions/CMEs, and triggered a geomagnetic storm on August 3 (de Toma et al. 2010). This series of eruptions was also observed by the two STEREO spacecraft. This collection of observations presents a unique opportunity to understand sympathetic eruptions theoretically. We have previously simulated the three principal filament eruptions (and their associated CMEs) that characterized this event. We have had some success in reproducing their observed synchronicity. We will present further simulations that attempt to get a better match with observations. Such simulations will help us to understand the possible mechanisms by which the various filament eruptions/CMEs may be linked. The modeling of such events is very useful for incorporation into future space weather prediction models. Research supported by NASA's Heliophysics Theory and Living With a Star Programs, and NSF/FESD.

  18. Critical frontier of the triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.

    2004-03-01

    We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.

  19. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.

  20. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin

    2016-08-14

    A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medicalmore » guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.« less

  1. Proof of concept of an artificial muscle: theoretical model, numerical model, and hardware experiment.

    PubMed

    Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S

    2011-01-01

    Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices. © 2011 IEEE

  2. Congested traffic states in empirical observations and microscopic simulations

    NASA Astrophysics Data System (ADS)

    Treiber, Martin; Hennecke, Ansgar; Helbing, Dirk

    2000-08-01

    We present data from several German freeways showing different kinds of congested traffic forming near road inhomogeneities, specifically lane closings, intersections, or uphill gradients. The states are localized or extended, homogeneous or oscillating. Combined states are observed as well, like the coexistence of moving localized clusters and clusters pinned at road inhomogeneities, or regions of oscillating congested traffic upstream of nearly homogeneous congested traffic. The experimental findings are consistent with a recently proposed theoretical phase diagram for traffic near on-ramps [D. Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. 82, 4360 (1999)]. We simulate these situations with a continuous microscopic single-lane model, the ``intelligent driver model,'' using empirical boundary conditions. All observations, including the coexistence of states, are qualitatively reproduced by describing inhomogeneities with local variations of one model parameter. We show that the results of the microscopic model can be understood by formulating the theoretical phase diagram for bottlenecks in a more general way. In particular, a local drop of the road capacity induced by parameter variations has essentially the same effect as an on-ramp.

  3. Computational models of airway branching morphogenesis.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Consistent lattice Boltzmann methods for incompressible axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei

    2016-08-01

    In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified.

  5. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMlC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies greater than or equal to 1 MeV, can be removed from the outer radiation belt by EMlC wave scattering during a magnetic storm (Summers and Thorne, 2003; Albert, 2003). That is why the modeling of EMlC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMlC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMlC waves in the global dynamic of self-consistent RC - EMlC waves coupling. The results of our newly developed model that will be presented at Huntsville 2006 meeting, focusing mainly on the dynamic of EMlC waves and comparison of these results with the previous global RC modeling studies devoted to EMlC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  6. A framework and a measurement instrument for sustainability of work practices in long-term care

    PubMed Central

    2011-01-01

    Background In health care, many organizations are working on quality improvement and/or innovation of their care practices. Although the effectiveness of improvement processes has been studied extensively, little attention has been given to sustainability of the changed work practices after implementation. The objective of this study is to develop a theoretical framework and measurement instrument for sustainability. To this end sustainability is conceptualized with two dimensions: routinization and institutionalization. Methods The exploratory methodological design consisted of three phases: a) framework development; b) instrument development; and c) field testing in former improvement teams in a quality improvement program for health care (N teams = 63, N individual = 112). Data were collected not until at least one year had passed after implementation. Underlying constructs and their interrelations were explored using Structural Equation Modeling and Principal Component Analyses. Internal consistency was computed with Cronbach's alpha coefficient. A long and a short version of the instrument are proposed. Results The χ2- difference test of the -2 Log Likelihood estimates demonstrated that the hierarchical two factor model with routinization and institutionalization as separate constructs showed a better fit than the one factor model (p < .01). Secondly, construct validity of the instrument was strong as indicated by the high factor loadings of the items. Finally, the internal consistency of the subscales was good. Conclusions The theoretical framework offers a valuable starting point for the analysis of sustainability on the level of actual changed work practices. Even though the two dimensions routinization and institutionalization are related, they are clearly distinguishable and each has distinct value in the discussion of sustainability. Finally, the subscales conformed to psychometric properties defined in literature. The instrument can be used in the evaluation of improvement projects. PMID:22087884

  7. Retrograde spins of near-Earth asteroids from the Yarkovsky effect.

    PubMed

    La Spina, A; Paolicchi, P; Kryszczyńska, A; Pravec, P

    2004-03-25

    Dynamical resonances in the asteroid belt are the gateway for the production of near-Earth asteroids (NEAs). To generate the observed number of NEAs, however, requires the injection of many asteroids into those resonant regions. Collisional processes have long been claimed as a possible source, but difficulties with that idea have led to the suggestion that orbital drift arising from the Yarkovsky effect dominates the injection process. (The Yarkovsky effect is a force arising from differential heating-the 'afternoon' side of an asteroid is warmer than the 'morning' side.) The two models predict different rotational properties of NEAs: the usual collisional theories are consistent with a nearly isotropic distribution of rotation vectors, whereas the 'Yarkovsky model' predicts an excess of retrograde rotations. Here we report that the spin vectors of NEAs show a strong and statistically significant excess of retrograde rotations, quantitatively consistent with the theoretical expectations of the Yarkovsky model.

  8. Using Ryff's scales of psychological well-being in adolescents in mainland China.

    PubMed

    Gao, Jie; McLellan, Ros

    2018-04-20

    Psychological well-being in adolescence has always been a focus of public attention and academic research. Ryff's six-factor model of psychological well-being potentially provides a comprehensive theoretical framework for investigating positive functioning of adolescents. However, previous studies reported inconsistent findings of the reliability and validity of Ryff's Scales of Psychological Well-being (SPWB). The present study aimed to explore whether Ryff's six-factor model of psychological well-being could be applied in Chinese adolescents. The Scales of Psychological Well-being (SPWB) were adapted for assessing the psychological well-being of adolescents in mainland China. 772 adolescents (365 boys to 401 girls, 6 missing gender data, mean age = 13.65) completed the adapted 33-item SPWB. The data was used to examine the reliability and construct validity of the adapted SPWB. Results showed that five of the six sub-scales had acceptable internal consistency of items, except the sub-scale of autonomy. The factorial structure of the SPWB was not as clear-cut as the theoretical framework suggested. Among the models under examination, the six-factor model had better model fit than the hierarchical model and the one-factor model. However, the goodness-of-fit of the six-factor model was hardly acceptable. High factor correlations were identified between the sub-scales of environmental mastery, purpose in life and personal growth. Findings of the present study echoed a number of previous studies which reported inadequate reliability and validity of Ryff's scales. Given the evidence, it was suggested that future adolescent studies should seek to develop more age-specific and context-appropriate items for a better operationalisation of Ryff's theoretical model of psychological well-being.

  9. On the specification of structural equation models for ecological systems

    USGS Publications Warehouse

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the system and the latter being preferable where facets act together consistently when influencing other parts of the system. Because ecological theory characteristically deals with concepts that are multifaceted, we expect the methods presented in this paper will be useful for ecologists wishing to use SEM. ?? 2010 by the Ecological Society of America.

  10. Characterising an implementation intervention in terms of behaviour change techniques and theory: the 'Sepsis Six' clinical care bundle.

    PubMed

    Steinmo, Siri; Fuller, Christopher; Stone, Sheldon P; Michie, Susan

    2015-08-08

    Sepsis is a major cause of death from infection, with a mortality rate of 36 %. This can be halved by implementing the 'Sepsis Six' evidence-based care bundle within 1 h of presentation. A UK audit has shown that median implementation rates are 27-47 % and interventions to improve this have demonstrated minimal effects. In order to develop more effective implementation interventions, it is helpful to obtain detailed characterisations of current interventions and to draw on behavioural theory to identify mechanisms of change. The aim of this study was to illustrate this process by using the Behaviour Change Wheel; Behaviour Change Technique (BCT) Taxonomy; Capability, Opportunity, Motivation model of behaviour; and Theoretical Domains Framework to characterise the content and theoretical mechanisms of action of an existing intervention to implement Sepsis Six. Data came from documentary, interview and observational analyses of intervention delivery in several wards of a UK hospital. A broad description of the intervention was created using the Template for Intervention Description and Replication framework. Content was specified in terms of (i) component BCTs using the BCT Taxonomy and (ii) intervention functions using the Behaviour Change Wheel. Mechanisms of action were specified using the Capability, Opportunity, Motivation model and the Theoretical Domains Framework. The intervention consisted of 19 BCTs, with eight identified using all three data sources. The BCTs were delivered via seven functions of the Behaviour Change Wheel, with four ('education', 'enablement', 'training' and 'environmental restructuring') supported by the three data sources. The most frequent mechanisms of action were reflective motivation (especially 'beliefs about consequences' and 'beliefs about capabilities') and psychological capability (especially 'knowledge'). The intervention consisted of a wide range of BCTs targeting a wide range of mechanisms of action. This study demonstrates the utility of the Behaviour Change Wheel, the BCT Taxonomy and the Theoretical Domains Framework, tools recognised for providing guidance for intervention design, for characterising an existing intervention to implement evidence-based care.

  11. Effective distributions of quasiparticles for thermal photons

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko

    2015-07-01

    It has been found in recent heavy-ion experiments that the second and the third flow harmonics of direct photons are larger than most theoretical predictions. In this study, I construct effective parton phase-space distributions with in-medium interaction using quasiparticle models so that they are consistent with a lattice QCD equation of state. Then I investigate their effects on thermal photons using a hydrodynamic model. Numerical results indicate that elliptic flow and transverse momentum spectra are modified by the corrections to Fermi-Dirac and Bose-Einstein distributions.

  12. Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-05-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and nonequilibrium Green’s function techniques. We consider weak and strong cluster-contact bonds. Depending on the bonding we find from 73% (strong bonds) up to 99% (weak bonds) spin polarization of the electron transmission, and enhanced polarization with increased cluster length.

  13. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  14. A game theoretic controller for a linear time-invariant system with parameter uncertainty and its application to the Space Station

    NASA Technical Reports Server (NTRS)

    Rhee, Ihnseok; Speyer, Jason L.

    1990-01-01

    A game theoretic controller is developed for a linear time-invariant system with parameter uncertainties in system and input matrices. The input-output decomposition modeling for the plant uncertainty is adopted. The uncertain dynamic system is represented as an internal feedback loop in which the system is assumed forced by fictitious disturbance caused by the parameter uncertainty. By considering the input and the fictitious disturbance as two noncooperative players, a differential game problem is constructed. It is shown that the resulting time invariant controller stabilizes the uncertain system for a prescribed uncertainty bound. This game theoretic controller is applied to the momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Inclusion of the external disturbance torque to the design procedure results in a dynamical feedback controller which consists of conventional PID control and cyclic disturbance rejection filter. It is shown that the game theoretic design, comparing to the LQR design or pole placement design, improves the stability robustness with respect to inertia variations.

  15. Work gets unfair for the depressed: cross-lagged relations between organizational justice perceptions and depressive symptoms.

    PubMed

    Lang, Jessica; Bliese, Paul D; Lang, Jonas W B; Adler, Amy B

    2011-05-01

    The organizational justice literature has consistently documented substantial correlations between organizational justice and employee depression. Existing theoretical literature suggests this relationship occurs because perceptions of organizational (in)justice lead to subsequent psychological health problems. Building on recent research on the affective nature of justice perceptions, in the present research we broaden this perspective by arguing there are also theoretical arguments for a reverse effect whereby psychological health problems influence perceptions of organizational justice. To contrast both theoretical perspectives, we test longitudinal lagged effects between organizational justice perceptions (i.e., distributive justice, interactional justice, interpersonal justice, informational justice, and procedural justice) and employee depressive symptoms using structural equation modeling. Analyses of 3 samples from different military contexts (N₁ = 625, N₂ = 134, N₃ = 550) revealed evidence of depressive symptoms leading to subsequent organizational justice perceptions. In contrast, the opposite effects of organizational justice perceptions on depressive symptoms were not significant for any of the justice dimensions. The findings have broad implications for theoretical perspectives on psychological health and organizational justice perceptions.

  16. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  17. Ensemble average theory of gravity

    NASA Astrophysics Data System (ADS)

    Khosravi, Nima

    2016-12-01

    We put forward the idea that all the theoretically consistent models of gravity have contributions to the observed gravity interaction. In this formulation, each model comes with its own Euclidean path-integral weight where general relativity (GR) has automatically the maximum weight in high-curvature regions. We employ this idea in the framework of Lovelock models and show that in four dimensions the result is a specific form of the f (R ,G ) model. This specific f (R ,G ) satisfies the stability conditions and possesses self-accelerating solutions. Our model is consistent with the local tests of gravity since its behavior is the same as in GR for the high-curvature regime. In the low-curvature regime the gravitational force is weaker than in GR, which can be interpreted as the existence of a repulsive fifth force for very large scales. Interestingly, there is an intermediate-curvature regime where the gravitational force is stronger in our model compared to GR. The different behavior of our model in comparison with GR in both low- and intermediate-curvature regimes makes it observationally distinguishable from Λ CDM .

  18. Effect of Profilin on Actin Critical Concentration: A Theoretical Analysis

    PubMed Central

    Yarmola, Elena G.; Dranishnikov, Dmitri A.; Bubb, Michael R.

    2008-01-01

    To explain the effect of profilin on actin critical concentration in a manner consistent with thermodynamic constraints and available experimental data, we built a thermodynamically rigorous model of actin steady-state dynamics in the presence of profilin. We analyzed previously published mechanisms theoretically and experimentally and, based on our analysis, suggest a new explanation for the effect of profilin. It is based on a general principle of indirect energy coupling. The fluctuation-based process of exchange diffusion indirectly couples the energy of ATP hydrolysis to actin polymerization. Profilin modulates this coupling, producing two basic effects. The first is based on the acceleration of exchange diffusion by profilin, which indicates, paradoxically, that a faster rate of actin depolymerization promotes net polymerization. The second is an affinity-based mechanism similar to the one suggested in 1993 by Pantaloni and Carlier although based on indirect rather than direct energy coupling. In the model by Pantaloni and Carlier, transformation of chemical energy of ATP hydrolysis into polymerization energy is regulated by direct association of each step in the hydrolysis reaction with a corresponding step in polymerization. Thus, hydrolysis becomes a time-limiting step in actin polymerization. In contrast, indirect coupling allows ATP hydrolysis to lag behind actin polymerization, consistent with experimental results. PMID:18835900

  19. Ultrathin nanosheets of CrSiTe 3. A semiconducting two-dimensional ferromagnetic material

    DOE PAGES

    Lin, Ming -Wei; Zhung, Houlong L.; Yan, Jiaqiang; ...

    2015-11-27

    Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have recently shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained elusive. In this work we for the first time exfoliate the CrSiTe 3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO 2 substrate. The Raman spectra show the good stability and high quality of the exfoliated flakes, consistent with the computed phononmore » spectra of 2D CrSiTe 3, giving a strong evidence for the existence of 2D CrSiTe 3 crystals. When the thickness of the CrSiTe 3 crystals is reduced to few-layers, we observed a clear change in resistivity at 80~120 K, consistent with the theoretical calculations on the Curie temperature (Tc) of ~80 K for the magnetic ordering of 2D CrSiTe 3 crystals. As a result, the ferromagnetic mono- and few-layer 2D CrSiTe 3 indicated here should enable numerous applications in nano-spintronics.« less

  20. Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Wang, Xiaoman; Cheng, Yuan; Liu, Shaogang; Wu, Yanhong; Chai, Liqin; Liu, Yang; Cheng, Qianju

    2018-05-01

    Piecewise-linear structure can effectively broaden the working frequency band of the piezoelectric energy harvester, and improvement of its research can promote the practical process of energy collection device to meet the requirements for powering microelectronic components. In this paper, the incremental harmonic balance (IHB) method is introduced for the complicated and difficult analysis process of the piezoelectric energy harvester to solve these problems. After obtaining the nonlinear dynamic equation of the single-degree-of-freedom piecewise-linear energy harvester by mathematical modeling and the equation is solved based on the IHB method, the theoretical amplitude-frequency curve of open-circuit voltage is achieved. Under 0.2 g harmonic excitation, a piecewise-linear energy harvester is experimentally tested by unidirectional frequency-increasing scanning. The results demonstrate that the theoretical and experimental amplitudes have the same trend, and the width of the working band with high voltage output are 4.9 Hz and 4.7 Hz, respectively, and the relative error is 4.08%. The open-output peak voltage are 21.53 V and 18.25 V, respectively, and the relative error is 15.23%. Since the theoretical value is consistent with the experimental results, the theoretical model and the incremental harmonic balance method used in this paper are suitable for solving single-degree-of-freedom piecewise-linear piezoelectric energy harvester and can be applied to further parameter optimized design.

  1. Poly(ethylene oxide) Chains Are Not ``Hydrophilic'' When They Exist As Polymer Brush Chains

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Kim, Dae Hwan; Witte, Kevin N.; Ohn, Kimberly; Choi, Je; Kim, Kyungil; Meron, Mati; Lin, Binhua; Akgun, Bulent; Satija, Sushil; Won, You-Yeon

    2012-02-01

    By using a combined experimental and theoretical approach, a model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated. The polymer segment density profiles of the PEO brush in the direction normal to the air-water interface under various grafting density conditions were determined from combined X-ray and neutron reflectivity data. In order to achieve a theoretically sound analysis of the reflectivity data, we developed a new data analysis method that uses the self-consistent field theoretical modeling as a tool for predicting expected reflectivity results for comparison with the experimental data. Using this new data analysis method, we discovered that the effective Flory-Huggins interaction parameter of the PEO brush chains is significantly greater than that corresponding to the theta condition, suggesting that contrary to what is more commonly observed for PEO in normal situations, the PEO chains are actually not ``hydrophilic'' when they exist as polymer brush chains, because of the many body interactions forced to be effective in the brush situation.

  2. Complex dispersion relation of surface acoustic waves at a lossy metasurface

    NASA Astrophysics Data System (ADS)

    Schwan, Logan; Geslain, Alan; Romero-García, Vicente; Groby, Jean-Philippe

    2017-01-01

    The complex dispersion relation of surface acoustic waves (SAWs) at a lossy resonant metasurface is theoretically and experimentally reported. The metasurface consists of the periodic arrangement of borehole resonators in a rigid substrate. The theoretical model relies on a boundary layer approach that provides the effective metasurface admittance governing the complex dispersion relation in the presence of viscous and thermal losses. The model is experimentally validated by measurements in the semi-anechoic chamber. The complex SAW dispersion relation is experimentally retrieved from the analysis of the spatial Laplace transform of the pressure scanned along a line at the metasurface. The geometrical spreading of the energy from the speaker is accounted for, and both the real and imaginary parts of the SAW wavenumber are obtained. The results show that the strong reduction of the SAW group velocity occurs jointly with a drastic attenuation of the wave, leading to the confinement of the field close to the source and preventing the efficient propagation of such slow-sound surface modes. The method opens perspectives to theoretically predict and experimentally characterize both the dispersion and the attenuation of surface waves at structured surfaces.

  3. Geometrical control of ionic current rectification in a configurable nanofluidic diode.

    PubMed

    Alibakhshi, Mohammad Amin; Liu, Binqi; Xu, Zhiping; Duan, Chuanhua

    2016-09-01

    Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.

  4. Modeling of RF/MHD coupling using NIMROD and GENRAY

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.

    2008-11-01

    We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations, specifically considering the stabilization of resistive tearing modes in tokamak (DIII--D--like) geometry by electron cyclotron current drive. Previous investigations [T. G. Jenkins et al., Bull. APS 52, 131 (2007)] have demonstrated that relatively simple (though non--self--consistent) models for the RF--induced currents can be incorporated into the fluid equations, and that these currents can markedly reduce the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (which calculate RF propagation and energy/momentum deposition) is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and initial studies exploring the efficient reduction of saturated island widths through time modulation of the ECCD are presented. Conducted as part of the SWIM*** project; funded by U. S. DoE. *www.nimrodteam.org **www.compxco.com ***www.cswim.org

  5. Modeling of RF/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.

    2009-05-01

    We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically considering resistive tearing mode stabilization in tokamak (DIII--D--like) geometry via ECCD. Relatively simple (though non--self--consistent) models for the RF--induced currents are incorporated into the fluid equations, markedly reducing the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (calculating RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework*** is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and studies exploring the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD are presented. *[Sovinec et al., JCP 195, 355 (2004)] **[www.compxco.com] ***[This research and the IPS development are both part of the SWIM project. Funded by U.S. DoE.

  6. Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David

    2000-01-01

    This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.

  7. How Costs Influence Decision Values for Mixed Outcomes

    PubMed Central

    Talmi, Deborah; Pine, Alex

    2012-01-01

    The things that we hold dearest often require a sacrifice, as epitomized in the maxim “no pain, no gain.” But how is the subjective value of outcomes established when they consist of mixtures of costs and benefits? We describe theoretical models for the integration of costs and benefits into a single value, drawing on both the economic and the empirical literatures, with the goal of rendering them accessible to the neuroscience community. We propose two key assays that go beyond goodness of fit for deciding between the dominant additive model and four varieties of interactive models. First, how they model decisions between costs when reward is not on offer; and second, whether they predict changes in reward sensitivity when costs are added to outcomes, and in what direction. We provide a selective review of relevant neurobiological work from a computational perspective, focusing on those studies that illuminate the underlying valuation mechanisms. Cognitive neuroscience has great potential to decide which of the theoretical models is actually employed by our brains, but empirical work has yet to fully embrace this challenge. We hope that future research improves our understanding of how our brain decides whether mixed outcomes are worthwhile. PMID:23112758

  8. Testing the white dwarf mass-radius relationship with eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.

    2017-10-01

    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.

  9. Qualitative dynamical analysis of chaotic plasma perturbations model

    NASA Astrophysics Data System (ADS)

    Elsadany, A. A.; Elsonbaty, Amr; Agiza, H. N.

    2018-06-01

    In this work, an analytical framework to understand nonlinear dynamics of plasma perturbations model is introduced. In particular, we analyze the model presented by Constantinescu et al. [20] which consists of three coupled ODEs and contains three parameters. The basic dynamical properties of the system are first investigated by the ways of bifurcation diagrams, phase portraits and Lyapunov exponents. Then, the normal form technique and perturbation methods are applied so as to the different types of bifurcations that exist in the model are investigated. It is proved that pitcfork, Bogdanov-Takens, Andronov-Hopf bifurcations, degenerate Hopf and homoclinic bifurcation can occur in phase space of the model. Also, the model can exhibit quasiperiodicity and chaotic behavior. Numerical simulations confirm our theoretical analytical results.

  10. Calibration of the ARID robot

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.

  11. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.

    PubMed

    Bonhommeau, David; Viel, Alexandra; Halberstadt, Nadine

    2004-06-22

    We report a theoretical study of the fragmentation dynamics of Ne(3) (+) inside helium nanodroplets, following vertical ionization of the neutral neon trimer. The motion of the neon atoms is treated classically, while transitions between the electronic states of the ionic cluster are treated quantum mechanically. A diatomics-in-molecules description of the potential energy surfaces is used, in a minimal basis set consisting of three effective p orbitals on each neon atom for the missing electron. The helium environment is modeled by a friction force acting on the neon atoms when their speed exceeds the Landau velocity. A reasonable range of values for the corresponding friction coefficient is obtained by comparison with existing experimental measurements. (c) 2004 American Institute of Physics.

  12. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    PubMed

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  13. Epidemic spread in bipartite network by considering risk awareness

    NASA Astrophysics Data System (ADS)

    Han, She; Sun, Mei; Ampimah, Benjamin Chris; Han, Dun

    2018-02-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. Exploring the interplay between human awareness and epidemic spreading is a topic that has been receiving increasing attention. Considering the fact, some well-known diseases only spread between different species we propose a theoretical analysis of the Susceptible-Infected-Susceptible (SIS) epidemic spread from the perspective of bipartite network and risk aversion. Using mean field theory, the epidemic threshold is calculated theoretically. Simulation results are consistent with the proposed analytic model. The results show that, the final infection density is negative linear with the value of individuals' risk awareness. Therefore, the epidemic spread could be effectively suppressed by improving individuals' risk awareness.

  14. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu

    2016-08-21

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted andmore » mathematically controlled, which extends the design concept of unidirectional transmission devices.« less

  15. The Uranian bow shock - Voyager 2 inbound observations of a high Mach number shock

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran; Belcher, John W.; Sittler, Edward C., Jr.; Lepping, Ronald P.

    1987-01-01

    The Voyager 2 magnetometer and plasma detector measured a high Mach number, high beta bow shock on the dayside of the Uranian magnetosphere. Although the average conditions on either side of the shock are consistent with the Rankine-Hugoniot (MHD) relations for a stationary, quasi-perpendicular shock, the data revealed both detailed structure in the transition region as well as considerable variability in the downstream magnetosheath plasma. The bulk plasma parameters and the magnetic field exhibited some of the characteristics of a supercritical shock: an overshoot followed by damped oscillations downstream, consistent with recent theoretical models of high Mach number quasi-perpendicular shocks.

  16. Clinical teaching based on principles of cognitive apprenticeship: views of experienced clinical teachers.

    PubMed

    Stalmeijer, Renée E; Dolmans, Diana H J M; Snellen-Balendong, Hetty A M; van Santen-Hoeufft, Marijke; Wolfhagen, Ineke H A P; Scherpbier, Albert J J A

    2013-06-01

    To explore (1) whether an instructional model based on principles of cognitive apprenticeship fits with the practice of experienced clinical teachers and (2) which factors influence clinical teaching during clerkships from an environmental, teacher, and student level as perceived by the clinical teachers themselves. The model was designed to apply directly to teaching behaviors of clinical teachers and consists of three phases, advocating teaching behaviors such as modeling, creating a safe learning environment, coaching, knowledge articulation, and exploration. A purposive sample of 17 experienced clinical teachers from five different disciplines and four different teaching hospitals took part in semistructured individual interviews. Two researchers independently performed a thematic analysis of the interview transcripts. Coding was discussed within the research team until consensus was reached. All participants recognized the theoretical model as a structured picture of the practice of teaching activities during both regular and senior clerkships. According to participants, modeling and creating a safe learning environment were fundamental to the learning process of both regular and senior clerkship students. Division of teaching responsibilities, longer rotations, and proactive behavior of teachers and students ensured that teachers were able to apply all steps in the model. The theoretical model can offer valuable guidance in structuring clinical teaching activities and offers suggestions for the design of effective clerkships.

  17. Why we do what we do: a theoretical evaluation of the integrated practice model for forensic nursing science.

    PubMed

    Valentine, Julie L

    2014-01-01

    An evaluation of the Integrated Practice Model for Forensic Nursing Science () is presented utilizing methods outlined by . A brief review of nursing theory basics and evaluation methods by Meleis is provided to enhance understanding of the ensuing theoretical evaluation and critique. The Integrated Practice Model for Forensic Nursing Science, created by forensic nursing pioneer Virginia Lynch, captures the theories, assumptions, concepts, and propositions inherent in forensic nursing practice and science. The historical background of the theory is explored as Lynch's model launched the role development of forensic nursing practice as both a nursing and forensic science specialty. It is derived from a combination of nursing, sociological, and philosophical theories to reflect the grounding of forensic nursing in the nursing, legal, psychological, and scientific communities. As Lynch's model is the first inception of forensic nursing theory, it is representative of a conceptual framework although the title implies a practice theory. The clarity and consistency displayed in the theory's structural components of assumptions, concepts, and propositions are analyzed. The model is described and evaluated. A summary of the strengths and limitations of the model is compiled followed by application to practice, education, and research with suggestions for ongoing theory development.

  18. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  19. European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30: factorial models to Brazilian cancer patients

    PubMed Central

    Campos, Juliana Alvares Duarte Bonini; Spexoto, Maria Cláudia Bernardes; da Silva, Wanderson Roberto; Serrano, Sergio Vicente; Marôco, João

    2018-01-01

    ABSTRACT Objective To evaluate the psychometric properties of the seven theoretical models proposed in the literature for European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ-C30), when applied to a sample of Brazilian cancer patients. Methods Content and construct validity (factorial, convergent, discriminant) were estimated. Confirmatory factor analysis was performed. Convergent validity was analyzed using the average variance extracted. Discriminant validity was analyzed using correlational analysis. Internal consistency and composite reliability were used to assess the reliability of instrument. Results A total of 1,020 cancer patients participated. The mean age was 53.3±13.0 years, and 62% were female. All models showed adequate factorial validity for the study sample. Convergent and discriminant validities and the reliability were compromised in all of the models for all of the single items referring to symptoms, as well as for the “physical function” and “cognitive function” factors. Conclusion All theoretical models assessed in this study presented adequate factorial validity when applied to Brazilian cancer patients. The choice of the best model for use in research and/or clinical protocols should be centered on the purpose and underlying theory of each model. PMID:29694609

  20. Potts and percolation models on bowtie lattices

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Wang, Yancheng; Li, Yang

    2012-08-01

    We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q=1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff [J. Phys. A0305-447010.1088/0305-4470/39/49/003 39, 15083 (2006)]. For the q=2 Potts model on a bowtie A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of the Potts model on a bowtie A lattice with noninteger q. Our numerical results, which are accurate up to seven significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on a bowtie A lattice, and the threshold is sc=0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on a bowtie A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.

  1. Complexes formed between DNA and poly(amido amine) dendrimers of different generations--modelling DNA wrapping and penetration.

    PubMed

    Qamhieh, Khawla; Nylander, Tommy; Black, Camilla F; Attard, George S; Dias, Rita S; Ainalem, Marie-Louise

    2014-07-14

    This study deals with the build-up of biomaterials consisting of biopolymers, namely DNA, and soft particles, poly(amido amine) (PAMAM) dendrimers, and how to model their interactions. We adopted and applied an analytical model to provide further insight into the complexation between DNA (4331 bp) and positively charged PAMAM dendrimers of generations 1, 2, 4, 6 and 8, previously studied experimentally. The theoretical models applied describe the DNA as a semiflexible polyelectrolyte that interacts with dendrimers considered as either hard (impenetrable) spheres or as penetrable and soft spheres. We found that the number of DNA turns around one dendrimer, thus forming a complex, increases with the dendrimer size or generation. The DNA penetration required for the complex to become charge neutral depends on dendrimer generation, where lower generation dendrimers require little penetration to give charge neutral complexes. High generation dendrimers display charge inversion for all considered dendrimer sizes and degrees of penetration. Consistent with the morphologies observed experimentally for dendrimer/DNA aggregates, where highly ordered rods and toroids are found for low generation dendrimers, the DNA wraps less than one turn around the dendrimer. Disordered globular structures appear for high generation dendrimers, where the DNA wraps several turns around the dendrimer. Particularly noteworthy is that the dendrimer generation 4 complexes, where the DNA wraps about one turn around the dendrimers, are borderline cases and can form all types of morphologies. The net-charges of the aggregate have been estimated using zeta potential measurements and are discussed within the theoretical framework.

  2. Emergence of collective propulsion through cell-cell adhesion.

    PubMed

    Matsushita, Katsuyoshi

    2018-04-01

    The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.

  3. The feedback control research on straight and curved road with car-following model

    NASA Astrophysics Data System (ADS)

    Zheng, Yi-Ming; Cheng, Rong-Jun; Ge, Hong-Xia

    2017-07-01

    Taking account of the road consisting of curved part and straight part, an extended car-following model is proposed in this paper. A control signal including the velocity difference between the considered vehicle and the vehicle in front is taken into account. The control theory method is applied into analysis of the stability condition for the model. Numerical simulations are implemented to prove that the stability of the traffic flow strengthens effectively with an increase of the radius of curved road, and the control signal can suppress the traffic congestion. The results are in good agree with the theoretical analysis.

  4. New Frontiers in Language Evolution and Development.

    PubMed

    Oller, D Kimbrough; Dale, Rick; Griebel, Ulrike

    2016-04-01

    This article introduces the Special Issue and its focus on research in language evolution with emphasis on theory as well as computational and robotic modeling. A key theme is based on the growth of evolutionary developmental biology or evo-devo. The Special Issue consists of 13 articles organized in two sections: A) Theoretical foundations and B) Modeling and simulation studies. All the papers are interdisciplinary in nature, encompassing work in biological and linguistic foundations for the study of language evolution as well as a variety of computational and robotic modeling efforts shedding light on how language may be developed and may have evolved. Copyright © 2016 Cognitive Science Society, Inc.

  5. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  6. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  7. Development of Multi-Layered Floating Floor for Cabin Noise Reduction

    NASA Astrophysics Data System (ADS)

    Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung

    2017-12-01

    Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.

  8. Manager personality, manager service quality orientation, and service climate: test of a model.

    PubMed

    Salvaggio, Amy Nicole; Schneider, Benjamin; Nishii, Lisa H; Mayer, David M; Ramesh, Anuradha; Lyon, Julie S

    2007-11-01

    This article conceptually and empirically explores the relationships among manager personality, manager service quality orientation, and climate for customer service. Data were collected from 1,486 employees and 145 managers in grocery store departments (N = 145) to test the authors' theoretical model. Largely consistent with hypotheses, results revealed that core self-evaluations were positively related to managers' service quality orientation, even after dimensions of the Big Five model of personality were controlled, and that service quality orientation fully mediated the relationship between personality and global service climate. Implications for personality and organizational climate research are discussed. (c) 2007 APA

  9. Structural and elastic properties of InX (X = P, As, Sb) at pressure and room temperature

    NASA Astrophysics Data System (ADS)

    Pawar, Pooja; Singh, Sadhna

    2018-06-01

    We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.

  10. Emergence of collective propulsion through cell-cell adhesion

    NASA Astrophysics Data System (ADS)

    Matsushita, Katsuyoshi

    2018-04-01

    The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.

  11. Theoretical Studies of Processes Affecting the Stratospheric and Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick

    1999-01-01

    This report describes the work done with funding from NASA Grant during the past three years. Funding commenced in June, 1996 and had a planned duration of three years. This report covers the time period June 1996 to June 1999. Here we present a short description of the projects carried out and documentation of the work done in terms of publications, papers presented, and conferences attended: microphysical modeling consist of two related tasks (1) development of a simple microphysical model for modeling the Pinatubo plume and (2) carrying out a study of sulfate particle formation in volcanic plume.Also analysis of sun photometer measurements are presented.

  12. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. To describe the RC evolution itself this study uses the ring current-atmosphere interaction model (RAM). RAM solves the gyration and bounce-averaged Boltzmann-Landau equation inside of geosynchronous orbit. Originally developed at the University of Michigan, there are now several branches of this model currently in use as describe by Liemohn namely those at NASA Goddard Space Flight Center This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at GEM meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  13. A social discounting model based on Tsallis’ statistics

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2010-09-01

    Social decision making (e.g. social discounting and social preferences) has been attracting attention in economics, econophysics, social physics, behavioral psychology, and neuroeconomics. This paper proposes a novel social discounting model based on the deformed algebra developed in the Tsallis’ non-extensive thermostatistics. Furthermore, it is suggested that this model can be utilized to quantify the degree of consistency in social discounting in humans and analyze the relationships between behavioral tendencies in social discounting and other-regarding economic decision making under game-theoretic conditions. Future directions in the application of the model to studies in econophysics, neuroeconomics, and social physics, as well as real-world problems such as the supply of live organ donations, are discussed.

  14. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    PubMed

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated thatmore » the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.« less

  16. Self-consistent perturbation theory for two dimensional twisted bilayers

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Tritsaris, Georgios A.; Kaxiras, Efthimios

    Theoretical modeling and ab-initio simulations of two dimensional heterostructures with arbitrary angles of rotation between layers involve unrealistically large and expensive calculations. To overcome this shortcoming, we develop a methodology for weakly interacting heterostructures that treats the effect of one layer on the other as perturbation, and restricts the calculations to their primitive cells. Thus, avoiding computationally expensive supercells. We start by approximating the interaction potential between the twisted bilayers to that of a hypothetical configuration (viz. ideally stacked untwisted layers), which produces band structures in reasonable agreement with full-scale ab-initio calculations for commensurate and twisted bilayers of graphene (Gr) and Gr/hexagonal boron nitride (h-BN) heterostructures. We then self-consistently calculate the charge density and hence, interaction potential of the heterostructures. In this work, we test our model for bilayers of various combinations of Gr, h-BN and transition metal dichalcogenides, and discuss the advantages and shortcomings of the self-consistently calculated interaction potential. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  17. Future time perspective and promotion focus as determinants of intraindividual change in work motivation.

    PubMed

    Kooij, Dorien T A M; Bal, P Matthijs; Kanfer, Ruth

    2014-06-01

    In the near future, workforces will increasingly consist of older workers. At the same time, research has demonstrated that work-related growth motives decrease with age. Although this finding is consistent with life span theories, such as the selection optimization and compensation (SOC) model, we know relatively little about the process variables that bring about this change in work motivation. Therefore, we use a 4-wave study design to examine the mediating role of future time perspective and promotion focus in the negative association between age and work-related growth motives. Consistent with the SOC model, we found that future time perspective was negatively associated with age, which, in turn, was associated with lower promotion focus, lower work-related growth motive strength, and lower motivation to continue working. These findings have important theoretical implications for the literature on aging and work motivation, and practical implications for how to motivate older workers. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Dynamic balance in turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Higashimori, K.; Hoshino, M.

    2012-12-01

    Dynamic balance between the enhancement and suppression of transports due to turbulence in magnetic reconnection is discussed analytically and numerically by considering the interaction of the large-scale field structures with the small-scale turbulence in a consistent manner. Turbulence is expected to play an important role in bridging small and large scales related to magnetic reconnection. The configurations of the mean-field structure are determined by turbulence through the effective transport. At the same time, statistical properties of turbulence are determined by the mean-field structure through the production mechanisms of turbulence. This suggests that turbulence and mean fields should be considered simultaneously in a self-consistent manner. Following the theoretical prediction on the interaction between the mean-fields and turbulence in magnetic reconnection presented by Yokoi and Hoshino (2011), a self-consistent model for the turbulent reconnection is constructed. In the model, the mean-field equations for compressible magnetohydrodynamics are treated with the turbulence effects incorporated through the turbulence correlation such as the Reynolds stress and turbulent electromotive force. Transport coefficients appearing in the expression for these correlations are not adjustable parameters but are determined through the transport equations of the turbulent statistical quantities such as the turbulent MHD energy, the turbulent cross helicity. One of the prominent features of this reconnection model lies in the point that turbulence is not implemented as a prescribed one, but the generation and sustainment of turbulence through the mean-field inhomogeneities are treated. The theoretical predictions are confirmed by the numerical simulation of the model equations. These predictions include the quadrupole cross helicity distribution around the reconnection region, enhancement of reconnection rate due to turbulence, localization of the reconnection region through the cross-helicity effect, etc. Some implications to the satellite observation of the magnetic reconnection will be also given. Reference: Yokoi, N. and Hoshino, M. (2011) Physics of Plasmas, 18, 111208.

  19. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory

    NASA Astrophysics Data System (ADS)

    Tengattini, Alessandro; Das, Arghya; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai

    2014-10-01

    This is the first of two papers introducing a novel thermomechanical continuum constitutive model for cemented granular materials. Here, we establish the theoretical foundations of the model, and highlight its novelties. At the limit of no cement, the model is fully consistent with the original Breakage Mechanics model. An essential ingredient of the model is the use of measurable and micro-mechanics based internal variables, describing the evolution of the dominant inelastic processes. This imposes a link between the macroscopic mechanical behavior and the statistically averaged evolution of the microstructure. As a consequence this model requires only a few physically identifiable parameters, including those of the original breakage model and new ones describing the cement: its volume fraction, its critical damage energy and bulk stiffness, and the cohesion.

  20. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildenschild, D; Berge, P A; Berryman, K G

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of themore » measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.« less

  1. Water Quality Assessment in the Harbin Reach of the Songhuajiang River (China) Based on a Fuzzy Rough Set and an Attribute Recognition Theoretical Model

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2014-01-01

    A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A). Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B), was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system. PMID:24675643

  2. Theoretical study of the noble metals on semiconductor surfaces and Ti-base shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yungui

    1994-07-27

    The electronic and structural properties of the (√3 x√3) R30° Ag/Si(111) and (√3 x √3) R30° Au/Si(111) surfaces are investigated using first principles total energy calculations. We have tested almost all experimentally proposed structural models for both surfaces and found the energetically most favorable model for each of them. The lowest energy model structure of the (√3 x √3) R30° Ag/Si(111) surface consists of a top layer of Ag atoms arranged as ``honeycomb-chained-trimers`` lying above a distorted ``missing top layer`` Si(111) substrate. The coverage of Ag is 1 monolayer (ML). We find that the honeycomb structure observed in STM imagesmore » arise from the electronic charge densities of an empty surface band near the Fermi level. The electronic density of states of this model gives a ``pseudo-gap`` around the Fermi level, which is consistent with experimental results. The lowest energy model for the (√3 x √3) R30° Au/Si(111) surface is a conjugate honeycomb-chained-trimer (CHCT-1) configuration which consists of a top layer of trimers formed by 1 ML Au atoms lying above a ``missing top layer`` Si(111) substrate with a honeycomb-chained-trimer structure for its first layer. The structures of Au and Ag are in fact quite similar and belong to the same class of structural models. However, small variation in the structural details gives rise to quite different observed STM images, as revealed in the theoretical calculations. The electronic charge density from bands around the Fermi level for the (√3 x √3) R30°, Au/Si(111) surface also gives a good description of the images observed in STM experiments. First principles calculations are performed to study the electronic and structural properties of a series of Ti-base binary alloys TiFe, TiNi, TiPd, TiMo, and TiAu in the B2 structure.« less

  3. Determination of principal stress in birefringent composites by hole-drilling method

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    1981-01-01

    The application of transmission photoelasticity to stress analysis of composite materials is discussed.The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are described which verify the theoretical predicitons. The limitations of the method are discussed and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.

  4. Quasi-one-dimensional modes in strip plates: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arreola, A.; Báez, G.; Méndez-Sánchez, R. A.

    2014-01-14

    Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.

  5. Parallax and Luminosity Measurements of an L SubDwarf

    DTIC Science & Technology

    2008-01-10

    parallax and luminosity measurements for an L subdwarf, the sdL7 2MASS J05325346+ 8246465. Observations conducted over 3 years by the USNO infrared...comparable to mid-type L field dwarfs. Comparison of the luminosity of 2MASS J05325346+8246465 to theoretical evolutionary models indicates that its...The relatively bright J-bandmagnitude of 2MASS J05325346+8246465 implies significantly reduced opacity in the 1.2 m region, consistent with inhibited

  6. Dual-band reactively loaded microstrip antenna

    NASA Technical Reports Server (NTRS)

    Richards, W. F.; Long, S. A.; Davidson, S. E.

    1985-01-01

    A previously derived theory is applied to a microstrip antenna with a reactive load to produce a dual-band radiator. A model consisting of a rectangular patch radiator loaded with a variable length short-circuited coaxial stub was investigated experimentally. Comparisons of theoretical predictions and experimental data are made for the impedance and resonant frequencies as a function of the position of the load, the length of the stub, and the characteristic impedance of the stub.

  7. Turbofan aft duct suppressor study. Contractor's data report of mode probe signal data

    NASA Technical Reports Server (NTRS)

    Fiske, G. H.; Motsinger, R. E.; Syed, A. A.; Joshi, M. C.; Kraft, R. E.

    1983-01-01

    Acoustic modal distributions were measured in a fan test model having an annular exhaust duct for comparison with theoretically predicted acoustic suppression values. This report contains the amplitude and phase data of the acoustic signals sensed by the transducers of the two mode probes employed in the measurement. Each mode probe consisted of an array of 12 transducers sensing the acoustic field at three axial positions and four radial positions.

  8. An evaluation of bias in propensity score-adjusted non-linear regression models.

    PubMed

    Wan, Fei; Mitra, Nandita

    2018-03-01

    Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.

  9. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  10. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    DOE PAGES

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0 2 + band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less

  11. Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Gündüz, Bayram

    2017-06-01

    In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.

  12. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE PAGES

    He, C.; Liou, K.-N.; Takano, Y.; ...

    2015-07-20

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates, but overestimate the scattering cross sections for BC mobility diameters of 155, 245, and 320 nm, because of uncertainties associated with theoretical calculations for small particles as wellmore » as laboratory scattering measurements. The measured optical cross sections for coated BC by sulfuric acid and for those undergoing further hygroscopic growth are captured by theoretical calculations using a concentric core-shell structure, with differences of less than 20 %. This suggests that the core-shell shape represents the realistic BC coating morphology reasonably well in this case, which is consistent with the observed strong structure compaction during aging. We find that the absorption and scattering properties of fresh BC aggregates vary by up to 60 % due to uncertainty in the BC refractive index, which, however, is a factor of two smaller in the case of coated BC particles. Sensitivity analyses on the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of two due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. Applying the aging model to CalNex 2010 field measurements, we show that the resulting BC direct radiative forcing (DRF) first increases from 1.5 to 1.7 W m -2 and subsequently decreases to 1.0 W m -2 during the transport from the Los Angeles Basin to downwind regions, as a result of the competition between absorption enhancement due to coating and dilution of BC concentration. The BC DRF can vary by up to a factor of two due to differences in BC coating morphology. Thus, an accurate estimate of BC DRF requires the incorporation of a dynamic BC aging process that accounts for realistic morphology in climate models, particularly for the regional analysis with high atmospheric heterogeneity.« less

  13. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, C.; Liou, K.-N.; Takano, Y.

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates, but overestimate the scattering cross sections for BC mobility diameters of 155, 245, and 320 nm, because of uncertainties associated with theoretical calculations for small particles as wellmore » as laboratory scattering measurements. The measured optical cross sections for coated BC by sulfuric acid and for those undergoing further hygroscopic growth are captured by theoretical calculations using a concentric core-shell structure, with differences of less than 20 %. This suggests that the core-shell shape represents the realistic BC coating morphology reasonably well in this case, which is consistent with the observed strong structure compaction during aging. We find that the absorption and scattering properties of fresh BC aggregates vary by up to 60 % due to uncertainty in the BC refractive index, which, however, is a factor of two smaller in the case of coated BC particles. Sensitivity analyses on the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of two due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. Applying the aging model to CalNex 2010 field measurements, we show that the resulting BC direct radiative forcing (DRF) first increases from 1.5 to 1.7 W m -2 and subsequently decreases to 1.0 W m -2 during the transport from the Los Angeles Basin to downwind regions, as a result of the competition between absorption enhancement due to coating and dilution of BC concentration. The BC DRF can vary by up to a factor of two due to differences in BC coating morphology. Thus, an accurate estimate of BC DRF requires the incorporation of a dynamic BC aging process that accounts for realistic morphology in climate models, particularly for the regional analysis with high atmospheric heterogeneity.« less

  14. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei

    2015-12-01

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  15. Development of Support Service for Prevention and Recovery from Dementia and Science of Lethe

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko

    Purpose of this study is to explore service design method through the development of support service for prevention and recovery from dementia towards science of lethe. We designed and implemented conversation support service via coimagination method based on multiscale service design method, both were proposed by the author. Multiscale service model consists of tool, event, human, network, style and rule. Service elements at different scales are developed according to the model. Interactive conversation supported by coimagination method activates cognitive functions so as to prevent progress of dementia. This paper proposes theoretical bases for science of lethe. Firstly, relationship among coimagination method and three cognitive functions including division of attention, planning, episodic memory which decline at mild cognitive imparement. Secondly, thought state transition model during conversation which describes cognitive enhancement via interactive communication. Thirdly, Set Theoretical Measure of Interaction is proposed for evaluating effectiveness of conversation to cognitive enhancement. Simulation result suggests that the ideas which cannot be explored by each speaker are explored during interactive conversation. Finally, coimagination method compared with reminiscence therapy and its possibility for collaboration is discussed.

  16. Multiple shock reverberation compression of dense Ne up to the warm dense regime: Evaluating the theoretical models

    NASA Astrophysics Data System (ADS)

    Tang, J.; Gu, Y. J.; Chen, Q. F.; Li, Z. G.; Zheng, J.; Li, C. J.; Li, J. T.

    2018-04-01

    Multiple shock reverberation compression experiments are designed and performed to determine the equation of state of neon ranging from the initial dense gas up to the warm dense regime where the pressure is from about 40 MPa to 120 GPa and the temperature is from about 297 K up to above 20 000 K. The wide region experimental data are used to evaluate the available theoretical models. It is found that, for neon below 1.1 g/cm 3 , within the framework of density functional theory molecular dynamics, a van der Waals correction is meaningful. Under high pressure and temperature, results from the self-consistent fluid variational theory model are sensitive to the potential parameter and could give successful predictions in the whole experimental regime if a set of proper parameters is employed. The new observations on neon under megabar (1 Mbar =1011Pa ) pressure and eV temperature (1 eV ≈104K ) enrich the understanding on properties of warm dense matter and have potential applications in revealing the formation and evolution of gaseous giants or mega-Earths.

  17. A simplified memory network model based on pattern formations

    NASA Astrophysics Data System (ADS)

    Xu, Kesheng; Zhang, Xiyun; Wang, Chaoqing; Liu, Zonghua

    2014-12-01

    Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of both the high-degree hubs and the loops formed by low-degree nodes. We here present a simplified memory network model to show that the self-sustained synchronous firing can be observed even without these two necessary conditions. This simplified network consists of two loops of coupled excitable neurons with different synaptic conductance and with one node being the sensory neuron to receive an external stimulus signal. This model can be further used to show how the diversity of firing patterns can be selectively formed by varying the signal frequency, duration of the stimulus and network topology, which corresponds to the patterns of STM and LTM with different time scales. A theoretical analysis is presented to explain the underlying mechanism of firing patterns.

  18. Gas embolotherapy: Bubble evolution in acoustic droplet vaporization and design of a benchtop microvascular model

    NASA Astrophysics Data System (ADS)

    Wong, Zheng Zheng

    This work was motivated by an ongoing development of a potential embolotherapy technique to occlude blood flow to tumors using gas bubbles selectively formed by in vivo acoustic droplet vaporization (ADV) of liquid perfluorocarbon droplets. Mechanisms behind the ADV, transport and lodging of emboli need to be understood before gas embolotherapy can translate to the clinic. Evolution of a bubble from acoustic droplet vaporization in a rigid tube, under physiological and room temperature conditions, was observed via ultra-high speed imaging. Effective radii and radial expansion ratios were obtained by processing the images using Image] software. At physiological temperature, a radial expansion ratio of 5.05 was attained, consistent with theoretical prediction. The initial radial growth rate was linear, after which the growth rate increased proportionally with square root of time. Nondimensionalization revealed that the subsequent growth rate also varied inversely with square root of initial radius. Eventually growth became asymptotic. No collapse was observed. A theoretical model derived from a modified Bernoulli equation, and a computational model by Ye & Bull (2004), were compared respectively with experimental results. Initial growth rates were predicted correctly by both models. Experimental results showed heavy damping of growth rate as the bubble grew towards the wall, whereas both models predicted an overshoot in growth followed by multiple oscillations. The theoretical model broke down near the wall; the computational model gave a reasonable bubble shape near the wall but would require correct initial pressure values to be accurate. At room temperature, the expansion ratio shot to 1.43 initially and oscillated down to 1.11, far below the theoretical prediction. Failure of the bubble to expand fully could be due to unconsumed or condensed liquid perfluorocarbon. A new fabrication method via non-lithographic means was devised to make a circular-lumen microchannel out of PDMS, with a diameter as small as 80 microns to mimic the size of a medium arteriole. The microchannel was endothelialized successfully, with a fairly homogeneous distribution along the length. Cell viability assays confirmed the viability of cells maintained in the microchannel. Bubble motion experiments performed with the benchtop microvascular model demonstrated its feasibility.

  19. Testing the continuum of delusional beliefs: an experimental study using virtual reality.

    PubMed

    Freeman, Daniel; Pugh, Katherine; Vorontsova, Natasha; Antley, Angus; Slater, Mel

    2010-02-01

    A key problem in studying a hypothesized spectrum of severity of delusional ideation is determining that ideas are unfounded. The first objective was to use virtual reality to validate groups of individuals with low, moderate, and high levels of unfounded persecutory ideation. The second objective was to investigate, drawing upon a cognitive model of persecutory delusions, whether clinical and nonclinical paranoia are associated with similar causal factors. Three groups (low paranoia, high nonclinical paranoia, persecutory delusions) of 30 participants were recruited. Levels of paranoia were tested using virtual reality. The groups were compared on assessments of anxiety, worry, interpersonal sensitivity, depression, anomalous perceptual experiences, reasoning, and history of traumatic events. Virtual reality was found to cause no side effects. Persecutory ideation in virtual reality significantly differed across the groups. For the clear majority of the theoretical factors there were dose-response relationships with levels of paranoia. This is consistent with the idea of a spectrum of paranoia in the general population. Persecutory ideation is clearly present outside of clinical groups and there is consistency across the paranoia spectrum in associations with important theoretical variables.

  20. Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains

    NASA Astrophysics Data System (ADS)

    Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua

    2014-12-01

    One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.

  1. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  2. Constraints on the gluon PDF from top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Mangano, Michelangelo L.; Mitov, Alexander; Rojo, Juan

    2013-07-01

    Using the recently derived NNLO cross sections [1], we provide NNLO+NNLL theoretical predictions for top quark pair production based on all the available NNLO PDF sets, and compare them with the most precise LHC and Tevatron data. In this comparison we study in detail the PDF uncertainty and the scale, m t and α s dependence of the theoretical predictions for each PDF set. Next, we observe that top quark pair production provides a powerful direct constraint on the gluon PDF at large x, and include Tevatron and LHC top pair data consistently into a global NNLO PDF fit. We then explore the phenomenological consequences of the reduced gluon PDF uncertainties, by showing how they can improve predictions for Beyond the Standard Model processes at the LHC. Finally, we update to full NNLO+NNLL the theoretical predictions for the ratio of top quark cross sections between different LHC center of mass energies, as well as the cross sections for hypothetical heavy fourth-generation quark production at the LHC.

  3. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  4. Mechanisms of change underlying the efficacy of cognitive behaviour therapy for chronic fatigue syndrome in a specialist clinic: a mediation analysis.

    PubMed

    Stahl, D; Rimes, K A; Chalder, T

    2014-04-01

    Several randomized controlled trials (RCTs) have shown that cognitive behavioural psychotherapy (CBT) is an efficacious treatment for chronic fatigue syndrome (CFS). However, little is known about the mechanisms by which the treatment has its effect. The aim of this study was to investigate potential mechanisms of change underlying the efficacy of CBT for CFS. We applied path analysis and introduce novel model comparison approaches to assess a theoretical CBT model that suggests that fearful cognitions will mediate the relationship between avoidance behaviour and illness outcomes (fatigue and social adjustment). Data from 389 patients with CFS who received CBT in a specialist service in the UK were collected at baseline, at discharge from treatment, and at 3-, 6- and 12-month follow-ups. Path analyses were used to assess possible mediating effects. Model selection using information criteria was used to compare support for competing mediational models. Path analyses were consistent with the hypothesized model in which fear avoidance beliefs at the 3-month follow-up partially mediate the relationship between avoidance behaviour at discharge and fatigue and social adjustment respectively at 6 months. The results strengthen the validity of a theoretical model of CBT by confirming the role of cognitive and behavioural factors in CFS.

  5. An examination of the effect of dipole tilt angle and cusp regions on the shape of the dayside magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrinec, S.M.; Russell, C.T.

    1995-06-01

    The shape of the dayside magnetopause has been studied from both a theoretical and an empirical perspective for several decades. Early theoretical studies of the magnetopause shape assumed an inviscid interaction and normal pressure balance along the entire boundary, with the interior magnetic field and magnetopause currents being solved self-consistently and iteratively, using the Biot-Savart Law. The derived shapes are complicated, due to asymmetries caused by the nature of the dipole field and the direction of flow of the solar wind. These models contain a weak field region or cusp through which the solar wind has direct access to themore » ionosphere. More recent MHD model results have indicated that the closed magnetic field lines of the dayside magnetosphere can be dragged tailward of the terminator plane, so that there is no direct access of the magnetosheath to the ionosphere. Most empirical studies have assumed that the magnetopause can be approximated by a simple conic section with a specified number of coefficients, which are determined by least squares fits to spacecraft crossing positions. Thus most empirical models resemble more the MHD models than the more complex shape of the Biot-Savart models. In this work, the authors examine empirically the effect of the cusp regions on the shape of the dayside magnetopause, and they test the accuracy of these models. They find that during periods of northward IMF, crossings of the magnetopause that are close to one of the cusp regions are observed at distances closer to Earth than crossings in the equatorial plane. This result is consistent with the results of the inviscid Biot-Savart models and suggests that the magnetopause is less viscous than is assumed in many MHD models. 28 refs., 4 figs., 1 tab.« less

  6. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  7. GENESIS: new self-consistent models of exoplanetary spectra

    NASA Astrophysics Data System (ADS)

    Gandhi, Siddharth; Madhusudhan, Nikku

    2017-12-01

    We are entering the era of high-precision and high-resolution spectroscopy of exoplanets. Such observations herald the need for robust self-consistent spectral models of exoplanetary atmospheres to investigate intricate atmospheric processes and to make observable predictions. Spectral models of plane-parallel exoplanetary atmospheres exist, mostly adapted from other astrophysical applications, with different levels of sophistication and accuracy. There is a growing need for a new generation of models custom-built for exoplanets and incorporating state-of-the-art numerical methods and opacities. The present work is a step in this direction. Here we introduce GENESIS, a plane-parallel, self-consistent, line-by-line exoplanetary atmospheric modelling code that includes (a) formal solution of radiative transfer using the Feautrier method, (b) radiative-convective equilibrium with temperature correction based on the Rybicki linearization scheme, (c) latest absorption cross-sections, and (d) internal flux and external irradiation, under the assumptions of hydrostatic equilibrium, local thermodynamic equilibrium and thermochemical equilibrium. We demonstrate the code here with cloud-free models of giant exoplanetary atmospheres over a range of equilibrium temperatures, metallicities, C/O ratios and spanning non-irradiated and irradiated planets, with and without thermal inversions. We provide the community with theoretical emergent spectra and pressure-temperature profiles over this range, along with those for several known hot Jupiters. The code can generate self-consistent spectra at high resolution and has the potential to be integrated into general circulation and non-equilibrium chemistry models as it is optimized for efficiency and convergence. GENESIS paves the way for high-fidelity remote sensing of exoplanetary atmospheres at high resolution with current and upcoming observations.

  8. Experimental study of the robust global synchronization of Brockett oscillators

    NASA Astrophysics Data System (ADS)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2017-12-01

    This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

  9. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  10. The temperature dependent amide I band of crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  11. Search for chargino-neutralino production in pp collisions at sq rt[s] = 1.96 TeV.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-09

    We present a search for associated production of the chargino and neutralino supersymmetric particles using up to 1.1 fb{-1} of integrated luminosity collected by the CDF II experiment at the Tevatron pp collider at sq rt[s]=1.96 TeV. We analyze events with a large transverse momentum imbalance and either three charged leptons or two charged leptons of the same electric charge. The numbers of observed events are consistent with standard model expectations. Upper limits on the production cross section are derived in different theoretical models.

  12. A low-energy compatible SU(4)-type model for vector leptoquarks of mass ≤ 1 TeV

    NASA Astrophysics Data System (ADS)

    Blumhofer, A.; Lampe, B.

    1999-02-01

    The Standard Model is extended by a SU(2)_L singlet of vector leptoquarks. An additional SU(4) gauge symmetry between right-handed up quarks and right-handed leptons is introduced to render the model renormalizable. The arrangement is made in such a way that no conflict with low energy restrictions is encountered. The SU(2)_L singlet mediates interactions between the right-handed leptons and up type quarks for which only moderate low energy restrictions M_{LQ}/g_{LQ} > few hundred GeV exist. However, it is not a candidate to explain the anomalous HERA data at large Q^2 because theoretical reasons imply that g_{LQ} ≥ g_s which would give a much stronger anomalous HERA effect. We furthermore argue that the inequality g_{LQ} ≥ g_s is a general feature of consistent vector leptoquark models. Although our model is not relevant for HERA, it is interesting per se as a description of leptoquarks of mass ≤ 1 TeV consistent with all low-energy requirements.

  13. A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics

    NASA Astrophysics Data System (ADS)

    Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.

    2005-08-01

    We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.

  14. A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Li, Hui-Shu; Zhang, Bo-Kai; Li, Jian; Tian, Wen-De

    2016-02-01

    Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it’s challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being “ensemble-averaged” continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.

  15. Unfolding of Proteins: Thermal and Mechanical Unfolding

    NASA Technical Reports Server (NTRS)

    Hur, Joe S.; Darve, Eric

    2004-01-01

    We have employed a Hamiltonian model based on a self-consistent Gaussian appoximation to examine the unfolding process of proteins in external - both mechanical and thermal - force elds. The motivation was to investigate the unfolding pathways of proteins by including only the essence of the important interactions of the native-state topology. Furthermore, if such a model can indeed correctly predict the physics of protein unfolding, it can complement more computationally expensive simulations and theoretical work. The self-consistent Gaussian approximation by Micheletti et al. has been incorporated in our model to make the model mathematically tractable by signi cantly reducing the computational cost. All thermodynamic properties and pair contact probabilities are calculated by simply evaluating the values of a series of Incomplete Gamma functions in an iterative manner. We have compared our results to previous molecular dynamics simulation and experimental data for the mechanical unfolding of the giant muscle protein Titin (1TIT). Our model, especially in light of its simplicity and excellent agreement with experiment and simulation, demonstrates the basic physical elements necessary to capture the mechanism of protein unfolding in an external force field.

  16. The Prolate Dark Matter Halo of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  17. Near-magnetopause magnetosheath in 3D gasdynamic module of the numerical magnetosheath-magnetosphere model

    NASA Astrophysics Data System (ADS)

    Dobreva, P. S.; Kartalev, M. D.; Borodkova, N. L.; Zastenker, G. N.

    2016-07-01

    This paper describes an approach to a theoretical interpretation of Interball-1 satellite measurements data in two cases of the satellite's crossings of the magnetosheath. An interpretation is made of both the measured crossings of the magnetosheath boundaries and the behavior of the registered plasma parameters. In our case, it is the value of the ion flux along the spacecraft trajectory. The magnetosheath-magnetosphere model, developed at the Institute of Mechanics, Sofia, Bulgaria, is used as a theoretical basis. It describes the interaction between the solar wind and the Earth's magnetosphere in a simplified gas-dynamic approximation. A characteristic feature of the model is that it allows for the self-consistent description of the magnetosheath boundaries - the bow shock (BS) and the magnetopause (MP). The three-dimensional picture of the magnetosheath fluid flow is also obtained as part of the solution. The magnetosheath characteristics thus obtained are in correspondence with a given momentary state of the interplanetary medium, defined on the basis of WIND satellite data (appropriately shifted by time). The results are discussed in the context of advantages and limitations of using the gas-dynamic model for the interpretation of magnetosheath plasma measurements in the near-magnetopause magnetosheath.

  18. Towards a comprehensive theory of nurse/patient empowerment: applying Kanter's empowerment theory to patient care.

    PubMed

    Spence Laschinger, Heather K; Gilbert, Stephanie; Smith, Lesley M; Leslie, Kate

    2010-01-01

    The purpose of this theoretical paper is to propose an integrated model of nurse/patient empowerment that could be used as a guide for creating high-quality nursing practice work environments that ensure positive outcomes for both nurses and their patients. There are few integrated theoretical approaches to nurse and patient empowerment in the literature, although nurse empowerment is assumed to positively affect patient outcomes. The constructs described in Kanter's (1993) work empowerment theory are conceptually consistent with the nursing care process and can be logically extended to nurses' interactions with their patients and the outcomes of nursing care. We propose a model of nurse/patient empowerment derived from Kanter's theory that suggests that empowering working conditions increase feelings of psychological empowerment in nurses, resulting in greater use of patient empowerment strategies by nurses, and, ultimately, greater patient empowerment and better health outcomes. Empirical testing of the model is recommended prior to use of the model in clinical practice. We argue that empowered nurses are more likely to empower their patients, which results in better patient and system outcomes. Strategies for managers to empower nurses and for nurses to empower patients are suggested.

  19. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  20. The prolate dark matter halo of the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less

  1. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  2. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    PubMed

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  3. Evolution of learning strategies in temporally and spatially variable environments: A review of theory

    PubMed Central

    Aoki, Kenichi; Feldman, Marcus W.

    2013-01-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681

  4. Evolution of learning strategies in temporally and spatially variable environments: a review of theory.

    PubMed

    Aoki, Kenichi; Feldman, Marcus W

    2014-02-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models.

    PubMed

    Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J

    2007-03-01

    Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed.

  6. Allometric Convergence in Savanna Trees and Implications for the Use of Plant Scaling Models in Variable Ecosystems

    PubMed Central

    Tredennick, Andrew T.; Bentley, Lisa Patrick; Hanan, Niall P.

    2013-01-01

    Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST. PMID:23484003

  7. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Cook, Joanne L; Stott, Ian P; Pelan, Eddie G

    2018-06-01

    Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, C i E j . Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. A Theoretical Math Model for Projecting AIS3+ Thoracic Injury for Belted Occupants in Frontal Impact.

    PubMed

    Laituri, Tony R; Sullivan, Donald; Sullivan, Kaye; Prasad, Priya

    2004-11-01

    A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+ thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001. This served as data for model validation. Third, the projection model was correlated favorably with the 2001 field estimate. Finally, for the scenario that 2004-2030 model-year systems would perform like 2000-2003 model-year systems, a projection was made to estimate the long-term effect of eliminating designs that would not comply with the proposed CMVSS 208. The 2006-2030-projection result for this scenario: 764 occupants would benefit from the proposed regulation. This projection was considered to be conservative because future innovation was not considered, and, to date, the fleet's average chest deflections have been decreasing. The model also predicted that, through 2016, the effect of improving system performance would be more influential than the population-aging effect; thereafter, the population-aging effect would somewhat counteract the effect of improving system performance. This theoretical math model can provide insights for both designers and rule makers.

  9. An examination of processes linking perceived neighborhood disorder and obesity.

    PubMed

    Burdette, Amy M; Hill, Terrence D

    2008-07-01

    In this paper, we use data collected from a statewide probability sample of Texas, USA adults to test whether perceptions of neighborhood disorder are associated with increased risk of obesity. Building on prior research, we also test whether the association between neighborhood disorder and obesity is mediated by psychological, physiological, and behavioral mechanisms. We propose and test a theoretical model which suggests that psychological distress is a lynchpin mechanism that links neighborhood disorder with obesity risk through chronic activation of the physiological stress response, poor self-rated overall diet quality, and irregular exercise. The results of our analyses are generally consistent with this theoretical model. We find that neighborhood disorder is associated with increased risk of obesity, and this association is entirely mediated by psychological distress. We also observe that the positive association between psychological distress and obesity is fully mediated by physiological distress and poor self-rated overall diet quality and only partially mediated by irregular exercise.

  10. The theoretical model of the school-based prevention programme Unplugged.

    PubMed

    Vadrucci, Serena; Vigna-Taglianti, Federica D; van der Kreeft, Peer; Vassara, Maro; Scatigna, Maria; Faggiano, Fabrizio; Burkhart, Gregor

    2016-12-01

    Unplugged is a school-based prevention programme designed and tested in the EU-Dap trial. The programme consists of 12 units delivered by class teachers to adolescents 12-14 years old. It is a strongly interactive programme including a training of personal and social skills with a specific focus on normative beliefs. The aim of this work is to define the theoretical model of the program, the contribution of the theories to the units, and the targeted mediators. The programme integrates several theories: Social Learning, Social Norms, Health Belief, theory of Reasoned Action-Attitude, and Problem Behaviour theory. Every theory contributes to the development of the units' contents, with specific weights. Knowledge, risk perception, attitudes towards drugs, normative beliefs, critical and creative thinking, relationship skills, communication skills, assertiveness, refusal skills, ability to manage emotions and to cope with stress, empathy, problem solving and decision making skills are the targeted mediators of the program. © The Author(s) 2015.

  11. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Cox, Rachel E.; Mulligan, Jaysen; Ahmed, Kareem; Wilson, Jennifer G.; Calle, Luz M.

    2017-01-01

    The purpose of this work is to develop a version of Paschen's Law that takes into account the flow of ambient gas past electrode surfaces. Paschen's Law does not consider the flow of gas past an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement while traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance between electrode surfaces is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised theoretical model must be a function of the mean velocity, v (sub xm), of the ambient gas and reduce to Paschen's law when the gas mean velocity, v (sub xm) equals 0. A new theoretical formulation of Paschen's Law, taking into account the Mach number and dynamic pressure, derived by the authors, will be discussed. This equation was evaluated by wind tunnel experimentation whose results were consistent with the model hypothesis.

  12. Density functional theory and phytochemical study of Pistagremic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Habib; Rauf, Abdur; Ullah, Zakir; Fazl-i-Sattar; Anwar, Muhammad; Shah, Anwar-ul-Haq Ali; Uddin, Ghias; Ayub, Khurshid

    2014-01-01

    We report here for the first time a comparative theoretical and experimental study of Pistagremic acid (P.A). We have developed a theoretical model for obtaining the electronic and spectroscopic properties of P.A. The simulated data showed nice correlation with the experimental data. The geometric and electronic properties were simulated at B3LYP/6-31 G (d, p) level of density functional theory (DFT). The optimized geometric parameters of P.A were found consistent with those from X-ray crystal structure. Differences of about 0.01 and 0.15 Å in bond length and 0.19-1.30° degree in the angles, respectively; were observed between the experimental and theoretical data. The theoretical vibrational bands of P.A were found to correlate with the experimental IR spectrum after a common scaling factor of 0.963. The experimental and predicted UV-Vis spectra (at B3LYP/6-31+G (d, p)) have 36 nm differences. This difference from experimental results is because of the condensed phase nature of P.A. Electronic properties such as Ionization Potential (I.P), Electron Affinities (E.A), co-efficient of highest occupied molecular orbital (HOMO), co-efficient of lowest unoccupied molecular orbital (LUMO) of P.A were estimated for the first time however, no correlation can be made with experiment. Inter-molecular interaction and its effect on vibrational (IR), electronic and geometric parameters were simulated by using Formic acid as model for hydrogen bonding in P.A.

  13. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  14. Robust model predictive control for constrained continuous-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  15. Task inhibition, conflict, and the n-2 repetition cost: A combined computational and empirical approach.

    PubMed

    Sexton, Nicholas J; Cooper, Richard P

    2017-05-01

    Task inhibition (also known as backward inhibition) is an hypothesised form of cognitive inhibition evident in multi-task situations, with the role of facilitating switching between multiple, competing tasks. This article presents a novel cognitive computational model of a backward inhibition mechanism. By combining aspects of previous cognitive models in task switching and conflict monitoring, the model instantiates the theoretical proposal that backward inhibition is the direct result of conflict between multiple task representations. In a first simulation, we demonstrate that the model produces two effects widely observed in the empirical literature, specifically, reaction time costs for both (n-1) task switches and n-2 task repeats. Through a systematic search of parameter space, we demonstrate that these effects are a general property of the model's theoretical content, and not specific parameter settings. We further demonstrate that the model captures previously reported empirical effects of inter-trial interval on n-2 switch costs. A final simulation extends the paradigm of switching between tasks of asymmetric difficulty to three tasks, and generates novel predictions for n-2 repetition costs. Specifically, the model predicts that n-2 repetition costs associated with hard-easy-hard alternations are greater than for easy-hard-easy alternations. Finally, we report two behavioural experiments testing this hypothesis, with results consistent with the model predictions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Research on homeopathy: state of the art.

    PubMed

    Walach, Harald; Jonas, Wayne B; Ives, John; van Wijk, Roel; Weingärtner, Otto

    2005-10-01

    In this paper, we review research on homeopathy from four perspectives, focusing on reviews and some landmark studies. These perspectives are laboratory studies, clinical trials, observational studies, and theoretical work. In laboratory models, numerous effects and anomalies have been reported. However, no single model has been sufficiently widely replicated. Instead, researchers have focused on ever-new models and experiments, leaving the picture of scattered anomalies without coherence. Basic research, trying to elucidate a purported difference between homeopathic remedies and control solutions has also produced some encouraging results, but again, series of independent replications are missing. While there are nearly 200 reports on clinical trials, few series have been conducted for single conditions. Some of these series document clinically useful effects and differences against placebo and some series do not. Observational research into uncontrolled homeopathic practice documents consistently strong therapeutic effects and sustained satisfaction in patients. We suggest that this scattered picture has to do with the fourth line of research: lack of a good theory. Some of the extant theoretical models are reviewed, including placebo, water structure, silica contamination, energy models, and entanglement models. It emerges that local models, suggesting some change in structure in the solvent, are far from convincing. The nonlocal models proposed would predict that it is impossible to nail down homeopathic effects with direct experimental testing and this places homeopathy in a scientific dilemma. We close with some suggestions for potentially fruitful research.

  17. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    NASA Astrophysics Data System (ADS)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  18. Study of crash energy absorption characteristics of inversion tube on passenger vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Jiandong; Liu, Tao; Yao, Shengjie; Zhao, Rutao

    2017-09-01

    This article studied the energy absorption characteristics of the inversion tube and acquired the inversion tube design key dimensions under theoretical conditions by performing formula derivation in the quasi-static and dynamic state based on the working principle of the inversion tube: free inversion. The article further adopted HyperMesh and LS-Dyna to perform simulation and compared the simulation result with the theoretical calculating value for comparison. The design was applied in the full-vehicle model to perform 50km/h front fullwidth crash simulation. The findings showed that the deformation mode of the inversion tube in the full-vehicle crash was consistent with the design mode, and the inversion tube absorbed 33.0% of total energy, thereby conforming to the vehicle safety design requirements.

  19. Angle-of-Arrival Assisted GNSS Collaborative Positioning.

    PubMed

    Huang, Bin; Yao, Zheng; Cui, Xiaowei; Lu, Mingquan

    2016-06-20

    For outdoor and global navigation satellite system (GNSS) challenged scenarios, collaborative positioning algorithms are proposed to fuse information from GNSS satellites and terrestrial wireless systems. This paper derives the Cramer-Rao lower bound (CRLB) and algorithms for the angle-of-arrival (AOA)-assisted GNSS collaborative positioning. Based on the CRLB model and collaborative positioning algorithms, theoretical analysis are performed to specify the effects of various factors on the accuracy of collaborative positioning, including the number of users, their distribution and AOA measurements accuracy. Besides, the influences of the relative location of the collaborative users are also discussed in order to choose appropriate neighboring users, which is in favor of reducing computational complexity. Simulations and actual experiment are carried out with several GNSS receivers in different scenarios, and the results are consistent with theoretical analysis.

  20. Anomalous hydrodynamics kicks neutron stars

    DOE PAGES

    Kaminski, Matthias; Uhlemann, Christoph F.; Bleicher, Marcus; ...

    2016-06-28

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. Here, the resulting chiral transportmore » effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.« less

  1. Metallic Properties of the Si(111) - 5 × 2 - Au Surface from Infrared Plasmon Polaritons and Ab Initio Theory.

    PubMed

    Hötzel, Fabian; Seino, Kaori; Huck, Christian; Skibbe, Olaf; Bechstedt, Friedhelm; Pucci, Annemarie

    2015-06-10

    The metal-atom chains on the Si(111) - 5 × 2 - Au surface represent an exceedingly interesting system for the understanding of one-dimensional electrical interconnects. While other metal-atom chain structures on silicon suffer from metal-to-insulator transitions, Si(111) - 5 × 2 - Au stays metallic at least down to 20 K as we have proven by the anisotropic absorption from localized plasmon polaritons in the infrared. A quantitative analysis of the infrared plasmonic signal done here for the first time yields valuable band structure information in agreement with the theoretically derived data. The experimental and theoretical results are consistently explained in the framework of the atomic geometry, electronic structure, and IR spectra of the recent Kwon-Kang model.

  2. Bidirectional selection between two classes in complex social networks.

    PubMed

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-19

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  3. Coherence in the Visual Imagination.

    PubMed

    Vertolli, Michael O; Kelly, Matthew A; Davies, Jim

    2018-04-01

    An incoherent visualization is when aspects of different senses of a word (e.g., the biological "mouse" vs. the computer "mouse") are present in the same visualization (e.g., a visualization of a biological mouse in the same image with a computer tower). We describe and implement a new model of creating contextual coherence in the visual imagination called Coherencer, based on the SOILIE model of imagination. We show that Coherencer is able to generate scene descriptions that are more coherent than SOILIE's original approach as well as a parallel connectionist algorithm that is considered competitive in the literature on general coherence. We also show that co-occurrence probabilities are a better association representation than holographic vectors and that better models of coherence improve the resulting output independent of the association type that is used. Theoretically, we show that Coherencer is consistent with other models of cognitive generation. In particular, Coherencer is a similar, but more cognitively plausible model than the C 3 model of concept combination created by Costello and Keane (2000). We show that Coherencer is also consistent with both the modal schematic indices of perceptual symbol systems theory (Barsalou, 1999) and the amodal contextual constraints of Thagard's (2002) theory of coherence. Finally, we describe how Coherencer is consistent with contemporary research on the hippocampus, and we show evidence that the process of making a visualization coherent is serial. Copyright © 2017 Cognitive Science Society, Inc.

  4. The dryout region in frictionally heated sliding contacts

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, J.; Arp, V.; Giarratano, P. J.

    1982-01-01

    Some conditions under which boiling and two-phase flow can occur in or near a wet sliding contact are determined and illustrated. The experimental apparatus consisted of a tool pressed against an instrumented slider plate and motion picture sequences at 4000 frames/sec. The temperature and photographic data demonstrated surface conditions of boiling, drying, trapped gas evolution (solutions), and volatility of fluid mixture components. The theoretical modeling and analysis are in reasonable agreement with experimental data.

  5. Numerical investigation of porous materials composites reinforced with natural fibers

    NASA Astrophysics Data System (ADS)

    Chikhi, M.; Metidji, N.; Mokhtari, F.; Merzouk, N. k.

    2018-05-01

    The present article tends to predict the effective thermal properties of porous biocomposites materials. The composites matrix consists on porous materials namely gypsum and the reinforcement is a natural fiber as date palm fibers. The numerical study is done using Comsol software resolving the heat transfer equation. The results are fitted with theoretical model and experimental results. The results of this study indicate that the porosity has an effect on the Effective thermal conductivity biocompoites.

  6. Efficient optical injection locking of electronic oscillators

    NASA Astrophysics Data System (ADS)

    Cochran, S. R.; Wang, S. Y.

    1989-05-01

    The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.

  7. Development of absorber coupled TES polarimeter at millimeter wavelengths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.; Yefremenko, V.; Novosad, V.

    2009-06-01

    We report an absorber coupled TES bolometric polarimeter, consisting of an absorptive metal grid and a Mo/Au bi-layer TES on a suspended silicon nitride membrane disk. The electromagnetic design of the polarization sensitive absorbers, the heat transport modeling of the detector, the thermal response of the TES, and the micro-fabrication processes are presented. We also report the results of laboratory tests of a single pixel prototype detector, and compare with theoretical expectations.

  8. Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure

    DTIC Science & Technology

    2014-07-14

    second uses the linear-response theory more familiar to people working in the �eld of condensed-matter physics. We have introduced a quasiparticle ...picture and found that in this picture the bare EIT model in Fig. 2 (a) can be compared to a double EIT system shown in Fig. 2 (b). The quasiparticle ...energy levels consists of a particle (with positive quasiparticle energy ) and a hole (with negative quasiparticle energy) branch. The double EIT

  9. Two-state theory of binned photon statistics for a large class of waiting time distributions and its application to quantum dot blinking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkán-Kacsó, Sándor

    2014-06-14

    A theoretical method is proposed for the calculation of the photon counting probability distribution during a bin time. Two-state fluorescence and steady excitation are assumed. A key feature is a kinetic scheme that allows for an extensive class of stochastic waiting time distribution functions, including power laws, expanded as a sum of weighted decaying exponentials. The solution is analytic in certain conditions, and an exact and simple expression is found for the integral contribution of “bright” and “dark” states. As an application for power law kinetics, theoretical results are compared with experimental intensity histograms from a number of blinking CdSe/ZnSmore » quantum dots. The histograms are consistent with distributions of intensity states around a “bright” and a “dark” maximum. A gap of states is also revealed in the more-or-less flat inter-peak region. The slope and to some extent the flatness of the inter-peak feature are found to be sensitive to the power-law exponents. Possible models consistent with these findings are discussed, such as the combination of multiple charging and fluctuating non-radiative channels or the multiple recombination center model. A fitting of the latter to experiment provides constraints on the interaction parameter between the recombination centers. Further extensions and applications of the photon counting theory are also discussed.« less

  10. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  11. From the limits of the classical model of sensitometric curves to a realistic model based on the percolation theory for GafChromic EBT films.

    PubMed

    del Moral, F; Vázquez, J A; Ferrero, J J; Willisch, P; Ramírez, R D; Teijeiro, A; López Medina, A; Andrade, B; Vázquez, J; Salvador, F; Medal, D; Salgado, M; Muñoz, V

    2009-09-01

    Modern radiotherapy uses complex treatments that necessitate more complex quality assurance procedures. As a continuous medium, GafChromic EBT films offer suitable features for such verification. However, its sensitometric curve is not fully understood in terms of classical theoretical models. In fact, measured optical densities and those predicted by the classical models differ significantly. This difference increases systematically with wider dose ranges. Thus, achieving the accuracy required for intensity-modulated radiotherapy (IMRT) by classical methods is not possible, plecluding their use. As a result, experimental parametrizations, such as polynomial fits, are replacing phenomenological expressions in modern investigations. This article focuses on identifying new theoretical ways to describe sensitometric curves and on evaluating the quality of fit for experimental data based on four proposed models. A whole mathematical formalism starting with a geometrical version of the classical theory is used to develop new expressions for the sensitometric curves. General results from the percolation theory are also used. A flat-bed-scanner-based method was chosen for the film analysis. Different tests were performed, such as consistency of the numeric results for the proposed model and double examination using data from independent researchers. Results show that the percolation-theory-based model provides the best theoretical explanation for the sensitometric behavior of GafChromic films. The different sizes of active centers or monomer crystals of the film are the basis of this model, allowing acquisition of information about the internal structure of the films. Values for the mean size of the active centers were obtained in accordance with technical specifications. In this model, the dynamics of the interaction between the active centers of GafChromic film and radiation is also characterized by means of its interaction cross-section value. The percolation model fulfills the accuracy requirements for quality-control procedures when large ranges of doses are used and offers a physical explanation for the film response.

  12. Modelling the factor structure of the Child Depression Inventory in a population of apparently healthy adolescents in Nigeria.

    PubMed

    Olorunju, Samson Bamidele; Akpa, Onoja Matthew; Afolabi, Rotimi Felix

    2018-01-01

    Childhood and adolescent depression is common and often persists into adulthood with negative implications for school performances, peer relationship and behavioural functioning. The Child Depression Inventory (CDI) has been used to assess depression among adolescents in many countries including Nigeria but it is uncertain if the theoretical structure of CDI appropriately fits the experiences of adolescents in Nigeria. This study assessed varying theoretical modelling structure of the CDI in a population of apparently healthy adolescents in Benue state, Nigeria. Data was extracted on CDI scale and demographic information from a total of 1, 963 adolescents (aged 10-19 years), who participated in a state wide study assessing adolescent psychosocial functioning. In addition to descriptive statistics and reliability tests, Exploratory Factor Analysis (EFA) and Confirmatory Factor analysis (CFA) were used to model the underlying factor structure and its adequacy. The suggested new model was compared with existing CDI models as well as the CDI's original theoretical model. A model is considered better, if it has minimum Root Mean Square Error of Approximation (RMSEA<0.05), Minimum value of Discrepancy (CMIN/DF<3.0) and Akaike information criteria. All analyses were performed at 95% confidence level, using the version 21 of AMOS and the R software. Participants were 14.7±2.1 years and mostly male (54.3%), from Monogamous homes (67.9%) and lived in urban areas (52.2%). The measure of the overall internal consistency of the 2-factor CDI was α = 0.84. The 2-factor model had the minimum RMSEA (0.044), CMIN/DF (2.87) and least AIC (1037.996) compared to the other five CDI models. The child depression inventory has a 2-factor structure in a non-clinical general population of adolescents in Nigeria. Future use of the CDI in related setting may consider the 2-factor model.

  13. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T.

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less

  14. Assessing the reliability and validity of anti-tobacco attitudes/beliefs in the context of a campaign strategy.

    PubMed

    Arheart, Kristopher L; Sly, David F; Trapido, Edward J; Rodriguez, Richard D; Ellestad, Amy J

    2004-11-01

    To identify multi-item attitude/belief scales associated with the theoretical foundations of an anti-tobacco counter-marketing campaign and assess their reliability and validity. The data analyzed are from two state-wide, random, cross-sectional telephone surveys [n(S1)=1,079, n(S2)=1,150]. Items forming attitude/belief scales are identified using factor analysis. Reliability is assessed with Chronbach's alpha. Relationships among scales are explored using Pearson correlation. Validity is assessed by testing associations derived from the Centers for Disease Control and Prevention's (CDC) logic model for tobacco control program development and evaluation linking media exposure to attitudes/beliefs, and attitudes/beliefs to smoking-related behaviors. Adjusted odds ratios are employed for these analyses. Three factors emerged: traditional attitudes/beliefs about tobacco and tobacco use, tobacco industry manipulation and anti-tobacco empowerment. Reliability coefficients are in the range of 0.70 and vary little between age groups. The factors are correlated with one-another as hypothesized. Associations between media exposure and the attitude/belief scales and between these scales and behaviors are consistent with the CDC logic model. Using reliable, valid multi-item scales is theoretically and methodologically more sound than employing single-item measures of attitudes/beliefs. Methodological, theoretical and practical implications are discussed.

  15. Experimental and Theoretical Investigations of Phonation Threshold Pressure as a Function of Vocal Fold Elongation

    PubMed Central

    Tao, Chao; Regner, Michael F.; Zhang, Yu; Jiang, Jack J.

    2014-01-01

    Summary The relationship between the vocal fold elongation and the phonation threshold pressure (PTP) was experimentally and theoretically investigated. The PTP values of seventeen excised canine larynges with 0% to 15% bilateral vocal fold elongations in 5% elongation steps were measured using an excised larynx phonation system. It was found that twelve larynges exhibited a monotonic relationship between PTP and elongation; in these larynges, the 0% elongation condition had the lowest PTP. Five larynges exhibited a PTP minimum at 5% elongation. To provide a theoretical explanation of these phenomena, a two-mass model was modified to simulate vibration of the elongated vocal folds. Two pairs of longitudinal springs were used to represent the longitudinal elastin in the vocal folds. This model showed that when the vocal folds were elongated, the increased longitudinal tension would increase the PTP value and the increased vocal fold length would decrease the PTP value. The antagonistic effects contributed by these two factors were found to be able to cause either a monotonic or a non-monotonic relationship between PTP and elongation, which were consistent with experimental observations. Because PTP describes the ease of phonation, this study suggests that there may exist a nonzero optimal vocal fold elongation for the greatest ease for phonation in some larynges. PMID:25530744

  16. An Alternative to the Stay/Switch Equation Assessed When Using a Changeover-Delay

    PubMed Central

    MacDonall, James S.

    2015-01-01

    An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. PMID:26299548

  17. An alternative to the stay/switch equation assessed when using a changeover-delay.

    PubMed

    MacDonall, James S

    2015-11-01

    An alternative to the generalized matching equation for understanding concurrent performances is the stay/switch model. For the stay/switch model, the important events are the contingencies and behaviors at each alternative. The current experiment compares the descriptions by two stay/switch equations, the original, empirically derived stay/switch equation and a more theoretically derived equation based on ratios of stay to switch responses matching ratios of stay to switch reinforcers. The present experiment compared descriptions by the original stay/switch equation when using and not using a changeover delay. It also compared descriptions by the more theoretical equation with and without a changeover delay. Finally, it compared descriptions of the concurrent performances by these two equations. Rats were trained in 15 conditions on identical concurrent random-interval schedules in each component of a multiple schedule. A COD operated in only one component. There were no consistent differences in the variance accounted for by each equation of concurrent performances whether or not a COD was used. The simpler equation found greater sensitivity to stay than to switch reinforcers. It also found a COD eliminated the influence of switch reinforcers. Because estimates of parameters were more meaningful when using the more theoretical stay/switch equation it is preferred. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  19. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Liu, Jie

    2016-10-01

    We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.

  20. Dielectric and thermal modeling of Vesta's surface

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.

    2013-09-01

    We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.

  1. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates.

    PubMed

    Wagner, Peter J

    2012-02-23

    Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.

  2. Didactical suggestion for a Dynamic Hybrid Intelligent e-Learning Environment (DHILE) applying the PENTHA ID Model

    NASA Astrophysics Data System (ADS)

    dall'Acqua, Luisa

    2011-08-01

    The teleology of our research is to propose a solution to the request of "innovative, creative teaching", proposing a methodology to educate creative Students in a society characterized by multiple reference points and hyper dynamic knowledge, continuously subject to reviews and discussions. We apply a multi-prospective Instructional Design Model (PENTHA ID Model), defined and developed by our research group, which adopts a hybrid pedagogical approach, consisting of elements of didactical connectivism intertwined with aspects of social constructivism and enactivism. The contribution proposes an e-course structure and approach, applying the theoretical design principles of the above mentioned ID Model, describing methods, techniques, technologies and assessment criteria for the definition of lesson modes in an e-course.

  3. A fluid-mechanic-based model for the sedimentation of flocculated suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, R.P.; Prasad, D.

    1991-02-01

    Due to the wide occurrence of the suspensions of fine particles in mineral and chemical processing industries, considerable interest has been shown in modeling the hydrodynamic behavior of such systems. A fluid-mechanic-based analysis is presented for the settling behavior of flocculated4d suspensions. Flocs have been modeled as composite spheres consisting of a solid core embedded in a shell of homogeneous and isotropic porous medium. Theoretical estimates of the rates of sedimentation for flocculated suspensions are obtained by solving the equations of continuity and of motion. The interparticle interactions are incorporated into the analysis by employing the Happel free surface cellmore » model. The results reported embrace wide ranges of conditions of floc size and concentration.« less

  4. A mathematical model for CTL effect on a latently infected cell inclusive HIV dynamics and treatment

    NASA Astrophysics Data System (ADS)

    Tarfulea, N. E.

    2017-10-01

    This paper investigates theoretically and numerically the effect of immune effectors, such as the cytotoxic lymphocyte (CTL), in modeling HIV pathogenesis (via a newly developed mathematical model); our results suggest the significant impact of the immune response on the control of the virus during primary infection. Qualitative aspects (including positivity, boundedness, stability, uncertainty, and sensitivity analysis) are addressed. Additionally, by introducing drug therapy, we analyze numerically the model to assess the effect of treatment consisting of a combination of several antiretroviral drugs. Our results show that the inclusion of the CTL compartment produces a higher rebound for an individual's healthy helper T-cell compartment than drug therapy alone. Furthermore, we quantitatively characterize successful drugs or drug combination scenarios.

  5. A practitioner's guide to persuasion: an overview of 15 selected persuasion theories, models and frameworks.

    PubMed

    Cameron, Kenzie A

    2009-03-01

    To provide a brief overview of 15 selected persuasion theories and models, and to present examples of their use in health communication research. The theories are categorized as message effects models, attitude-behavior approaches, cognitive processing theories and models, consistency theories, inoculation theory, and functional approaches. As it is often the intent of a practitioner to shape, reinforce, or change a patient's behavior, familiarity with theories of persuasion may lead to the development of novel communication approaches with existing patients. This article serves as an introductory primer to theories of persuasion with applications to health communication research. Understanding key constructs and general formulations of persuasive theories may allow practitioners to employ useful theoretical frameworks when interacting with patients.

  6. The Martian dust cycle: A proposed model

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1987-01-01

    Despite more than a decade of study of martian dust storms, many of their characteristics and associated processes remain enigmatic, including the mechanisms for dust raising, modes of settling, and the nature of dust deposits. However, observations of Mars dust, considerations of terrestrial analogs, theoretical models, and laboratory simulations permit the formulation of a Martian Dust Cycle Model, which consists of three main processes: (1) suspension threshold, (2) transportation, and (3) deposition; two associated processes are also included: (4) dust removal and (5) the addition of new dust to the cycle. Although definitions vary, dust includes particles less than 4 to approx. 60 microns in diameter, which by terrestrial usage includes silt, loess, clay, and aerosolic dust particles. The dust cycle model is explained.

  7. Hypergeometric Equation in Modeling Relativistic Isotropic Sphere

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Ragel, F. C.

    2014-04-01

    We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.

  8. Forces between permanent magnets: experiments and model

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  9. Collisional radiative model of an argon atmospheric capillary surface-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2004-12-01

    The characteristics of a microwave surface-wave sustained plasma operated at atmospheric pressure in an open-ended dielectric tube are investigated theoretically as a first step in the development of a self-consistent model for these discharges. The plasma column is sustained in flowing argon. A surface-wave discharge that fills the whole radial cross section of the discharge tube is considered. With experimental electron temperature profiles [Garcia et al., Spectrochim. Acta, Part B 55, 1733 (2000)] the numerical model is used to test the validity of the different approximations and to study the influence of the different kinetic processes and power loss mechanismsmore » on the discharge.« less

  10. An electronic implementation of amoeba anticipation

    NASA Astrophysics Data System (ADS)

    Ziegler, Martin; Ochs, Karlheinz; Hansen, Mirko; Kohlstedt, Hermann

    2014-02-01

    In nature, the capability of memorizing environmental changes and recalling past events can be observed in unicellular organisms like amoebas. Pershin and Di Ventra have shown that such learning behavior can be mimicked in a simple memristive circuit model consisting of an LC (inductance capacitance) contour and a memristive device. Here, we implement this model experimentally by using an Ag/TiO2- x /Al memristive device. A theoretical analysis of the circuit is used to gain insight into the functionality of this model and to give advice for the circuit implementation. In this respect, the transfer function, resonant frequency, and damping behavior for a varying resistance of the memristive device are discussed in detail.

  11. On the computation of the turbulent flow near rough surface

    NASA Astrophysics Data System (ADS)

    Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.

    2018-05-01

    One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.

  12. Center for Extended Magnetohydrodynamics Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jesus

    This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification ofmore » the numerical codes. This activity was funded for twelve years.« less

  13. Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition

    PubMed Central

    Murugan, Rajamanickam; Kreiman, Gabriel

    2012-01-01

    Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5′ donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5′ donor splicing sites. PMID:23133354

  14. Electronic Polarizability and the Effective Pair Potentials of Water

    PubMed Central

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  15. The effect of fluid and solid properties on the auxetic behavior of porous materials having rock-like microstructures

    DOE PAGES

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-09-30

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit negative PR. The paper proposes a novel auxetic structure based on pore-space configuration observed in rocks. We developed a theoretical auxetic 3D model consisting of rotating rigid bodies. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. Wemore » then used a 3D printer to create a physical version of the modified model, whose PR was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. Here, we conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.« less

  16. The effect of fluid and solid properties on the auxetic behavior of porous materials having rock-like microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit negative PR. The paper proposes a novel auxetic structure based on pore-space configuration observed in rocks. We developed a theoretical auxetic 3D model consisting of rotating rigid bodies. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. Wemore » then used a 3D printer to create a physical version of the modified model, whose PR was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. Here, we conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.« less

  17. Analysis of nutrition judgments using the Nutrition Facts Panel.

    PubMed

    González-Vallejo, Claudia; Lavins, Bethany D; Carter, Kristina A

    2016-10-01

    Consumers' judgments and choices of the nutritional value of food products (cereals and snacks) were studied as a function of using information in the Nutrition Facts Panel (NFP, National Labeling and Education Act, 1990). Brunswik's lens model (Brunswik, 1955; Cooksey, 1996; Hammond, 1955; Stewart, 1988) served as the theoretical and analytical tool for examining the judgment process. Lens model analysis was further enriched with the criticality of predictors' technique developed by Azen, Budescu, & Reiser (2001). Judgment accuracy was defined as correspondence between consumers' judgments and the nutritional quality index, NuVal(®), obtained from an expert system. The study also examined several individual level variables (e.g., age, gender, BMI, educational level, health status, health beliefs, etc.) as predictors of lens model indices that measure judgment consistency, judgment accuracy, and knowledge of the environment. Results showed varying levels of consistency and accuracy depending on the food product, but generally the median values of the lens model statistics were moderate. Judgment consistency was higher for more educated individuals; judgment accuracy was predicted from a combination of person level characteristics, and individuals who reported having regular meals had models that were in greater agreement with the expert's model. Lens model methodology is a useful tool for understanding how individuals perceive the nutrition in foods based on the NFP label. Lens model judgment indices were generally low, highlighting that the benefits of the complex NFP label may be more modest than what has been previously assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Theoretical model of the ionic mechanism of 1/f noise in nerve membrane.

    PubMed Central

    Clay, J R; Shlesinger, M F

    1976-01-01

    A model is presented for the ionic mechanism of low frequency 1/f electrical noise which has been observed in axonal membranes. The model consists of narrow channels which open randomly throughout the membrane and remain open for only a short time compared with f-1max where fmax approximately 2 kHz is the maximum frequency for which 1/f noise is observed. The fluctuation in channel formation is coupled to low frequency normal mode vibrations in liquid crystals which have properties similar to nerve membranes. Ionic current flow through the channels is assumed to occur via single file diffusion. The diffusion process is regarded as a non-Markovian random walk on a one-dimensional lattice which is mathematically decomposed into its spatial and temporal components. This technique allows calculation of the mean and variance of the number of ions which flow through any single short-lived channel. The final result for the current noise power spectrum, S, is S(f) = (A + k/I/2)/f, where I is the mean membrane current and A and k are parameters which are independent of membrane voltage. The theoretical result is consistent with observations of 1/f noise in lobster axon by Poussart (1971, Biophys. J. 11:212.) on the dependence of S(f) on the mean steady-state current and the external potassium concentration. We also calculate the mean channel density and the Frank elastic constant of the membrane. This work is an extension of a macroscopic model of Lundström and McQueen (1974, J. Theor. Biol. 45:405.) who obtain a spectral density of the form S approximately /I/2/f. PMID:1247642

  19. Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2017-04-01

    The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.

  20. Simple spatial scaling rules behind complex cities.

    PubMed

    Li, Ruiqi; Dong, Lei; Zhang, Jiang; Wang, Xinran; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2017-11-28

    Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.

Top