24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?
Code of Federal Regulations, 2010 CFR
2010-04-01
... PHA under an ACC with HUD; and (5) Any grant programs of the PHA in connection with its Section 8 or... in paragraph (a) of this section, the consortium must cover the PHA's whole program under the ACC with HUD for that category, including all dwelling units and all funding for that program under the ACC...
24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?
Code of Federal Regulations, 2011 CFR
2011-04-01
... PHA under an ACC with HUD; and (5) Any grant programs of the PHA in connection with its Section 8 or... in paragraph (a) of this section, the consortium must cover the PHA's whole program under the ACC with HUD for that category, including all dwelling units and all funding for that program under the ACC...
24 CFR 943.118 - What is a consortium?
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Consortia § 943.118 What is a consortium? A... consortium also submits a joint PHA Plan. The lead agency collects the assistance funds from HUD that would... same fiscal year so that the applicable periods for submission and review of the joint PHA Plan are the...
Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang
2014-11-01
The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.
24 CFR 943.128 - How does a consortium carry out planning and reporting functions?
Code of Federal Regulations, 2010 CFR
2010-04-01
... HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES... the consortium agreement, the consortium must submit joint five-year Plans and joint Annual Plans for... the joint PHA Plan. ...
24 CFR 943.130 - What are the responsibilities of participating PHAs?
Code of Federal Regulations, 2010 CFR
2010-04-01
... in a consortium, each participating PHA remains responsible for its own obligations under its ACC... is a breach of the ACC with each of the participating PHAs, so each PHA is responsible for the...
24 CFR 943.130 - What are the responsibilities of participating PHAs?
Code of Federal Regulations, 2011 CFR
2011-04-01
... in a consortium, each participating PHA remains responsible for its own obligations under its ACC... is a breach of the ACC with each of the participating PHAs, so each PHA is responsible for the...
Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
David N. Thompson; Erik R. Coats; William A. Smith
2006-04-01
Polyhydroxyalkanoates (PHAs) represent an environmentally-effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Employing denaturing gradient gel electrophoresis of 16S-rDNA from PCR-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.
Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources
NASA Astrophysics Data System (ADS)
Coats, Erik R.; Loge, Frank J.; Smith, William A.; Thompson, David N.; Wolcott, Michael P.
Polyhydroxyalkanoates (PHAs) represent an environmentally effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85, 53, and 10% of the cell dry weight from methanol-enriched pulp and paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Using denaturing gradient gel electrophoresis of 16S-rDNA from polymerase chain reaction-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.
24 CFR 943.126 - What is the relationship between HUD and a consortium?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false What is the relationship between... § 943.126 What is the relationship between HUD and a consortium? HUD has a direct relationship with the consortium through the PHA Plan process and through one or more payment agreements, executed in a form...
24 CFR 943.126 - What is the relationship between HUD and a consortium?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false What is the relationship between... § 943.126 What is the relationship between HUD and a consortium? HUD has a direct relationship with the consortium through the PHA Plan process and through one or more payment agreements, executed in a form...
24 CFR 943.126 - What is the relationship between HUD and a consortium?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false What is the relationship between... § 943.126 What is the relationship between HUD and a consortium? HUD has a direct relationship with the consortium through the PHA Plan process and through one or more payment agreements, executed in a form...
24 CFR 943.126 - What is the relationship between HUD and a consortium?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false What is the relationship between... § 943.126 What is the relationship between HUD and a consortium? HUD has a direct relationship with the consortium through the PHA Plan process and through one or more payment agreements, executed in a form...
24 CFR 943.126 - What is the relationship between HUD and a consortium?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false What is the relationship between... § 943.126 What is the relationship between HUD and a consortium? HUD has a direct relationship with the consortium through the PHA Plan process and through one or more payment agreements, executed in a form...
Cheng, Jiujun; Charles, Trevor C
2016-09-01
Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.
Production of microbial polyester by fermentation of recombinant microorganisms.
Lee, S Y; Choi, J I
2001-01-01
Polyhydroxyalkanoates (PHAs) can be produced from renewable sources and are biodegradable with similar material properties and processibility to conventional plastic materials. With recent advances in our understanding of the biochemistry and genetics of PHA biosynthesis and cloning of the PHA biosynthesis genes from a number of different bacteria, many different recombinant bacteria have been developed to improve PHA production for commercial applications. For enhancing PHA synthetic capacity, homologous or heterologous expression of the PHA biosynthetic enzymes has been attempted. Several genes that allow utilization of various substrates were transformed into PHA producers, or non-PHA producers utilizing inexpensive carbon substrate were transformed with the PHA biosynthesis genes. Novel PHAs have been synthesized by introducing a new PHA biosynthesis pathway or a new PHA synthase gene. In this article, recent advances in the production of PHA by recombinant bacteria are described.
24 CFR 943.122 - How is a consortium organized?
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Consortia § 943.122 How is a... participating PHAs, specifying a lead agency (see § 943.124), and submit a joint PHA Plan (§ 943.118). HUD...
Polyhydroxyalkanoate (PHA) production from waste.
Rhu, D H; Lee, W H; Kim, J Y; Choi, E
2003-01-01
PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.
Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang
2013-09-01
Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Liu, Ming-Hsu; Chen, Yi-Jr; Lee, Chia-Yin
2018-03-01
Polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms that are environmentally friendly. PHAs can be used to replace traditional plastic to reduce environmental pollution in various fields. PHA production costs are high because PHA must be produced from a carbon substrate. The purpose of this study was to find the strain that can used the BDF by-product as the sole carbon source to produce high amounts of medium-chain-length PHA. Three isolates were evaluated for potential PHA production by using biodiesel-derived crude glycerol as the sole carbon source. Among them, Pseudomonas mosselii TO7 yielded high PHA content. The PHA produced from P. mosselii TO7 were medium-chain-length-PHAs. The PHA content of 48% cell dry weight in 48 h with a maximum PHA productivity of 13.16 mg PHAs L -1 h -1 . The narrow polydispersity index value of 1.3 reflected the homogeneity of the polymer chain, which was conducive to industrial applications.
Martínez-Gutiérrez, Carolina A; Latisnere-Barragán, Hever; García-Maldonado, José Q; López-Cortés, Alejandro
2018-01-01
Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs) in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs), which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida , suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.
24 CFR 761.20 - Selection requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Selection requirements. 761.20... AND PUBLIC AND INDIAN HOUSING PROGRAMS) DRUG ELIMINATION PROGRAMS Application and Selection § 761.20 Selection requirements. (a) PHDEP selection. Every PHA, RMC and consortium that meets the requirements of...
Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki
2014-01-01
Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666
Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.
Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo
2017-10-01
With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.
Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.
2014-01-01
Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088
A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.
Prieto, Auxiliadora; Escapa, Isabel F; Martínez, Virginia; Dinjaski, Nina; Herencias, Cristina; de la Peña, Fernando; Tarazona, Natalia; Revelles, Olga
2016-02-01
Polyhydroxyalkanoate (PHA) metabolism has been traditionally considered as a futile cycle involved in carbon and energy storage. The use of cutting-edge technologies linked to systems biology has improved our understanding of the interaction between bacterial physiology, PHA metabolism and other cell functions in model bacteria such as Pseudomonas putida KT2440. PHA granules or carbonosomes are supramolecular complexes of biopolyester and proteins that are essential for granule segregation during cell division, and for the functioning of the PHA metabolic route as a continuous cycle. The simultaneous activities of PHA synthase and depolymerase ensure the carbon flow to the transient demand for metabolic intermediates to balance the storage and use of carbon and energy. PHA cycle also determines the number and size of bacterial cells. The importance of PHAs as nutrients for members of the microbial community different to those that produce them is illustrated here via examples of bacterial predators such as Bdellovibrio bacteriovorus that prey on PHA producers and produces specific extra-cellular depolymerases. PHA hydrolysis confers Bdellovibrio ecological advantages in terms of motility and predation efficiency, demonstrating the importance of PHA producers predation in population dynamics. Metabolic modulation strategies for broadening the portfolio of PHAs are summarized and their properties are compiled. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Potential for mcl-PHA production from nonanoic and azelaic acids.
Gillis, James; Ko, Kenton; Ramsay, Juliana A; Ramsay, Bruce A
2018-01-01
Greater than 65% of canola and high-oleic soy oil fatty acids is oleic acid, which is readily converted to nonanoic (NA) and azelaic (AzA) acids by ozonolysis. NA is an excellent substrate for medium-chain-length polyhydroxyalkanoate (mcl-PHA) production but AzA has few uses. Pseudomonas citronellolis DSM 50332 and Pseudomonas fluorescens ATCC 17400, both able to produce mcl-PHA from fatty acids and to grow on AzA as the sole source of carbon and energy, were assessed for the accumulation of mcl-PHA from AzA and NA. In N-limited shake flasks using NA, P. citronellolis produced 32% of its dry biomass as mcl-PHA containing 78% 3-hydroxynonanoate with 22% 3-hydroxyheptanoate. Pseudomonas fluorescens produced only 2% PHA. N-limited P. citronellolis on AzA produced 20% dry weight PHA containing 75% 3-hydroxydecanoate and 25% 3-hydroxyoctanoate, indicative of de novo synthesis. Although selective pressure, including β-oxidation inhibition, under well-controlled (chemostat) conditions was applied to P. citronellolis, no side-chain carboxyl groups were detected. It was concluded that one or more of FabG and PhaJ or the PHA synthase cannot catalyze reactions involving ω-carboxy substrates. However, a process based on oleic acid could be established if Pseudomonas putida was engineered to grow on AzA.
Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria.
Montenegro, Eduarda Morgana da Silva; Delabary, Gabriela Scholante; Silva, Marcus Adonai Castro da; Andreote, Fernando Dini; Lima, André Oliveira de Souza
2017-05-25
The use of molecular diagnostic techniques for bioprospecting and microbial diversity study purposes has gained more attention thanks to their functionality, low cost and quick results. In this context, ten degenerate primers were designed for the amplification of polyhydroxyalkanoate synthase ( phaC ) gene, which is involved in the production of polyhydroxyalkanoate (PHA)-a biodegradable, renewable biopolymer. Primers were designed based on multiple alignments of phaC gene sequences from 218 species that have their genomes already analyzed and deposited at Biocyc databank. The combination of oligos phaCF3/phaCR1 allowed the amplification of the expected product (PHA synthases families types I and IV) from reference organisms used as positive control (PHA producer). The method was also tested in a multiplex system with two combinations of initiators, using 16 colonies of marine bacteria (pre-characterized for PHA production) as a DNA template. All amplicon positive organisms ( n = 9) were also PHA producers, thus no false positives were observed. Amplified DNA was sequenced ( n = 4), allowing for the confirmation of the pha C gene identity as well its diversity among marine bacteria. Primers were also tested for screening purposes using 37 colonies from six different environments. Almost 30% of the organisms presented the target amplicon. Thus, the proposed primers are an efficient tool for screening bacteria with potential for the production of PHA as well to study PHA genetic diversity.
Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria
Montenegro, Eduarda Morgana da Silva; Delabary, Gabriela Scholante; da Silva, Marcus Adonai Castro; Andreote, Fernando Dini; Lima, André Oliveira de Souza
2017-01-01
The use of molecular diagnostic techniques for bioprospecting and microbial diversity study purposes has gained more attention thanks to their functionality, low cost and quick results. In this context, ten degenerate primers were designed for the amplification of polyhydroxyalkanoate synthase (phaC) gene, which is involved in the production of polyhydroxyalkanoate (PHA)—a biodegradable, renewable biopolymer. Primers were designed based on multiple alignments of phaC gene sequences from 218 species that have their genomes already analyzed and deposited at Biocyc databank. The combination of oligos phaCF3/phaCR1 allowed the amplification of the expected product (PHA synthases families types I and IV) from reference organisms used as positive control (PHA producer). The method was also tested in a multiplex system with two combinations of initiators, using 16 colonies of marine bacteria (pre-characterized for PHA production) as a DNA template. All amplicon positive organisms (n = 9) were also PHA producers, thus no false positives were observed. Amplified DNA was sequenced (n = 4), allowing for the confirmation of the phaC gene identity as well its diversity among marine bacteria. Primers were also tested for screening purposes using 37 colonies from six different environments. Almost 30% of the organisms presented the target amplicon. Thus, the proposed primers are an efficient tool for screening bacteria with potential for the production of PHA as well to study PHA genetic diversity. PMID:28952531
Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.
Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei
2015-08-01
This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srienc, Friedrich; Jackson, John K.; Somers, David A.
A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.
Lee, Jason W; Parlane, Natalie A; Rehm, Bernd H A; Buddle, Bryce M; Heiser, Axel
2017-03-01
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli - Mycobacterium shuttle plasmids and expressed in trans Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens. Copyright © 2017 Lee et al.
Lee, Jason W.; Parlane, Natalie A.; Rehm, Bernd H. A.; Buddle, Bryce M.
2017-01-01
ABSTRACT Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli-Mycobacterium shuttle plasmids and expressed in trans. Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. MBB, A:E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens. PMID:28087528
Choi, J I; Lee, S Y; Han, K
1998-12-01
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, beta-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.
Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji
2014-11-01
We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after cultivation in a flask, suggesting the possibility of large-scale PHA production by UMI-21 from starch. A major issue for the industrial production of microbial PHAs is the very high production cost. Starch is a relatively inexpensive substrate that is also found in abundant seaweeds such as Ulva. Therefore, the strain isolated in this study may be very useful for producing PHA from seaweeds containing polysaccharides such as starch. In addition, a 3.7-kbp DNA fragment containing the whole PHA synthase gene (phaC) was obtained from the strain UMI-21. The results of open reading frame (ORF) analysis suggested that the DNA fragment contained two ORFs, which were composed of 1740 (phaC) and 564 bp (phaR). The deduced amino acid sequence of PhaC from strain UMI-21 shared high similarity with PhaC from Ralstonia eutropha, which is a representative PHA-producing bacterium with a class I PHA synthase. This is the first report for the cloning of the PHA synthase gene from Massilia species. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ng, Lee-Mei; Sudesh, Kumar
2016-11-01
Aquitalea sp. USM4 (JCM 19919) was isolated from a freshwater sample at Lata Iskandar Waterfall in Perak, Malaysia. It is a rod-shaped, gram-negative bacterium with high sequence identity (99%) to Aquitalea magnusonii based on 16S rRNA gene analysis. Aquitalea sp. USM4 also possessed a PHA synthase gene (phaC), which had amino acid sequence identity of 77-78% to the PHA synthase of Chromobacterium violaceum ATCC12472 and Pseudogulbenkiania sp. NH8B. PHA biosynthesis results showed that wild-type Aquitalea sp. USM4 was able to accumulate up to 1.5 g/L of poly(3-hydroxybutyrate), [P(3HB)]. The heterologous expression of the PHA synthase gene of Aquitalea sp. USM4 (phaC Aq ) in Cupriavidus necator PHB - 4 had resulted in PHA accumulation up to 3.2 g/L of P(3HB). It was further confirmed by 1 H nuclear magnetic resonance (NMR) analysis that Aquitalea sp. USM4 and C. necator PHB - 4 transformant were able to produce PHA containing 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB) and 3-hydroxy-4-methylvalerate (3H4MV) monomers from suitable precursor substrates. Interestingly, relatively high PHA synthase activity of 863 U/g and 1402 U/g were determined in wild-type Aquitalea sp. USM4 and C. necator PHB - 4 transformant respectively. This is the first report on the member of genus Aquitalea as a new PHA producer as well as in vitro and in vivo characterization of a novel PHA synthase from Aquitalea sp. USM4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats.
Berlanga, Mercedes; Montero, M T; Fernández-Borrell, Jordi; Guerrero, Ricardo
2006-06-01
Microbial mat ecosystems are characterized by both seasonal and diel fluctuations in several physicochemical variables, so that resident microorganisms must frequently adapt to the changing conditions of their environment. It has been pointed out that, under stress conditions, bacterial cells with higher contents of poly-hydroxyalkanoates (PHA) survive longer than those with lower PHA content. In the present study, PHA-producing strains from Ebro Delta microbial mats were selected using the Nile red dying technique and the relative accumulation of PHA was monitored during further laboratory cultivation. The number of heterotrophic isolates in trypticase soy agar (TSA) was ca. 107 colony-forming units/g microbial mat. Of these, 100 randomly chosen colonies were replicated on mineral salt agar limited in nitrogen, and Nile red was added to the medium to detect PHA. Orange fluorescence, produced upon binding of the dye to polymer granules in the cell, was detected in approximately 10% of the replicated heterotrophic isolates. The kinetics of PHA accumulation in Pseudomonas putida, and P. oleovorans were compared with those of several of the environmental isolates spectrofluorometry. PHA accumulation, measured as relative fluorescence intensity, resulted in a steady-state concentration after 48 h of incubation in all strains assayed. At 72 h, the maximum fluorescence intensity of each strain incubated with glucose and fructose was usually similar. MAT-28 strain accumulated more PHA than the other isolates. The results show that data obtained from environmental isolates can highly improve studies based on modeling-simulation programs, and that microbial mats constitute an excellent source for the isolation of PHA-producing strains with industrial applications.
Lane, Courtney E; Benton, Michael G
2015-12-01
A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors.
Wijeyekoon, Suren; Carere, Carlo R; West, Mark; Nath, Shresta; Gapes, Daniel
2018-09-01
Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams. Copyright © 2018 Elsevier Ltd. All rights reserved.
Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami
2014-12-24
Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.
Markolf, Keith L; Jackson, Steven R; McAllister, David R
2012-02-01
Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.
New PHA products using unrelated carbon sources
Matias, Fernanda; de Andrade Rodrigues, Maria Filomena
2011-01-01
Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used. PMID:24031764
Smith, Jay W.; Steiner, Alton L.; Newberry, W. Marcus; Parker, Charles W.
1971-01-01
We have studied cyclic adenosine 3′,5′-monophosphate (cyclic AMP) concentrations in human peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA), isoproterenol, prostaglandins, and aminophylline. Purified lymphocytes were obtained by nylon fiber chromatography, and low speed centrifugation to remove platelets. Cyclic AMP levels were determined by a highly sensitive radioimmunoassay. At concentrations of 0.1-1.0 mmoles/liter isoproterenol and aminophylline produced moderate increases in cyclic AMP concentrations, whereas prostaglandins produced marked elevations. High concentrations of PHA produced 25-300% increases in cyclic AMP levels, alterations being demonstrated within 1-2 min. The early changes in cyclic AMP concentration appear to precede previously reported metabolic changes in PHA-stimulated cells. After 6 hr cyclic AMP levels in PHA-stimulated cells had usually fallen to the levels of control cells. After 24 hr the level in PHA-stimulated cells was characteristically below that of the control cells. Adenyl cyclase, the enzyme which converts ATP to cyclic AMP, was measured in lymphocyte homogenates. Adenyl cyclase activity was rapidly stimulated by fluoride, isoproterenol, prostaglandins, and PHA. Since adenyl cyclase is characteristically localized in external cell membranes, our results are consistent with an initial action of PHA at this level. PMID:4395563
Kawashima, Yui; Cheng, Wen; Mifune, Jun; Orita, Izumi; Nakamura, Satoshi
2012-01-01
A genome survey of polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha H16 detected the presence of 16 orthologs of R-specific enoyl coenzyme A (enoyl-CoA) hydratase, among which three proteins shared high homologies with the enzyme specific to enoyl-CoAs of medium chain length encoded by phaJ4 from Pseudomonas aeruginosa (phaJ4Pa). The recombinant forms of the three proteins, termed PhaJ4aRe to PhaJ4cRe, actually showed enoyl-CoA hydratase activity with R specificity, and the catalytic efficiencies were elevated as the substrate chain length increased from C4 to C8. PhaJ4aRe and PhaJ4bRe showed >10-fold-higher catalytic efficiency than PhaJ4cRe. The functions of the new PhaJ4 proteins were investigated using previously engineered R. eutropha strains as host strains; these strains are capable of synthesizing poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from soybean oil. Deletion of phaJ4aRe from the chromosome resulted in significant decrease of 3HHx composition in the accumulated copolyester, whereas no change was observed with deletion of phaJ4bRe or phaJ4cRe, indicating that only PhaJ4aRe was one of the major enzymes supplying the (R)-3HHx-CoA monomer through β-oxidation. Introduction of phaJ4aRe or phaJ4bRe into the R. eutropha strains using a broad-host-range vector enhanced the 3HHx composition of the copolyesters, but the introduction of phaJ4cRe did not. The two genes were then inserted into the pha operon on chromosome 1 of the engineered R. eutropha by homologous recombination. These modifications enabled the biosynthesis of P(3HB-co-3HHx) composed of a larger 3HHx fraction without a negative impact on cell growth and PHA production on soybean oil, especially when phaJ4aRe or phaJ4bRe was tandemly introduced with phaJAc from Aeromonas caviae. PMID:22081565
Reddy, M Venkateswar; Mohan, S Venkata
2012-01-01
The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Beckers, Veronique; Poblete-Castro, Ignacio; Tomasch, Jürgen; Wittmann, Christoph
2016-05-03
Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)(-1))] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol metabolism, transport electron chain, sensors to assess the energy level of the cell, and PHA synthesis, as well as changes in flux distribution to increase the precursor availability for PHA synthesis (Entner-Doudoroff pathway and pyruvate metabolism) and to reduce respiration (glyoxylate shunt). Under PHA-producing conditions (N-limitation), a higher PHA yield was achieved at low dilution rate (29.7 wt% of CDW) as compared to a high rate (12.8 wt% of CDW). By-product formation (succinate, malate) was specifically modulated under these regimes. On top of experimental data, elementary flux mode analysis revealed the metabolic potential of P. putida KT2440 to synthesize PHA and identified metabolic engineering targets towards improved production performance on glycerol. This study revealed the complex interplay of gene expression levels and metabolic fluxes under PHA- and non-PHA producing conditions using the attractive raw material glycerol as carbon substrate. This knowledge will form the basis for the development of future metabolically engineered hyper-PHA-producing strains derived from the versatile bacterium P. putida KT2440.
Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus
NASA Astrophysics Data System (ADS)
Divyashree, M. S.; Shamala, T. R.
2009-02-01
Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5-40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5×10 5 to 1.9×10 5 after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7×10 5 to 2.3×10 5 and tensile strength from 20 to 35 MPa. GC, GC-MS, FTIR and 1H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.
Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y
1999-10-01
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Cibichakravarthy, Balasubramanian; Abinaya, Subramani; Prabagaran, Solai Ramatchandirane
2017-10-01
The guild between higher termites and their partnership with the diverse community of bacteria and archaea in their gut is a marvel evolutionary achievement. Sustained attempts were made worldwide with a quest for identifying viable important biological macromolecule polyhydroxyalkanoate (PHA) accumulating bacteria. Termite gut serve as a novel source for bacteria with dual properties like PHA production as well as cellulose degradation. Among 40 isolates cultivated, 32.5% turned positive for PCR based screening of PhaC gene. The 16S rRNA gene sequencing revealed that elite PHA producer and cellulose degrader which is phylogenetically affiliated to Bacillus cereus. The PHA production was maximized by employing different carbon and nitrogen sources along with altered pH and temperatures. GC-MS, FTIR and 1 HNMR analyses confirmed the presence of PHA and the thermal characterization was performed through TGA and DSC for the termite gut isolate. Our results indicated that the combined integrative approach using isolated strains from termite gut would be preferable choice in producing biomolecules from cellulosic materials. Copyright © 2017. Published by Elsevier B.V.
Martínez, Virginia; de la Peña, Fernando; García-Hidalgo, Javier; de la Mata, Isabel; García, José Luis
2012-01-01
The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZBd). The primary structure of PhaZBd suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZBd has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZBd has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZBd is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers. PMID:22706067
Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang
2016-12-01
Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C
2016-09-01
In this study, an integrative approach to produce biohydrogen (H2) and polyhydroxyalkanoates (PHA) from the wastes of biological origin was investigated. A defined set of mixed cultures was used for hydrolysis and the hydrolysates were used to produce H2. The effluent from H2 production stage was used for PHA production. Under batch culture, a maximum of 62 l H2/kg of pure potato peels (Total solid, TS 2 %, w/v) and 54 l H2/kg of mixed biowastes (MBW1) was recorded. Using effluent from the H2 production stage of biowaste mixture (MBW1), Bacillus cereus EGU43 could produce 195 mg PHA/l and 15.6 % (w/w). Further, supplementation of GM-2 medium (0.1×) and glucose (0.5 %) in H2 production stage effluents, resulted in significant improvements of up to 11 and 41.7 % of PHA contents, respectively. An improvement of 3.9- and 17-fold in PHA yields as compared to with and without integrative H2 production from the MBW1 has been recorded. This integrative approach seems to be a suitable process to improve the yields of H2 and PHA by mixing biowastes.
A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.
Chen, Guo-Qiang
2009-08-01
Biopolyesters polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts and medical researchers. PHA applications as bioplastics, fine chemicals, implant biomaterials, medicines and biofuels have been developed and are covered in this critical review. Companies have been established or involved in PHA related R&D as well as large scale production. Recently, bacterial PHA synthesis has been found to be useful for improving robustness of industrial microorganisms and regulating bacterial metabolism, leading to yield improvement on some fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ or PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, energy to medical fields (142 references).
Funston, Scott J; Tsaousi, Konstantina; Smyth, Thomas J; Twigg, Matthew S; Marchant, Roger; Banat, Ibrahim M
2017-12-01
Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa. Multiple knockout strains for the phbA, phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (ΔphbA1, ΔphbB1 and ΔphbC1) with the best enhancement of rhamnolipid production were selected for detailed study. ΔphbB1 produced the highest level of purified RL (3.78 g l -1 ) compared to the wild-type strain (1.28 g l -1 ). In ΔphbB1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa, knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.
Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).
Yang, Yung-Hun; Brigham, Christopher; Willis, Laura; Rha, ChoKyun; Sinskey, Anthony
2011-05-01
Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process. © Springer Science+Business Media B.V. 2011
Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi
2015-01-01
Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path.
Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi
2015-01-01
Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path. PMID:26544851
Chee, J-Y; Lau, N-S; Samian, M-R; Tsuge, T; Sudesh, K
2012-01-01
Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T
2017-01-01
Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.
Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Zhao, Lizhi; Lee, Duu-Jong; Yang, Lian; Wang, Yao
2017-12-18
The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors. Copyright © 2017. Published by Elsevier Ltd.
Analysis of Two Polyhydroxyalkanoate Synthases in Bradyrhizobium japonicum USDA 110
Mongiardini, Elías J.; Pérez-Giménez, Julieta; Parisi, Gustavo; Lodeiro, Aníbal R.
2013-01-01
Bradyrhizobium japonicum USDA 110 has five polyhydroxyalkanoate (PHA) synthases (PhaC) annotated in its genome: bll4360 (phaC1), bll6073 (phaC2), blr3732 (phaC3), blr2885 (phaC4), and bll4548 (phaC5). All these proteins possess the catalytic triad and conserved amino acid residues of polyester synthases and are distributed into four different PhaC classes. We obtained mutants in each of these paralogs and analyzed phaC gene expression and PHA production in liquid cultures. Despite the genetic redundancy, only phaC1 and phaC2 were expressed at significant rates, while PHA accumulation in stationary-phase cultures was impaired only in the ΔphaC1 mutant. Meanwhile, the ΔphaC2 mutant produced more PHA than the wild type under this condition, and surprisingly, the phaC3 transcript increased in the ΔphaC2 background. A double mutant, the ΔphaC2 ΔphaC3 mutant, consistently accumulated less PHA than the ΔphaC2 mutant. PHA accumulation in nodule bacteroids followed a pattern similar to that seen in liquid cultures, being prevented in the ΔphaC1 mutant and increased in the ΔphaC2 mutant in relation to the level in the wild type. Therefore, we used these mutants, together with a ΔphaC1 ΔphaC2 double mutant, to study the B. japonicum PHA requirements for survival, competition for nodulation, and plant growth promotion. All mutants, as well as the wild type, survived for 60 days in a carbon-free medium, regardless of their initial PHA contents. When competing for nodulation against the wild type in a 1:1 proportion, the ΔphaC1 and ΔphaC1 ΔphaC2 mutants occupied only 13 to 15% of the nodules, while the ΔphaC2 mutant occupied 81%, suggesting that the PHA polymer is required for successful competitiveness. However, the bacteroid content of PHA did not affect the shoot dry weight accumulation. PMID:23667236
Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers.
Ray, Subhasree; Kalia, Vipin Chandra
2017-03-01
Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.
Colombo, Bianca; Favini, Francesca; Scaglia, Barbara; Sciarria, Tommy Pepè; D'Imporzano, Giuliana; Pognani, Michele; Alekseeva, Anna; Eisele, Giorgio; Cosentino, Cesare; Adani, Fabrizio
2017-01-01
In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. The optimized acidogenic process resulted in an OA production of 151 g kg -1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg -1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg -1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg -1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙10 5 kDa with a low polydispersity index, i.e. 1.4. This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R
2016-03-01
The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
David N. Thompson; Erik R. Coats; William A. Smith
2006-04-01
Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activatedmore » sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.« less
Marang, Leonie; van Loosdrecht, Mark C M; Kleerebezem, Robbert
2015-12-01
Although the enrichment of specialized microbial cultures for the production of polyhydroxyalkanoates (PHA) is generally performed in sequencing batch reactors (SBRs), the required feast-famine conditions can also be established using two or more continuous stirred-tank reactors (CSTRs) in series with partial biomass recirculation. The use of CSTRs offers several advantages, but will result in distributed residence times and a less strict separation between feast and famine conditions. The aim of this study was to investigate the impact of the reactor configuration, and various process and biomass-specific parameters, on the enrichment of PHA-producing bacteria. A set of mathematical models was developed to predict the growth of Plasticicumulans acidivorans-as a model PHA producer-in competition with a non-storing heterotroph. A macroscopic model considering lumped biomass and an agent-based model considering individual cells were created to study the effect of residence time distribution and the resulting distributed bacterial states. The simulations showed that in the 2-stage CSTR system the selective pressure for PHA-producing bacteria is significantly lower than in the SBR, and strongly affected by the chosen feast-famine ratio. This is the result of substrate competition based on both the maximum specific substrate uptake rate and substrate affinity. Although the macroscopic model overestimates the selective pressure in the 2-stage CSTR system, it provides a quick and fairly good impression of the reactor performance and the impact of process and biomass-specific parameters. © 2015 Wiley Periodicals, Inc.
Synthetic Biology of Polyhydroxyalkanoates (PHA).
Meng, De-Chuan; Chen, Guo-Qiang
Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.
Hanson, Andrea J; Guho, Nicholas M; Paszczynski, Andrzej J; Coats, Erik R
2016-09-01
Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs.
Choi, DongWon; Chipman, David C; Bents, Scott C; Brown, Robert C
2010-02-01
A techno-economic analysis was conducted to investigate the feasibility of a gasification-based hybrid biorefinery producing both hydrogen gas and polyhydroxyalkanoates (PHA), biodegradable polymer materials that can be an attractive substitute for conventional petrochemical plastics. The biorefinery considered used switchgrass as a feedstock and converted that raw material through thermochemical methods into syngas, a gaseous mixture composed mainly of hydrogen and carbon monoxide. The syngas was then fermented using Rhodospirillum rubrum, a purple non-sulfur bacterium, to produce PHA and to enrich hydrogen in the syngas. Total daily production of the biorefinery was assumed to be 12 Mg of PHA and 50 Mg of hydrogen gas. Grassroots capital for the biorefinery was estimated to be $55 million, with annual operating costs at $6.7 million. With a market value of $2.00/kg assumed for the hydrogen, the cost of producing PHA was determined to be $1.65/kg.
Frison, Nicola; Katsou, Evina; Malamis, Simos; Oehmen, Adrian; Fatone, Francesco
2015-09-15
Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite. Two configurations were examined: in configuration 1 the ammonium conversion to nitrite occurred in the same reactor in which the PHA selection process occurred, while in configuration 2 two separate reactors were used. The results showed that the selection of PHA storing biomass was successful in both configurations, while the nitrogen removal efficiency was much higher (almost 90%) in configuration 2. The PHA selection degree was evaluated by the volatile fatty acid (VFA) uptake rate (-qVFAs) and the PHA production rate (qPHA), which were 239 ± 74 and 89 ± 7 mg of COD per gram of active biomass (Xa) per hour, respectively. The characterization of the biopolymer recovered after the accumulation step, showed that it was composed of 3-hydroxybutyrate (3HB) (60%) and 3-hydroxyvalerate (3HV) (40%). The properties associated with the produced PHA suggest that they are suitable for thermoplastic processing.
Zou, Xiang Hui; Chen, Guo-Qiang
2007-02-12
Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.
Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens
Quelas, J. I.; Mesa, S.; Mongiardini, E. J.; Jendrossek, D.
2016-01-01
ABSTRACT Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4. Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2. IMPORTANCE In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer and the network responsible for microoxic metabolism through the interaction between the gene regulators phaR and fixK2. These results contribute to the understanding of the physiological conditions required for polyhydroxybutyrate biosynthesis. The interaction between these two main metabolic pathways is also reflected in the symbiotic phenotypes of soybeans inoculated with phaR mutants, which were more competitive for nodulation and enhanced dry matter production by the plants. Therefore, this knowledge may be applied to the development of superior strains to be used as improved inoculants for soybean crops. PMID:27208130
Liu, Guiming; Hou, Jing; Cai, Shuangfeng; Zhao, Dahe; Cai, Lei; Han, Jing; Zhou, Jian
2015-01-01
The key enzymes and pathways involved in polyhydroxyalkanoate (PHA) biosynthesis in haloarchaea have been identified in recent years, but the haloarchaeal enzymes for PHA degradation remain unknown. In this study, a patatin-like PHA depolymerase, PhaZh1, was determined to be located on the PHA granules in the haloarchaeon Haloferax mediterranei. PhaZh1 hydrolyzed the native PHA (nPHA) [including native polyhydroxybutyrate (nPHB) and native poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (nPHBV) in this study] granules in vitro with 3-hydroxybutyrate (3HB) monomer as the primary product. The site-directed mutagenesis of PhaZh1 indicated that Gly16, Ser47 (in a classical lipase box, G-X-S47-X-G), and Asp195 of this depolymerase were essential for its activity in nPHA granule hydrolysis. Notably, phaZh1 and bdhA (encoding putative 3HB dehydrogenase) form a gene cluster (HFX_6463 to _6464) in H. mediterranei. The 3HB monomer generated from nPHA degradation by PhaZh1 could be further converted into acetoacetate by BdhA, indicating that PhaZh1-BdhA may constitute the first part of a PHA degradation pathway in vivo. Interestingly, although PhaZh1 showed efficient activity and was most likely the key enzyme in nPHA granule hydrolysis in vitro, the knockout of phaZh1 had no significant effect on the intracellular PHA mobilization, implying the existence of an alternative PHA mobilization pathway(s) that functions effectively within the cells of H. mediterranei. Therefore, identification of this patatin-like depolymerase of haloarchaea may provide a new strategy for producing the high-value-added chiral compound (R)-3HB and may also shed light on the PHA mobilization in haloarchaea. PMID:25710370
Blunt, Warren; Dartiailh, Christopher; Sparling, Richard; Gapes, Daniel; Levin, David B; Cicek, Nazim
2018-05-24
Economical production of medium-chain length polyhydroxyalkanoates (mcl-PHA) is dependent on efficient cultivation processes. This work describes growth and mcl-PHA synthesis characteristics of Pseudomonas putida LS46 when grown on medium-chain length fatty acids (octanoic acid) and lower-cost long-chain fatty acids (LCFAs, derived from hydrolyzed canola oil) in microaerophilic environments. Growth on octanoic acid ceased when the oxygen uptake rate was limited by the oxygen transfer rate, and mcl-PHA accumulated to 61.9% of the cell dry mass. From LCFAs, production of non-PHA cell mass continued at a rate of 0.36 g L -1 h -1 under oxygen-limited conditions, while mcl-PHA accumulated simultaneously to 31% of the cell dry mass. The titer of non-PHA cell mass from LCFAs at 14 h post-inoculation was double that obtained from octanoic acid in bioreactors operated with identical feeding and aeration conditions. While the productivity for octanoic acid was higher by 14 h, prolonged cultivation on LCFAs achieved similar productivity but with twice the PHA titer. Simultaneous co-feeding of each substrate demonstrated the continued cell growth under microaerophilic conditions characteristic of LCFAs, and the resulting polymer was dominant in C8 monomers. Furthermore, co-feeding resulted in improved PHA titer and volumetric productivity compared to either substrate individually. These results suggest that LCFAs improve growth of P. putida in oxygen-limited environments and could reduce production costs since more non-PHA cell mass, the cellular factories required to produce mcl-PHA and the most oxygen-intensive cellular process, can be produced for a given oxygen transfer rate.
Phukon, Pinkee; Saikia, Jyoti Prasad; Konwar, Bolin Kumar
2011-09-01
Polyhydroxyalkanoate (PHA) was produced by growing Bacillus circulans (MTCC 8167) in the specific detection medium. The identification of the polymer as PHA was confirmed by fluorescence microscopy. The PHA was purified and characterized using FT-IR. The silver nanoparticles (SNP) were synthesized from AgNO3 in the dispersed colloids of PHA (0.085%) using NaBH4 (sodium borohydrate as reducing agent). The stability was tested using wave length scanning with a UV-Vis spectrophotometer and finally with transmission electron microscopy. The PHA stabilized solution was found to be stable for 30 days as against the low stability of silver nanoparticles (SNP) solution alone. Copyright © 2011 Elsevier B.V. All rights reserved.
Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates.
Du, Guocheng; Yu, Jian
2002-12-15
A new technology is developed and demonstrated that couples anaerobic digestion of food scraps with production of biodegradable thermoplastics, polyhydroxyalkanoates (PHAs). The food wastes were digested in an anaerobic reactor producing four major organic acids. The concentrations of acetic, propionic, butyric, and lactic acids reached 5.5, 1.8, 27.4, and 32.7 g/L, respectively. The fermentative acids were transferred through membranes via molecule diffusion into an air-bubbling reactor where the acids were utilized to produce PHAs in an enriched culture of Ralstonia eutropha. With a silicone rubber membrane, butyric acid and small amounts of acetic and propionic acids were transferred and used, producing a homopolymer PHA, poly(3-hydroxybutyrate). The dry cell weight and PHA content reached 11.3 g/L and 60.2% (w/w), respectively. With a dialysis membrane, the mass transfer rates of fermentative acids were enhanced, and the PHA production was significantly improved. The dry cell weight and its PHA content reached 22.7 g/L and 72.6% (w/w), respectively. The formed PHA was a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate (HV) with 2.8 mol % HV monomer unit. The polymer content (72.6% of dry cell mass) reported in this study is the highest one obtained from organic wastes and is comparable with the PHA content from pure glucose fermentation.
Bacillus subtilis as potential producer for polyhydroxyalkanoates
Singh, Mamtesh; Patel, Sanjay KS; Kalia, Vipin C
2009-01-01
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA. PMID:19619289
Bacillus subtilis as potential producer for polyhydroxyalkanoates.
Singh, Mamtesh; Patel, Sanjay Ks; Kalia, Vipin C
2009-07-20
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process - for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.
Passanha, Pearl; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J; Esteves, Sandra R
2014-07-01
External stress factors in the form of ionic species or temperature increases have been shown to produce a stress response leading to enhanced PHA production. The effect of five different NaCl concentrations, namely 3.5, 6.5, 9, 12 and 15 g/l NaCl on PHA productivity using Cupriavidus necator has been investigated alongside a control (no added NaCl). A dielectric spectroscopy probe was used to measure PHA accumulation online in conjunction with the chemical offline analysis of PHA. The highest PHA production was obtained with the addition of 9 g/l NaCl, which yielded 30% higher PHA than the control. Increasing the addition of NaCl to 15 g/l was found to inhibit the production of PHA. NaCl addition can therefore be used as a simple, low cost, sustainable, non toxic and non reactive external stress strategy for increasing PHA productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells
John, Maliyakal E.; Keller, Greg
1996-01-01
Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry. PMID:11038522
Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.
Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari
2016-01-01
This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Chek, Min Fey; Kim, Sun-Yong; Mori, Tomoyuki; Arsad, Hasni; Samian, Mohammed Razip; Sudesh, Kumar; Hakoshima, Toshio
2017-07-13
Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.
Gobi, K; Vadivelu, V M
2014-06-01
Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, E.J.; Weaver, P.F.
Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates andmore » the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.« less
Carvalho, Gilda; Pedras, Inês; Karst, Soren M; Oliveira, Catarina S S; Duque, Anouk F; Nielsen, Per H; Reis, Maria A M
2018-01-25
Polyhydroxyalkanoates (PHA) are biopolymers that can be produced by mixed microbial cultures using wastes or industrial by-products, which represent an economical and environmental advantage over pure culture processes. The use of alternate feedstocks enables using seasonal by-products, providing that the process is resilient to transient conditions. The mixed microbial communities of a 3-stage PHA producing system fed initially with molasses and then cheese whey were investigated through amplicon sequencing of the 16S rRNA gene. The transition in feedstock resulted in an adaptation of the acidogenic community, where Actinobacteria dominated with sugarcane molasses (up to 93% of the operational taxonomic units) and Firmicutes, with cheese whey (up to 97%). The resulting fermentation products profile also changed, with a higher fraction of HV precursors obtained with molasses than cheese whey (7.1±0.5 and 1.7±0.7 gCOD/L, respectively). As for the PHA storing culture, the genera Azoarcus, Thauera and Paracoccus were enriched with fermented molasses (average 89% of Bacteria). Later, fermented cheese whey fostered a higher diversity, including some less characterised PHA-storers such as the genera Paenibacillus and Lysinibacillus. Although the microbial community structure was significantly affected by the feedstock shift, the acidogenic and PHA storing performance of the 3-stage system was very similar once a pseudo steady state was attained, showing that a reliable level of functional redundancy was attained in both mixed cultures. Copyright © 2017 Elsevier B.V. All rights reserved.
Lim, Ju Hyoung; Rhie, Ho-Gun; Kim, Jeong Nam
2018-05-11
Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. PHA granules mainly consisted of poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate- co -3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas . In vivo expression of the putative PHA synthase gene ( phaC Pf ) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli ( phaC Pf + , pUMS) grown in medium containing glucose accumulated PHA granules mainly consisting of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from E. coli fadR mutant ( phaC Pf + ) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified PhaC Pf , suggesting that the putative PHA synthase of P. fluorescens mainly utilizes short-chain-length PHA precursors as a substrate.
Enhanced Polyhydroxybutyrate Production for Long-Term Spaceflight Applications
NASA Technical Reports Server (NTRS)
Putman, Ryan J.; Rahman, Asif; Miller, Charles D.; Hadi, Masood Z.
2015-01-01
Synthetic biology holds the promise of advancing long term space fight by the production of medicine, food, materials, and energy. One such application of synthetic biology is the production of biomaterials, specifically polyhydroxyalkanoates (PHAs), using purposed organisms such as Escherichia coli. PHAs are a group of biodegradable bioplastics that are produced by a wide variety of naturally occurring microorganisms, mainly as an energy storage intermediate. PHAs have similar melting point to polypropylene and a Youngs modulus close to polystyrene. Due to limited resources and cost of transportation, large-scale extraction of biologically produced products in situ is extremely cumbersome during space flight. To that end, we are developing a secretion systems for exporting PHA from the cell in order to reduce unit operations. PHAs granules deposited inside bacteria are typically associated with proteins bound to the granule surface. Phasin, a granule bound protein, was targeted for type I secretion by fusion with HlyA signal peptide for indirect secretion of PHAs. In order to validate our secretion strategy, a green fluorescent protein (GFP) was tagged to the PHA polymerase enzyme (phaC), this three part gene cassette consists of phaA and phaB and are required for PHA production. Producing PHAs in situ during space flight or planet colonization will enable mission success by providing a valuable source of biomaterials that can have many potential applications thereby reducing resupply requirements. Biologically produced PHAs can be used in additive manufacturing such as three dimensional (3D) printing to create products that can be made on demand during space flight. After exceeding their lifetime, the PHAs could be melted and recycled back to 3D print other products. We will discuss some of our long term goals of this approach.
Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2
Naheed, Nighat; Jamil, Nazia
2014-01-01
Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production. PMID:25242924
Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic
Madison, Lara L.; Huisman, Gjalt W.
1999-01-01
Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs. PMID:10066830
Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic.
Madison, L L; Huisman, G W
1999-03-01
Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang
2018-03-21
A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.
Hokamura, Ayaka; Yunoue, Yuko; Goto, Saki; Matsusaki, Hiromi
2017-08-08
Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate- co -3-hydroxyalkanoate) [P(3HB- co -3HA)], consisting of 3HA units of 4-12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB- co -6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 ( phbC :: tet ) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB- co -3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso , which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB- co -3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB- co -3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 ( phbC :: tet ) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10-20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0-1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB- co -3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater.
Hokamura, Ayaka; Yunoue, Yuko; Goto, Saki; Matsusaki, Hiromi
2017-01-01
Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) [P(3HB-co-3HA)], consisting of 3HA units of 4–12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB-co-6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB-co-3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso, which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB-co-3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB-co-3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10–20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0–1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB-co-3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater. PMID:28952548
Synthesis of polyhydroxyalkanoate from palm oil and some new applications.
Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen
2011-03-01
Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.
Polyhydroxyalkanoate Production and Degradation Patterns in Bacillus Species.
Ray, Subhasree; Kalia, Vipin Chandra
2017-12-01
Bacteria under stress conditions of excess of carbon (C) and limitations of nutrients divert its metabolism towards C storage as energy reservoir-polyhydroxyalkanoate (PHA). Different Bacillus species- B. cereus and B. thuringiensis , were monitored to produce PHA from different C sources-glucose, crude glycerol and their combination at 37 °C for period up to 192 h. PHA production and its composition was found to vary with feed and bacterial strains. PHA production on crude glycerol continued to increase up to 120 h, reaching a maximum of 2725 mg/L with an effective yield of 71% of the dry cell mass. Depolymerization of PHA was observe to initiate after 96 h of incubation up to 192 h. PHA degradation products have been envisaged to be applied in medical field: tissue engineering, drug carriers, memory enhancers, antiosteoporosis, biodegradable implants. The PHA production and degradation cycle for 192 h has not been reported previously in literature.
Production and characterization of microbial polyhydroxyalkanoates
USDA-ARS?s Scientific Manuscript database
Poyhydroxyalkanoates (PHA) are biologically-produced polyesters. These polymers are of great interest due to both their potential production from renewable substrates and their inherent biodegradability. Polyhydroxybutyrate (PHB) is the most common type of biological PHA. However, the material prop...
Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.
Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu
2013-11-15
In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.
Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria
Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji
2016-01-01
Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570
Arumugam, A; Senthamizhan, S G; Ponnusami, V; Sudalai, S
2018-06-01
Polyhydroxyalkanoates (PHA) are biodegradable polymers found in the cellular masses of a wide range of bacterial species and the demand for PHA is steadily growing. In this work we have produced PHA from a low-cost substrate, Calophyllum inophyllum oil, using Cupriavidus necator. Effects of various process parameters such as Oil concentration, Nitrogen source and inoculum size on the production of PHA were studied using Response Surface Methodology. A quadratic equation was used in the model to fit the experimental data. It was found that the model could satisfactorily predict the PHA yield (R 2 =99.17%). Linear, quadratic and interaction terms used in the model were found to be statistically significant. Maximum PHA yield of 10.6gL -1 was obtained under the optimized conditions of oil concentration - 17.5%, inoculum concentration - 50mL/L and nitrogen content - 1.125gL -1 , respectively. The product obtained was characterized using FTIR and NMR to confirm that it was PHA. The results demonstrate that C. inophyllum oil, a non-edible oil, can be potentially used as a low-cost substrate for the production of PHA. Copyright © 2018 Elsevier B.V. All rights reserved.
Martínez, Virginia; Dinjaski, Nina; de Eugenio, Laura I; de la Peña, Fernando; Prieto, María Auxiliadora
2014-11-01
Novel platforms based on the application of bacterial cell systems as factories for production of new bioproducts open avenues and dramatically expand the catalogue of existing biomaterials. Herein, we designed the strategy based on in vivo production of extracellular Pseudomonas fluorescens GK13 (PhaZGK13) depolymerase to degrade previously biosynthesized polyhydroxyalkanotes (PHAs) or to obtain 3-hydroxyalkanoic acids (HAs). With this aim, extracellular PhaZGK13 was produced in recombinant strains and the optimal conditions for controlled release of HAs and oligomers by growing cells were set up with a particle suspension of (14)C-labelled PHA, being maximal after 24h of incubation. Genetic modification of key factors involved in fatty acids metabolism revealed the influence of an active β-oxidation pathway on the extracellular degradation of PHA and subsequent HAs isolation. The highest HAs production was obtained using Pseudomonas putida KT2442 fadB mutant (0.27mg/mL) due to the reduced ability of this strain to metabolize the degradation products. The system was applied to produce new added value HAs harboring thioester groups in the side chain from the functionalized mcl-PHA, PHACOS. Remarkably, hydrolyzed PHACOS showed greater potential to inhibit Staphylococcus aureus(T) growth when compared to that of degradation products of non functionalized polyhydroxyoctanoate-co-hexanoate P(HO-co-HH). Copyright © 2014 Elsevier B.V. All rights reserved.
Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
Riedel, Sebastian L; Jahns, Stefan; Koenig, Steven; Bock, Martina C E; Brigham, Christopher J; Bader, Johannes; Stahl, Ulf
2015-11-20
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here. An emulsification strategy, without any mechanical or chemical pre-treatment, was developed to increase the bioavailability of solid, poorly-consumable fats. Wild type R. eutropha strain H16 produced 79-82% (w/w) polyhydroxybutyrate (PHB) per cell dry weight (CDW) when cultivated on various fats. A productivity of 0.3g PHB/(L × h) with a total PHB production of 24 g/L was achieved using tallow as carbon source. Using a recombinant strain of R. eutropha that produces poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)], 49-72% (w/w) of PHA per CDW with a HHx content of 16-27 mol% were produced in shaking flask experiments. The recombinant strain was grown on waste animal fat of the lowest quality available at lab fermenter scale, resulting in 45 g/L CDW with 60% (w/w) PHA per CDW and a productivity of 0.4 g PHA/(L × h). The final HHx content of the polymer was 19 mol%. The use of low quality waste animal fats as an inexpensive carbon feedstock exhibits a high potential to accelerate the commercialization of PHAs. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory R. Mockos; William A. Smith; Frank J. Loge
Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensatemore » system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.« less
Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams
NASA Astrophysics Data System (ADS)
Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.
Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.
Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.
Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E
2014-05-01
A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.
Impact of phosphate limitation on PHA production in a feast-famine process.
Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert
2017-12-01
Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates
Takahashi, Rodrigo Yoji Uwamori; Castilho, Nathalia Aparecida Santos; da Silva, Marcus Adonai Castro; Miotto, Maria Cecilia; Lima, André Oliveira de Souza
2017-01-01
Polyhydroxyalkanoates (PHAs) are a class of biopolymers with numerous applications, but the high cost of production has prevented their use. To reduce this cost, there is a prospect for strains with a high PHA production and the ability to grow in low-cost by-products. In this context, the objective of this work was to evaluate marine bacteria capable of producing PHA. Using Nile red, 30 organisms among 155 were identified as PHA producers in the medium containing starch, and 27, 33, 22 and 10 strains were found to be positive in media supplemented with carboxymethyl cellulose, glycerol, glucose and Tween 80, respectively. Among the organisms studied, two isolates, LAMA 677 and LAMA 685, showed strong potential to produce PHA with the use of glycerol as the carbon source, and were selected for further studies. In the experiment used to characterize the growth kinetics, LAMA 677 presented a higher maximum specific growth rate (µmax = 0.087 h−1) than LAMA 685 (µmax = 0.049 h−1). LAMA 677 also reached a D-3-hydroxybutyrate (P(3HB)) content of 78.63% (dry biomass), which was 3.5 times higher than that of LAMA 685. In the assay of the production of P(3HB) from low-cost substrates (seawater and biodiesel waste glycerol), LAMA 677 reached a polymer content of 31.7%, while LAMA 685 reached 53.6%. Therefore, it is possible to conclude that the selected marine strains have the potential to produce PHA, and seawater and waste glycerol may be alternative substrates for the production of this polymer. PMID:28952539
Hooks, David O; Rehm, Bernd H A
2015-10-01
The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.
Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander
2015-01-01
Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471
Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.
Koller, Martin; Maršálek, Lukáš; de Sousa Dias, Miguel Miranda; Braunegg, Gerhart
2017-07-25
Sustainable production of microbial polyhydroxyalkanoate (PHA) biopolyesters on a larger scale has to consider the "four magic e": economic, ethical, environmental, and engineering aspects. Moreover, sustainability of PHA production can be quantified by modern tools of Life Cycle Assessment. Economic issues are to a large extent affected by the applied production mode, downstream processing, and, most of all, by the selection of carbon-rich raw materials as feedstocks for PHA production by safe and naturally occurring wild type microorganisms. In order to comply with ethics, such raw materials should be used which do not interfere with human nutrition and animal feed supply chains, and shall be convertible towards accessible carbon feedstocks by simple methods of upstream processing. Examples were identified in carbon-rich waste materials from various industrial braches closely connected to food production. Therefore, the article shines a light on hetero-, mixo-, and autotrophic PHA production based on various industrial residues from different branches. Emphasis is devoted to the integration of PHA-production based on selected raw materials into the holistic patterns of sustainability; this encompasses the choice of new, powerful microbial production strains, non-hazardous, environmentally benign methods for PHA recovery, and reutilization of waste streams from the PHA production process itself. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, M.J.; Amos, D.A.; Kealy, K.S.
1992-12-31
Anaerobic syntrophic bacteria degrade fatty acids and some aromatic compounds which are important intermediates in the degradation of organic matter to CO{sub 2} and CH{sub 4} in methanogenic environments. Several of the described syntrophic species produce poly-{beta}-hydroxyalkanoate (PHA) suggesting that the synthesis and use of PHA is important in their physiology. In the fatty acid-degrading, syntrophic bacterium, Syntrophomonas wolfei, PHA is made during exponential phase of growth and used after growth has stopped and substrate levels are low. Altering the carbon to nitrogen ratio of the medium does not affect the amount of PHA made or its monomeric composition. Itmore » is hypothesized that PHA serves as an endogenous energy source for syntrophic bacteria when the concentrations of hydrogen or acetate are too high for the degradation of the growth substrate to be thermodynamically favorable. In S. wolfei, PHA is synthesized by two routes, the direct incorporation of 3-ketoacyl-coenzyme A (CoA) generated in {beta}-oxidation without cleavage of a C-C bond, and by the condensation and subsequent reduction of two acetyl-CoA molecules. Genes that encode for the synthesis of PHA in S. wolfei have been cloned into Escherichia coli in order to understand the molecular mechanisms that regulate PHA synthesis. 61 refs., 1 fig., 4 tabs.« less
Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production
Koller, Martin; Braunegg, Gerhart
2015-01-01
Together with other so-called “bio-plastics”, Polyhydroxyalkanoates (PHAs) are expected to soon replace established polymers on the plastic market. As a prerequisite, optimized process design is needed to make PHAs attractive in terms of costs and quality. Nowadays, large-scale PHA production relies on discontinuous fed-batch cultivation in huge bioreactors. Such processes presuppose numerous shortcomings such as nonproductive time for reactor revamping, irregular product quality, limited possibility for supply of certain carbon substrates, and, most of all, insufficient productivity. Therefore, single- and multistage continuous PHA biosynthesis is increasingly investigated for production of different types of microbial PHAs; this goes for rather crystalline, thermoplastic PHA homopolyesters as well as for highly flexible PHA copolyesters, and even blocky-structured PHAs consisting of alternating soft and hard segments. Apart from enhanced productivity and constant product quality, chemostat processes can be used to elucidate kinetics of cell growth and PHA formation under constant process conditions. Furthermore, continuous enrichment processes constitute a tool to isolate novel powerful PHA-producing microbial strains adapted to special environmental conditions. The article discusses challenges, potential and case studies for continuous PHA production, and shows up new strategies to further enhance such processes economically by developing unsterile open continuous processes combined with the application of inexpensive carbon feedstocks. PMID:28955015
Hao, Jiuxiao; Wang, Hui; Wang, Xiujin
2018-04-01
The feast-to-famine ratio (F/F) represents the extent of selective pressure during polyhydroxyalkanoate (PHA) culture selection. This study evaluated the effects of F/F on a new PHA production system by an enriched culture with valerate-dominant sludge hydrolysate and selected the optimal F/F. After the original F/F 1/3 was modified to 1/1, 1/2, 1/4, and 1/5, F/F did not affect their lengths of feast phase, but affected their biomass growth behaviors during the famine phase and PHA-producing abilities. The optimal F/F was 1/2, and compared with 1/3, it increased the maximal PHA content and the fraction of 3-hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) monomers, with higher productivity and better polymer properties. Although F/F 1/2 impaired the advantage of the dominant genus Delftia, it improved the PHA production rate while decreased biomass growth rate, meanwhile enhancing the utilization and conversion of valerate. These findings indicate that in contrast to previous studies using acetate-dominant substrate for PHA production, the new system fed by valerate-dominant substrate can adopt a higher F/F.
Martínez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier; Hormigo, Daniel; Prieto, M Auxiliadora; Arroyo, Miguel; de la Mata, Isabel
2015-11-01
Cloning and biochemical characterization of a novel extracellular medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase from Streptomyces exfoliatus K10 DSMZ 41693 are described. The primary structure of the depolymerase (PhaZSex2) includes the lipase consensus sequence (serine-histidine-aspartic acid) which is known for serine hydrolases. Secondary structure analysis shows 7.9 % α-helix, 43.9 % β-sheet, 19.4 % β-turns, and 31.2 % random coil, suggesting that this enzyme belongs to the α/β hydrolase fold family, in agreement with other PHA depolymerases and lipases. The enzyme was efficiently produced as an extracellular active form in Rhodococcus and purified by two consecutive hydrophobic chromatographic steps. Matrix-assisted laser desorption-time-of-flight (MALDI-TOF) analysis of the purified enzyme revealed a monomer of 27.6 kDa with a midpoint transition temperature of 44.2 °C. Remarkably, the activity is significantly enhanced by low concentrations of nonionic and anionic detergents and thermal stability is improved by the presence of 10 % glycerol. PhaZSex2 is an endo-exohydrolase that cleaves both large and small PHA molecules, producing (R)-3-hydroxyoctanoic acid monomers as the main reaction product. Markedly, PhaZSex2 is able to degrade functionalized polymers containing thioester groups in the side chain (PHACOS), releasing functional thioester-based monomers and oligomers demonstrating the potentiality of this novel biocatalyst for the industrial production of enantiopure (R)-3-hydroxyalkanoic acids.
Du, Jinping; Rehm, Bernd H A
2017-11-02
Recombinant protein production and purification from Escherichia coli is often accompanied with expensive and complicated procedures, especially for therapeutic proteins. Here it was demonstrated that, by using an intein cleavable polyhydroxyalkanoate synthase fusion, recombinant proteins can be first produced and sequestered on a natural resin, the polyhydroxyalkanoate (PHA) inclusions, then separated from contaminating host proteins via simple PHA bead isolation steps, and finally purified by specific release into the soluble fraction induced by a pH reduction. By translationally fusing a target protein to PHA synthase using a self-cleaving intein as linker, intracellular production of PHA beads was achieved. Upon isolation of respective PHA beads the soluble pure target protein was released by a simple pH shift to 6. The utility of this approach was exemplified by producing six target proteins, including Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b). Here a new method for production and purification of a tag-less protein was developed through intein cleavable polyhydroxyalkanoate synthase fusion. Pure target protein could be easily obtained without laborious downstream processing.
Yokoo, Toshinori; Matsumoto, Ken'ichiro; Ooba, Takashi; Morimoto, Kenjiro; Taguchi, Seiichi
2015-01-01
Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.
Chakraborty, Panchali; Muthukumarappan, Kasiviswanathan; Gibbons, William R.
2012-01-01
The research described in this present study was part of a larger effort focused on developing a dual substrate, dual fermentation process to produce Polyhydroxyalkanoate (PHA). The focus of this study was developing and optimizing a strategy for feeding a mixture of SCFAs (simulated ARF) and maximizing PHA production in a cost-effective way. Three different feeding strategies were examined in this study. The substrate evaluated in this study for the growth phase of R. eutropha was condensed corn solubles, a low-value byproduct of the dry-mill, corn ethanol industry. The culture was grown to high cell densities in nitrogen-supplemented condensed corn solubles media in 5 L bioreactors. The overall growth rate of R. eutropha was 0.2 h−1. The 20 mL ARF feeding every 3 h from 48 to 109 h strategy gave the best results in terms of PHA production. PHA productivity (0.0697 g L−1 h−1), PHA concentration (8.37 g L−1), and PHA content (39.52%) were the highest when ARF was fed every 3 h for 61 h. This study proved that condensed corn solubles can be potentially used as a growth medium to boost PHA production by R. eutropha thus reducing the overall cost of biopolymer production. PMID:23118512
Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A
2017-07-25
Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL -1 d -1 ), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL -1 d -1 ) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL -1 (with 3.8g-CODL -1 resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new strategy originated a more efficient PHA-production process than the conventional one (global PHA productivity of 6.09g-PHAL -1 d -1 and storage yield of 0.96 versus 2.55g-PHAL -1 d -1 and 0.86, respectively). Dissociation between the feast to famine length ratio (F/F) and storage efficiency was shown to be possible with the new strategy, allowing selection of an efficient PHA-storing culture with complex feedstock under high organic loading rates. Copyright © 2016 Elsevier B.V. All rights reserved.
Elain, Anne; Le Fellic, Magali; Corre, Yves-Marie; Le Grand, Adélaïde; Le Tilly, Véronique; Audic, Jean-Luc; Bruzaud, Stéphane
2015-10-01
The expansion of polyhydroxyalkanoates (PHAs) into the biodegradable polymers market is mainly prevented by their production process which is still complicated with a low efficiency, resulting in relatively expensive products. In this study, we developed a method that used the lipophilic fluorescent probe Nile Red (1 mg l(-1) solution in DMSO) directly into the culture broth to stain the PHA inclusions inside bacterial cells followed by detection of the emitted fluorescence by both microscopic and spectrometric techniques. Epifluorescence microscopy provides a rapid tool to distinguish producing from non-producing bacterial species and the relative fluorescence intensity (FI) determined at the maximum of emission spectra in the wavelength region of 560-710 nm (λ(ex): 543 nm), allows a fast assessment of the cultural conditions that may enhance PHA production yield. During two-step cultivation in 500-ml flasks with glucose as the sole carbon source, the method aimed to select bacterial strains efficient for PHA synthesis among a marine collection. Subsequently, the NR assay was used to determine the C0/N0 ratio of the producing media that may improve the polymer yield as well as to follow the time course of fermentation. Characterization by GC-MS and DSC confirmed the production of the P(3-HB) homopolymer.
USDA-ARS?s Scientific Manuscript database
Pseudomonas chlororaphis is a useful microorganism capable of producing polyhydroxyalkanoate (PHA) biopolymer and rhamnolipid (RL) biosurfactants by using carbon- and nitrogen-sources derived from renewable feedstocks as substrates of fermentation. We are interested in increasing the yield of RL pr...
Mezzina, Mariela P; Wetzler, Diana E; de Almeida, Alejandra; Dinjaski, Nina; Prieto, M Auxiliadora; Pettinari, Maria Julia
2015-05-01
Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA-8 (PhaPAz ) had an unexpected growth-promoting and stress-protecting effect in Escherichia coli, suggesting it could have chaperone-like activities. In this work, in vitro and in vivo experiments were performed in order to investigate this possibility. PhaPAz was shown to prevent in vitro thermal aggregation of the model protein citrate synthase and to facilitate the refolding process of this enzyme after chemical denaturation. Microscopy techniques were used to analyse the subcellular localization of PhaPAz in E. coli strains and to study the role of PhaPAz in in vivo protein folding and aggregation. PhaPAz was shown to colocalize with inclusion bodies of PD, a protein that aggregates when overexpressed. A reduction in the number of inclusion bodies of PD was observed when it was coexpressed with PhaPAz or with the known chaperone GroELS. These results demonstrate that PhaPAz has chaperone-like functions both in vitro and in vivo in E. coli recombinants, and suggests that phasins could have a general protective role in natural polyhydroxyalkanoate producers. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Hill, F. S.; Cox, A. B.; Salmon, Y. L.; Cantu, A. O.; Lucas, J. N.
1994-01-01
The mitogen phytohemagglutinin (PHA) works well in both human and cynomolgus monkey (Macaca fascicularis) lymphocyte cultures to stimulate T cell proliferation. T cells from rhesus monkeys (Macaca mulatta) are less responsive than human cells, producing few metaphases when thousands are required, e.g. in biological dosimetry studies. We show that staphylococcal enterotoxin A (SEA), one of the most potent mitogens known, at a concentration of 0.5 microgram/ml stimulated peripheral lymphocytes to grow with a mitotic index (MI) averaging 0.13 metaphases/cell in old, irradiated rhesus macaques. This was significantly greater (p < 0.001) than that produced by PHA (MI < 0.01) in lymphocytes from the same animals. Whole blood was cultured for 96, 120 and 144 h for five irradiated individuals and for two controls. All cells cultured with SEA produced a high MI with a peak response at 120 h whereas the same cultures showed low MI for each PHA stimulated culture.
Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants.
Gasser, Ilona; Müller, Henry; Berg, Gabriele
2009-10-01
Polyhydroxyalkanoates are energy reserve polymers produced by bacteria to survive periods of starvation in natural habitats. Little is known about the ecology of polyhydroxyalkanoate-producing bacteria. To analyse the occurrence of this specific group on/in seven different plant species, a combined strategy containing culture-dependent and -independent methods was applied. Using microbial fingerprint techniques (single-strand conformation polymorphism analysis with specific primers for phaC gene encoding the key enzyme of the polyhydroxyalkanoate synthesis), a high number of bands were especially found for the rhizosphere. Furthermore, cluster analysis revealed plant species-specific communities. Isolation of bacteria, recognition of brightly refractile cytoplasmatic inclusions, lipophilic stainings and a PCR strategy targeted on the phaC gene were used as a culture-dependent strategy for the detection of polyhydroxyalkanoate-producing bacteria. Results again represent a high degree of plant specificity: the rhizosphere of sugar beet contained the highest number of positive strains. This was confirmed by quantitative PCR: the relative copy number of phaC was statistically and significantly enhanced in all rhizospheres in comparison with bulk soil. New polyhydroxyalkanoate-producing bacterial species were detected: for example, Burkholderia terricola, Lysobacter gummosus, Pseudomonas extremaustralis, Pseudomonas brassicacearum and Pseudomonas orientalis. Our results confirm the hypothesis that the rhizosphere is an interesting hidden reservoir for polyhydroxyalkanoate producers.
Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan
2017-03-25
A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.
The management of aldosterone-producing adrenal adenomas--does adrenalectomy increase costs?
Reimel, Bethann; Zanocco, Kyle; Russo, Mark J; Zarnegar, Rasa; Clark, Orlo H; Allendorf, John D; Chabot, John A; Duh, Quan-Yang; Lee, James A; Sturgeon, Cord
2010-12-01
Most experts agree that primary hyperaldosteronism (PHA) caused by an aldosterone-producing adenoma (APA) is best treated by adrenalectomy. From a public health standpoint, the cost of treatment must be considered. We sought to compare the current guideline-based (surgical) strategy with universal pharmacologic management to determine the optimal strategy from a cost perspective. A decision analysis was performed using a Markov state transition model comparing the strategies for PHA treatment. Pharmacologic management for all patients with PHA was compared with a strategy of screening for and resecting an aldosterone-producing adenoma. Success rates were determined for treatment outcomes based on a literature review. Medicare reimbursement rates were calculated to estimate costs from a third-party payer perspective. Screening for and resecting APAs was the least costly strategy in this model. For a reference patient with 41 remaining years of life, the discounted expected cost of the surgical strategy was $27,821. The discounted expected cost of the medical strategy was $34,691. The cost of adrenalectomy would have to increase by 156% to $22,525 from $8,784 for universal pharmacologic therapy to be less costly. Screening for APA is more costly if fewer than 9.6% of PHA patients have resectable APA. Resection of APAs was the least costly treatment strategy in this decision analysis model. Copyright © 2010 Mosby, Inc. All rights reserved.
Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process.
Liu, Yiwen; Peng, Lai; Chen, Xueming; Ni, Bing-Jie
2015-07-21
A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.
Tobella, Lorena M; Bunster, Marta; Pooley, Amalia; Becerra, José; Godoy, Felix; Martínez, Miguel A
2005-09-01
Poly-beta-hydroxyalkanoates (PHA) polymer is synthesized by different bacterial species. There has been considerable interest in the development and production of biodegradable polymers; however, the high cost of PHA production has restricted its applications. Kraft cellulose industry effluents containing 2,4,6-trichlorophenol (10 or 20 microg ml(-1)) were used by the bacteria Sphingopyxis chilensis S37 and Wautersia sp. PZK to synthesize PHA. In this condition, S. chilensis S37 was able to grow and degrade 2,4,6-trichlorophenol (ca. 60%) and 80% of these cells accumulated PHA. Wautersia PZK completely degraded 2,4,6-TCP and more than 90% of the cells accumulated PHA in 72 h. The PHA detection was performed by flow cytometry and polyester composition was characterized by gas chromatography-mass spectroscopy (GC-MS), indicating that these polymers are made by 3-hydroxybutyric acid and 3-hydroxyhexadecanoic acid for S37 and PZK strains, respectively. Results demonstrated that strains' growth and PHA production and composition are not modified in cellulose effluents with or without 2,4,6-TCP (10-20 microg ml(-1)). Therefore, our results indicate that S. chilensis S37 and Wautersia sp. PZK are able to degrade a toxic compound such as a 2,4,6-TCP and simultaneously produce a valuable biopolymer using low-value substrates.
Cellular and Molecular Approaches to Polymer Synthesis by Bacteria
1989-03-01
of biodegradable polymers f rom Pseudowonas oleovorans.....L (See appended research summaries pp. 1-4.) 20. DISTRIBUTIONI/AVAILABILITY OF ABSTRACT 21...during the growth of the organism , polymer production is greatest and harvesting gives maximum PHA vield. Other experiments have also been conducted...Functional PHA from Rhodospirillum and Alcaligenes The major emphasis is to produce functional biodegradable polymers and new, totally biodegradable
Troschl, Clemens; Meixner, Katharina; Drosg, Bernhard
2017-01-01
Cyanobacteria, as photoautotrophic organisms, provide the opportunity to convert CO2 to biomass with light as the sole energy source. Like many other prokaryotes, especially under nutrient deprivation, most cyanobacteria are able to produce polyhydroxyalkanoates (PHAs) as intracellular energy and carbon storage compounds. In contrast to heterotrophic PHA producers, photoautotrophic cyanobacteria do not consume sugars and, therefore, do not depend on agricultural crops, which makes them a green alternative production system. This review summarizes the recent advances in cyanobacterial PHA production. Furthermore, this study reports the working experience with different strains and cultivating conditions in a 200 L pilot plant. The tubular photobioreactor was built at the coal power plant in Dürnrohr, Austria in 2013 for direct utilization of flue gases. The main challenges were the selection of robust production strains, process optimization, and automation, as well as the CO2 availability. PMID:28952505
Oxidative phenomena are implicated in human T-cell stimulation.
Sekkat, C; Dornand, J; Gerber, M
1988-01-01
Phytohaemagglutinin (PHA), phorbol myristate acetate (PMA) and PHA + PMA stimulation of T-enriched peripheral blood lymphocytes (PBL) and the Jurkat malignant T-cell line leads to oxidative-product formation, as evaluated by flow cytofluorometric studies, an increase in K+ flux across the membrane, cGMP production and a depolarization of the cell membrane. Irradiation (20 Gy), which enhances IL-2 synthesis by activated T-enriched PBL and Jurkat cells, also increases oxidative product formation, K+ flux, cGMP production, and induces cell membrane depolarization. Conversely, irradiation does not produce a rise in intracellular free Ca2+, as measured in PHA-stimulated Jurkat cells. PMA is also without effect on intracellular free Ca2+, added before or after PHA stimulation. Thus, except for the rise in intracellular free Ca2+, irradiation and stimulation exert similar effects on some of the events observed in IL-2-producing Jurkat cells, but these effects are not additive. Stimulation and irradiation effects are shown to be additive or synergistic only for cGMP production. It is proposed that irradiation may increase IL-2 synthesis by participating in an additional signal related to the oxidative metabolism of arachidonic acid (AA). PMID:3258279
Hori, Chiaki; Oishi, Kenta; Matsumoto, Ken'ichiro; Taguchi, Seiichi; Ooi, Toshihiko
2018-06-01
In our previous study, artificial polyhydroxyalkanoate (PHA) poly[(R)-2-hydroxybutyrate] [P(2HB)] was successfully biosynthesized from racemic 2HB in recombinant Escherichia coli using an engineered PHA synthase, PhaC1 Ps (S325T/Q481K). Although P(2HB) has promising material properties, the low level of polymer production was a drawback. In this study, we performed directed evolution of PhaC1 Ps towards enhanced P(2HB) accumulation in E. coli by site-directed dual saturation mutagenesis at the positions 477 and 481, which was known for their potential in enhancing natural PHA accumulation. By using a screening on agar plates with Nile red, eight colonies were isolated which produced a greater amount of P(2HB) compared to a colony expressing the parent enzyme PhaC1 Ps (S325T/Q481K). Among them, the cells expressing PhaC1 Ps (S325T/S477R/Q481G) [ST/SR/QG] accumulated polymer at the highest level (up to 2.9-fold). As seen in PhaC1 Ps (ST/SR/QG), glycine and basic amino acid residues (K or R) were frequently found at the two positions of the select mutated enzymes. The enzymatic activity of PhaC1 Ps (ST/SR/QG) toward 2HB-CoA was approximately 3-fold higher than that of the parent enzyme. Additionally, expression levels of the select mutated enzymes were lower than the parent. These results indicated that PhaC1 Ps mutagenesis at the positions 477 and 481 increased specific activity toward 2HB-CoA and it could result in the enhanced production of P(2HB). Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G
1999-01-01
Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.
Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins.
Maestro, Beatriz; Sanz, Jesús M
2017-11-01
Polyhydroxyalkanoates (PHAs) are natural polyesters of increasing biotechnological importance that are synthesized by many prokaryotic organisms as carbon and energy storage compounds in limiting growth conditions. PHAs accumulate intracellularly in form of inclusion bodies that are covered with a proteinaceous surface layer (granule-associated proteins or GAPs) conforming a network-like surface of structural, metabolic and regulatory polypeptides, and configuring the PHA granules as complex and well-organized subcellular structures that have been designated as 'carbonosomes'. GAPs include several enzymes related to PHA metabolism (synthases, depolymerases and hydroxylases) together with the so-called phasins, an heterogeneous group of small-size proteins that cover most of the PHA granule and that are devoid of catalytic functions but nevertheless play an essential role in granule structure and PHA metabolism. Structurally, phasins are amphiphilic proteins that shield the hydrophobic polymer from the cytoplasm. Here, we summarize the characteristics of the different phasins identified so far from PHA producer organisms and highlight the diverse opportunities that they offer in the Biotechnology field. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera
2014-11-01
Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article. Copyright © 2014 Elsevier B.V. All rights reserved.
Complete Genome Sequences of Three Cupriavidus Strains Isolated from Various Malaysian Environments.
Shafie, Nur Asilla Hani; Lau, Nyok-Sean; Ramachandran, Hema; Amirul, Al-Ashraf Abdullah
2017-01-19
Cupriavidus sp. USMAA1020, USMAA2-4, and USMAHM13 are capable of producing polyhydroxyalkanoate (PHA). This biopolymer is an alternative solution to synthetic plastics, whereby polyhydroxyalkanoate synthase is the key enzyme involved in PHA biosynthesis. Here, we report the complete genomes of three Cupriavidus sp. strains: USMAA1020, USMAA2-4, and USMAHM13. Copyright © 2017 Shafie et al.
Montiel-Jarillo, Gabriela; Carrera, Julián; Suárez-Ojeda, María Eugenia
2017-04-01
Polyhydroxyalkanoates (PHA) are biopolymers that can be an alternative against conventional plastics. The study reported herein evaluated the enrichment of a mixed microbial culture (MMC) operated under feast/famine regime and different pHs in a sequencing batch reactor (SBR) using acetate as sole carbon source to produce polyhydroxyalkanoates (PHAs). The enrichment step was evaluated at controlled pH of 7.5 and also without pH control (averaged value of 9.0). The acetate uptake rate (-q S ) of both enrichments at the end of the experimental period exhibited similar behaviour being about 0.18CmolAcCmolX -1 h -1 and 0.19CmolAcCmolX -1 h -1 for SBR-A and SBR-B, respectively. However, the PHA-storing capacity of the biomass enriched without pH control was better, exhibiting a maximum PHA content of 36% (gPHAg -1 VSS) with a PHA production rate (q PHA ) of 0.16CmolPHACmolX -1 h -1 . Batch experiments were performed to evaluate PHA-storing capacity of the enriched culture at different pHs and nutrients concentrations. In the pH experiments (without nutrient limitation), it was found that in the absence of controlled pH, the enriched biomass exhibited a PHA content of 44% gPHAg -1 VSS with -q S and PHA to substrate yield (Y PHA/Ac ) of 0.57CmolAcCmolX -1 h -1 and 0.33CmolPHACmolAc -1 , respectively. Regarding the experiments at variable nutrients concentration (pH ranging 8.8 to 9.2), the results indicate that the PHA content in the enriched biomass is significantly higher being around 51% gPHAg -1 VSS under nitrogen limitation. This work demonstrated the feasibility of the enrichment of a MMC with PHA storage ability without pH control. Results also suggest that better PHAs contents and substrate uptake rates are obtained without controlling the pH in the accumulation step. Finally, this work also highlights the importance of understanding the role of nutrients concentration during the accumulation step. Copyright © 2017 Elsevier B.V. All rights reserved.
Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V.; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David. B.
2015-01-01
Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. ‘Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the ‘Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the monomer composition of mcl-PHA polymers. Understanding the relationships between genome content, gene and gene product expression, and how these factors influence polymer synthesis, will aid in optimization of mcl-PHA production by P. putida LS46 using biodiesel waste streams. PMID:26544181
David, Yokimiko; Joo, Jeong Chan; Yang, Jung Eun; Oh, Young Hoon; Lee, Sang Yup; Park, Si Jae
2017-11-01
The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L -1 of glucose, 2 g L -1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L -1 of glucose and 2 g L -1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volova, T G; Trusova, M Y; Kalacheva, G S; Kozhevnicov, I V
2006-11-01
Physiological-biochemical, genetic, and cultural properties of the glucose-utilizing mutant strain Ralstonia eutropha B8562 have been compared with those of its parent strain R. eutropha B5786. It has been shown that growth characteristics of the strain cultured on glucose as the sole carbon and energy source are comparable with those of the parent strain. Strain B8562 is characterized by high polyhydroxyalkanoate (PHA) yields on different carbon sources (CO(2), fructose, and glucose). PHA accumulation in the strain batch cultured on glucose under nitrogen deficiency reaches 90 %. The major monomer in the PHA is beta-hydroxybutyric acid (more than 99 mol %); the identified minor components are beta-hydroxyvaleric acid (0.25-0.72 mol %) and beta-hydroxyhexanoic acid (0.08-1.5 mol %). The strain is a promising PHA producer on available sugar-containing media with glucose.
Matavulj, M; Molitoris, H P
1992-12-01
The current problems with decreasing fossile resources and increasing environmental pollution by petrochemical-based plastics have stimulated investigations to find biosynthetic materials which are also biodegradable. Bacterial reserve materials such as polyhydroxyalkanoates (PHA) have been discovered to possess thermoplastic properties and can be synthesized from renewable resources. Poly-beta-hydroxybutyric acid (PHB) is at present the most promising PHA; and BIOPOL, its copolymer with poly-beta-hydroxy-valerate (PHV), is already industrially produced (ICI, UK), and used as packaging material (WELLA, FRG). According to the literature, PHA degradation has so far mainly been observed in bacteria; only under certain environmental conditions has fungal degradation of PHAs been indicated. Since fungi constitute an important part of microbial populations participating in degradation processes, a simple screening method for fungal degradation of BIOPOL, a PHA-based plastic, was developed. Several media with about 150 fungal strains from different terrestrial environments and belonging to different systematic and ecological groups were used. PHA depolymerization was tested on three PHB-based media, each with 0.1% BIOPOL or PHB homopolymer causing turbidity of the medium. The media contained either a comparatively low or high content of organic carbon (beside PHA) or were based on mineral medium with PHA as the principal source of carbon. The degradation activity was detectable due to formation of a clear halo around the colony (Petri plates) or a clear zone under the colony (test tubes).(ABSTRACT TRUNCATED AT 250 WORDS)
The PHA Test Reflects Acquired T-Cell Mediated Immunocompetence in Birds
Tella, José L.; Lemus, Jesús A.; Carrete, Martina; Blanco, Guillermo
2008-01-01
Background cological immunology requires techniques to reliably measure immunocompetence in wild vertebrates. The PHA-skin test, involving subcutaneous injection of a mitogen (phytohemagglutinin, PHA) and measurement of subsequent swelling as a surrogate of T-cell mediated immunocompetence, has been the test of choice due to its practicality and ease of use in the field. However, mechanisms involved in local immunological and inflammatory processes provoked by PHA are poorly known, and its use and interpretation as an acquired immune response is currently debated. Methodology Here, we present experimental work using a variety of parrot species, to ascertain whether PHA exposure produces larger secondary than primary responses as expected if the test reflects acquired immunocompetence. Moreover, we simultaneously quantified T-lymphocyte subsets (CD4+, CD5+ and CD8+) and plasma proteins circulating in the bloodstream, potentially involved in the immunological and inflammatory processes, through flow cytometry and electrophoresis. Principal Findings Our results showed stronger responses after a second PHA injection, independent of species, time elapsed and changes in body mass of birds between first and second injections, thus supporting the adaptive nature of this immune response. Furthermore, the concomitant changes in the plasma concentrations of T-lymphocyte subsets and globulins indicate a causal link between the activation of the T-cell mediated immune system and local tissue swelling. Conclusions/Significance These findings justify the widespread use of the PHA-skin test as a reliable evaluator of acquired T-cell mediated immunocompetence in diverse biological disciplines. Further experimental research should be aimed at evaluating the relative role of innate immunocompetence in wild conditions, where the access to dietary proteins varies more than in captivity, and to ascertain how PHA responses relate to particular host-parasite interactions. PMID:18820730
Toxicity Assessment of Common Beans (Phaseolus vulgaris L.) Widely Consumed by Tunisian Population.
Nciri, Nader; Cho, Namjun; El Mhamdi, Faiçal; Ben Ismail, Hanen; Ben Mansour, Abderraouf; Sassi, Fayçal Haj; Ben Aissa-Fennira, Fatma
2015-09-01
This research aimed at assessing the content and the functional properties of phytohemagglutinin (PHA) in different varieties of beans widely consumed in Tunisia through soaking, cooking, autoclaving, germination, and their combinations. This study was carried out on three varieties of white beans grown in different localities of Tunisia, namely Twila, Coco, and Beldia, as well as on imported and local canned beans. All bean samples underwent biochemical and immunological evaluation by employing several techniques such as indirect competitive enzyme-linked immunosorbent assay (ELISA), hemagglutinating assay, Ouchterlony double immunodiffusion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Biochemical and immunological analyses indicated that raw dry beans contained a considerable amount of proteins and PHAs. ELISA demonstrated that soaking, either in plain water or in alkaline solution, caused an increase in the concentration of PHA. A slight increase of PHA was produced equally by germination during 4 days in all bean varieties. Cooking or autoclaving of presoaked beans resulted in a complete disappearance of PHA. ELISA test also proved that both imported and local canned beans contained fingerprints of PHA. Hemagglutination assays showed that not only cooked and autoclaved presoaked beans lacked the ability to agglutinate red blood cells but also autoclaved unsoaked beans did. In agar gel immunodiffusion using rabbit anti-PHA serum, raw, soaked, cooked unsoaked, and sprouted beans gave precipitin arc reactions, indicating that PHA existed in immunoreactive form in the tested seeds. SDS-PAGE electrophoretograms showed protein isolates of Twila and Beldia beans to have different profiles through soaking, cooking, and autoclaving processes. This work revealed that the combination of soaking and cooking/autoclaving was the best way in reducing PHA content and its activity in all bean varieties when compared with germination.
Ong, Su Yean; Kho, Hui-Pheng; Riedel, Sebastian L; Kim, Seok-Won; Gan, Chee-Yuen; Taylor, Todd D; Sudesh, Kumar
2018-01-10
Polyhydroxyalkanoates (PHAs) are produced in microbes as a source of carbon and energy storage. They are biodegradable and have properties similar to synthetic plastics, which make them an interesting alternative to petroleum-based plastics. In this study, a refined method of recovering PHA from Cupriavidus necator biomass was proposed by incorporating the use of the yellow mealworm (the larval phase of the mealworm beetle, Tenebrio molitor) as partial purification machinery, followed by washing of the fecal pellets with distilled water and sodium hydroxide. The PHA contents of the cells used in this study were 55wt% (produced from palm olein) and 60 wt% (produced from waste animal fats). The treatment of distilled water and NaOH further increased the purity of PHA to 94%. In parallel, analysis of the 16S rRNA metagenomic sequencing of the mealworm gut microbiome has revealed remarkable changes in the bacterial diversity, especially between the mealworms fed with cells produced from palm olein and waste animal fats. This biological recovery of PHA from cells is an attempt to move towards a green and sustainable process with the aim of reducing the use of harmful solvents and strong chemicals during polymer purification. The results obtained show that - purities of >90%, without a reduction in the molecular weight, can be obtained through this integrative biological recovery approach. In addition, this study has successfully shown that the cells, regardless of their origins, were readily consumed by the mealworms, and there is a correlation between the feed type and the mealworm gut microbiome. Copyright © 2017 Elsevier B.V. All rights reserved.
Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia.
Dobroth, Zachary T; Hu, Shengjun; Coats, Erik R; McDonald, Armando G
2011-02-01
Crude glycerol (CG), a by-product of biodiesel production, is an organic carbon-rich substrate with potential as feedstock for polyhydroxyalkanoate (PHA) production. PHA is a biodegradable thermoplastic synthesized by microorganisms as an intracellular granule. In this study we investigated PHA production on CG using mixed microbial consortia (MMC) and determined that the enriched MMC produced exclusively polyhydroxybutyrate (PHB) utilizing the methanol fraction. PHB synthesis appeared to be stimulated by a macronutrient deficiency. Intracellular concentrations remained relatively constant over an operational cycle, with microbial growth occurring concurrent with polymer synthesis. PHB average molecular weights ranged from 200-380 kDa, while thermal properties compared well with commercial PHB. The resulting PHB material properties and characteristics would be suitable for many commercial uses. Considering full-scale process application, it was estimated that a 38 million L (10 million gallon) per year biodiesel operation could potentially produce up to 19 metric ton (20.9t on) of PHB per year. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ushimaru, Kazunori; Tsuge, Takeharu
2016-05-01
The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction.
Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji
2014-01-01
In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc. PMID:24584238
Kulkarni, S O; Kanekar, P P; Jog, J P; Sarnaik, S S; Nilegaonkar, S S
2015-01-01
For cost effective production of PHA, agro-wastes like fruit peels, bagasse and deoiled cakes were screened as a sole source of carbon. Halomonas campisalis MCM B-1027, which was isolated from one of the extreme environment, i.e. Lonar Lake, India, was explored for the production of PHA using fruit peels and bagasse having fermentable sugars. Among the agro-wastes tested, 1% (v/v) aqueous extract of bagasse was found to be the optimum carbon source with 47% PHA production on dry cell weight basis. Significant amount of total sugars are utilized and converted into cell mass and PHA, e.g. 62% sugar utilized from bagasse extract, 84% from orange peel extract and 71% from banana peel extract as compared to 51% in case of maltose. Hence the cost of production would be positively reduced. The detailed characterization of PHA formed by H. campisalis using bagasse extract as sole carbon source revealed that the organism produces a copolymer of PHB-co-PHV (94.4:5.6) having molecular weight M(w) 1.394 × 10(6) and melting temperature 168.9 °C. Production of PHA by H. campisalis using aqueous extract of fruit peels and a copolymer PHB-co-PHV using aqueous extract of bagasse is presumably the first report. Copyright © 2014 Elsevier B.V. All rights reserved.
Otálora-Ardila, Aída; Herrera M., L. Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C.
2016-01-01
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform. PMID:27792729
Otálora-Ardila, Aída; Herrera M, L Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C
2016-01-01
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.
Takaku, Hiroaki; Kimoto, Ayumi; Kodaira, Shoko; Nashimoto, Masayuki; Takagi, Masamichi
2006-11-01
A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.
Revelles, Olga; Beneroso, Daniel; Menéndez, J Angel; Arenillas, Ana; García, J Luis; Prieto, M Auxiliadora
2017-11-01
The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio-economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the synthesis of PHA from syngas produced by microwave pyrolysis of the MSW organic fraction from a European city (Seville). Growth rate, uptake rate, biomass yield and PHA production from syngas in R. rubrum have been analysed. The results revealed the strong robustness of this syngas fermentation where the purity of the syngas is not a critical constraint for PHA production. Microwave-induced pyrolysis is a tangible alternative to standard pyrolysis, because it can reduce cost in terms of energy and time as well as increase syngas production, providing a satisfactory PHA yield. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Further characterization of the circulating cell in chronic lymphocytic leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutz, E.F.; Davis, S.; Rubin, A.D.
Peripheral lymphocytes from normal individuals and from patients with chronic lymphocytic leukemia (CLL) were cultured in vitro for 1-7 days. The growth response to phytohemagglutinin (PHA) was quantitated by the incorporation of tritiated uridine into RNA nucleotide during a 2-hr pulse with the radioisotope. While the maximum response in PHA-stimulated normal cultures appeared at 2-3 days, CLL cultures required 5-7 days to develop their maximal response, which was 50 percent-60 percent of the normal magnitude. Dilution of the number of normally reactive lymphocytes by culturing them with totally unreactive, mitomycin-treated cells produced a normal 72-hr maximal response, no matter whatmore » proportion of unreactive cells was included in the PHA-stimulated cultures. In addition, the response of peripheral lymphocytes from patients with myeloblastic leukemia, where large numbers of unreactive myeloblasts diluted the normal small lymphocytes, a depressed reaction occurred at the anticipated 2-3 days. Nylon fiber-adherent lymphocytes consisting of 85 percent immunoglobulin (Ig)-bearing cells responded minimally to PHA, but showed no evidence of a delay. When isolated from CLL patients, both fiber-adherent cells (ig-bearing) as well as non-fiber-adherent (sheep erythrocyte-rosetting) cells responded to PHA in a delayed fashion. Similarly, a case of CLL, in which 93.5 percent of the circulating lymphocytes bore sheep red blood cell receptors, showed its peak response to PHA at 7 days. Therefore, using surface marker criteria considered characteristic of normal T cells and B cells, the delayed response to PHA on the part of CLL lymphocytes was independent of thymic or nonthymic origin.« less
Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.
Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon
2017-05-28
Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.
Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803.
Namakoshi, Katsunori; Nakajima, Tubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Shimizu, Hiroshi
2016-12-10
Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production. In the present study, a nitrogen starvation approach was applied on an ethanol producing strain for inhibiting the growth, since ethanol production competes with the cell growth. The effect of gene deletions in the glycogen and polyhydroxybutyrate (PHB) synthesis pathways was investigated. Measurements of intracellular glycogen and PHB revealed that the glycogen was accumulated under the nitrogen starvation condition and the gene deletion of glycogen synthesis pathway caused the accumulation of PHB. The ethanol producing strain harboring deletions for both the glycogen and the PHB synthesis pathways (ΔglgCΔphaCE/EtOH) produced ethanol at the specific rate of 240mgg (dry cell weight) -1 day -1 under the nitrogen starvation condition. In a high cell density culture (OD 730 =50) using this ΔglgCΔphaCE/EtOH strain, the ethanol production rates were 1.08 and 2.01gL -1 day -1 under light conditions of 40 and 80μmolm -2 s -1 , respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Sathiyanarayanan, Ganesan; Bhatia, Shashi Kant; Song, Hun-Suk; Jeon, Jong-Min; Kim, Junyoung; Lee, Yoo Kyung; Kim, Yun-Gon; Yang, Yung-Hun
2017-04-01
Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620 was found to produce a distinctive medium-chain-length polyhydroxyalkanoate (MCL-PHA) copolymer when grown on structurally unrelated carbon sources including glycerol. The maximum MCL-PHA copolymer yield was obtained about 52.18±4.12% from 7.95±0.66g/L of biomass at 144h of fermentation when 3% glycerol was used as sole carbon and energy source during the laboratory-scale bioreactor process. Characterization of the copolymer was carried out using fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), proton ( 1 H) and carbon ( 13 C) nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and thermo-gravimetric analysis (TGA). The copolymer produced by Pseudomonas sp. PAMC 28620 consisting of four PHA monomers and identified as 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxytetradecanoate (3HTD). An average molecular weight of the copolymer was found approximately 30.244kDa with polydispersity index (PDI) value of 2.05. Thermal analysis showed the produced MCL-PHA copolymer to be low-crystalline (43.73%) polymer with great thermal stability, having the thermal decomposition temperature of 230°C-280°C, endothermic melting temperature (T m ) of 172.84°C, glass transition (T g ) temperature of 3.99°C, and apparent melting enthalpy fusion (ΔH m ) about 63.85Jg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel
2013-01-01
The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224
García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel
2013-01-01
The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.
Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.
Aldor, Ilana S; Keasling, Jay D
2003-10-01
Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.
Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen
2016-09-01
Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haverkamp, Margje H; Marciano, Beatriz E; Frucht, David M; Jain, Ashish; van de Vosse, Esther; Holland, Steven M
2014-05-01
Patients with hypomorphic mutations in Nuclear Factor-κB Essential Modulator (NEMO) are immunodeficient (ID) and most display ectodermal dysplasia and anhidrosis (EDA). We compared cytokine production by NEMO-ID patients with and without EDA. PBMCs of NEMO-ID patients, four with EDA carrying E315A, C417R, D311N and Q403X, and three without EDA carrying E315A, E311_L333del and R254G, were cultured with PHA, PHA plus IL-12p70, LPS, LPS plus IFN-γ, TNF and IL-1β. The production of various cytokines was measured in the supernatants. Fifty-nine healthy individuals served as controls. PBMCs of NEMO-ID patients without EDA produce subnormal amounts of IFN-γ after stimulation with PHA, but normal amounts of IFN-γ after PHA plus IL-12p70. In contrast, IFN-γ production by patients with EDA was low in both cases. Patients with EDA also generate lower PHA-stimulated IL-10 and IL-1β than controls, whereas the production of these cytokines by patients without EDA was normal. Responses of PBMCs in NEMO-ID patients with EDA to PHA with and without IL-12p70 appear less robust than in NEMO-ID patients without EDA. This possibly indicates a better preserved NEMO function in our patients without EDA.
Kihara, Takahiro; Hiroe, Ayaka; Ishii-Hyakutake, Manami; Mizuno, Kouhei; Tsuge, Takeharu
2017-08-01
Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJ YB4 ) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJ YB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJ YB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJ YB4 , which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJ YB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.
Hokamura, Ayaka; Fujino, Kanako; Isoda, Yoshiko; Arizono, Koji; Shiratsuchi, Hideki; Matsusaki, Hiromi
2015-01-01
Pseudomonas sp. 61-3 accumulates two types of polyhydroxyalkanoates (PHAs), poly(3-hydroxybutyrate) [P(3HB)], and poly(3HB-co-3-hydroxyalkanoates) [P(3HB-co-3HA)], and some proteins associated with their PHA granules have been identified. To date, PhaFPs (GA36) and PhaIPs (GA18) were identified from P(3HB-co-3HA) granules. In this study, the gene encoding GA24 associated with P(3HB) granule was identified as phbPPs. PhbPPs was composed of 192 amino acids with a calculated molecular mass of 20.4 kDa and was assumed to be a phasin. phbFPs gene and unknown ORF were also found on phb locus. PhbFPs was anticipated to be the transcriptional repressor of phbPPs gene. PhbPPs was bound to the P(3HB-co-3HA) granules with 3HB composition of more than 87 mol%, and PhaIPs and PhaFPs were bound to the P(3HB-co-3HA) granules with 3HA (C6-C12) composition of more than 13 mol% in the producing cells, suggesting that localization of these proteins is attributed to the monomer compositions of the copolymers.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Metabolic engineering and applications of polyhydroxyalkanoates (PHAs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, S.F.; Gerngross, U.T.; Peoples, O.P.
1995-11-01
Polyhydroxyalkanoates (PHAs) have been recognized for many years as naturally occurring biodegradable plastics. The PHA plastics range from those that resemble polypropylene to other that are more elastomeric. A fundamental understanding of the genetic and biochemical pathways involved in PHA synthesis has now made it possible to produce PHAs commercially at an attractive cost and scale, using Metabolix`s transgenic technology. This technology, which was pioneered at The Massachusetts Institute of Technology, allows PHAs to be produced in the short-term by highly efficient fermentation systems, and ultimately, in plant crops. Production of PHAs in plant crops offers the promise of costsmore » competitive with petroleum derived polymers. Millions of acres of transgenic plant crops could provide millions of tonnes of PHAs, increasing the use of renewable resources, and decreasing the U.S. reliance on imported oil. Furthermore, through the production of new PHA products, this technology provides new outlets to expand the U.S. industrial agricultural base. An overview of the scientific and industrial importance of PHAs, including the molecular genetics, biosynthesis, applications, and markets for these materials will be presented.« less
Kulkarni, Snehal O; Kanekar, Pradnya P; Jog, Jyoti P; Patil, Prashant A; Nilegaonkar, Smita S; Sarnaik, Seema S; Kshirsagar, Pranav R
2011-06-01
Characterisation of polyhydroxyalkanoate (PHA) film produced by haloalkalitolerant Halomonas campisalis (MCM B-1027) in 14L SS fermenter revealed it to have composition of monomer units, HB:HV as 96:4 as analysed by (1)H NMR indicating the PHA as a co-polymer of PHB-co-PHV, molecular weight by gel permeation chromatography as 2.08 × 10(6), melting temperature 166.51°C, tensile strength 18.8 MPa; two relaxations namely beta transition corresponding to the glass rubber transition and alpha transition corresponding to crystalline relaxation by Dynamic Mechanical Thermal analysis and only one relaxation corresponding to MWS interfacial polarisation with activation energy of 129 kJ/mol by broadband dielectric spectroscopy. Optical microscopic studies showed typical Maltese-cross pattern of spherulites. The PHA film was found to be biodegradable by standard ASTM method as well as by soil burial method. The leak proof polymer bags prepared from the film could be used as a packaging material. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tirapelle, Evandro F; Müller-Santos, Marcelo; Tadra-Sfeir, Michelle Z; Kadowaki, Marco A S; Steffens, Maria B R; Monteiro, Rose A; Souza, Emanuel M; Pedrosa, Fabio O; Chubatsu, Leda S
2013-01-01
Herbaspirillum seropedicae is a diazotrophic ß-Proteobacterium found associated with important agricultural crops. This bacterium produces polyhydroxybutyrate (PHB), an aliphatic polyester, as a carbon storage and/or source of reducing equivalents. The PHB polymer is stored as intracellular insoluble granules coated mainly with proteins, some of which are directly involved in PHB synthesis, degradation and granule biogenesis. In this work, we have extracted the PHB granules from H. seropedicae and identified their associated-proteins by mass spectrometry. This analysis allowed us to identify the main phasin (PhaP1) coating the PHB granule as well as the PHB synthase (PhbC1) responsible for its synthesis. A phbC1 mutant is impaired in PHB synthesis, confirming its role in H. seropedicae. On the other hand, a phaP1 mutant produces PHB granules but coated mainly with the secondary phasin (PhaP2). Furthermore, some novel proteins not previously described to be involved with PHB metabolism were also identified, bringing new possibilities to PHB function in H. seropedicae.
Tirapelle, Evandro F.; Müller-Santos, Marcelo; Tadra-Sfeir, Michelle Z.; Kadowaki, Marco A. S.; Steffens, Maria B. R.; Monteiro, Rose A.; Souza, Emanuel M.; Pedrosa, Fabio O.; Chubatsu, Leda S.
2013-01-01
Herbaspirillum seropedicae is a diazotrophic ß-Proteobacterium found associated with important agricultural crops. This bacterium produces polyhydroxybutyrate (PHB), an aliphatic polyester, as a carbon storage and/or source of reducing equivalents. The PHB polymer is stored as intracellular insoluble granules coated mainly with proteins, some of which are directly involved in PHB synthesis, degradation and granule biogenesis. In this work, we have extracted the PHB granules from H. seropedicae and identified their associated-proteins by mass spectrometry. This analysis allowed us to identify the main phasin (PhaP1) coating the PHB granule as well as the PHB synthase (PhbC1) responsible for its synthesis. A phbC1 mutant is impaired in PHB synthesis, confirming its role in H. seropedicae. On the other hand, a phaP1 mutant produces PHB granules but coated mainly with the secondary phasin (PhaP2). Furthermore, some novel proteins not previously described to be involved with PHB metabolism were also identified, bringing new possibilities to PHB function in H. seropedicae. PMID:24086439
Kelwick, Richard; Kopniczky, Margarita; Bower, Iain; Chi, Wenqiang; Chin, Matthew Ho Wai; Fan, Sisi; Pilcher, Jemma; Strutt, James; Webb, Alexander J; Jensen, Kirsten; Stan, Guy-Bart; Kitney, Richard; Freemont, Paul
2015-01-01
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).
Kelwick, Richard; Kopniczky, Margarita; Bower, Iain; Chi, Wenqiang; Chin, Matthew Ho Wai; Fan, Sisi; Pilcher, Jemma; Strutt, James; Webb, Alexander J.; Jensen, Kirsten; Stan, Guy-Bart; Kitney, Richard; Freemont, Paul
2015-01-01
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB). PMID:25699671
Shamala, T R; Vijayendra, S V N; Joshi, G J
2012-07-01
Polyhydroxyalkanoates (PHA) and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1) were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH) or rice bran (RBH) individually or in combination (5-20 g L(-1), based on weight of soluble substrates-SS). In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L(-1) of SS) along with ammonium acetate (1.75 g L(-1)) and corn starch (30 g L(-1)) produced maximum quantity of biomass (10 g L(-1)) and PHA (5.9 g L(-1)). The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10-50 g L(-1)) in the medium enhanced fermentative yield of α-amylase (2-40 U mL(-1) min(-1)). The enzyme was active in a wide range of pH (4-9) and temperature (40-60°C). This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates.
Gouveia, Ana R; Freitas, Elisabete B; Galinha, Cláudia F; Carvalho, Gilda; Duque, Anouk F; Reis, Maria A M
2017-07-25
Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process of acidogenesis, PHA culture selection and accumulation. This research focused on the possibility of tailoring PHA by controlling the acidogenic reactor operating conditions, namely pH, using cheese whey as model feedstock. The objective was to investigate the impact that dynamically varying the acidogenic pH, when targeting different PHA monomer profiles, had on the performance and microbial community profile of the anaerobic reactor. To accomplish this, an anaerobic reactor was continuously operated under dynamic pH changes, ranging from pH 4 to 7, turning to pH 6 after each change of pH. At pH 6, lactate and acetate were the dominant products (41-48% gCOD basis and 22-44% gCOD basis, respectively). At low pH, lactate production was higher while at high pH acetate production was favoured. Despite the dynamic change of pH, the fermentation product composition at pH 6 was always similar, showing the resilience of the process, i.e. when the same pH value was imposed, the culture produced the same metabolic products independently of the history of changes occurring in the system. The different fermentation product fractions led to PHAs of different compositions. The microbial community, analysed by high throughput sequencing of bacterial 16S rRNA gene fragments, was dominated by Lactobacillus, but varied markedly when subjected to the highest and lowest pH values of the tested range (4 and 7), with increase in the abundance of Lactococcus and a member of the Candidate Division TM7. Different bacterial profiles obtained at pH 6 during this dynamic operation were able to produce a consistent profile of fermentation products (and consequently a constant PHA composition), demonstrating the community's functional redundancy. Copyright © 2016 Elsevier B.V. All rights reserved.
A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme
Taguchi, Seiichi; Yamada, Miwa; Matsumoto, Ken'ichiro; Tajima, Kenji; Satoh, Yasuharu; Munekata, Masanobu; Ohno, Katsuhiro; Kohda, Katsunori; Shimamura, Takashi; Kambe, Hiromi; Obata, Shusei
2008-01-01
Polylactate (PLA) is synthesized as a representative bio-based polyester by the chemo-bio process on the basis of metal catalyst-mediated chemical polymerization of lactate (LA) supplied by microbial fermentation. To establish the one-step microbial process for synthesis of LA-based polyesters, we explored whether polyhydroxyalkanoate (PHA) synthase would exhibit polymerizing activity toward a LA-coenzyme A (CoA), based on the fact that PHA monomeric constituents, especially 3-hydroxybutyrate (3HB), are structurally analogous to LA. An engineered PHA synthase was discovered as a candidate by a two-phase in vitro polymerization system previously developed. An LA-CoA producing Escherichia coli strain with a CoA transferase gene was constructed, and the generation of LA-CoA was demonstrated by capillary electrophoresis/MS analysis. Next, when the engineered PHA synthase gene was introduced into the resultant recombinant strain, we confirmed the one-step biosynthesis of the LA-incorporated copolyester, P(6 mol% LA-co-94 mol% 3HB), with a number-average molecular weight of 1.9 × 105, as revealed by gel permeation chromatography, gas chromatography/MS, and NMR. PMID:18978031
Ruiz-González, Rubén; Milán, Paula; Bresolí-Obach, Roger; Stockert, Juan Carlos; Villanueva, Angeles; Cañete, Magdalena; Nonell, Santi
2017-02-17
A combination of therapies to treat cancer malignancies is at the forefront of research with the aim to reduce drug doses (ultimately side effects) and diminish the possibility of resistance emergence given the multitarget strategy. With this goal in mind, in the present study, we report the combination between the chemotherapeutic drug doxorubicin (DOXO) and the photosensitizing agent pheophorbide a (PhA) to inactivate HeLa cells. Photophysical studies revealed that DOXO can quench the excited states of PhA, detracting from its photosensitizing ability. DOXO can itself photosensitize the production of singlet oxygen; however, this is largely suppressed when bound to DNA. Photodynamic treatments of cells incubated with DOXO and PhA led to different outcomes depending on the concentrations and administration protocols, ranging from antagonistic to synergic for the same concentrations. Taken together, the results indicate that an appropriate combination of DOXO with PhA and red light may produce improved cytotoxicity with a smaller dose of the chemotherapeutic drug, as a result of the different subcellular localization, targets and mode of action of the two agents.
Ruiz-González, Rubén; Milán, Paula; Bresolí-Obach, Roger; Stockert, Juan Carlos; Villanueva, Angeles; Cañete, Magdalena; Nonell, Santi
2017-01-01
A combination of therapies to treat cancer malignancies is at the forefront of research with the aim to reduce drug doses (ultimately side effects) and diminish the possibility of resistance emergence given the multitarget strategy. With this goal in mind, in the present study, we report the combination between the chemotherapeutic drug doxorubicin (DOXO) and the photosensitizing agent pheophorbide a (PhA) to inactivate HeLa cells. Photophysical studies revealed that DOXO can quench the excited states of PhA, detracting from its photosensitizing ability. DOXO can itself photosensitize the production of singlet oxygen; however, this is largely suppressed when bound to DNA. Photodynamic treatments of cells incubated with DOXO and PhA led to different outcomes depending on the concentrations and administration protocols, ranging from antagonistic to synergic for the same concentrations. Taken together, the results indicate that an appropriate combination of DOXO with PhA and red light may produce improved cytotoxicity with a smaller dose of the chemotherapeutic drug, as a result of the different subcellular localization, targets and mode of action of the two agents. PMID:28218672
Volova, T G; Kozhevnikov, I V; Dolgopolova, Iu B; Trusova, M Iu; Kalacheva, G S; Aref'eva, Iu V
2005-01-01
The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.
Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.
Kumar, Prasun; Ray, Subhasree; Kalia, Vipin C
2016-01-01
Production of polyhydroxyalkanoate (PHA) co-polymers by Bacillus spp. was studied by feeding defined volatile fatty acids (VFAs) obtained through controlled hydrolysis of various wastes. Eleven mixed hydrolytic cultures (MHCs) each containing 6 strains could generate VFA from slurries of (2% total solids): pea-shells (PS), potato peels (PP), apple pomace (AP) and onion peels (OP). PS hydrolysates (obtained with MHC2 and MHC5) inoculated with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45 produced co-polymers of PHA at the rate of 15-60mg/L with a 3HV content of 1%w/w. An enhancement in PHA yield of 3.66-fold, i.e. 205-550mg/L with 3HV content up to 7.5%(w/w) was observed upon addition of OP hydrolysate and 1% glucose (w/v) to PS hydrolysates. This is the first demonstration, where PHA co-polymer composition, under non-axenic conditions, could be controlled by customizing VFA profile of the hydrolysate by the addition of different biowastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jang, Seong Han; Jang, Ho Am; Lee, Junbeom; Kim, Jong Uk; Lee, Seung Ah; Park, Kyoung-Eun; Kim, Byung Hyun; Jo, Yong Hun; Lee, Bok Luel
2017-06-01
Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (Δ phaP1 , Δ phaP2 , Δ phaP3 , and Δ phaP4 mutants), one phaR gene-depleted mutant, and a phaR -complemented mutant (Δ phaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro , the Δ phaP3 and Δ phaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the Δ phaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia -infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the Δ phaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut. IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP -depleted mutants and one phaR -depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut. Copyright © 2017 American Society for Microbiology.
Jang, Seong Han; Jang, Ho Am; Lee, Junbeom; Kim, Jong Uk; Lee, Seung Ah; Park, Kyoung-Eun; Kim, Byung Hyun; Jo, Yong Hun
2017-01-01
ABSTRACT Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut. IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut. PMID:28341680
Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten
2012-01-01
The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (ΔH(f)) of 100.9 (± 0.1) J g(-1).
Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten
2012-01-01
The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C8∶0) to oleic acid (C18∶1) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the 1H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T d) of 264.6 to 318.8 (±0.2) oC, melting temperature (T m) of 43. (±0.2) oC, glass transition temperature (T g) of −1.0 (±0.2) oC and apparent melting enthalpy of fusion (ΔH f) of 100.9 (±0.1) J g−1. PMID:23028854
Gao, W Y; Shirasaka, T; Johns, D G; Broder, S; Mitsuya, H
1993-01-01
The antiviral activity of azidothymidine (AZT), dideoxycytidine (ddC), and dideoxyinosine (ddI) against HIV-1 was comparatively evaluated in PHA-stimulated PBM. The mean drug concentration which yielded 50% p24 Gag negative cultures were substantially different: 0.06, 0.2, and 6 microM for AZT, ddC, and ddI, respectively. We found that AZT was preferentially phosphorylated to its triphosphate (TP) form in PHA-PBM rather than unstimulated, resting PBM (R-PBM), producing 10- to 17-fold higher ratios of AZTTP/dTTP in PHA-PBM than in R-PBM. The phosphorylation of ddC and ddI to their TP forms was, however, much less efficient in PHA-PBM, resulting in approximately 5-fold and approximately 15-fold lower ratios of ddCTP/dCTP and ddATP/dATP, respectively, in PHA-PBM than in R-PBM. The comparative order of PHA-induced increase in cellular enzyme activities examined was: thymidine kinase > uridine kinase > deoxycytidine kinase > adenosine kinase > 5'-nucleotidase. We conclude that AZT, ddC, and ddI exert disproportionate antiviral effects depending on the activation state of the target cells, i.e., ddI and ddC exert antiviral activity more favorably in resting cells than in activated cells, while AZT preferentially protects activated cells against HIV infection. Considering that HIV-1 proviral DNA synthesis in resting lymphocytes is reportedly initiated at levels comparable with those of activated lymphocytes, the current data should have practical relevance in the design of anti-HIV chemotherapy, particularly combination chemotherapy. PMID:8387546
2011-01-01
Ralstonia eutropha PHB-4 expressing Pseudomonas sp. 61-3 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps) synthesizes PHA copolymer containing 3-hydroxybutyrate (3HB) and a small amount (0.5 mol%) of 3-hydroxy-4-methylvalerate (3H4MV) from fructose as a carbon source. In this study, enhanced incorporation of 3H4MV into PHA was investigated using branched amino acid leucine as a precursor of 3H4MV. Leucine has the same carbon backbone as 3H4MV and is expected to be a natural and self-producible precursor. We found that the incorporation of 3H4MV was enhanced by the supplementation of excess amount (10 g/L) of leucine in the culture medium. This finding indicates that 3H4MV can be derived from leucine. To increase metabolic flux to leucine biosynthesis in the host strain by eliminating the feedback inhibition, the cells were subjected to N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and leucine analog resistant mutants were generated. The mutants showed statistically higher 3H4MV fraction than the parent strain without supplementing leucine. Additionally, by supplying excess amount of leucine, the mutants synthesized 3HB-based PHA copolymer containing 3.1 mol% 3H4MV and 1.2 mol% 3-hydroxyvalerate (3HV) as minor constituents, which significantly affected the thermal properties of the copolymer. This study demonstrates that it is possible to enhance the monomer supply of 3H4MV into PHA by manipulating leucine metabolism. PMID:21906338
Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida.
Li, Shi Yan; Dong, Cui Ling; Wang, Shen Yu; Ye, Hai Mu; Chen, Guo-Qiang
2011-04-01
Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ(Ac) cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ(A.c)) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T(g)), one melting temperature (T(m)) and one cool crystallization temperature (T(c)). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young's modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community. © Springer-Verlag 2010
Sznajder, Anna
2014-01-01
The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure. PMID:24907326
Sznajder, Anna; Jendrossek, Dieter
2014-08-01
The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Mezzina, Mariela P; Álvarez, Daniela S; Egoburo, Diego E; Díaz Peña, Rocío; Nikel, Pablo I; Pettinari, M Julia
2017-07-15
The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals. IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources. Copyright © 2017 American Society for Microbiology.
[Genetic modification of Methylobacterium extorquens G10 producer strain of polyhydroxybutyrate].
Fedorov, D N; Zamakhaeva, S A; Ezhov, V A; Doronina, N V; Trotsenko, Iu A
2014-01-01
The effect of the increased copy number of polyhydroxybutyrate (PHB) biosynthesis genes in pink-pigmented methylobacterium Methylobacterium extorquens G10 on properties of the biopolymer was studied. The activity of poly-3-hydroxybutyril-synthase (PHB-synthase) was shown to increase and the molecular weight of synthesized PHB decreases twofold (150 --> 79 kDa) after insertion of extra copies of phaC and phaCAB genes into cells of the producer strain, whereas the physicochemical properties of the plastic changed insignificantly. White mutant M. extorquens G10-W with disrupted synthesis of the carotenoid pigment (defect by the crtI gene, which codes for phytoene desaturase) was established to have the same rate of growth and level of PHB accumulation as the initial strain G10. The G10-W strain is a promising producer of PHB, with decreased expenses for purification and PHB biosynthesis.
Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E
2008-09-01
Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.
Cai, Shuangfeng; Cai, Lei; Liu, Hailong; Liu, Xiaoqing; Han, Jing; Zhou, Jian
2012-01-01
The polyhydroxyalkanoate (PHA) granule-associated proteins (PGAPs) are important for PHA synthesis and granule formation, but currently little is known about the haloarchaeal PGAPs. This study focused on the identification and functional analysis of the PGAPs in the haloarchaeon Haloferax mediterranei. These PGAPs were visualized with two-dimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption ionization–tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). The most abundant protein on the granules was identified as a hypothetical protein, designated PhaP. A genome-wide analysis revealed that the phaP gene is located upstream of the previously identified phaEC genes. Through an integrative approach of gene knockout/complementation and fermentation analyses, we demonstrated that this PhaP is involved in PHA accumulation. The ΔphaP mutant was defective in both PHA biosynthesis and cell growth compared to the wild-type strain. Additionally, transmission electron microscopy results indicated that the number of PHA granules in the ΔphaP mutant cells was significantly lower, and in most of the ΔphaP cells only a single large granule was observed. These results demonstrated that the H. mediterranei PhaP was the predominant structure protein (phasin) on the PHA granules involved in PHA accumulation and granule formation. In addition, BLASTp and phylogenetic results indicate that this type of PhaP is exclusively conserved in haloarchaea, implying that it is a representative of the haloarchaeal type PHA phasin. PMID:22247127
24 CFR 982.355 - Portability: Administration by receiving PHA.
Code of Federal Regulations, 2011 CFR
2011-04-01
... by the receiving PHA. (1) If funding is available under the consolidated ACC for the receiving PHA... consolidated ACC for the receiving PHA tenant-based program. (2) HUD may require that the receiving PHA absorb... families to the receiving PHA from funds available under the initial PHA ACC. (2) HUD may provide...
24 CFR 982.355 - Portability: Administration by receiving PHA.
Code of Federal Regulations, 2010 CFR
2010-04-01
... by the receiving PHA. (1) If funding is available under the consolidated ACC for the receiving PHA... consolidated ACC for the receiving PHA tenant-based program. (2) HUD may require that the receiving PHA absorb... families to the receiving PHA from funds available under the initial PHA ACC. (2) HUD may provide...
Chen, Wen-Ming; Lai, Yung-Wei; Chang, Rey-Chang
2012-01-01
The thermophile Cupriavidus sp. strain S-6 accumulated polyhydroxybutyrate (PHB) from glucose at 50°C. A 9.0-kbp EcoRI fragment cloned from the genomic DNA of Cupriavidus sp. S-6 enabled Escherichia coli XL1-Blue to synthesize PHB at 45°C. Nucleotide sequence analysis showed a pha locus in the clone. The thermophilic polyhydroxyalkanoate (PHA) synthase (PhaCCsp) shared 81% identity with mesophilic PhaC of Cupriavidus necator H16. The diversity between these two strains was found dominantly on their N and C termini, while the middle regions were highly homologous (92% identity). We constructed four chimeras of mesophilic and thermophilic phaC genes to explore the mutations related to its thermostability. Among the chimeras, only PhaCH16β, which was PhaCH16 bearing 30 point mutations derived from the middle region of PhaCCsp, accumulated a high content of PHB (65% [dry weight]) at 45°C. The chimera phaCH16β and two parental PHA synthase genes were overexpressed in E. coli BLR(DE3) cells and purified. At 30°C, the specific activity of the chimera PhaCH16β (172 ± 17.8 U/mg) was 3.45-fold higher than that of the parental enzyme PhaCH16 (50 ± 5.2 U/mg). At 45°C, the half-life of the chimera PhaCH16β (11.2 h) was 127-fold longer than that of PhaCH16 (5.3 min). Furthermore, the chimera PhaCH16β accumulated 1.55-fold (59% [dry weight]) more PHA content than the parental enzyme PhaCH16 (38% [dry weight]) at 37°C. This study reveals a limited number of point mutations which enhance not only thermostability but also PhaCH16 activity. The highly thermostable and active PHA synthase will provide advantages for its promising applications to in vitro PHA synthesis and recombinant E. coli PHA fermentation. PMID:22408158
USDA-ARS?s Scientific Manuscript database
Various Pseudomonas chlororaphis strains have been shown to produce rhamnolipid (a biosurfactant), poly(hydroxyalkanoate) (PHA; a biopolymer), and/or antifungal compounds for plants. An ability to metabolize galacto-oligosaccharides in soy molasses would allow P. chlororaphis to use the byproduct as...
Parveez, Ghulam Kadir Ahmad; Bahariah, Bohari; Ayub, Nor Hanin; Masani, Mat Yunus Abdul; Rasid, Omar Abdul; Tarmizi, Ahmad Hashim; Ishak, Zamzuri
2015-01-01
Biodegradable plastics, mainly polyhydroxybutyrate (PHB), which are traditionally produced by bacterial cells, have been produced in the cells of more than 15 plant species. Since the production of biodegradable plastics and the synthesis of oil in plants share the same substrate, acetyl-coenzyme A (acetyl-CoA), producing PHB in oil bearing crops, such as oil palm, will be advantageous. In this study, three bacterial genes, bktB, phaB, and phaC, which are required for the synthesis of PHB and selectable marker gene, bar, for herbicide Basta resistant, were transformed into embryogenic calli. A number of transformed embryogenic lines resistant to herbicide Basta were obtained and were later regenerated to produce few hundred plantlets. Molecular analyses, including polymerase chain reaction (PCR), Southern blot, and real-time PCR have demonstrated stable integration and expression of the transgenes in the oil palm genome. HPLC and Nile blue A staining analyses confirmed the synthesis of PHB in some of the plantlets.
Parveez, Ghulam Kadir Ahmad; Bahariah, Bohari; Ayub, Nor Hanin; Masani, Mat Yunus Abdul; Rasid, Omar Abdul; Tarmizi, Ahmad Hashim; Ishak, Zamzuri
2015-01-01
Biodegradable plastics, mainly polyhydroxybutyrate (PHB), which are traditionally produced by bacterial cells, have been produced in the cells of more than 15 plant species. Since the production of biodegradable plastics and the synthesis of oil in plants share the same substrate, acetyl-coenzyme A (acetyl-CoA), producing PHB in oil bearing crops, such as oil palm, will be advantageous. In this study, three bacterial genes, bktB, phaB, and phaC, which are required for the synthesis of PHB and selectable marker gene, bar, for herbicide Basta resistant, were transformed into embryogenic calli. A number of transformed embryogenic lines resistant to herbicide Basta were obtained and were later regenerated to produce few hundred plantlets. Molecular analyses, including polymerase chain reaction (PCR), Southern blot, and real-time PCR have demonstrated stable integration and expression of the transgenes in the oil palm genome. HPLC and Nile blue A staining analyses confirmed the synthesis of PHB in some of the plantlets. PMID:26322053
Pfeiffer, Daniel
2012-01-01
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with “phasin 2 motifs.” To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules. PMID:22923598
Pfeiffer, Daniel; Jendrossek, Dieter
2012-11-01
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with "phasin 2 motifs." To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules.
Bhattacharyya, Anirban; Jana, Kuntal; Haldar, Saubhik; Bhowmic, Asit; Mukhopadhyay, Ujjal Kumar; De, Sudipta; Mukherjee, Joydeep
2015-05-01
Haloferax mediterranei has potential for economical industrial-scale production of polyhydroxyalkanoate (PHA) as it can utilize cheap carbon sources, has capacity for nonsterile cultivation and allows simple product recovery. Molasses-based Indian distilleries are converting themselves to cereal-based distilleries. Waste stillage (14 l) of rice-based ethanol industry was used for the production of PHA by H. mediterranei in the simple plug-flow reactor configuration of the activated sludge process. Cells utilized stillage and accumulated 63 ± 3 % PHA of dry cell weight and produced 13.12 ± 0.05 g PHA/l. The product yield coefficient was 0.27 while 0.14 g/l h volumetric productivity was reached. Simultaneous lowering of 5-day biochemical oxygen demand and chemical oxygen demand values of stillage by 82 % was attained. The biopolymer was characterized as poly-3-(hydroxybutyrate-co-17.9 mol%-hydroxyvalerate) (PHBV). Directional properties of decanoic acid jointly with temperature-dependent water solubility in decanoic acid were employed for two-step desalination of the spent stillage medium in a cylindrical baffled-tank with an immersed heater and a stirrer holding axial and radial impellers. 99.3 % of the medium salts were recovered and re-used for PHA production. The cost of PHBV was estimated as US$2.05/kg when the annual production was simulated as 1890 tons. Desalination contributed maximally to the overall cost. Technology and cost-analysis demonstrate that PHA production integrated with ethanol manufacture is feasible in India. This study could be the basis for construction of a pilot plant.
Hoffmann, N; Steinbüchel, A; Rehm, B H
2000-11-01
Various pseudomonads are capable of the synthesis of polyhydroxyalkanoate (PHA), composed of medium chain length (MCL) 3-hydroxy fatty acids (C6-C14), when grown on simple carbon sources such as, for example, gluconate or acetate. In Pseudomonas putida, the fatty acid de novo synthesis and PHA synthesis are linked by the transacylase PhaG. Southern hybridization experiments with digoxigenin-labeled phaG(Pp) from P. putida and genomic DNA from various pseudomonads indicate that phaG homologues are present in various other pseudomonads. Although P. oleovorans does not accumulate PHA(MCL) from non-related carbon sources, its genomic DNA reveals a strong hybridization signal. We employed PCR to amplify this phaG homologue. The respective PCR product comprising the coding region of phaG(Po) was cloned into pBBR1MCS-2, resulting in plasmid pBHR84. DNA sequencing revealed that putative PhaG(Po) from P. oleovorans exhibited about 95% amino acid sequence identity to PhaG(Pp) from P. putida. Reverse transcriptase-PCR analysis demonstrated that phaG(Po) was not transcribed even tinder inducing conditions, i.e. in the presence of gluconate as carbon source, whereas induction of phaG(Pp) transcription was obtained in P. putida. When octanoate was used as sole carbon source, only low levels of phaG mRNA were detected in P. putida. Plasmid pBHR84 complemented the phaG-negative mutant PhaG(N)-21 from P. putida. Interestingly, reintroduction of phaG(Po) under lac promoter control into the natural host P. oleovorans established PHA(MCL) synthesis from non-related carbon sources in this bacterium. These data indicated that phaG(Po) in P. oleovorans is not functionally expressed and does not exert its original function.
Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis.
Chen, Guo-Qiang; Jiang, Xiao-Ran
2017-11-20
Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production. All of the efforts should lead to ultrahigh PHA accumulation, controllable PHA compositions and molecular weights, open and continuous PHA production with gravity separation processes, resulting in competitive PHA production cost. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miranda De Sousa Dias, Miguel; Koller, Martin; Puppi, Dario; Morelli, Andrea; Chiellini, Federica; Braunegg, Gerhart
2017-04-20
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain's wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L•h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L•h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.
Alva Munoz, Luis Esteban; Riley, Mark R
2008-08-01
Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification. (c) 2008 Wiley Periodicals, Inc.
Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang
2012-04-05
Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.
Sreekanth, M S; Vijayendra, S V N; Joshi, G J; Shamala, T R
2013-04-01
In this paper, effect of different carbon and nitrogen sources, including hydrolysates of rice bran and wheat bran, on simultaneous production of α-amylase (for hydrolysis of starch in food systems) and polyhydroxyalkanoates (PHA, a green biopolymer, which can be used as a packing material for foods) by Bacillus sp. CFR 67 was studied by submerged fermentation. Amongst various carbon sources tested, glucose and sucrose supported production of significantly (P < 0.05) higher amount of α-amylase (66 U/ml) and PHA (444 mg/l), respectively. Of the nitrogen sources tested, ammonium acetate and beef extract led to the production of maximum amount of amylase (36 U/ml) and PHA (592 mg/l), respectively. Supplementation of the production medium with wheat bran hydrolysate (50 ml/l) produced significantly higher amounts of amylase (73 U/ml) and PHA (524 mg/l). Thus this study indicated the potential of agro-residues for the production of value added biomolecules, which can reduce the cost of production of these molecules and enables to reduce the pollution mainly caused by the use of non biodegradable plastics.
Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis.
Zhao, Hongyu; Yao, Zhenyu; Chen, Xiangbin; Wang, Xinquan; Chen, Guo-Qiang
2017-11-01
Phasins are unusual amphiphilic proteins that bind to microbial polyhydroxyalkanoate (PHA) granules in nature and show great potential for various applications in biotechnology and medicine. Despite their remarkable diversity, only the crystal structure of PhaP A h from Aeromonas hydrophila has been solved to date. Based on the structure of PhaP A h , homology models of PhaP A z from Azotobacter sp. FA-8 and PhaP TD from Halomonas bluephagenesis TD were successfully established, allowing rational mutagenesis to be conducted to enhance the stability and surfactant properties of these proteins. PhaP A z mutants, including PhaP A z Q38L and PhaP A z Q78L, as well as PhaP TD mutants, including PhaP TD Q38M and PhaP TD Q72M, showed better emulsification properties and improved thermostability (6-10°C higher melting temperatures) compared with their wild-type homologues under the same conditions. Importantly, the established PhaP homology-modelling approach, based on the high-resolution structure of PhaP A h , can be generalized to facilitate the study of other PhaP members. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Castro-Mayorga, Jinneth Lorena; Fabra, Maria Jose; Cabedo, Luis; Lagaron, Jose Maria
2016-12-29
Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA) and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs) was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces.
Castro-Mayorga, Jinneth Lorena; Fabra, Maria Jose; Cabedo, Luis; Lagaron, Jose Maria
2016-01-01
Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA) and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs) was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces. PMID:28336838
Wu, Chin-San
2017-09-01
The structural, antioxidant and cytocompatibility properties of membranes prepared from polyhydroxyalkanoate (PHA) and spent coffee ground (SCG) blends (PHA/SCG) were studied. Acrylic acid-grafted PHA (PHA-g-AA) was used to enhance the desirable characteristics of these membranes, which had better tensile properties than the corresponding PHA/SCG membranes. The water resistance of the PHA-g-AA/SCG membranes was greater than that of the PHA/SCG membranes, and a cytocompatibility evaluation with mouse normal tail fibroblasts (FBs) indicated that both materials were nontoxic. Cell cycle assays of FBs on PHA/SCG and PHA-g-AA/SCG membrane samples were not affected by the DNA content related to damage. Moreover, SCG enhanced the saccharide and polyphenol contents, and antioxidant properties, of the PHA-g-AA/SCG and PHA/SCG membranes. Therefore, we analysed the effects of these compounds' membranes on melanogenesis in B16-F10 melanoma cells. The results demonstrated that PHA/SCG and PHA-g-AA/SCG membranes reduced cellular tyrosinase activities in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
Staswick, P; Chrispeels, M J
1984-01-01
Phytohemagglutinin (PHA), the major lectin of the common bean Phaseolus vulgaris, is synthesized during the development of the seeds. In most cultivars PHA makes up 5-10% of the total seed protein, but certain cultivars do not contain PHA. In vivo labeling of a normal cultivar (Greensleeves) and a PHA-minus cultivar (Pinto 111) showed that PHA was not synthesized in the PHA-minus cultivar. To find out whether the lack of synthesis was due to the absence of mRNA for PHA, recombinant cDNA clones for PHA were obtained. Total poly(A)+ RNA was isolated from cotyledons of developing seeds of Greensleeves and used to direct cDNA synthesis. The double stranded cDNA was cloned in pUC8 and transformants of Escherichia coli screened with pPVL134, a recombinant plasmid which contains the complete coding sequence for a PHA-like protein. Two weakly hybridizing clones (pSC1 and pSC2) were selected. Hybrid selection experiments showed that these two clones selected mRNAs which could be translated into polypeptides identical in size to PHA and recognized by antibodies to PHA. The recombinant pPVL134 selected mRNA which translated into polypeptides which were slightly smaller than those of PHA, and poorly recognized by antibodies to PHA. The recombinant clones were used to demonstrate that the genes for PHA and for the PHA-like protein are under temporal control during seed development. The cultivar Pinto 111, which has no detectable PHA, also has greatly reduced levels of mRNA for PHA. However, the gene for the PHA-like protein encoded by pPVL134 is expressed to the same degree in the cultivars Greensleeves and Pinto 111.
Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei
Liu, Guiming; Cai, Shuangfeng; Hou, Jing; Zhao, Dahe; Han, Jing; Zhou, Jian; Xiang, Hua
2016-01-01
Although polyhydroxyalkanoate (PHA) accumulation and mobilization are one of the most general mechanisms for haloarchaea to adapt to the hypersaline environments with changeable carbon sources, the PHA mobilization pathways are still not clear for any haloarchaea. In this study, the functions of five putative (R)-specific enoyl-CoA hydratases (R-ECHs) in Haloferax mediterranei, named PhaJ1 to PhaJ5, respectively, were thoroughly investigated. Through gene deletion and complementation, we demonstrated that only certain of these ECHs had a slight contribution to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis. But significantly, PhaJ1, the only R-ECH that is associated with PHA granules, was shown to be involved in PHA mobilization in this haloarchaeon. PhaJ1 catalyzes the dehydration of (R)-3-hydroxyacyl-CoA, the common product of PHA degradation, to enoyl-CoA, the intermediate of the β-oxidation cycle, thus could link PHA mobilization to β-oxidation pathway in H. mediterranei. This linkage was further indicated from the up-regulation of the key genes of β-oxidation under the PHA mobilization condition, as well as the obvious inhibition of PHA degradation upon inhibition of the β-oxidation pathway. Interestingly, 96% of phaJ-containing haloarchaeal species possess both phaC (encoding PHA synthase) and the full set genes of β-oxidation, implying that the mobilization of carbon storage in PHA through the β-oxidation cycle would be general in haloarchaea. PMID:27052994
Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei.
Liu, Guiming; Cai, Shuangfeng; Hou, Jing; Zhao, Dahe; Han, Jing; Zhou, Jian; Xiang, Hua
2016-04-07
Although polyhydroxyalkanoate (PHA) accumulation and mobilization are one of the most general mechanisms for haloarchaea to adapt to the hypersaline environments with changeable carbon sources, the PHA mobilization pathways are still not clear for any haloarchaea. In this study, the functions of five putative (R)-specific enoyl-CoA hydratases (R-ECHs) in Haloferax mediterranei, named PhaJ1 to PhaJ5, respectively, were thoroughly investigated. Through gene deletion and complementation, we demonstrated that only certain of these ECHs had a slight contribution to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis. But significantly, PhaJ1, the only R-ECH that is associated with PHA granules, was shown to be involved in PHA mobilization in this haloarchaeon. PhaJ1 catalyzes the dehydration of (R)-3-hydroxyacyl-CoA, the common product of PHA degradation, to enoyl-CoA, the intermediate of the β-oxidation cycle, thus could link PHA mobilization to β-oxidation pathway in H. mediterranei. This linkage was further indicated from the up-regulation of the key genes of β-oxidation under the PHA mobilization condition, as well as the obvious inhibition of PHA degradation upon inhibition of the β-oxidation pathway. Interestingly, 96% of phaJ-containing haloarchaeal species possess both phaC (encoding PHA synthase) and the full set genes of β-oxidation, implying that the mobilization of carbon storage in PHA through the β-oxidation cycle would be general in haloarchaea.
Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T; Morales-Gamez, Laura; Babu, Ramesh P; O'Connor, Kevin E; Steinbüchel, Alexander
2016-10-15
The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Alves, Luis P. S.; Teixeira, Cícero S.; Tirapelle, Evandro F.; Donatti, Lucélia; Tadra-Sfeir, Michelle Z.; Steffens, Maria B. R.; de Souza, Emanuel M.; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S.; Müller-Santos, Marcelo
2016-01-01
Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria. PMID:27242754
Alves, Luis P S; Teixeira, Cícero S; Tirapelle, Evandro F; Donatti, Lucélia; Tadra-Sfeir, Michelle Z; Steffens, Maria B R; de Souza, Emanuel M; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S; Müller-Santos, Marcelo
2016-01-01
Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.
Lin, Ji-Hong; Lee, Ming-Chieh; Sue, You-Sheng; Liu, Yung-Chuan; Li, Si-Yu
2017-08-01
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD 600 , gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.
Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter
2011-11-01
A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.
Maheshwari, Neha; Kumar, Madan; Thakur, Indu Shekhar; Srivastava, Shaili
2018-04-01
Carbon dioxide sequestering bacterial strains were previously isolated from free air CO 2 enriched (FACE) soil. In the present study, these strains were screened for PHA accumulation and Bacillus cereus SS105 was found to be the most prominent PHA accumulating strain on sodium bicarbonate and molasses as carbon source. This strain was further characterized by Spectrofluorometric method and Confocal microscopy after staining with Nile red. PHA granules in inclusion bodies were visualized by Transmission Electron Microscopy. The PHA and its monomer composition were characterized by GC-MS followed by FTIR and NMR. The genetic basis of PHA production was confirmed by the amplification, cloning and analysis of PHA biosynthesis genes phaR, phaB and phaC from B. cereus with the degenerate primers. The PHA production was further optimized by Response Surface Methodology and the percent increase observed after optimization was 55.16% (w/v). Copyright © 2018 Elsevier Ltd. All rights reserved.
Wu, Chin-San; Liao, Hsin-Tzu
2017-01-01
The structural, mechanical, antioxidant, and cytocompatibility properties of membranes prepared from the polyhydroxyalkanoate (PHA) and arrowroot (Maranta arundinacea) starch powder (ASP) blend (PHA/ASP) were studied. The acrylic acid-grafted PHA (PHA-g-AA) and the coupling agent treated ASP (TASP) were used to enhance the desired characteristics of these membranes. The PHA-g-AA/TASP membranes had better mechanical properties than the PHA/ASP membrane. This effect was attributed to greater compatibility between the grafted PHA and TASP. The water resistance of the PHA-g-AA/TASP membranes was greater than that of the PHA/ASP membranes, and a cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, both ASP and TASP enhanced the polyphenol content and antioxidant properties of the membranes. PHA-g-AA/TASP and PHA/ASP membranes had better antioxidant activity than the control group. Copyright © 2016 Elsevier B.V. All rights reserved.
Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy.
Mravec, Filip; Obruca, Stanislav; Krzyzanek, Vladislav; Sedlacek, Petr; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Nebesarova, Jana
2016-05-01
Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha). The cell envelope was stained by DiD(®) fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Matsumoto, Ken'ichiro; Iijima, Midori; Hori, Chiaki; Utsunomia, Camila; Ooi, Toshihiko; Taguchi, Seiichi
2018-05-15
Engineered d-lactyl-coenzyme A (LA-CoA)-polymerizing polyhydroxyalkanoate synthase (PhaC1 Ps STQK) efficiently produces poly(lactate- co-3-hydroxybutyrate) [P(LA- co-3HB]) copolymer in recombinant Escherichia coli, while synthesizing tiny amounts of poly(lactate) (PLA)-like polymers in recombinant Corynebacterium glutamicum. To elucidate the mechanisms underlying the interesting phenomena, in vitro analysis of PhaC1 Ps STQK was performed using homo- and copolymerization conditions of LA-CoA and 3-hydroxybutyryl-CoA. PhaC1 Ps STQK polymerized LA-CoA as a sole substrate. However, the extension of PLA chains completely stalled at a molecular weight of ∼3000, presumably due to the low mobility of the generated polymer. The copolymerization of these substrates only proceeded with a low concentration of LA-CoA. In fact, the intracellular LA-CoA concentration in P(LA- co-3HB)-producing E. coli was below the detection limit, while that in C. glutamicum was as high as acetyl-CoA levels. Therefore, it was concluded that the mobility of polymerized products and LA-CoA concentration are dominant factors characterizing PLA and P(LA- co-3HB) biosynthetic systems.
Mahansaria, Riddhi; Dhara, Anusua; Saha, Amit; Haldar, Saubhik; Mukherjee, Joydeep
2018-02-01
Application of halophiles can decrease the cost of polyhydroxyalkanoate (PHA) production or bioplastic which are an alternative to the petroleum-derived plastic. Extremely halophilic archaeon, Natrinema ajinwuensis RM-G10 accumulated 61.02±0.68% PHA of its cell dry mass at 72h in repeated batch cultures yielding 0.210±0.001gL -1 h -1 volumetric productivity after selection of the best cultivation conditions. Transmission electron microscopy showed the presence of PHA granules inside the archaeal cells. Characterization by gas chromatographic analysis, gas chromatographic- mass spectrophotometric analysis, thermogravimetric analysis, differential scanning calorimetric analysis, X-ray diffraction analysis, Fourier transform infra red spectroscopy and nuclear magnetic resonance spectroscopy revealed the polymer to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with 13.93mol% 3-hydroxyvalerate content and having 35.45% crystallinity, -12.3°C glass transition temperature, 143°C and 157.5°C melting temperatures and 284°C degradation temperature. This is the first report on production enhancement (on a small scale) and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10 and the Natrinema genus in general. Copyright © 2017 Elsevier B.V. All rights reserved.
Viability of Azotobacter consortium in auxin production
NASA Astrophysics Data System (ADS)
Zulaika, Enny; Solikhah, Farihatus; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya
2017-06-01
Azotobacter is a kind of rhizobacteria which is abundant in soil and having beneficial for plants due to its ability to produce auxin. Each isolated Azotobacter from Eco Urban Farming ITS were able to produce auxin individually. However, the isolated Azotobacter consortium was prefer to produce more auxin than the individual one. Synergism test were carried out in order to verify non-antagonism among Azotobacter isolates. Auxin production test was conducted by inoculating 100 ml of Azotobacter consortium starter in 400 ml nutrient broth by addition of 1.000 ppm of L-tryptophan while shaking 100 rpm in rotary shaker at room temperature for 8 weeks. Auxin concentration was measured spectrophotometrically according to the Salkowski method. The Azotobacter consortium showed living synergistically and able to produce 1,82 ppm auxin in 2 hours incubation time although the concentration was tend to decrease periodically.
Bluemink, E D; van Nieuwenhuijzen, A F; Wypkema, E; Uijterlinde, C A
Valorisation of components from municipal 'waste' water and sewage sludge gets more and more attention in order to come to a circular economy by developing an efficient 'waste' to value concept. On behalf of the transition team 'Grondstoffenfabriek' ('Resource factory') a preliminary research was performed for all the Dutch water boards to assess the technical and economical feasibility of poly-hydroxy-alkanoate (PHA)-production from sewage sludge, a valuable product to produce bio-plastics. This study reveals that the production of bio-plastics from sewage sludge is feasible based on technical aspects, but not yet economically interesting, even though the selling price is relatively close to the actual PHA market price. (Selling price is in this particular case the indicative cost effective selling price. The cost effective selling price covers only the total production costs of the product.) Future process optimization (maximizing the volatile fatty acids production, PHA storage capacity, etc.) and market developments are needed and will result in cost reductions of the various sub-processes. PHA-production from sewage sludge at this stage is just a technology; every further research is needed to incorporate the backward integration approach, taking into account the market demand including associated product quality aspects.
La Rosa, Ruggero; de la Peña, Fernando; Prieto, María Axiliadora; Rojo, Fernando
2014-01-01
Pseudomonas putida synthesizes polyhydroxyalkanoates (PHAs) as storage compounds. PHA synthesis is more active when the carbon source is in excess and the nitrogen source is limiting, but can also occur at a lower rate under balanced carbon/nitrogen ratios. This work shows that PHA synthesis is controlled by the Crc global regulator, a protein that optimizes carbon metabolism by inhibiting the expression of genes involved in the use of non-preferred carbon sources. Crc acts post-transcriptionally. The mRNAs of target genes contain characteristic catabolite activity (CA) motifs near the ribosome binding site. Sequences resembling CA motifs can be predicted for the phaC1 gene, which codes for a PHA polymerase, and for phaI and phaF, which encode proteins associated to PHA granules. Our results show that Crc inhibits the translation of phaC1 mRNA, but not that of phaI or phaF, reducing the amount of PHA accumulated in the cell. Crc inhibited PHA synthesis during exponential growth in media containing a balanced carbon/nitrogen ratio. No inhibition was seen when the carbon/nitrogen ratio was imbalanced. This extends the role of Crc beyond that of controlling the hierarchical utilization of carbon sources and provides a link between PHA synthesis and the global regulatory networks controlling carbon flow. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Xie, Juan; Zhou, Jie; Zhang, Haifeng; Li, Yin
2011-07-01
Cyanobacteria have become attractive hosts for renewable chemicals production. The low productivity, however, prevents it from industrial application. Reductant NAD(P)H availability is a chief hurdle for the production of reductive metabolites in microbes. To increase NADPH content in Synechocystis sp. PCC 6803, PHB synthase encoding gene phaC and phaE in Synechocystis was inactivated by replacing phaC&E genes with chloromycetin resistance cassette via homologous recombination. PCR analysis showed that mutant S.delta phaC&E with complete genome segregation was generated. The comparison between growth curves of S.wt and S.delta phaC&E indicated the knockout of phaC & phaE genes did not affect obviously the cell growth. Gas chromatography analysis showed that the accumulation of PHB in wild type was about 2.3% of the dry cell weight, whereas no PHB was detected in the mutant S.delta phaC&E. The data indicated that inactivation of PHB synthase gene phaC and phaE interrupted the synthesis of PHB. Further comparative study of wild type and mutant demonstrated that NADPH content in S.delta phaC&E was obviously increased. On the third day, the NADPH content in S.delta phaC&E was up to 1.85 fold higher than that in wild type. These results indicated that deleting PHB synthase gene phaC and phaE not only can block the synthesis of PHB, but also can save NADPH to contribute reductant sink in cyanobacteria. Hence, the engineered cyanobacterial strain S.delta phaC&E, in which carbon flux was redirected and NADPH was increased, will be a potential host strain for chemicals production in cyanobacteria.
Kin, K; Kasahara, T; Itoh, Y; Sakurabayashi, I; Kawai, T; Morita, M
1979-01-01
This study attempts to evaluate beta2-microglobulin production by highly purified (greater than 98%) peripheral and tonsil T and B lymphocytes cultured with various mitogens. beta2-Microglobulin was measured by the radioimmunoassay method. It was found that PHA and Con A markedly stimulated beta2-microglobulin production in cultures of T but not B lymphocytes. B lymphocytes were greatly activated, on the other hand, by Staphylococcus aureau Cowan I organisms cSpA), though the level of beta2-microglobulin production was less than that observed in PHA- and Con A-stimulated T lymphocytes. PWM only slightly increased beta2-microglobulin production of T lymphocytes, although the incorporation of [3H]-thymidine was highly enhanced. The highest level of beta2-microglobulin obtained with PHA or Con A was observed when the T/B lymphocyte ratio was between 90/10 and 80/20. These results lead to the conclusion that: (1) SpA is a specific mitogen for B lymphocytes, and its mitogenicity is independent of the presence of T lymphocytes, while PHA, Con A, and PWM are ineffective as stimulants of B lymphocytes; (2) the beta2-microglobulin producing ability of B lymphocytes is less than that of T lymphocytes, even when the lymphocytes are markedly activated; (3) the beta2-microglobulin production and DNA synthesis by T lymphocytes is markedly enhanced by the helper effect of B lymphocytes; (4) the level of beta2-microglobulin production reflects lymphocyte activation, especially in T lymphocytes stimulated with PHA or Con A.
Schrank, C.S.; Cook, M.E.; Hansen, W.R.
1990-01-01
The ability of two in vivo tests to assay immune competence of mallard ducks (Anas platyrhynchos) treated with various immunomodulatory agents was examined. Skin responses to phytohemagglutinin-P (PHA-P) injected intradermally and serum antibody levels produced in response to sheep red blood cells (SRBC) were measured. As measured by the skin response to PHA-P, ducks injected intramuscularly with cyclophosphamide or cyclosporine did not respond differently from control-injected ducks. Dexamethasone injected intramuscularly significantly suppressed the skin response to PHA-P. As measured by antibody levels in response to SRBC, ducks injected intramuscularly with cyclophosphamide responded with antibody titers similar to controls. Cyclosporine injected intramuscularly reduced the level of immunoglobulin (Ig) G significantly in one of two experiments. Dexamethasone injected intramuscularly reduced peak total and IgG titers. These experiments provide information on the viability of these two in vivo tests to reflect immune competence of mallard ducks.
Suriyamongkol, Pornpa; Weselake, Randall; Narine, Suresh; Moloney, Maurice; Shah, Saleh
2007-01-01
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.
Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach.
Tai, Yen Teng; Foong, Choon Pin; Najimudin, Nazalan; Sudesh, Kumar
2016-04-01
PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pfeiffer, Daniel
2014-01-01
Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules. PMID:24212577
Pfeiffer, Daniel; Jendrossek, Dieter
2014-01-01
Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-D-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules.
[Effect of phytohemagglutinin (PHA) from Yunnan white kidney bean on development of mouse embryos].
Zhang, Lifen; Wang, Changmei; Yang, Mingjie; Zhang, Tian; Wang, Minkang
2011-06-01
To study the effect of different concentration of phytohemagglutinin (PHA) on mouse embryo development. In experiment 1, crude and purified PHA extracted from Yunnan white kidney bean with different concentration were added into M16 culture medium, the final concentration of PHA were: 50, 100, 200, 500, 1 000, 2 000 and 5 000 mg x L(-1) respectively. 2-cell stage embryos were collected and cultured in PHA containing or control medium for 72-96 h and their development were recorded. In experiment 2, different stage of embryos from 1-cell to blastocyst were treated by different concentrations of PHA same as experiment 1 and 10 000 mg x L(-1) in culture medium for 24 h before washing and cultured in M16 + PVA without PHA to blastocyst or hatching blastocyst stage. Low concentrations PHA at 50-100 mg x L(-1) promoted embryo development and increased the number of blastocyst stage embryos. In contrast, high concentrations of PHA (> 1 000 mg x L(-1)) blocked the embryos development from 1-cell to blastocyst stage and showed apoptosis morphology or death. Depending on the concentrations, PHA from white kidney bean shown promotion or inhibition on mouse embryo development. 1-cell stage embryo shown more sensitive to PHA treatment than that of later stage embryos. Pretreatment 24 h in PHA containing medium can influence the further development of embryos. Low concentrations of PHA is benefit to embryo development, but high concentrations of PHA (> 1 000 mg x L(-1)) will block of the development of embryos.
Molecular analysis of a phytohemagglutinin-defective cultivar of Phaseolus vulgaris L.
Vitale, A; Ceriotti, A; Bollini, R
1985-10-01
The seeds of Phaseolus vulgaris cv. Pinto III are known to lack detectable amounts of phytohemagglutinin (PHA) and to accumulate very reduced levels of PHA mRNA compared with normal cultivars. Using PHA complementary-DNA clones and monospecific antibodies we analyzed cv. Pinto III genomic DNA and cotyledonary proteins synthesized both in vitro and in vivo. We detected genomic DNA sequences that hybridize with complementary-DNA clones for the two different classes of PHA polypeptides (PHA-E and PHA-L), at levels comparable to a normal bean cultivar. This indicates that the cv. Pinto III phenotype is not the result of a large deletion of the PHA structural genes. Messenger RNA isolated from cv. Pinto III developing cotyledons synthesizes in vitro very small amounts of a protein which is recognized by antibodies specific for PHA, and gives, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a single band with molecular weight similar but not identical to that of PHA-L polypeptides. This protein is also synthesized in vivo at a very reduced level, less than 1% compared with PHA in normal cultivars, and has mitogenic activity comparable to that of the PHA-L subunit, while it shows very weak erythroagglutinating activity. The initial steps in the synthesis and processing of this protein are identical to those already identified for PHA polypeptides. The cv. Pinto III protein could be either a PHA-L polypeptide whose synthesis is not affected by the mutation or a PHA-like lectin present normally at low levels in P. vulgaris.
Code of Federal Regulations, 2010 CFR
2010-04-01
... vacancy (and notwithstanding the reasonable good faith efforts of the PHA to fill such vacancies), the PHA... on the PHA waiting list referred by the PHA. (3) The PHA and the owner must make reasonable good faith efforts to minimize the likelihood and length of any vacancy. (b) Reducing number of contract...
24 CFR 982.103 - PHA application for funding.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false PHA application for funding. 982... URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.103 PHA application for funding. (a) a PHA must submit an application for...
Gurieff, Nicholas; Lant, Paul
2007-12-01
A life cycle assessment and financial analysis of mixed culture PHA (PHA(MC)) and biogas production was undertaken based on treating an industrial wastewater. Internal rate of return (IRR) and non-renewable CO(2)eq emissions were used to quantify financial viability and environmental impact. PHA(MC) was preferable to biogas production for treating the specified industrial effluent. PHA(MC) was also financially attractive in comparison to pure culture PHA production. Both PHA production processes had similar environmental impacts that were significantly lower than HDPE production. A large potential for optimisation exists for the PHA(MC) process as financial and environmental costs were primarily due to energy use for downstream processing. Under the conditions used in this work PHA(MC) was shown to be a viable biopolymer production process and an effective industrial wastewater treatment technology. This is the first study of its kind and provides valuable insight into the PHA(MC) process.
Ong, Su Yean; Zainab-L, Idris; Pyary, Somarajan; Sudesh, Kumar
2018-03-01
Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.
Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing
2014-06-01
Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge.
Dong, Ying; Li, Ping; Chen, Chong-bo; Wang, Zhi-hui; Ma, Ping; Chen, Guo-Qiang
2010-12-01
Polyhydroxyalkanoates (PHA), a family of biopolyesters, have been studied as tissue engineering biomaterials due to their adjustable mechanical properties, biodegradability and tissue compatibility. Amphiphilic PHA granule binding protein PhaP has been shown to be able to bind to hydrophobic surfaces of polymers, especially PHA, via strong hydrophobic interaction. Genes of PhaP and RGD peptides, which are a cell adhesion motif recognized by many cell surface receptors, were successfully expressed and obtained as a pure fusion protein PhaP-RGD in Escherichia coli DH5α. When films of poly(3-hydroxybutyrate-co-3-hydroxy- hexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were coated with PhaP-RGD, their surface hydrophilicities were all increased compared with their corresponding naked (non-coated) films, respectively. Among the three biopolyesters, PHBHHx demonstrated the strongest affinity to PhaP. In vitro study showed that mouse fibroblasts L929 and mouse embryonic fibroblasts NIH/3T3 attached better and grew faster on all three PhaP-RGD coated films compared with their related behaviors on PhaP coated and non-coated films, respectively. Both fibroblasts attached and grew very well on PhaP-RGD coated PHBHHx, PHBV and PLA, even in their serum-free medium, while the non-coated and PhaP coated biopolyesters poorly supported the cell growth if the two fibroblasts were incubated in their serum free medium. These results indicated that PhaP-RGD could be used as a coating material to improve cell growth on hydrophobic biopolyesters for implant tissue engineering purposes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen
2016-01-01
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896
NASA Astrophysics Data System (ADS)
Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen
2016-08-01
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.
Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen
2016-08-03
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.
24 CFR 990.245 - Types of appeals.
Code of Federal Regulations, 2011 CFR
2011-04-01
... variance of ten percent or greater in its PEL. (d) Appeal for changing market conditions. A PHA may appeal... may appeal its PEL if it can produce actual project cost data derived from actual asset management, as...
24 CFR 968.330 - PHA performance and evaluation report.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false PHA performance and evaluation... 250 or More Public Housing Units) § 968.330 PHA performance and evaluation report. For any FFY in which a PHA has received assistance under this subpart, the PHA shall submit a Performance and...
Wu, Chin-San
2014-05-25
Composites of treated (cross-linked) cellulose acetate (t-CA) and acrylic acid-grafted poly(hydroxyalkanoate) (PHA-g-AA/t-CA) exhibited noticeably superior mechanical properties compared with PHA/CA composites due to greater compatibility between the two components. The dispersion covering of t-CA in the PHA-g-AA matrix was highly homogeneous as a result of condensation reactions. Human lung fibroblasts (FBs) were seeded on these two series of composites to characterize the biocompatibility properties. In a time-dependent course, the FB proliferation results demonstrated higher performance from the PHA/CA series of composites than from the PHA-g-AA/t-CA composites. The water resistance of PHA-g-AA/t-CA was higher than that of PHA/CA, although the weight loss of both composites buried in Acetobacter pasteurianus (A. pasteurianus) indicated that they were both biodegradable, especially at higher levels of cellulose acetate substitution. The PHA/CA and PHA-g-AA/t-CA composites were more biodegradable than pure PHA, implying a strong connection between cellulose acetate content and biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.
A new biological recovery approach for PHA using mealworm, Tenebrio molitor.
Murugan, Paramasivam; Han, Lizhu; Gan, Chee-Yuen; Maurer, Frans H J; Sudesh, Kumar
2016-12-10
Bacterial polyhydroxyalkanoates (PHA) are expensive partly due to the recovery and purification processes. Thus, many studies have been carried out in order to minimize the cost. Here we report on the use of mealworm, which is the larva of mealworm beetle (Tenebrio molitor) to recover PHA granules from Cupriavidus necator. Mealworms were shown to readily consume the freeze-dried C. necator cells and excrete the PHA granules in the form of whitish feces. Further purification using water, detergent and heat resulted in almost 100% pure PHA granules. Comparison with chloroform extraction showed no signs of reduction in the molecular weight and dispersion of the PHA molecules. Scanning electron microscopy and dynamic light scattering measurements revealed that the biologically recovered PHA granules retained their native spherical morphology. The PHA granules were subjected to a battery of tests to determine their purity and properties in comparison to the chloroform extracted PHA. This study has demonstrated the possibility of using mealworms as a biological agent to partially purify the PHA granules. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Jian; Matsumoto, Ken'ichiro; Tabata, Yuta; Kadoya, Ryosuke; Ooi, Toshihiko; Abe, Hideki; Taguchi, Seiichi
2015-11-01
Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme.
Hu, Hongtao; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Goertzen, Leslie R; Singh, Shree R; Locy, Robert D
2015-01-01
MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a second round of both cis- and trans-cleavage of additional siRNAs, leading to the formation of complex sRNA regulatory networks mediating posttranscriptional gene silencing. Results from this study extended our knowledge on G. arboreum sRNAs and their biological importance, which would facilitate future studies on regulatory mechanism of tissue development in cotton and other plant species.
Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Hisano, Tamao; Abe, Hideki; Tsuge, Takeharu
2015-06-01
Polyhydroxyalkanoate (PHA) synthase from Bacillus cereus YB-4 (PhaRCYB4) catalyzes not only PHA polymerization but also alcoholytic cleavage of PHA chains. The alcoholysis activity of PhaRCYB4 is expressed when a hydroxyacyl-CoA monomer is absent but an alcohol compound is present. In this study, we performed alanine mutagenesis of the putative catalytic triad (Cys(151), Asp(306), and His(335)) in the PhaCYB4 subunit to identify the active site residues for polymerization and alcoholysis activities. Individual substitution of each triad residue with alanine resulted in loss of both polymerization and alcoholysis activities, suggesting that these residues are commonly shared between polymerization and alcoholysis reactions. The loss of activity was also observed following mutagenesis of the triad to other amino acids, except for one PhaRCYB4 mutant with a C151S substitution, which lost polymerization activity but still possessed cleavage activity towards PHA chains. The low-molecular-weight PHA isolated from the PhaRCYB4(C151S)-expressing strain showed a lower ratio of alcohol capping at the P(3HB) carboxy terminus than did that from the wild-type-expressing strain. This observation implies that hydrolysis activity of PhaRCYB4 might be elicited by the C151S mutation.
24 CFR 941.205 - PHA contracts.
Code of Federal Regulations, 2011 CFR
2011-04-01
... PUBLIC HOUSING DEVELOPMENT PHA Eligibility and Program Requirements § 941.205 PHA contracts. (a) ACC... into by the PHA shall provide for compliance with the provisions of the ACC. (b) Contract forms. HUD...
24 CFR 941.205 - PHA contracts.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PUBLIC HOUSING DEVELOPMENT PHA Eligibility and Program Requirements § 941.205 PHA contracts. (a) ACC... into by the PHA shall provide for compliance with the provisions of the ACC. (b) Contract forms. HUD...
Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Lee, Duu-Jong
2017-10-01
Low biomass output is a crucial reason for low polyhydroxyalkanoate (PHA) production in mixed microbial cultures (MMCs) PHA process. In this research, an extended cultivation strategy was proposed to rapidly expand the biomass yield of PHA accumulating MMCs and conserve the PHA accumulating ability simultaneously. High PHA content of the cultivated MMCs of 71.4% and 66.7% (higher than 62.1% of the seed biomass) in batch assays and biomass magnification of 43 and 52 were obtained after 10days of extended cultivation with and without sludge discharge, respectively. By embedding the extended cultivation process into the production process, a highly competitive PHA production performance in terms of overall PHA storage yield (0.49g CODPHA/gCODVFA) and volumetric productivity (1.21gPHA/L/d with final cell density of 17.22g/L) was achieved. The proposed PHA production process based on the extended cultivation can be a promising choice in industrial scale practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bresan, Stephanie
2017-01-01
ABSTRACT The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size. IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of PHB granules with the nucleoid. Furthermore, we followed PHB granule formation by time-lapse microscopy and provide evidence for aging of PHB granules that is manifested by detachment of previously PHB granule-associated PhaM and PHB synthase. PMID:28389545
Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M
2015-01-01
To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.
The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization.
Stritzler, Margarita; Muñiz García, María Noelia; Schlesinger, Mariana; Cortelezzi, Juan Ignacio; Capiati, Daniela Andrea
2017-10-13
This study presents the characterization of the plasma membrane (PM) H+-ATPases in potato, focusing on their role in stolon and tuber development. Seven PM H+-ATPase genes were identified in the Solanum tuberosum genome, designated PHA1-PHA7. PHA genes show distinct expression patterns in different plant tissues and under different stress treatments. Application of PM H+-ATPase inhibitors arrests stolon growth, promotes tuber induction, and reduces tuber size, indicating that PM H+-ATPases are involved in tuberization, acting at different stages of the process. Transgenic potato plants overexpressing PHA1 were generated (PHA1-OE). At early developmental stages, PHA1-OE stolons elongate faster and show longer epidermal cells than wild-type stolons; this accelerated growth is accompanied by higher cell wall invertase activity, lower starch content, and higher expression of the sucrose-H+ symporter gene StSUT1. PHA1-OE stolons display an increased branching phenotype and develop larger tubers. PHA1-OE plants are taller and also present a highly branched phenotype. These results reveal a prominent role for PHA1 in plant growth and development. Regarding tuberization, PHA1 promotes stolon elongation at early stages, and tuber growth later on. PHA1 is involved in the sucrose-starch metabolism in stolons, possibly providing the driving force for sugar transporters to maintain the apoplastic sucrose transport during elongation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.
Fonseca, Pilar; de la Peña, Fernando; Prieto, María Auxiliadora
2014-11-01
Pseudomonas putida KT2440 is a Gram-negative bacterium capable of producing medium-chain-length-polyhydroxyalkanoates (mcl-PHA). When fatty acids are used as growth and polymer precursors, the biosynthesis is linked to fatty acid metabolism via ß-oxidation route. In the close-related Pseudomonas aeruginosa, the transcriptional repressor PsrA regulates the ß-oxidation, but little is known about the regulatory system in P. putida. To analyze the effect of the absence of psrA gene on the growth and PHA production in P. putida, a set of different carbon sources were assayed in the wild type strain and in a generated psrA deficient strain (KT40P). The growth rates were in all cases, lower for the mutant. The amount of PHA produced by the mutant strain is lower than the wild type. Moreover, the monomeric composition seems to be different among the strains, as there is enrichment in monomers with shorter carbon length in the mutant strain. To understand the role of the psrA gene on the metabolism of fatty acids, we have determined the expression profile of several genes related to fatty acid metabolism in the wild type and in the mutant strain. The results indicated that PsrA mostly negatively regulate genes related to fatty acid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.
Code of Federal Regulations, 2014 CFR
2014-04-01
... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...
24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...
24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.
Code of Federal Regulations, 2011 CFR
2011-04-01
... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...
24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.
Code of Federal Regulations, 2012 CFR
2012-04-01
... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...
24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.
Code of Federal Regulations, 2013 CFR
2013-04-01
... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...
Trumble, Benjamin C; Blackwell, Aaron D; Stieglitz, Jonathan; Thompson, Melissa Emery; Suarez, Ivan Maldonado; Kaplan, Hillard; Gurven, Michael
2016-01-01
Objectives Despite well-known fitness advantages to males who produce and maintain high endogenous testosterone levels, such phenotypes may be costly if testosterone-mediated investment in reproductive effort trade-off against investment in somatic maintenance. Previous studies of androgen-mediated trade-offs in human immune function find mixed results, in part because most studies either focus on a few indicators of immunity, are confounded by phenotypic correlation, or are observational. Here the association between male endogenous testosterone and 13 circulating cytokines are examined before and after ex vivo antigen stimulation with phytohaemagglutinin (PHA) and lipopolysaccharides (LPS) in a high pathogen population of Bolivian forager-horticulturalists. Materials and Methods A Milliplex 13-plex cytokine panel measured cytokine concentration in whole blood samples from 109 Tsimane men aged 40–89 (median=50 years) before and after antigen stimulation with PHA and LPS. Urinary testosterone was measured via enzyme immunoassay; demographic and anthropometric data were collected as part of the Tsimane Health and Life History Project. Results Higher endogenous testosterone was associated with down-regulated responses in all cytokines after PHA stimulation (but significantly in only 2/13 cytokines), controlling for age and body mass index. In contrast, testosterone was not significantly associated with down-regulation of cytokines after LPS stimulation. MANOVAs indicate that men with higher testosterone showed reduced cytokine responses to PHA compared to LPS (p=0.0098). Discussion Endogenous testosterone appears to be immunomodulatory rather than immunosuppressive. Potentially costlier forms of immune activation like those induced by PHA (largely T-cell biased immune activation) are down-regulated in men with higher testosterone, but testosterone has less impact on potentially less costly immune activation following LPS stimulation (largely B-cell mediated immunity). PMID:27465811
Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS)
Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M
2014-01-01
Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. PMID:24773462
Inhibition of c-Met as a Therapeutic Strategy for Esophageal Adenocarcinoma
Watson, Gregory A; Zhang, Xinglu; Stang, Michael T; Levy, Ryan M; Queiroz de Oliveira, Pierre E; Gooding, William E; Christensen, James G; Hughes, Steven J
2006-01-01
Abstract The hepatocyte growth factor (HGF) receptor c-Met is a tyrosine kinase receptor with established oncogenic properties. We have previously shown that c-Met is usually overexpressed in esophageal adenocarcinoma (EA), yet the implications of c-Met inhibition in EA remain unknown. Three c-Met-overexpressing EA cell lines (Seg-1, Bic-1, and Flo-1) were used to examine the effects of a c-Met-specific small molecule inhibitor (PHA665752) on cell viability, apoptosis, motility, invasion, and downstream signaling pathways. PHA665752 demonstrated dose-dependent inhibition of constitutive and/or HGF-induced phosphorylation of c-Met, which correlated with reduced cell viability and inhibition of extracellular regulated kinase 1/2 phosphorylation in all three EA cell lines. In contrast, PHA665752 induced apoptosis and reduced motility and invasion in only one EA cell line, Flo-1. Interestingly, Flo-1 was the only cell line in which phosphatidylinositol 3-kinase (PI3K)/Akt was induced following HGF stimulation. The PI3K inhibitor LY294002 produced effects equivalent to those of PHA665752 in these cells. We conclude that inhibition of c-Met may be a useful therapeutic strategy for EA. Factors other than receptor overexpression, such as c-Met-dependent PI3K/Akt signaling, may be predictive of an individual tumor's response to c-Met inhibition. PMID:17132227
Jüngert, Janina R; Patterson, Cameron; Jendrossek, Dieter
2018-04-20
In this study, we screened PHB synthase PhaC1 and PHB depolymerase PhaZa1 of Ralstonia eutropha for the presence of phosphorylated residues during the PHB accumulation and PHB degradation phase. Thr373 of PHB synthase PhaC1 was phosphorylated in the stationary growth phase but was not modified in the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in phosphorylated form both in the exponential and in the stationary growth phase. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modification of Thr26 and Ser35 of PhaZa1 reduced the ability of R. eutropha to mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for modulation of the activities of PHB synthase and PHB depolymerase. Importance Polyhydroxybutyrate (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and other stress conditions. The simultaneous presence of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules in Ralstonia eutropha (alternative designation Cupriavidus necator ) has been previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of identified residues. Furthermore, we conducted in vitro and in vivo analysis of PHB synthase activity and PHB contents. Copyright © 2018 American Society for Microbiology.
Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant.
Wei, Dai-Xu; Chen, Chong-Bo; Fang, Guo; Li, Shi-Yan; Chen, Guo-Qiang
2011-08-01
PhaP or phasin is an amphiphilic protein located on surfaces of microbial storage polyhydroxyalkanoates granules. This study aimed to explore amphiphilic properties of PhaP for possible application as a protein surfactant. Following agents were used to conduct this study as controls including bovine serum albumin, sodium dodecyl sulfate (SDS), Tween 20, sodium oleate, a commercial liquefied detergent together with the same amount of PhaP. Among all these tested control surfactants, PhaP showed the strongest effect to form emulsions with lubricating oil, diesel, and soybean oil, respectively. PhaP emulsion stability study compared with SDS revealed that PhaP had a stronger capability to maintain a very stable emulsion layer after 30 days while SDS lost half and two-thirds of its capacity after 2 and 30 days, respectively. When PhaP was more than 200 μg/ml in the water, all liquids started to exhibit stable emulsion layers. Similar to SDS, PhaP significantly reduced the water contact angles of water on a hydrophobic film of biaxially oriented polypropylene. PhaP was thermally very stable, it showed ability to form emulsion and to bind to the surface of polyhydroxybutyrate nanoparticles after a 60- min heating process at 95 °C. It is therefore concluded that PhaP is a protein with thermally stable property for application as natural and environmentally friendly surfactant for food, cosmetic, and pharmaceutical usages.
Gobi, K; Vadivelu, V M
2015-11-01
The polyhydroxyalkanoate (PHA) accumulation dynamics in aerobic granules that undergo the growth-disintegration cycle were investigated. Four sequencing batch reactors (SBR) were inoculated with aerobic granules at different stages of development (different sizes). Different sizes of aerobic granules showed varying PHA contents. Thus, further study was conducted to investigate the diffusion of substrate and oxygen on PHA accumulation using various organic loading rates (OLR) and aeration rates (AR). An increase in OLR from 0.91 to 3.64kg COD/m(3)day increased the PHA content from 0.66 to 0.87g PHA/g CDW. Meanwhile, an AR increase from 1 to 4L/min only accelerated the maximum PHA accumulation without affecting the PHA content. However, the PHA composition only changes with AR, while the hydroxyvalerate (HV) content increased at a higher AR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gobi, K; Vadivelu, V M
2015-01-01
Polyhydroxyalkanoate (PHA) recovery from aerobic granules was investigated using four cell digestion agents, namely, sodium hypochlorite, sodium hydroxide, acetone and sodium chloride. Simultaneously, the removal of extracellular polymeric substances (EPS) and its effect on PHA yield were investigated. The highest PHA recovery yield was obtained using sodium hypochlorite, accounting for 89% cell dry weight (CDW). The highest PHA was recovered after the sodium hypochlorite completely removed the EPS from the aerobic granules. The average molecular weight (Mw) of the PHA recovered using sodium hypochlorite was 5.31 × 10(5)g/mol with only 1.8% molecular weight degradation. The energy and duration analysis for PHA recovery revealed that the sodium hypochlorite method required the least amount of energy and time at 0.0561 MJ/g PHA and 26 h, respectively. The PHA that was recovered was a P3(HB-co-HV) co-polymer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath
2018-01-30
Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be used. Our analysis shows patent information can be used to identify various applications of PHA and its representatives in the biomedical field. Upcoming studies can focus on the application of PHA in the different field to discover the related topics and associate to this study. We believe that this approach of analysis and findings can initiate new researchers to undertake similar kind of studies in their represented field to fill the gap between the patent articles and researchpublications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming
2015-10-20
Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.
A Novel Method for Producing Transgenic Enzymes and Peptides
2004-03-04
eutropha”. Biotechnol. Bioeng. 84(1): 114-120. Wieczorek, R., A. Steinbuchel, et al. (1996). “Occurrence of polyhydroxyalkanoic acid granule... polyhydroxyalkanoate (PHA), a biodegradable polymer, by ICI/Zeneca and later Monsanto. The genome has been sequenced (http://jgi.doe * Corresponding
Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization
USDA-ARS?s Scientific Manuscript database
The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...
Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav
2018-02-01
Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.
Burniol-Figols, Anna; Varrone, Cristiano; Le, Simone Balzer; Daugaard, Anders Egede; Skiadas, Ioannis V; Gavala, Hariklia N
2018-06-01
Crude glycerol is an important by-product of the biodiesel industry, which can be converted into volatile fatty acids (VFA) and/or 1,3-propanediol (1,3-PDO) by fermentation. In this study, a selective conversion of VFA to polyhydroxyalkanoates (PHA) was attained while leaving 1,3-PDO in the supernatant by means of mixed microbial consortia selection strategies. The process showed highly reproducible results in terms of PHA yield, 0.99 ± 0.07 C mol PHA/C mol S (0.84 g COD PHA/g COD S), PHA content (76 ± 3.1 g PHA/100 g TSS) and 1,3-PDO recovery (99 ± 2.1%). The combined process had an ultimate yield from crude glycerol of 0.19 g COD PHA and 0.42 g COD 1,3-PDO per g of input COD. The novel enrichment strategy applied for selectively transforming fermentation by-products into a high value product (PHA) demonstrates the significance of the enrichment process for targeting specific bio-transformations and could potentially prove valuable for other biotechnological applications as well. Copyright © 2018 Elsevier Ltd. All rights reserved.
Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy.
Cruz, Madalena V; Sarraguça, Mafalda Cruz; Freitas, Filomena; Lopes, João Almeida; Reis, Maria A M
2015-01-20
Online monitoring process for the production of polyhydroxyalkanoates (PHA), using cooking oil (UCO) as the sole carbon source and Cupriavidus necator, was developed. A batch reactor was operated and hydroxybutyrate homopolymer was obtained. The biomass reached a maximum concentration of 11.6±1.7gL(-1) with a polymer content of 63±10.7% (w/w). The yield of product on substrate was 0.77±0.04gg(-1). Near-infrared (NIR) spectroscopy was used for online monitoring of the fermentation, using a transflectance probe. Partial least squares regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18, 2.37 and 1.58gL(-1) for biomass, UCO and PHA, respectively, which indicate the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. Copyright © 2014 Elsevier B.V. All rights reserved.
Mier, Daniela; Bailer, Josef; Ofer, Julia; Kerstner, Tobias; Zamoscik, Vera; Rist, Fred; Witthöft, Michael; Diener, Carsten
2017-05-01
An attentional bias to health-threat stimuli is assumed to represent the primary pathogenetic factor for the development and maintenance of pathological health anxiety (PHA; formerly termed "hypochondriasis"). However, little is known about the neural basis of this attentional bias in individuals with PHA. A group of patients with PHA, a group of depressed patients and a healthy control group completed an emotional Stroop task with health-threat (body symptom and illness) words and neutral control words while undergoing functional MRI. We included 33 patients with PHA, 28 depressed patients and 31 controls in our analyses. As reflected in reaction times, patients with PHA showed a significantly stronger attentional bias to health-threat words than both control groups. In addition, patients with PHA showed increased amygdala and rostral anterior cingulate cortex activation for body symptom, but not for illness words. Moreover, only in patients with PHA amygdala activation in response to symptom words was positively associated with higher arousal and more negative valence ratings of the body symptom word material. A control group of patients with an anxiety disorder but without PHA would have helped to define the specificity of the results for PHA. The attentional bias observed in patients with PHA is associated with hyperactivation in response to body symptom words in brain regions that are crucial for an arousal-related fear response (e.g., the amygdala) and for resolving emotional interference (e.g., the rostral anterior cingulate cortex). The findings have important implications for the nosological classification of PHA and suggest the application of innovative exposure-based interventions for the treatment of PHA.
Mier, Daniela; Bailer, Josef; Ofer, Julia; Kerstner, Tobias; Zamoscik, Vera; Rist, Fred; Witthöft, Michael; Diener, Carsten
2017-01-01
Background An attentional bias to health-threat stimuli is assumed to represent the primary pathogenetic factor for the development and maintenance of pathological health anxiety (PHA; formerly termed “hypochondriasis”). However, little is known about the neural basis of this attentional bias in individuals with PHA. Methods A group of patients with PHA, a group of depressed patients and a healthy control group completed an emotional Stroop task with health-threat (body symptom and illness) words and neutral control words while undergoing functional MRI. Results We included 33 patients with PHA, 28 depressed patients and 31 controls in our analyses. As reflected in reaction times, patients with PHA showed a significantly stronger attentional bias to health-threat words than both control groups. In addition, patients with PHA showed increased amygdala and rostral anterior cingulate cortex activation for body symptom, but not for illness words. Moreover, only in patients with PHA amygdala activation in response to symptom words was positively associated with higher arousal and more negative valence ratings of the body symptom word material. Limitations A control group of patients with an anxiety disorder but without PHA would have helped to define the specificity of the results for PHA. Conclusion The attentional bias observed in patients with PHA is associated with hyperactivation in response to body symptom words in brain regions that are crucial for an arousal-related fear response (e.g., the amygdala) and for resolving emotional interference (e.g., the rostral anterior cingulate cortex). The findings have important implications for the nosological classification of PHA and suggest the application of innovative exposure-based interventions for the treatment of PHA. PMID:28234209
Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T.; Morales-Gamez, Laura; Babu, Ramesh P.; O'Connor, Kevin E.
2016-01-01
ABSTRACT The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO2-containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter PcooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum. P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHAMCL), enhanced gene expression through the PcooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the Plac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHAMCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. IMPORTANCE Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs. PMID:27520812
Amelia, Tan Suet May; Amirul, Al-Ashraf Abdullah; Bhubalan, Kesaven
2018-02-01
We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).
Kumar, Manish; Gupta, Asmita; Thakur, Indu Shekhar
2016-08-01
The present work involved screening of a previously reported carbon concentrating oleaginous bacterial strain Serratia sp. ISTD04 for production of PHA and optimization of process parameters for enhanced PHA and biomass generation. The selected bacterial strain was screened for PHA production based on Nile red staining followed by visualization under fluorescence microscope. Spectrofluorometric measurement of Nile red fluorescence of the bacterial culture was also done. Confirmatory analysis of PHA accumulation by GC-MS revealed the presence of 3-hydroxyvalerate. Detection of characteristic peaks in the FT-IR spectrum further confirmed the production of PHA by the bacterium. Response Surface Methodology was used for optimization of pH and carbon sources' concentrations for higher PHA production. There was almost a 2 fold increase in the production of PHA following optimization as compared to un-optimized condition. The study thus establishes the production of PHA by Serratia sp. ISTD04. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M
2014-10-01
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
2012-01-01
Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs), which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h)-1) was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs. PMID:22433058
Eggers, Jessica; Steinbüchel, Alexander
2014-12-01
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Eggers, Jessica
2014-01-01
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes. PMID:25281380
24 CFR 902.22 - Physical inspection of PHA projects.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...
24 CFR 902.22 - Physical inspection of PHA projects.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...
24 CFR 902.22 - Physical inspection of PHA projects.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...
24 CFR 902.22 - Physical inspection of PHA projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo; Costa, Antonio; Sandri, Laura
2014-05-01
Probabilistic Hazard Assessment (PHA) is becoming an essential tool for risk mitigation policies, since it allows to quantify the hazard due to hazardous phenomena and, differently from the deterministic approach, it accounts for both aleatory and epistemic uncertainties. On the other hand, one of the main disadvantages of PHA methods is that their results are not easy to understand and interpret by people who are not specialist in probabilistic tools. For scientists, this leads to the issue of providing tools that can be easily used and understood by decision makers (i.e., risk managers or local authorities). The work here presented fits into the problem of simplifying the transfer between scientific knowledge and land protection policies, by providing an interface between scientists, who produce PHA's results, and decision makers, who use PHA's results for risk analyses. In this framework we present pyPHaz, an open tool developed and designed to visualize and analyze PHA results due to one or more phenomena affecting a specific area of interest. The software implementation has been fully developed with the free and open-source Python programming language and some featured Python-based libraries and modules. The pyPHaz tool allows to visualize the Hazard Curves (HC) calculated in a selected target area together with different levels of uncertainty (mean and percentiles) on maps that can be interactively created and modified by the user, thanks to a dedicated Graphical User Interface (GUI). Moreover, the tool can be used to compare the results of different PHA models and to merge them, by creating ensemble models. The pyPHaz software has been designed with the features of storing and accessing all the data through a MySQL database and of being able to read as input the XML-based standard file formats defined in the frame of GEM (Global Earthquake Model). This format model is easy to extend also to any other kind of hazard, as it will be shown in the applications here used as examples of the pyPHaz potentialities, that are focused on a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra dispersal and fallout applied to the municipality of Naples.
Lau, Nyok-Sean; Foong, Choon Pin; Kurihara, Yukio; Sudesh, Kumar; Matsui, Minami
2014-01-01
The photosynthetic cyanobacterium, Synechocystis sp. strain 6803, is a potential platform for the production of various chemicals and biofuels. In this study, direct photosynthetic production of a biopolymer, polyhydroxyalkanoate (PHA), in genetically engineered Synechocystis sp. achieved as high as 14 wt%. This is the highest production reported in Synechocystis sp. under photoautotrophic cultivation conditions without the addition of a carbon source. The addition of acetate increased PHA accumulation to 41 wt%, and this value is comparable to the highest production obtained with cyanobacteria. Transcriptome analysis by RNA-seq coupled with real-time PCR was performed to understand the global changes in transcript levels of cells subjected to conditions suitable for photoautotrophic PHA biosynthesis. There was lower expression of most PHA synthesis-related genes in recombinant Synechocystis sp. with higher PHA accumulation suggesting that the concentration of these enzymes is not the limiting factor to achieving high PHA accumulation. In order to cope with the higher PHA production, cells may utilize enhanced photosynthesis to drive the product formation. Results from this study suggest that the total flux of carbon is the possible driving force for the biosynthesis of PHA and the polymerizing enzyme, PHA synthase, is not the only critical factor affecting PHA-synthesis. Knowledge of the regulation or control points of the biopolymer production pathways will facilitate the further use of cyanobacteria for biotechnological applications. PMID:24466058
Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin
2014-09-01
In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.
Povolo, Silvana; Romanelli, Maria Giovanna; Basaglia, Marina; Ilieva, Vassilka Ivanova; Corti, Andrea; Morelli, Andrea; Chiellini, Emo; Casella, Sergio
2013-09-25
In the present paper we report the exclusive microbial preparation of polyhydroxyalkanoates (PHA) containing 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB) as comonomers through the use of unexpensive carbon sources such as whey from dairy industry. Polymers were produced by growing H. pseudoflava DSM 1034 in minimal medium supplemented with sucrose, lactose or whey without any co-substrate added. The chemical and physical properties of the polymers were fully characterized by GPC, DSC, TGA analyses and the composition by GC and (1)H NMR examinations to especially confirm the content of different monomeric units. The presence of 4HB units into PHA samples is particularly aimed in thermoplastic applications where greater flexibility is required and conventional rigid PHAs tend to fail. Usually the insertion of 4HB into chain backbone consisting of 3-hydroxyalkanoates requires expensive carbon sources mostly of petrochemical origin. According to our study the production of P(3HB-co-3HV-co-4HB) terpolymer can be obtained directly by the use of lactose or waste raw materials such as cheese whey as carbon sources. Although the amount of 4HB in the produced terpolymers was usually low and not exceeding 10% of the total molar composition, a PHA containing 18.4% of 4HB units was produced in 1 step fermentation process from this structurally unrelated carbon sources. The crystallinity of the terpolymer is basically to be markedly affected with respect to that of conventional PHAs, thus obtaining a comparatively less rigid material and easier to be processed. Copyright © 2012 Elsevier B.V. All rights reserved.
Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu
1998-01-01
The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894
Tajima, Kenji; Han, Xuerong; Satoh, Yasuharu; Ishii, Ayako; Araki, Yuji; Munekata, Masanobu; Taguchi, Seiichi
2012-04-01
Recently, we succeeded in isolating a thermotolerant bacterium, Pseudomonas sp. SG4502, which is capable of accumulating polyhydroxyalkanoate (PHA) even at 55 °C, as a source of thermostable enzymes. In this study, we cloned a pha locus from the bacterium and identified two genes encoding PHA synthases (PhaC1(SG) and PhaC2(SG)). Two mutations, Ser324Thr and Gln480Lys, corresponding to those of a lactate (LA)-polymerizing enzyme (LPE) from mesophilic Pseudomonas sp. 61-3 were introduced into PhaC1(SG) to evaluate the potential of the resulting protein as a "thermostable LPE". The mutated PhaC1(SG) [PhaC1(SG)(STQK)] showed high thermal stability in synthesizing P(LA-co-3HB) in an in vitro reaction system under a range of high temperatures. Requirement of 3HBCoA as a priming unit for LA polymerization by the LPE has been suggested in both of the in vitro and in vivo experiments. Based on the finding, the PhaC1(SG)(STQK)-mediated synthesis of a LA-based copolymer with a block sequence was achieved in the in vitro system by sequential feeding of the corresponding two substrates. This in vitro reaction system using the thermostable LPE provides us with a versatile way to synthesize the various types of LA-based copolymers with desired sequence patterns, random or block, depending on the way of supplying hydroxyalkanoates (mixed or sequential feeding).
The rheology, degradation, processing, and characterization of renewable resource polymers
NASA Astrophysics Data System (ADS)
Conrad, Jason David
Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the films are studied as a function of the blend composition. With increasing PHA content in the blends, the films show increases in the crystallinity and the percent elongation versus the pure materials, but decreases in both the modulus and the tensile strength. The 10% PHA blend is found to be the optimum concentration since the toughness is significantly improved without sacrificing the strength of the material. A post-processing uniaxial orientation step is also studied, and an improvement in the mechanical properties and crystallinity of the films is discovered with the largest effects observed by varying the stretch ratio. Increasing the stretch ratio resulted in an improvement in percent elongation and greater modulus, strength, and crystallinity versus the unstretched samples. Therefore, by varying the blend composition and film processing parameters, we are able to systematically manipulate the properties of the final product and therefore tailor the materials for specific applications depending on the desired properties.
Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E
2013-01-01
Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show that biomass and PHA productivity can be increased, and sometimes dramatically, in a fermentor. The relevant application-specific properties of the polymers from the wastes studied and the effect of altered-waste composition on polymer properties are generally not well reported and would greatly benefit the progress of the research as high productivity is of limited value without the context of requisite case-specific polymer properties. The proposed use of a waste residual is advantageous from a life cycle viewpoint as it removes the direct or indirect effect of PHA production on land usage and food production. However, the question, of how economic drivers will promote or hinder advancements to demonstration scale, when wastes generally become understood as resources for a biobased society, hangs today in the balance due to a lack of shared vision and the legacy of mistakes made with first generation bioproducts. Copyright © 2013 Elsevier Inc. All rights reserved.
Food waste conversion to microbial polyhydroxyalkanoates.
Nielsen, Chad; Rahman, Asif; Rehman, Asad Ur; Walsh, Marie K; Miller, Charles D
2017-11-01
Polyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large-scale PHA production is the cost of carbon substrate for PHA-producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food-related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food-derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates.
Ren, Yilin; Meng, Dechuan; Wu, Linping; Chen, Jinchun; Wu, Qiong; Chen, Guo-Qiang
2017-03-01
Polylactide (PLA) is a bio-based plastic commonly synthesized by chemical catalytic reaction using lactic acid (LA) as a substrate. Here, novel LA-containing terpolyesters, namely, P[LA-co-3-hydroxybutyrate (3HB)-co-3-hydroxypropionate (3HP)], short as PLBP, were successfully synthesized for the first time by a recombinant Escherichia coli harbouring polyhydroxyalkanoate (PHA) synthase from Pseudomonas stutzeri (PhaC1 Ps ) with 4-point mutations at E130D, S325T, S477G and Q481K, and 3-hydroxypropionyl-CoA (3HP-CoA) synthesis pathway from glycerol, 3-hydroxybutyryl-CoA (3HB-CoA) as well as lactyl-CoA (LA-CoA) pathways from glucose. Combining these pathways with the PHA synthase mutant phaC1 Ps (E130D S325T S477G Q481K), the random terpolyester P(LA-co-3HB-co-3HP), or PLBP, was structurally confirmed by nuclear magnetic resonance to consist of 2 mol% LA, 90 mol% 3HB, and 8 mol% 3HP respectively. Remarkably, the PLBP terpolyester was produced from low-cost sustainable glycerol and glucose. Monomer ratios of PLBP could be regulated by ratios of glycerol to glucose. Other terpolyester thermal and mechanical properties can be manipulated by adjusting the monomer ratios. More PLBP applications are to be expected. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.
Kutralam-Muniasamy, Gurusamy; Peréz-Guevara, Fermín
2018-05-24
Cupriavidus necator H16 is a well-recognized enterprise with efficient manufacturing machineries to produce diverse polymers belonging to polyhydroxyalkanoates (PHAs) family. The genome fingerprints, including PHA machinery proteins and fatty acid metabolism, had educated engineering strategies to enhance PHAs production. This outstanding progress has enlightened us to present an exhaustive examination of the ongoing research, addressing the great potential design of genome features towards PHA production and furthermore, we show how those acquired knowledge have been explored in other biotechnological applications. This updated-review concludes that the combination of an optimal strain selection, suitable metabolic engineering and a large-scale fermentation on oil substrates is critical to endow the ability of incorporating mcl-PHAs monomers in this organism.
Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.
Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar
2018-05-01
In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.
24 CFR 983.252 - PHA information for accepted family.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false PHA information for accepted family... family. (a) Oral briefing. When a family accepts an offer of PBV assistance, the PHA must give the family... of how the program works; and (2) Family and owner responsibilities. (b) Information packet. The PHA...
24 CFR 982.555 - Informal hearing for participant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... allowance schedule. (iii) A determination of the family unit size under the PHA subsidy standards. (iv) A... appropriate for the family unit size under the PHA subsidy standards, or the PHA determination to deny the... with HQS because of the family size. (8) A determination by the PHA to exercise or not to exercise any...
24 CFR 941.501 - HUD review of PHA performance; sanctions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HUD review of PHA performance... URBAN DEVELOPMENT PUBLIC HOUSING DEVELOPMENT Performance Review § 941.501 HUD review of PHA performance; sanctions. (a) HUD determination. HUD shall carry out such reviews of the performance of each PHA as may be...
24 CFR 983.252 - PHA information for accepted family.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false PHA information for accepted family... family. (a) Oral briefing. When a family accepts an offer of PBV assistance, the PHA must give the family... of how the program works; and (2) Family and owner responsibilities. (b) Information packet. The PHA...
24 CFR 982.403 - Terminating HAP contract when unit is too small.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Dwelling Unit: Housing Quality Standards, Subsidy Standards, Inspection and Maintenance § 982.403... change in family composition, the PHA must issue the family a new voucher, and the family and PHA must...-based certificate program. (2) The PHA must issue the family a new voucher, and the family and PHA must...
Dai, Yu; Yuan, Zhiguo; Jack, Kevin; Keller, Jurg
2007-05-01
One of the main limitations in bacterial polyhydroxyalkanoate (PHA) production with mixed cultures is the fact that primarily polyhydroxybutyrate (PHB) homopolymers are generated from acetate as the main carbon source, which is brittle and quite fragile. The incorporation of different 3-hydroxyalkanoate (HA) components into the polymers requires the addition of additional carbon sources, leading to extra costs and complexity. In this study, the production of poly(3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)-co-3-hydroxy-2-methylvalerate (3HMV)), with 7-35C-mol% of 3HV fractions from acetate as the only carbon source was achieved with the use of glycogen accumulating organisms (GAOs). An enriched GAO culture was obtained in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate fed at the beginning of the anaerobic period. The production of PHAs utilizing the enriched GAO culture was investigated under both aerobic and anaerobic conditions. A polymer content of 14-41% of dry cell weight was obtained. The PHA product accumulated by GAOs under anaerobic conditions contained a relatively constant proportion of non-3HB monomers (30+/-5C-mol%), irrespective of the amount of acetate assimilated. In contrast, under aerobic conditions, GAOs only produced 3HB monomers from acetate causing a gradually decreasing 3HV fraction during this aerobic feeding period. The PHAs were characterized by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The data demonstrated that the copolymers possessed similar characteristics to those of commercially available poly(3HB-co-3HV) (PHBV) products. The PHAs produced under solely anaerobic conditions possessed lower melting points and crystallinity, higher molecular weights, and narrower molecular-weight distributions, compared to the aerobically produced polymers. This paper hence demonstrates the significant potential of GAOs to produce high quality polymers from a simple and cheap carbon source, contributing considerably to the growing research body on bacterial PHA production by mixed cultures.
Bioinformatics Analysis of Small RNAs in Pima (Gossypium barbadense L.)
Hu, Hongtao; Yu, Dazhao; Liu, Hong
2015-01-01
Small RNAs (sRNAs) are ~20 to 24 nucleotide single-stranded RNAs that play crucial roles in regulation of gene expression. In plants, sRNAs are classified into microRNAs (miRNAs), repeat-associated siRNAs (ra-siRNAs), phased siRNAs (pha-siRNAs), cis and trans natural antisense transcript siRNAs (cis- and trans-nat siRNAs). Pima (Gossypium barbadense L.) is one of the most economically important fiber crops, producing the best and longest spinnable fiber. Although some miRNAs are profiled in Pima, little is known about siRNAs, the largest subclass of plant sRNAs. In order to profile these gene regulators in Pima, a comprehensive analysis of sRNAs was conducted by mining publicly available sRNA data, leading to identification of 678 miRNAs, 3,559,126 ra-siRNAs, 627 pha-siRNAs, 136,600 cis-nat siRNAs and 79,994 trans-nat siRNAs. The 678 miRNAs, belonging to 98 conserved and 402 lineage-specific families, were produced from 2,138 precursors, of which 297 arose from introns, exons, or intron/UTR-exon junctions of protein-coding genes. Ra-siRNAs were produced from various repeat loci, while most (97%) were yielded from retrotransposons, especially LTRs (long terminal repeats). The genes encoding auxin-signaling-related proteins, NBS-LRRs and transcription factors were major sources of pha-siRNAs, while two conserved TAS3 homologs were found as well. Most cis-NATs in Pima overlapped in enclosed and convergent orientations, while a few hybridized in divergent and coincided orientations. Most cis- and trans-nat siRNAs were produced from overlapping regions. Additionally, characteristics of length and the 5’-first nucleotide of each sRNA class were analyzed as well. Results in this study created a valuable molecular resource that would facilitate studies on mechanism of controlling gene expression. PMID:25679373
Controlling microbial PHB synthesis via CRISPRi.
Li, Dan; Lv, Li; Chen, Jin-Chun; Chen, Guo-Qiang
2017-07-01
Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.
Safety testing of GM-rice expressing PHA-E lectin using a new animal test design.
Poulsen, Morten; Schrøder, Malene; Wilcks, Andrea; Kroghsbo, Stine; Lindecrona, Rikke Hvid; Miller, Andreas; Frenzel, Thomas; Danier, Jürgen; Rychlik, Michael; Shu, Qingyao; Emami, Kaveh; Taylor, Mark; Gatehouse, Angharad; Engel, Karl-Heinz; Knudsen, Ib
2007-03-01
The 90-day animal study is the core study for the safety assessment of genetically modified foods in the SAFOTEST project. The model compound tested in the 90-day study was a rice variety expressing the kidney bean Phaseolus vulgaris lectin agglutinin E-form (PHA-E lectin). Female Wistar rats were given a nutritionally balanced purified diet with 60% parental rice, 60% PHA-E rice or 60% PHA-E rice spiked with 0.1% recombinant PHA-E lectin for 90 days. This corresponded to a mean daily PHA-E lectin intake of approximately 0, 30 and 100mg/kg body weight for each group, respectively. The spiking was used to increase the specificity and to demonstrate the sensitivity of the study. A range of biological, biochemical, microbiological and pathological parameters were examined and significant differences in weight of small intestine, stomach and pancreas and plasma biochemistry were seen between groups. Included in this paper are also data from the molecular characterisation and chemical analysis of the PHA-E rice, from the construction and production of the PHA-E lectin, and from the preceding 28-day in vivo study where the toxicity of the pure PHA-E lectin was determined. In conclusion, the combined use of information from the compositional analysis, the 28-day study and the characterisation of the PHA-E rice and the PHA-E lectin has improved the design of the 90-day study. The spiking procedure has facilitated the interpretation of the results of the study and transferred it into a valuable tool for the future safety testing of genetically modified foods.
Isak, I; Patel, M; Riddell, M; West, M; Bowers, T; Wijeyekoon, S; Lloyd, J
2016-08-01
Fourier transform infrared (FTIR) spectroscopy was used in this study for the rapid quantification of polyhydroxyalkanoates (PHA) in mixed and pure culture bacterial biomass. Three different statistical analysis methods (regression, partial least squares (PLS) and nonlinear) were applied to the FTIR data and the results were plotted against the PHA values measured with the reference gas chromatography technique. All methods predicted PHA content in mixed culture biomass with comparable efficiency, indicated by similar residuals values. The PHA in these cultures ranged from low to medium concentration (0-44 wt% of dried biomass content). However, for the analysis of the combined mixed and pure culture biomass with PHA concentration ranging from low to high (0-93% of dried biomass content), the PLS method was most efficient. This paper reports, for the first time, the use of a single calibration model constructed with a combination of mixed and pure cultures covering a wide PHA range, for predicting PHA content in biomass. Currently no one universal method exists for processing FTIR data for polyhydroxyalkanoates (PHA) quantification. This study compares three different methods of analysing FTIR data for quantification of PHAs in biomass. A new data-processing approach was proposed and the results were compared against existing literature methods. Most publications report PHA quantification of medium range in pure culture. However, in our study we encompassed both mixed and pure culture biomass containing a broader range of PHA in the calibration curve. The resulting prediction model is useful for rapid quantification of a wider range of PHA content in biomass. © 2016 The Society for Applied Microbiology.
Wang, Zhenyu; Cao, Guangli; Zheng, Ju; Fu, Defeng; Song, Jinzhu; Zhang, Junzheng; Zhao, Lei; Yang, Qian
2015-01-01
Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest. This study was mainly undertaken to find complementary organisms to the butanol producer that allow simultaneous saccharification and fermentation of cellulose to butanol in their co-culture under mesophilic condition. Accordingly, a highly efficient and stable consortium N3 on cellulose degradation was first developed by multiple subcultures. Subsequently, the functional microorganisms with 16S rRNA sequences identical to the denaturing gradient gel electrophoresis (DGGE) profile were isolated from consortium N3. The isolate Clostridium celevecrescens N3-2 exhibited higher cellulose-degrading capability was thus chosen as the partner strain for butanol production with Clostridium acetobutylicum ATCC824. Meanwhile, the established stable consortium N3 was also investigated to produce butanol by co-culturing with C. acetobutylicum ATCC824. Butanol was produced from cellulose when C. acetobutylicum ATCC824 was co-cultured with either consortium N3 or C. celevecrescens N3-2. Co-culturing C. acetobutylicum ATCC824 with the stable consortium N3 resulted in a relatively higher butanol concentration, 3.73 g/L, and higher production yield, 0.145 g/g of glucose equivalent. The newly isolated microbial consortium N3 and strain C. celevecrescens N3-2 displayed effective degradation of cellulose and produced considerable amounts of butanol when they were co-cultured with C. acetobutylicum ATCC824. This is the first report of application of co-culture to produce butanol directly from cellulose under mesophilic condition. Our results indicated that co-culture of mesophilic cellulolytic microbe and butanol-producing clostridia provides a technically feasible and more simplified way for producing butanol directly from cellulose.
24 CFR 968.335 - HUD review of PHA performance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HUD review of PHA performance. 968... 250 or More Public Housing Units) § 968.335 HUD review of PHA performance. (a) HUD determination. At least annually, HUD shall carry out such reviews of the performance of each PHA as may be necessary or...
Peoria Housing Authority(PHA) Weatherization Training Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillip Chrismon; Jason Dollarhide
2011-12-31
The DOE Weatherization Training Project's goal is to obtain a solid foundation of administrative and technical knowledge so the Peoria Housing Authority (PHA) can establish and implement a successful Weatherization Program by 2011. The DOE weatherization Training Project's two objectives are to (1) build PHA's capabilities by (2) developing its staff members capacities via the acquisition of weatherization skills and competencies. The impacts from this project include: (a) the improvement and expansion of PHA staff skills, (b) the overall enhancement of the quality of the PHA workforce, which will (c) foster employment, (d) the ability to properly weatherize PHA housingmore » stock, tribal buildings, and tribal members houses, which will (e) result in reduced energy use, and (f) improved tribal and household economies.« less
USDA-ARS?s Scientific Manuscript database
Polyhydroxyalkanoates (PHAs) are attractive biomaterials in both conventional medical devices and tissue engineering. PHA synthase is responsible for catalyzing the formation of polyhydroxyalkanoates (PHA), but its structural information is limited. Hence, the focus of this study is to predict 3D mo...
24 CFR 880.507 - Default by PHA and/or owner (private-owner/PHA projects).
Code of Federal Regulations, 2011 CFR
2011-04-01
... projects). (a) Rights of Owner if PHA defaults under Agreement or Contract. The ACC, the Agreement and the... obligations to enter into the Contract. (b) Rights of HUD if PHA defaults under ACC. The ACC will provide that..., HUD will continue to pay annual contributions in accordance with the terms of the ACC and the Contract...
24 CFR 880.507 - Default by PHA and/or owner (private-owner/PHA projects).
Code of Federal Regulations, 2010 CFR
2010-04-01
... projects). (a) Rights of Owner if PHA defaults under Agreement or Contract. The ACC, the Agreement and the... obligations to enter into the Contract. (b) Rights of HUD if PHA defaults under ACC. The ACC will provide that..., HUD will continue to pay annual contributions in accordance with the terms of the ACC and the Contract...
24 CFR 901.220 - Resident participation in competitive proposals to manage the housing of a PHA.
Code of Federal Regulations, 2010 CFR
2010-04-01
... competitive proposals to manage the housing of a PHA. 901.220 Section 901.220 Housing and Urban Development... § 901.220 Resident participation in competitive proposals to manage the housing of a PHA. (a) When a competitive proposal to manage the housing of a PHA in substantial default is solicited in a Request for...
Zou, Wenjuan; Cheng, Hankui; Li, Shitian; Yue, Xiaomin; Xue, Yadan; Chen, Sixi; Kang, Lijun
2017-01-01
Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlying mechanisms of the C. elegans phasmid neurons PHA/PHB to a variety of sensory stimuli. Our observations demonstrate that PHA/PHB neurons are polymodal sensory neurons which sense harmful chemicals, hyperosmotic solutions and mechanical stimulation. A repulsive concentration of IAA induces calcium elevations in PHA/PHB and both OSM-9 and TAX-4 are essential for IAA-sensing in PHA/PHB. Nevertheless, the PHA/PHB neurons are inhibited by copper and post-synaptically activated by copper removal. Neuropeptide is likely involved in copper removal-induced calcium elevations in PHA/PHB. Furthermore, mechanical stimulation activates PHA/PHB in an OSM-9-dependent manner. Our work demonstrates how PHA/PHB neurons respond to multiple environmental stimuli and lays a foundation for the further understanding of the mechanisms of polymodal signaling, such as nociception, in more complex organisms. PMID:28195191
Biopolymer - A beginning towards back to nature
NASA Astrophysics Data System (ADS)
Gautam, S.; Gautam, A.
2018-05-01
Biopolymer is regarded as a polymer which can be biodegradable. Polyhydroxyalkanoates (PHAs) is one of the biopolymer which can be recovered from biomass. PHAs are naturally conserved in the cytoplasm of the bacterial cell during the growth. Bacteria/microbes store their energy from carbon sources in the form of hydrocarbons. Intracellular stored compounds are tightly linked with entire cell resulting difficulty of separation. The work aims to extract PHAs from biomass effectively. Chemical and mechanical separation of PHA can be done from biomass. A pretreatment of cells before chemical and mechanical separation is also effective for separation of PHA and has been carried out. Chemical extraction of PHA includes digestion of cell wall in acidic or alkaline medium and releasing PHA in broth, later sedimentation recovers PHA. In recent work different chemical methods were carried out to extract PHA of medium chain length. In one of these, sodium hypochlorite was used to denature the protein and chloroform was used for extraction of purified PHA. A recovery upto 96.6%, PHA by dried weight of cell, was obtained which is quite high comparing to reported literature. Other chemical disruption by sodium chloride, sodium hydroxide and hydrogen peroxide with and without pretreatment have also been carried out.
Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS).
Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M
2014-09-01
Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. © 2014 British Society for Immunology.
Yang, Hongna; Sun, Jinhua; Li, Yan; Duan, Wei-Ming; Bi, Jianzhong; Qu, Tingyu
2016-04-01
Bone marrow-derived mesenchymal stem cells (MSCs) are promising candidate cells for therapeutic application in autoimmune diseases due to their immunomodulatory properties. Unused human umbilical cords (UC) offer an abundant and noninvasive source of MSCs without ethical issues and are emerging as a valuable alternative to bone marrow tissue for producing MSCs. We thus investigated the immunomodulation effect of umbilical cord-derived MSCs (UC-MSCs) on human peripheral blood mononuclear cells (PBMCs), T cells in particular, in a co-culture system. We found that UC-MSCs efficiently suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated PBMCs (p<0.01). Kinetic analysis revealed that UC-MSCs primarily inhibited the division of generation 3 (G3) and 4 (G4) of PBMCs. In addition, UC-MSCs augmented the expression of CD127(+) and CD45RA(+) but reduced the expression of CD25(+) in PBMCs stimulated by PHA (p<0.05). Furthermore, UC-MSCs inhibited PHA-resulted increase in the frequency of CD4(+)CD25(+)CD127(low/-) Tregs significantly (p<0.01) but augmented PHA-resulted increase in the frequency of CD4(+)CD25(high)CD45RA(+) Tregs to about three times in PBMCs. The levels of anti-inflammatory cytokines, PEG2, TGF-β, and IL-10 were greatly up-regulated, accompanied by a significant down-regulation of pro-inflammatory IFN-γ in the co-culture (p<0.01). Our results showed that UC-MSCs are able to suppress mitogen-induced PBMC activation and proliferation in vitro by altering T lymphocyte phenotypes, increasing the frequency of CD4(+)CD25(high)CD45RA(+) Tregs, and modulating the associated cytokine production. Further studies are warranted to investigate the therapeutic potential of UC-MSCs in immunologically-diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of famine-phase reduced aeration on polyhydroxyalkanoate accumulation in aerobic granules.
Vjayan, T; Vadivelu, V M
2017-12-01
The effects of variable aeration in the famine period on polyhydroxyalkanoate (PHA) accumulation in aerobic granules were investigated. Results showed that regardless of the aeration rates used during famine period, all aerobic granules achieved a similar chemical oxygen demand removal and PHA content. The decrease in famine-period aeration rates accelerated the maximum PHA accumulation together with increase in granular size and settling ability. The PHA-accumulating microorganisms were found to have shifted closer to the surface of the granules when the aeration rate was reduced. Moreover, PHA compositional changes occurred, where the hydroxyvalerate content had increased with the reduction in aeration rate. Ultimately, the results indicate that the requirement of aeration for PHA accumulation in aerobic granules is highly insignificant in the famine phase. PHA production in aerobic granules under zero aeration in the famine period may result in an energy input reduction of up to 74%. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kruemmling, Brooke; Hayes, Heather; Smith, Derrick W.
2017-01-01
The National Leadership Consortium in Sensory Disabilities (NLCSD) trained doctoral scholars at universities across the United States to increase the number and quality of professionals specializing in educating children with sensory disabilities. NLCSD produced 40 new doctorates and created a community of learners comprised of scholars, faculty,…
Kulkarni, S O; Kanekar, P P; Nilegaonkar, S S; Sarnaik, S S; Jog, J P
2010-12-01
Several microorganisms produce polyhydroxyalkanoates (PHA). They are accumulated intracellularly as energy storage compounds. The PHAs are of interest because of their potential in biomedical applications. Halophilic bacteria and archaea are known to produce polyhydroxybutyrate (PHB). This paper describes production of a biodegradable copolymer, PHB-co-PHV by a moderately haloalkalitolerant Halomonas campisalis, isolated from Lonar Lake, India. The production of PHA was in the range of 45-81% on dry cell weight basis when the organism was grown in a production medium containing 1% (w/v) maltose and 0.1% (w/v) yeast extract, at pH ranging from 6 to 9 with an inoculum density of 10(5)-10(7) cells/ml of medium, for incubation period of 15-30 h and at 37 degrees C. The polymer produced by the organism is a hydroxyester with molecular weight of 1.3014 x 10(6). Its melting temperature was 171 degrees C. The (1)H NMR analysis revealed that the polymer was a copolymer of PHB-co-PHV. This could be achieved by providing simple carbon source viz. maltose. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant.
Pittmann, T; Steinmetz, H
2014-09-01
This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached. Copyright © 2014 Elsevier Ltd. All rights reserved.
Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar
2005-09-01
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
Lupiañez, C. B.; Canet, L. M.; Carvalho, A.; Alcazar-Fuoli, L.; Springer, J.; Lackner, M.; Segura-Catena, J.; Comino, A.; Olmedo, C.; Ríos, R.; Fernández-Montoya, A.; Cuenca-Estrella, M.; Solano, C.; López-Nevot, M. Á.; Cunha, C.; Oliveira-Coelho, A.; Villaescusa, T.; Fianchi, L.; Aguado, J. M.; Pagano, L.; López-Fernández, E.; Potenza, L.; Luppi, M.; Lass-Flörl, C.; Loeffler, J.; Einsele, H.; Vazquez, L.; Jurado, M.
2015-01-01
Recent studies suggest that immune-modulating single-nucleotide polymorphisms (SNPs) influence the risk of developing cancer-related infections. Here, we evaluated whether 36 SNPs within 14 immune-related genes are associated with the risk of invasive aspergillosis (IA) and whether genotyping of these variants might improve disease risk prediction. We conducted a case-control association study of 781 immunocompromised patients, 149 of whom were diagnosed with IA. Association analysis showed that the IL4Rrs2107356 and IL8rs2227307 SNPs (using dbSNP numbering) were associated with an increased risk of IA (IL4Rrs2107356 odds ratio [OR], 1.92; 95% confidence interval [CI], 1.20 to 3.09; IL8rs2227307 OR, 1.73; 95% CI, 1.06 to 2.81), whereas the IL12Brs3212227 and IFNγrs2069705 variants were significantly associated with a decreased risk of developing the infection (IL12Brs3212227 OR, 0.60; 95% CI, 0.38 to 0.96; IFNγrs2069705 OR, 0.63; 95% CI, 0.41 to 0.97). An allogeneic hematopoietic stem cell transplantation (allo-HSCT)-stratified analysis revealed that the effect observed for the IL4Rrs2107356 and IFNγrs2069705 SNPs was stronger in allo-HSCT (IL4Rrs2107356 OR, 5.63; 95% CI, 1.20 to 3.09; IFNγrs2069705 OR, 0.24; 95% CI, 0.10 to 0.59) than in non-HSCT patients, suggesting that the presence of these SNPs renders patients more vulnerable to infection, especially under severe and prolonged immunosuppressive conditions. Importantly, in vitro studies revealed that carriers of the IFNγrs2069705C allele showed a significantly increased macrophage-mediated neutralization of fungal conidia (P = 0.0003) and, under stimulation conditions, produced higher levels of gamma interferon (IFNγ) mRNA (P = 0.049) and IFNγ and tumor necrosis factor alpha (TNF-α) cytokines (P value for 96 h of treatment with lipopolysaccharide [PLPS-96 h], 0.057; P value for 96 h of treatment with phytohemagglutinin [PPHA-96 h], 0.036; PLPS+PHA-96 h = 0.030; PPHA-72 h = 0.045; PLPS+PHA-72 h = 0.018; PLPS-96 h = 0.058; PLPS+PHA-96 h = 0.0058). Finally, we also observed that the addition of SNPs significantly associated with IA to a model including clinical variables led to a substantial improvement in the discriminatory ability to predict disease (area under the concentration-time curve [AUC] of 0.659 versus AUC of 0.564; P−2 log likehood ratio test = 5.2 · 10−4 and P50.000 permutation test = 9.34 · 10−5). These findings suggest that the IFNγrs2069705 SNP influences the risk of IA and that predictive models built with IFNγ, IL8, IL12p70, and VEGFA variants can used to predict disease risk and to implement risk-adapted prophylaxis or diagnostic strategies. PMID:26667837
Coats, Erik R; Watson, Benjamin S; Brinkman, Cynthia K
2016-12-01
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can substitute for petroleum-based plastics in a variety of applications. One avenue to commercial PHA production involves coupling waste-based synthesis with the use of mixed microbial consortia (MMC). In this regard, production requires maximizing the enrichment of a MMC capable of feast-famine PHA synthesis, with the metabolic response induced through imposition of aerobic-dynamic feeding (ADF) conditions. However, the concept of PHA production in complex matrices remains unrefined; process operational improvements are needed, along with an enhanced understanding of the MMC. Research presented herein investigated the effect of aeration on feast-famine PHA synthesis, with four independent aeration state systems studied; MMC were fed volatile fatty acid (VFA)-rich fermented dairy manure. Regardless of the aeration state, all MMC exhibited a feast-famine response based on observed carbon cycling. Moreover, there was no statistical difference in PHA synthesis rates, with q PHA ranging from 0.10 to 0.19 CmmolPHA gVSS -1 min -1 ; VFA uptake rates exhibited similar statistical indifferences. PHA production assessments on the enriched MMC resulted in maximum intracellular concentrations ranging from 22.5 to 90.7% (mgPHA mgVSS -1 ); at maximum concentration, the mean hydroxyvalerate mol content was 73 ± 0.6%. While a typical feast-famine dissolved oxygen (DO) pattern was observed at maximum aeration, less resolution was observed at decreasing aeration rates, suggesting that DO may not be an optimal process monitoring parameter. At lower aeration states, nitrogen cycling patterns, supported by molecular investigations targeting AOBs and NOBs, indicate that NO 2 and NO 3 sustained feast-famine PHA synthesis. Next-generation sequencing analysis of the respective MMC revealed numerous and diverse genera exhibiting the potential to achieve PHA synthesis, suggesting functional redundancy embedded in the diverse MMC. Ultimately, results demonstrate that aeration can be controlled in waste-based ADF systems to sustain PHA production potential, while enriching for a diverse MMC that exhibits potential functional redundancy. Reduced aeration could also enhance cost competitiveness of waste-based PHA production, with potential further benefits associated with nitrogen treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
24 CFR 982.302 - Issuance of voucher; Requesting PHA approval of assisted tenancy.
Code of Federal Regulations, 2013 CFR
2013-04-01
... family is selected, or when a participant family wants to move to another unit, the PHA issues a voucher to the family. The family may search for a unit. (b) If the family finds a unit, and the owner is willing to lease the unit under the program, the family may request PHA approval of the tenancy. The PHA...
24 CFR 982.302 - Issuance of voucher; Requesting PHA approval of assisted tenancy.
Code of Federal Regulations, 2012 CFR
2012-04-01
... family is selected, or when a participant family wants to move to another unit, the PHA issues a voucher to the family. The family may search for a unit. (b) If the family finds a unit, and the owner is willing to lease the unit under the program, the family may request PHA approval of the tenancy. The PHA...
24 CFR 982.302 - Issuance of voucher; Requesting PHA approval of assisted tenancy.
Code of Federal Regulations, 2010 CFR
2010-04-01
... family is selected, or when a participant family wants to move to another unit, the PHA issues a voucher to the family. The family may search for a unit. (b) If the family finds a unit, and the owner is willing to lease the unit under the program, the family may request PHA approval of the tenancy. The PHA...
24 CFR 982.302 - Issuance of voucher; Requesting PHA approval of assisted tenancy.
Code of Federal Regulations, 2014 CFR
2014-04-01
... family is selected, or when a participant family wants to move to another unit, the PHA issues a voucher to the family. The family may search for a unit. (b) If the family finds a unit, and the owner is willing to lease the unit under the program, the family may request PHA approval of the tenancy. The PHA...
24 CFR 982.302 - Issuance of voucher; Requesting PHA approval of assisted tenancy.
Code of Federal Regulations, 2011 CFR
2011-04-01
... family is selected, or when a participant family wants to move to another unit, the PHA issues a voucher to the family. The family may search for a unit. (b) If the family finds a unit, and the owner is willing to lease the unit under the program, the family may request PHA approval of the tenancy. The PHA...
Degradation of microbial polyesters.
Tokiwa, Yutaka; Calabia, Buenaventurada P
2004-08-01
Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.
Soppi, E
1981-02-01
Guinea pig thymocytes (TH) and lymph node lymphocytes (LNL) synergized optimally in both phytohemagglutinin (PHA) and concanavalin (Con A) responses in mixtures containing 0.3 x 10(6) TH and 0.2 x 10(6) LNL. Using discontinuous albumin gradient centrifugation thymocytes were separated into two subpopulations (F4 and F6) at different stages of maturation. Immature, PHA and Con A unresponsive F6 thymocytes synergized significantly only in the PHA response. More mature, PHA and Con A responsive F4 thymocytes cooperated well in the Con A response, but only a small synergy was observed in the PHA response. Pretreatment of the unfractionated thymocytes with the low concentration (0.05 microgram/ml) of thymosin decreased significantly their capacity to interact with LNL in both PHA and Con A responses. Preincubation of F4 thymocytes with the high concentration (200 microgram/ml) of thymosin increased the synergy in PHA response. All other combinations with thymosin or levamisole and thymocytes were ineffective on the mitogenic responses in the TH and LNL cocultures. Altogether, the results how that the thymocyte populations that induce synergy in PHA, or in (PHA and) Con A responses represent the two subpopulations of thymocytes with different maturation stages. The differential effects of the two concentrations of thymosin on the thymocytes support further the concept that the thymocytes synergizing in responses to both mitogens are more mature than those synergizing only PHA response. Thus, the ability of thymocytes to interact with LNL is dependent on the maturation stage of thymocytes, and can be utilized to study the differentiation of thymocytes.
Porras, Mauricio A; Villar, Marcelo A; Cubitto, María A
2018-05-01
The presence of intracellular polyhydroxyalkanoates (PHAs) is usually studied using Sudan black dye solution (SB). In a previous work it was shown that the PHA could be directly quantified using the absorbance of SB fixed by PHA granules in wet cell samples. In the present paper, the optimum SB amount and the optimum conditions to be used for SB assays were determined following an experimental design by hybrid response surface methodology and desirability-function. In addition, a new methodology was developed in which it is shown that the amount of SB fixed by PHA granules can also be determined indirectly through the absorbance of the supernatant obtained from the stained cell samples. This alternative methodology allows a faster determination of the PHA content (involving 23 and 42 min for indirect and direct determinations, respectively), and can be undertaken by means of basic laboratory equipment and reagents. The correlation between PHA content in wet cell samples and the spectra of the SB stained supernatant was determined by means of multivariate and linear regression analysis. The best calibration adjustment (R 2 = 0.91, RSE: 1.56%), and the good PHA prediction obtained (RSE = 1.81%), shows that the proposed methodology constitutes a reasonably precise way for PHA content determination. Thus, this methodology could anticipate the probable results of the above mentioned direct PHA determination. Compared with the most used techniques described in the scientific literature, the combined implementation of these two methodologies seems to be one of the most economical and environmentally friendly, suitable for rapid monitoring of the intracellular PHA content. Copyright © 2018 Elsevier B.V. All rights reserved.
Rapid Generation and Testing of a Lassa Fever Vaccine Using VaxCelerate Platform
2014-08-28
essentially the same way each time but is capable to producing effective vaccine responses to a range of pathogens, and to do this without the use of...this distributed vaccine development consortium to rapidly produce and test a novel vaccine of relevance to public health responses. In parallel...with this effort, the consortium produced and tested a modified version of its self-assembling vaccine protein that used a subunit of the full
Novel bio-based and biodegradable polymer blends
NASA Astrophysics Data System (ADS)
Yang, Shengzhe
Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.
Prolonged post-hyperventilation apnea in two young adults with hyperventilation syndrome
2013-01-01
Background The prognosis of hyperventilation syndrome (HVS) is generally good. However, it is important to proceed with care when treating HVS because cases of death following hyperventilation have been reported. This paper was done to demonstrate the clinical risk of post-hyperventilation apnea (PHA) in patients with HVS. Case presentation We treated two patients with HVS who suffered from PHA. The first, a 21-year-old woman, had a maximum duration of PHA of about 3.5 minutes and an oxygen saturation (SpO2) level of 60%. The second patient, a 22-year-old woman, had a maximum duration of PHA of about 3 minutes and an SpO2 level of 66%. Both patients had loss of consciousness and cyanosis. Because there is no widely accepted regimen for treating patients with prolonged PHA related to HVS, we administered artificial ventilation to both patients using a bag mask and both recovered without any after effects. Conclusion These cases show that some patients with HVS develop prolonged PHA or severe hypoxia, which has been shown to lead to death in some cases. Proper treatment must be given to patients with HVS who develop PHA to protect against this possibility. If prolonged PHA or severe hypoxemia arises, respiratory assistance using a bag mask must be done immediately. PMID:23594702
Liu, Ting; Yu, Yang-Yang; Chen, Tao; Chen, Wei Ning
2017-03-01
In this study, a synthetic microbial consortium containing exoelectrogen Shewanella oneidensis MR-1 and riboflavin-producing strain, Bacillus subtilis RH33, was rationally designed and successfully constructed, enabling a stable, multiple cycles of microbial fuel cells (MFCs) operation for more than 500 h. The maximum power density of MFCs with this synthetic microbial consortium was 277.4 mW/m 2 , which was 4.9 times of that with MR-1 (56.9 mW/m 2 ) and 40.2 times of RH33 (6.9 mW/m 2 ), separately. At the same time, the Coulombic efficiency of the synthetic microbial consortium (5.6%) was higher than MR-1 (4.1%) and RH33 (2.3%). Regardless the high concentration of riboflavin produced by RH33, the power density of RH33 was rather low. The low bioelectricity generation can be ascribed to the low efficiency of RH33 in utilizing riboflavin for extracellular electron transfer (EET). In the synthetic microbial consortium of MR-1 and RH33, it was found that both mediated and direct electron transfer efficiencies were enhanced. By exchanging the anolyte of MR-1 and RH33, it was confirmed that the improved MFC performance with the synthetic microbial consortium was because MR-1 could efficiently utilize the high concentration of riboflavin produced by RH33. Biotechnol. Bioeng. 2017;114: 526-532. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Somerville, Christopher R.; Nawrath, Christiane; Poirier, Yves
1997-03-11
The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid.
Production and degradation of polyhydroxyalkanoates in waste environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.Y.; Choi, J.
1999-06-01
Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the followingmore » aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapetaniou, Evangelia G.; Braaz, Reinhard; Jendrossek, Dieter
2005-05-01
A novel thermoalkalophilic depolymerase, PhaZ7, from P. lemoignei was crystallized by the microdialysis technique. Crystals belong to space group C2 and diffract to 2.75 Å resolution at a synchrotron source. Polyhydroxyalkanoates (PHA) are biodegradable polyesters that have attracted commercial and academic interest as environmentally friendly materials. A number of enzymes are able to degrade polyhydroxyalkanoates to water-soluble products. PhaZ7 poly(3-hydroxybutyrate) (PHB) depolymerase (EC 3.1.1.75), a 342-amino-acid hydrolase from the PHA-degrading bacterium Paucimonas lemoignei, has been found to possess substrate specificity for amorphous PHA. PhaZ7 was crystallized by the microdialysis method. Thin rod-like crystals were grown in low ionic strength solutionmore » and found to belong to the monoclinic space group C2, with unit-cell parameters a = 225.8, b = 46.5, c = 171.3, β = 128.9°. A complete data set was collected to 2.75 Å resolution at 100 K using synchrotron radiation.« less
Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao
2017-10-01
Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Chappell, J; Chrispeels, M J
1986-05-01
The expression of phaseolin and phytohemagglutinin (PHA) in the developing cotyledons of a normal (Greensleeves) and a PHA-deficient (Pinto 111) cultivar of Phaseolus vulgaris was investigated. Phaseolin mRNA translational activity and abundance were present at similar levels in both cultivars. In contrast, PHA mRNA translational activity and abundance in Pinto 111 were less than 1% of the levels measured in Greensleeves. Using nuclear runoff assays, the transcription rate of phaseolin gene sequences was similar in both cultivars. The transcription rate of PHA gene sequences in Pinto 111 was only 20% of that measured in Greensleeves. Comparison of the transcription rates with the relative mRNA amounts measured in RNA blot hybridizations indicated that the normally expressed storage protein gene mRNAs were very stable with half-lives greater than several days. Because a low level of PHA gene transcription in Pinto 111 was measurable but no PHA mRNA accumulated, these results suggest that the PHA deficiency in Pinto 111 is due to a reduced transcription rate and possibly an instability of the mRNA.
Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha
2015-10-01
Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.
24 CFR 982.202 - How applicants are selected: General requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... but not limited to 24 CFR part 5, subpart L, protection for victims of domestic violence, dating violence, and stalking, and with PHA policies stated in the PHA administrative plan and the PHA plan. The...
Phase angle as a nutritional evaluation tool in all stages of chronic liver disease.
Peres, W A F; Lento, D F; Baluz, K; Ramalho, A
2012-01-01
Malnutrition is commonly and frequently under-diagnosed in clinical settings in patients with chronic liver disease (CLD) due to the limitations of nutritional evaluation methods in this population. We hypothesized that the bioelectrical impedance analysis derived phase angle (BIA-derived PhA) might be considered as a nutritional indicator in CLD since it represents either cell death or malnutrition characterized by changes in cellular membrane integrity. The aim of this study was to evaluate the BIA-derived PhA as a nutritional evaluation tool in all stages of CLD, including chronic hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). Liver-related death and survival were evaluated. A total of 66 patients were enrolled in a cross-sectional study. For the nutritional diagnosis, mid-arm circumference (MAC), triceps skinfold thickness (TST), mid-arm muscle circumference (MAMC) and Subject Global Assessment (SGA) were evaluated. Biochemical and clinical evaluations were performed. Our results showed that PhA was higher in well-nourished patients, according to SGA and in the patients without hepatic encephalopathy. PhA correlated significantly with MAMC, MAC and albumin and was inversely correlated with age. No correlation was found between PhA values and the Child-Pugh score and ascites. PhA was strongly associated with survival and PhA ≤ 5.18º with relative risk increase of 2.5 for death. We conclude that the BIA-derived PhA is a relevant nutritional evaluation tool in chronic hepatitis, liver cirrhosis and HCC and the role of PhA in the prediction of survival in CLD should be examined further in a controlled study.
USDA-ARS?s Scientific Manuscript database
Poly(hydroxyalkanoate)s (PHA’s) are well-known bacterial polyesters produced by many bacteria under nutrient-deficient conditions. While many PHA’s demonstrate comparable properties to the more popular petrochemical polymers, PHA applications are inhibited by high production costs. In an effort to r...
Cheng, Jiujun; Nordeste, Ricardo; Trainer, Maria A; Charles, Trevor C
2017-01-01
Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bio-plastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti and Pseudomonas putida, allows the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates the functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.
Advances in Polyhydroxyalkanoate (PHA) Production.
Koller, Martin
2017-11-02
This editorial paper provides a synopsis of the contributions to the Bioengineering special issue "Advances in Polyhydroxyalkanoate (PHA) Production". It illustrates the embedding of the issue's individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products.
Inoue, Daisuke; Suzuki, Yuta; Sawada, Kazuko; Sei, Kazunari
2018-03-01
The influence of temperature and pH during enrichment on the polyhydroxyalkanoate (PHA) accumulation ability and composition of PHA-accumulating microorganisms (PHAAMOs) in enrichment cultures was investigated. Enrichment of PHAAMOs from activated sludge was conducted in acetate-fed sequencing batch reactors using a feast-famine regime under different temperature (20°C, 28°C, and 36°C) and pH (controlled at 7.2 or not) conditions. PHA accumulation ability, which was evaluated in nitrogen- and phosphorus-deficient 24-h single-batch cultures, was greatly enhanced by enrichment, irrespective of the temperature and pH. Enrichment at 20°C or 28°C and without pH control seemed most appropriate for strong PHA accumulation. Analyses of the PHAAMO composition by the clone library method targeting phaC genes, which encode the class I and II PHA synthases, revealed that Burkholderiales were the dominant PHAAMOs in the seed sludge, while Rhodocyclales, specifically Azoarcus spp. and Thauera spp., were dominant after enrichment without pH control, showing a strong ability to accumulate PHA. The results indicated that Azoarcus spp. and Thauera spp. are key PHAAMOs in an enrichment culture based on the feast-famine method, with high PHA accumulation ability. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins
Mezzina, Mariela P.
2016-01-01
Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. PMID:27287326
Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins.
Mezzina, Mariela P; Pettinari, M Julia
2016-09-01
Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.
Wahl, Andreas; Schuth, Nora; Pfeiffer, Daniel; Nussberger, Stephan; Jendrossek, Dieter
2012-11-16
Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.
Wang, Jia; Bibra, Mohit; Venkateswaran, Kasthuri; Salem, David R; Rathinam, Navanietha Krishnaraj; Gadhamshetty, Venkataraman; Sani, Rajesh K
2018-05-01
Human waste simulants were for the first time converted into biohydrogen by a newly developed anaerobic microbial consortium via thermophilic consolidated bioprocessing. Four different BioH 2 -producing consortia (denoted as C1, C2, C3 and C4) were isolated, and developed using human waste simulants as substrate. The thermophilic consortium C3, which contained Thermoanaerobacterium, Caloribacterium, and Caldanaerobius species as the main constituents, showed the highest BioH 2 production (3.999 mmol/g) from human waste simulants under optimized conditions (pH 7.0 and 60 °C). The consortium C3 also produced significant amounts of BioH 2 (5.732 mmol/g and 2.186 mmol/g) using wastewater and activated sludge, respectively. The developed consortium in this study is a promising candidate for H 2 production in space applications as in situ resource utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh
2016-01-01
The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499
Somerville, C.R.; Nawrath, C.; Poirier, Y.
1997-03-11
The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.
Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong
2006-02-01
One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P < 0.05), and from 59 to 88% (P < 0.05) with cumulus cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P < 0.05). The cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.
Effects of 12-o-tetradecanoyl-phorbol-13-acetate (TPA) on the colony growth of human T lymphocytes.
Foa, R; Lusso, P; Fierro, M T; Giubellino, M C; Ferrando, M L; Pegoraro, L
1984-01-01
The T colony promoting activity of 12-o-tetradecanoyl-phorbol-13-acetate (TPA) was assessed in a double layer culture assay which is dependent on the simultaneous presence of phytohaemagglutinin (PHA) and a leucocyte rich underlayer. TPA (10(-8) M) incorporated in the overlayer in place of PHA was capable of promoting T cell growth in the form of clusters in all 37 experiments performed and in the form of colonies in more than 50% of the samples tested. However, the T colony promoting activity of TPA alone was markedly less evident and consistent than that of PHA (mean 13 +/- 19.9 s.d. colonies vs 168 +/- 78.6). TPA concentrations of 10(-6) M, 10(-9) M and 10(-10) M were practically ineffective. On the other hand, the number of colonies obtained when both TPA 10(8) M and PHA were incorporated in the overlayer was significantly higher (P less than 0.01) than that observed with PHA alone (mean 250 +/- 108.2 vs 178 +/- 84.5 colonies). When TPA concentrations of 10(-9) M and 10(-10) M were used in addition to PHA, the enhancing effect was less evident, while an inhibition of T colony growth was observed with TPA 10(-6) M + PHA. TPA 10(-8) M was also capable of enhancing T colony growth when incorporated in the leucocyte rich underlayer (222 +/- 98.6 vs 172 +/- 80.9 colonies). In all cultures with TPA the peak of growth was delayed compared with that of control experiments with PHA. These findings demonstrate that TPA, particularly when co-cultured with PHA, is an effective T colony promoting agent. The observation that the number of colonies formed in the presence of TPA plus PHA is higher than the sum of those observed with the two stimulators independently, suggests that their synergistic effect may be mediated via the production of colony stimulating soluble factors. PMID:6610514
Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela
1999-01-01
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123
Poirier, Y; Ventre, G; Caldelari, D
1999-12-01
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.
24 CFR 960.605 - How PHA administers service requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Service Activities or Self-Sufficiency Work Activities § 960.605 How PHA administers service requirements... economic self-sufficiency requirements for public housing residents. (b) Administration of qualifying community service or self-sufficiency activities for residents. The PHA may administer qualifying community...
Advances in Polyhydroxyalkanoate (PHA) Production
2017-01-01
This editorial paper provides a synopsis of the contributions to the Bioengineering special issue “Advances in Polyhydroxyalkanoate (PHA) Production”. It illustrates the embedding of the issue’s individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products. PMID:29099065
Xiao, Na; Jiao, Nianzhi
2011-01-01
Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12T, Labrenzia alexandrii DFL 11T, and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and 1H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark. PMID:21908634
Murakami, Yukio; Kawata, Akifumi; Ito, Shigeru; Katayama, Tadashi; Fujisawa, Seiichiro
2014-01-01
Phenolic compounds, particularly dihydroxybiphenyl-related compounds, possess efficient anti-oxidative and anti-inflammatory activity. We investigated the anti-inflammatory activity of 2,2'-dihydroxy-5,5'-dimethylbiphenol (p-cresol dimer), 2,2'-dihydroxy-5,5'-dimethoxybiphenol (pHA dimer), p-cresol, p-hydroxyanisole (pHA) and 2-t-butyl-4-hydroxyanisole (BHA). The cytotoxicity of the investigated compounds against RAW264.7 cells was determined using a cell counting kit (CCK-8). Their inhibitory effects on cyclooxygenase-2 (Cox2) mRNA expression stimulated by lipopolysaccharide (LPS) were determined using northern blot analysis, and their inhibition of LPS-stimulated nuclear factor-kappa B (Nf-κb) activation was evaluated using enzyme-linked immunosorbent assay-like microwell colorimetric transcription factor activity assay. The molecular orbital energy was calculated on the basis of density function theory BLYP/6-31G*. The cytotoxicity of the compounds declined in the order pHA dimer > p-cresol dimer > BHA > p-cresol > pHA. The inhibitory effect on Cox2 expression and Nf-κb activation was enhanced by p-cresol dimer and pHA dimer, particularly the former, suggesting potent anti-inflammatory activity, whereas p-cresol and pHA showed weak activity, and BHA no activity. Both p-cresol dimer and pHA dimer were highly electronegative, as determined by quantum chemical calculations. Dimerization of p-cresol and pHA enhances their anti-inflammatory activity. p-Cresol dimer and pHA dimer, particularly the former, are potent anti-inflammatory agents. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Voelker, T A; Staswick, P; Chrispeels, M J
1986-12-01
Phytohemagglutinin (PHA), the seed lectin of the common bean, Phaseolus vulgaris, is encoded by two highly homologous, tandemly linked genes, dlec1 and dlec2, which are coordinately expressed at high levels in developing cotyledons. Their respective transcripts translate into closely related polypeptides, PHA-E and PHA-L, constituents of the tetrameric lectin which accumulates at high levels in developing seeds. In the bean cultivar Pinto UI111, PHA-E is not detectable, and PHA-L accumulates at very reduced levels. To investigate the cause of the Pinto phenotype, we cloned and sequenced the two PHA genes of Pinto, called Pdlec1 and Pdlec2, and determined the abundance of their respective mRNAs in developing cotyledons. Both genes are more than 90% homologous to the normal PHA genes found in other cultivars. Pdlec1 carries a 1-bp frameshift mutation close to the 5' end of its coding sequence. Only very truncated polypeptides could be made from its mRNA. The gene Pdlec2 encodes a polypeptide, which resembles PHA-L and its predicted amino acid sequence agrees with the available Pinto PHA amino acid sequence data. Analysis of the mRNA of developing cotyledons revealed that the Pdlec1 message is reduced 600-fold, and Pdlec2 mRNA is reduced 20-fold with respect to mRNA levels in normal cultivars. A comparison of the sequences which are upstream from the coding sequence shows that Pdlec2 has a 100-bp deletion compared to the other genes (dlec1, dlec2 and Pdlec1). This deletion which contains a large tandem repeat may be responsible for the low level of expression of Pdlec2. The very low expression of Pdlec1 is as yet unexplained.
1992-09-01
demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology...technology development stage, OETC will advance the development of optical components, produce links for a multiboard processor testbed demonstration, and...components that are affordable, initially at <$100 per line, and reliable, with a li~e BER-15 and MTTF >10 6 hours. Under the OETC program, Honeywell will
Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael
2014-09-01
Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.
Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter
2016-05-25
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... with PHA staff and reviews of client files and administrative data collected by the PHA. The results of... reviews of client files and administrative data collected by the PHA. The results of the site visits will...
Lu, Yunjun; Liu, Cencen; Zhao, Mouming; Cui, Chun; Ren, Jiaoyan
2015-11-04
Phytohemagglutin (PHA), purified from red kidney beans (Phaseolus vulgaris) by Affi-Gel blue affinity chromatography, was subjected to ultrahigh-pressure (UHP) treatment (150, 250, 350, and 450 MPa). The purified PHA lost its hemagglutination activity after 450 MPa treatment and showed less pressure tolerance than crude PHA. However, the saccharide specificity and α-glucosidase inhibition activity of the purified PHA did not change much after UHP treatment. Electrophoresis staining by periodic acid-Schiff (PAS) manifested that the glycone structure of purified PHA remained stable even after 450 MPa pressure treatment. However, electrophoresis staining by Coomassie Blue as well as circular dichroism (CD) and differential scanning calorimetry (DSC) assay proved that the protein unit structure of purified PHA unfolded when treated at 0-250 MPa but reaggregates at 250-450 MPa. Therefore, the hemagglutination activity tends to be affected by the protein unit structure, while the stability of the glycone structure contributed to the remaining α-glucosidase inhibition activity.
Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction.
Tajima, Kenji; Iwamoto, Kosuke; Satoh, Yasuharu; Sakai, Ryosuke; Satoh, Toshifumi; Dairi, Tohru
2016-05-01
Polyhydroxyalkanoates (PHAs) incorporating vinyl-bearing 3-hydroxyalkanoates were prepared in 8.5-12.9 g L(-1) yield. The molar ratios (0-16 mol%) of the vinyl-bearing 3-hydroxyalkanoate derivatives were controlled by the continuous feeding of undecylenate at various concentrations. Subsequently, the PHAs were functionalized by UV-initiated thiol-ene click reaction and chemical modification. (1)H NMR spectra suggested that 3-mercaptopropionic acid and 2-aminoethanethiol were successfully introduced into the vinyl-bearing PHA. Subsequently, chemical modification using fluorescein or a fibronectin active fragment (GRGDS) was attempted. The former yielded a PHA derivative capable of emitting fluorescence under UV irradiation, which was useful for determining the miscibility of PHA in a composite film comprising poly-ʟ-lactic acid (PLLA) and PHA. In the latter case, PHA bearing GRGDS peptides exhibited cell adhesiveness, suggesting that its biocompatibility was improved upon peptide introduction. Taken together, the UV-initiated thiol-ene click reaction was demonstrated to be useful in PHA modification.
Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets
JANG, SEOK JIN; KIM, SE EUN; HAN, TAE SUNG; SON, JUN SIK; KANG, SEONG SOO; CHOI, SEOK HWA
2017-01-01
This study was undertaken to assess bone regeneration using hydroxyapatite (HA). The primary focus was comparison of bone regeneration between granular HA (gHA) forms and porous HA (pHA) scaffold. The extracted canine alveolar sockets were divided with three groups: control, gHA and pHA. Osteogenic effect in the gHA and pHA groups showed bone-specific surface and bone mineral density to be significantly higher than that of the control group (p<0.01). Bone volume fraction, bone mineral density, and amount of connective tissue related to disturbing osseointegration of the gHA group was higher than in the pHA group. Quantity of new bone formation of the pHA group was higher than that of the gHA group. This study demonstrated that gHA and pHA are potentially good bone substitutes for alveolar socket healing. For new bone formation during 8 weeks' post-implantation, HA with porous scaffold was superior to the granular form of HA. PMID:28438860
Passanha, Pearl; Esteves, Sandra R; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J
2013-11-01
The production of polyhydroxyalkanoates (PHAs) using digestate liquor as culture media is a novel application to extend the existing uses of digestates. In this study, two micro-filtered digestates (0.22 μm) were evaluated as a source of complex culture media for the production of PHA by Cupriavidus necator as compared to a conventional media. Culture media using a mixture of micro-filtered liquors from food waste and from wheat feed digesters showed a maximum PHA accumulation of 12.29 g/l PHA, with 90% cell dry weight and a yield of 0.48 g PHA/g VFA consumed, the highest reported to date for C. necator studies. From the analysis of the starting and residual media, it was concluded that ammonia, potassium, magnesium, sulfate and phosphate provided in the digestate liquors were vital for the initial growth of C. necator whereas copper, iron and nickel may have played a significant role in PHA accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pittmann, Timo; Steinmetz, Heidrun
2017-01-01
This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants. PMID:28952533
Hermann-Krauss, Carmen; Koller, Martin; Stelzer, Franz; Braunegg, Gerhart
2013-01-01
The archaeon Haloferax mediterranei was selected for production of PHA co- and terpolyesters using inexpensive crude glycerol phase (CGP) from biodiesel production as carbon source. CGP was assessed by comparison with the application of pure glycerol. Applying pure glycerol, a copolyester with a molar fraction of 3-hydroxybutyrate (3HB) of 0.90 mol/mol and 3-hydroxyvalerate (3HV) of 0.10 mol/mol, was produced at a volumetric productivity of 0.12 g/Lh and an intracellular PHA content of 75.4 wt.-% in the sum of biomass protein plus PHA. Application of CGP resulted in the same polyester composition and volumetric productivity, indicating the feasibility of applying CGP as feedstock. Analysis of molar mass distribution revealed a weight average molar mass M w of 150 kDa and polydispersity P i of 2.1 for pure glycerol and 253 kDa and 2.7 for CGP, respectively; melting temperatures ranged between 130 and 140°C in both setups. Supplying γ-butyrolactone as 4-hydroxybutyrate (4HB) precursor resulted in a poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate-co-4-hydroxybutyrate] (PHBHV4HB) terpolyester containing 3HV (0.12 mol/mol) and 4HB (0.05 mol/mol) in the poly[(R)-3-hydroxybutyrate] (PHB) matrix; in addition, this process runs without sterilization of the bioreactor. The terpolyester displayed reduced melting (melting endotherms at 122 and 137°C) and glass transition temperature (2.5°C), increased molar mass (391 kDa), and a polydispersity similar to the copolyesters. PMID:24453697
Impallomeni, Giuseppe; Ballistreri, Alberto; Carnemolla, Giovanni Marco; Guglielmino, Salvatore P P; Nicolò, Marco Sebastiano; Cambria, Maria Grazia
2011-01-01
Pseudomonas aeruginosa produced medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) when grown on substrates containing very long chain fatty acids (VLCFA, C>20). Looking for low cost carbon sources, we tested Brassica carinata oil (erucic acid content 35-48%) as an intact triglyceride containing VLCFA. Oleic (C18:1), erucic (C22:1), and nervonic (C24:1) acids were also employed for mcl-PHA production as model substrates. The polymers obtained were analyzed by GC of methanolyzed samples, GPC, 1H and 13C NMR, ESI MS of partially pyrolyzed samples, and DSC. The repeating units of such polymers were saturated and unsaturated, with a higher content of the latter in the case of the PHA obtained from B. carinata oil. Statistical analysis of the ion intensity in the ESI mass spectra showed that the PHAs from pure fatty acids are random copolymers, while the PHA from B. carinata oil is either a pure polymer or a mixture of polymers. Weight-average molecular weight varied from ca. 56,000 g/mol for the PHA from B. carinata oil and oleic acid, to about 120,000 g/mol for those from erucic and nervonic acids. The PHAs from erucic and nervonic acids were partially crystalline, with rubbery characteristics and a melting point (Tm) of 50°C, while the PHAs from oleic acid and from B. carinata oil afforded totally amorphous materials, with glass transition temperatures (Tg) of -52°C and -47°C, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
Yan, Zhimin; Witthöft, Michael; Bailer, Josef; Diener, Carsten; Mier, Daniela
2017-08-12
Patients with pathological health anxiety (PHA) tend to automatically interpret bodily sensations as sign of a severe illness. To elucidate the neural correlates of this cognitive bias, we applied an functional magnetic resonance imaging adaption of a body-symptom implicit association test with symptom words in patients with PHA (n = 32) in comparison to patients with depression (n = 29) and healthy participants (n = 35). On the behavioral level, patients with PHA did not significantly differ from the control groups. However, on the neural-level patients with PHA in comparison to the control groups showed hyperactivation independent of condition in bilateral amygdala, right parietal lobe, and left nucleus accumbens. Moreover, patients with PHA, again in comparison to the control groups, showed hyperactivation in bilateral posterior parietal cortex and left dorsolateral prefrontal cortex during incongruent (i.e., harmless) versus congruent (i.e., dangerous) categorizations of body symptoms. Thus, body-symptom cues seem to trigger hyperactivity in salience and emotion processing brain regions in PHA. In addition, hyperactivity in brain regions involved in cognitive control and conflict resolution during incongruent categorization emphasizes enhanced neural effort to cope with negative implicit associations to body-symptom-related information in PHA. These results suggest increased neural responding in key structures for the processing of both emotional and cognitive aspects of body-symptom information in PHA, reflecting potential neural correlates of a negative somatic symptom interpretation bias.
Transient pseudohypoaldosteronism in infancy secondary to urinary tract infection.
Abraham, Mary B; Larkins, Nicholas; Choong, Catherine S; Shetty, Vinutha B
2017-05-01
Hyponatraemia with hyperkalaemia in infancy is a typical presentation of congenital adrenal hyperplasia. In the presence of pyelonephritis, the same biochemical picture can occur with transient type 1 pseudohypoaldosteronism (PHA-1) also termed type 4 renal tubular acidosis. Recognition of PHA-1 enables appropriate management thus avoiding unnecessary investigations and treatment. To improve awareness of this condition, we present a case series to highlight the clinical and biochemical features of PHA-1. A retrospective chart review of patients diagnosed with transient PHA-1 at a tertiary children's hospital in Western Australia was conducted. Five male infants (32 days to 6 months) with transient PHA-1 were identified. Failure to thrive was the most common symptom with hyponatraemia on presentation. Two infants had antenatally diagnosed bilateral hydronephrosis and urinary tract infection (UTI) on admission. Two infants were treated for congenital adrenal hyperplasia and received hydrocortisone. All infants had UTI and required parenteral antibiotics. The condition was transient and hyponatraemia corrected by day 4 in all infants. There was no correlation between plasma sodium and aldosterone levels. The severity of PHA-1 was independent of the underlying renal anomaly. Four infants had hydronephrosis and vesicoureteric reflux. Surgical intervention was required in two infants. PHA-1 may be precipitated by UTI or urinary tract anomalies in early infancy. Urine analysis should be performed in infants with hyponatraemia. Diagnosis of PHA-1 facilitates appropriate renal investigations to reduce long-term morbidity. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study
Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia
2017-01-01
The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively (p < 0.001). A novel association was reported between the adherence to the Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity. PMID:28218645
Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study.
Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia
2017-02-17
The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively ( p < 0.001). A novel association was reported between the adherence to the Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity.
PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha
2012-01-01
Background Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Results Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Conclusion Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5. PMID:23157596
Design of the polar neutron-imaging aperture for use at the National Ignition Facility.
Fatherley, V E; Barker, D A; Fittinghoff, D N; Hibbard, R L; Martinez, J I; Merrill, F E; Oertel, J A; Schmidt, D W; Volegov, P L; Wilde, C H
2016-11-01
The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.
Goytia-Acevedo, Raquel C; Cebrian, Mariano E; Calderon-Aranda, Emma S
2003-08-01
This study examined the effects of sodium arsenite treatment on free [Ca(2+)]i and cell death in mitogen-activated murine lymphocytes. The main findings of this study were that simultaneous sodium arsenite treatment inhibited PHA- but not Con A-induced T cell proliferation, induced a higher increase in free [Ca(2+)]i and an early increase in the proportion of dead cells in PHA than in Con A activated cells. Sodium arsenite pre-treatment reduced both PHA- and Con A-induced T-cell proliferation. Phorbol myristate ester (PMA) did not prevent the inhibitory effects of both sodium arsenite treatments, suggesting that sodium arsenite did not significantly decreased PKC activation or that its effects occurred on events parallel to PKC activation. Both PHA and Con A increased free [Ca(2+)]i after stimulation, yet the effect was more pronounced in mitogen-activated cells simultaneously treated with sodium arsenite and particularly in those activated with PHA. The increase in free [Ca(2+)]i was in agreement with the early cell death induced by sodium arsenite in PHA-activated cells, a finding consistent with the inhibitory effects on PHA-induced proliferation. Sodium arsenite-induced cell death occurred faster in PHA-activated cells. Further studies are needed to ascertain the relationships between the effects of sodium arsenite on free [Ca(2+)]i levels and the type of cell death induced by sodium arsenite and their relevance for the proliferative response of T cells.
Investigation of the phase morphology of bacterial PHA inclusion bodies by contrast variation SANS
NASA Astrophysics Data System (ADS)
Russell, R. A.; Holden, P. J.; Garvey, C. J.; Wilde, K. L.; Hammerton, K. M.; Foster, L. J.
2006-11-01
Under growth-limiting conditions, many bacteria are able to metabolise excess organic acids into polyhydroxyalkanoates (PHA) and store these polymers as intracellular inclusions until the return of favourable conditions. Various models have been proposed for the macromolecular organisation of the boundary layer surrounding the polymer, and contrast-variation small-angle neutron scattering (SANS) was used to study its organisation. Inclusions formed by Pseudomonas oleovorans under hydrogenating conditions showed lowest scattering intensity at ca. 20% D 2O. The inclusions consist of protein and membrane lipids in the boundary layer and polyhydroxyoctanoate (lipid) in the inclusion body. At 20% D 2O the contributions of lipids were contrast matched with the solvent, indicating that lipids contributed the bulk of the scattering intensity observed at other D 2O/H 2O ratios. These results are inconsistent with a model of the boundary layer which proposed outer and inner layers of crystalline protein lattice sandwiching a membrane lipid membrane layer [E.S. Stuart, R.W. Lenz, R.C. Fuller, Can J Microbiol 41(Suppl 1) (1995) 84-93], and is more consistent with a model consisting of a lipid monolayer containing embedded proteins [U. Pieper-furst, M.H. Madkour, F. Mayer, A. Steinbuchel, J. Bacteriol. 176 (1994) 4328-4337.] By altering the H/D content of the precursors, we were able to collect SANS data from preparations of both deuterated and H/D copolymer inclusions, where initial PHA produced was hydrogenated followed by deuteration. Deuterated inclusions showed minimum intensity above 90% D 2O/H 2O whereas the sequentially produced copolymer (assumed to be in a core/shell arrangement) displayed minimum scattering some 20% lower, which is consistent with the increased hydrogenation of the boundary layer expected from its synthesis during supply of hydrogenated followed by deuterated precursors.
In Vitro Effects of Sodium Benzoate on Th1/Th2 Deviation in Patients with Multiple Sclerosis.
Rezaei, N; Amirghofran, Z; Nikseresht, A; Ashjazade, N; Zoghi, S; Tahvili, S; Kamali-Sarvestani, E
2016-10-01
Interleukin 4 (IL-4) can improve the clinical manifestations in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Sodium benzoate (NaB) deviates the cytokine profile to Th2 (or IL-4 producing) cells in EAE and thus might be effective in the treatment of MS. Therefore, in this study the effect of different concentrations of NaB on the percentage and mRNA levels of IL-4 and interferon gamma (IFN-γ)-producing peripheral blood mononuclear cells (PBMCs) of 20 Relapsing-remitting multiple sclerosis (RR-MS) patients and eight healthy controls was evaluated in the presence of mitogen (phytohemagglutinin, PHA) or specific antigen (myelin basic protein, MBP). Our results showed that in the patient's group the percentage of CD4(+)IL-4(+) cells was significantly increased in the presence of all concentrations of NaB when PBMCs were stimulated by MBP (p = 0.001) or PHA (p < 0.03). The same results were obtained for normal donors in the highest concentration of NaB, 1000 µg/ml (p = 0.02). Moreover, in the patient's group the percentage of CD4(+)IFN-γ(+) cells was decreased significantly when the PBMCs were stimulated by PHA and NaB (p < 0.004) or by MBP and 1000 µg/ml of NaB (p < 0.03). The effect of NaB on IL-4 and IFN-γ production was also documented at the mRNA levels. In conclusion, our data suggest that NaB is able to induce IL-4 production by human PBMCs and therefore might be a useful candidate for conjunctive therapy in RR-MS.
USDA-ARS?s Scientific Manuscript database
Type II methanotrophic bacteria are a promising production platform for PHA biopolymers. These bacteria are known to produce pure poly-3-hydroxybutyrate homopolymer. We describe the production of a wide range of PHB-co-HV co-polymers by the co-feeding of methane and valerate. The ratio of HB to HV m...
24 CFR 983.251 - How participants are selected.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (a) Who may receive PBV assistance? (1) The PHA may select families who are participants in the PHA's tenant-based voucher program and families who have applied for admission to the voucher program. (2... PHA may only select families determined eligible for admission at commencement of PBV assistance. (3...
Polyhydroxyalkanoates (PHA) Bioplastic Packaging Materials
2010-05-01
FINAL REPORT Polyhydroxyalkanoates (PHA) Bioplastic Packaging Materials SERDP Project WP-1478 MAY 2010 Dr.Chris Schwier Metabolix...biopolymer, biodegradable, polyhydroxyalkanoate 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...Acronyms and Definitions ASTM – American Society of Test Methods ISO – International Standardization Organization PHA – Polyhydroxyalkanoates
24 CFR 902.69 - PHA right of petition and appeal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false PHA right of petition and appeal... appeal. (a) Appeal of troubled designation and petition for removal troubled designation. A PHA may: (1) Appeal its troubled designation (including designation as troubled with respect to its performance under...
24 CFR 982.151 - Annual contributions contract.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Contract and PHA Administration of Program § 982.151 Annual contributions contract. (a) Nature of ACC. (1) An annual contributions contract (ACC) is a written contract between HUD and a PHA. Under the ACC... owners and for the PHA administrative fee. The ACC specifies the maximum payment over the ACC term. The...
24 CFR 982.151 - Annual contributions contract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Contract and PHA Administration of Program § 982.151 Annual contributions contract. (a) Nature of ACC. (1) An annual contributions contract (ACC) is a written contract between HUD and a PHA. Under the ACC... owners and for the PHA administrative fee. The ACC specifies the maximum payment over the ACC term. The...
Code of Federal Regulations, 2011 CFR
2011-04-01
...(s) for which they assumed management responsibilities. (2) ACC. The ACC makes a PHA legally... the PHA and not the RMC or AME is ultimately responsible to HUD under the ACC, the PHAS score of a PHA will be based on all of the projects covered by the ACC, including those with management operations...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Minglian; Li, Zhenguo; Zheng, Wei
The phasin PhaP{sub Ah} from A. hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were discovered in PHA-accumulating bacteria. They play a crucial role as a structural protein during initial PHA-granule formation and granule growth and also serve as interfaces for granule stabilization in vivo. The phasin PhaP{sub Ah} from Aeromonas hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Single crystals were cryocooled for X-ray diffraction analysis. The phasin crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 80.8, b = 108.9, c = 134.4 Å.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-21
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952
Sznajder, Anna; Jendrossek, Dieter
2011-03-01
A Rhodospirillum rubrum gene that is predicted to code for an extracellular poly(3-hydroxybutyrate) (PHB) depolymerase by the recently published polyhydroxyalkanoates (PHA) depolymerase engineering database was cloned. The gene product (PhaZ3( Rru )) was expressed in recombinant E. coli, purified and biochemically characterized. PhaZ3( Rru ) turned out, however, to share characteristics of intracellular PHB depolymerases and revealed a combination of properties that have not yet been described for other PHB depolymerases. A fusion of PhaZ3( Rru )with the enhanced cyan fluorescent protein was able to bind to PHB granules in vivo and supported the function as an intracellular PHB depolymerase. Purified PhaZ3( Rru ) was specific for short-chain-length polyhydroxyalkanoates (PHA(SCL)) and hydrolysed both untreated native PHB granules as well as trypsin-activated native PHB granules to a mixture of mono- and dimeric 3-hydroxybutyrate. Crystalline (denatured) PHB granules were not hydrolysed by PhayZ3( Rru ). Low concentrations of calcium or magnesium ions (1-5 mM) reversibly (EDTA) inhibited the enzyme. Our data suggest that PhaZ3( Rru ) is the representative of a new type of the growing number of intracellular PHB depolymerases.
NASA Astrophysics Data System (ADS)
Nasution, B. R.; Lubis, A. R.
2018-03-01
Chronic Kidney Disease (CKD) patients with regular hemodialysis have high rates of morbidity and mortality that may be related to the hemodynamic effects of rapid UFR and low PhA value. In this study, we investigated whether high UFR is associated with a low value of PhA thus indirectly affect the risk of morbidity and mortality. UFR and Bioelectrical Impedance Analysis (BIA) examination on 92 subjects were recorded shortly after HD and analyzed by using Pearson correlation test. Multivariate analysis was also conducted to identify several factors that can affect the value of Phase angle. The number of HD regular CKD patients with PhA<4 based on the division of the UFR (cc/kg/h) <10, 10-13, ≥ 13, respectively were3, 10 and 6, whereas patients with ≥ 4 PhA <10, 10-13, ≥ 13respectively were 60, 11, and 2. The results showed a significant relationship between UFR with PhA. In CKD patients with regular HD, UFR has aninverse relationship with the value of PhA. After multivariate analysis, the UFR and the etiology of HD are still significantly affect the value of PhA. UFR optimal value in patients with CKD with regular HD is <10 cc/kg/h.
NASA Astrophysics Data System (ADS)
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Feasibility study on the utilization of rubber latex effluent for producing bacterial biopolymers.
Tang, S N; Fakhru'l-Razi, A; Hassan, M A; Karim, M I
1999-01-01
Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
NASA Technical Reports Server (NTRS)
Cooper, David; Pellis, Neal R.
1997-01-01
Various aspects of spaceflight, including microgravity, cosmic radiation, and physiological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. We utilized clinostatic RWV bioreactors that simulate aspects of microgravity to analyze the response of human PBMC to polyclonal activation. PHA responsiveness in the RWV was almost completely diminished. IL-2 and IFN-gamma secretion was reduced whereas IL- 1 beta and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions did not suppress PHA activation. Furthermore, increasing cell density and, therefore, cell-cell interactions in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, submitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.
Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.
2012-01-01
Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072
Design of the polar neutron-imaging aperture for use at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatherley, V. E., E-mail: vef@lanl.gov; Martinez, J. I.; Merrill, F. E.
2016-11-15
The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and themore » final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.« less
24 CFR 982.301 - Information when family is selected.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Information when family is selected....301 Information when family is selected. (a) PHA briefing of family. (1) When the PHA selects a family to participate in a tenant-based program, the PHA must give the family an oral briefing. The briefing...
Polyhydroxyalkanoate synthesis in plants
Srienc, Friedrich; Somers, David A.; Hahn, J. J.; Eschenlauer, Arthur C.
2000-01-01
Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.
24 CFR 966.4 - Lease requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., or court-awarded custody of a child. The family must request PHA approval to add any other family... foster child or a live-in aide may reside in the unit. The PHA may adopt reasonable policies concerning residence by a foster child or a live-in-aide, and defining the circumstances in which PHA consent will be...
24 CFR 982.303 - Term of voucher.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (a) Initial term. The initial term of a voucher must be at least 60 calendar days. The initial term... family one or more extensions of the initial voucher term in accordance with PHA policy as described in the PHA administrative plan. Any extension of the term is granted by PHA notice to the family. (2) If...
24 CFR 982.161 - Conflict of interest.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conflict of interest. 982.161... and PHA Administration of Program § 982.161 Conflict of interest. (a) Neither the PHA nor any of its... prospective interest to the PHA and HUD. (c) The conflict of interest prohibition under this section may be...
24 CFR 982.304 - Illegal discrimination: PHA assistance to family.
Code of Federal Regulations, 2010 CFR
2010-04-01
... assistance to family. 982.304 Section 982.304 Housing and Urban Development Regulations Relating to Housing... Leasing a Unit § 982.304 Illegal discrimination: PHA assistance to family. A family may claim that illegal... prevents the family from finding or leasing a suitable unit with assistance under the program. The PHA must...
24 CFR 982.157 - Budget and expenditure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget and expenditure. 982.157... and PHA Administration of Program § 982.157 Budget and expenditure. (a) Budget submission. Each PHA fiscal year, the PHA must submit its proposed budget for the program to HUD for approval at such time and...
24 CFR 982.554 - Informal review for applicant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... obtain the informal review. (b) Informal review process. The PHA must give an applicant an opportunity...) The applicant must be given an opportunity to present written or oral objections to the PHA decision.... The PHA is not required to provide the applicant an opportunity for an informal review for any of the...
24 CFR 990.145 - Dwelling units with approved vacancies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... work, and the construction is on schedule according to a HUD-approved PHA Annual Plan; or (ii) The unit... PHA Annual Plan, but the time period for placing the vacant unit under construction has not yet expired. The PHA shall place the vacant unit under construction within two federal fiscal years (FFYs...
Amulya, K; Jukuri, Srinivas; Venkata Mohan, S
2015-01-01
Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Omidinia, Eskandar; Shadjou, Nasrin; Hasanzadeh, Mohammad
2014-09-01
A strategy of phenylalanine-dehydrogenase (PheDH) entrapment within the polytaurine matrix is demonstrated to probe the direct electrochemistry of phenylalanine (Pha). It was found that PheDH has been stably immobilized on glassy carbon electrode modified by polytaurine based on simple technique. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that Pha is oxidized via one-electron steps. The results revealed that Pha promotes the rate of oxidation by increasing the peak current. The diffusion coefficient and electron-transfer coefficient of Pha were found to be 0.2×10(-6)cm(2)s(-1) and 0.467, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of Pha. The results show that by using the proposed method, Pha can be determined with a detection limit of 9 nM. Copyright © 2014 Elsevier B.V. All rights reserved.
Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J
2012-09-01
Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.
Partnership for a Healthier America: Creating Change Through Private Sector Partnerships.
Simon, Caitlin; Kocot, S Lawrence; Dietz, William H
2017-06-01
This review provides background on the formation of the Partnership for a Healthier America (PHA), that was created in conjunction with the Let's Move! initiative, and an overview of its work to date. To encourage industry to offer and promote healthier options, PHA partners with the private sector. Principles that guide PHA partnerships include ensuring that partnerships represent meaningful change, partners sign a legally binding contract and progress is monitored and publicly reported. Since 2010, PHA has established private sector partnerships in an effort to transform the marketplace to ensure that every child has the chance to grow up at a healthy weight. Many agreements between PHA and its industry partners align with the White House Task Force Report on Childhood Obesity. The reach and impact of over 200 partnerships attest to the success of this initiative.
Ability of sea-water bacterial consortium to produce electricity and denitrify water
NASA Astrophysics Data System (ADS)
Maruvada, Nagasamrat V. V.; Tommasi, Tonia; Kaza, Kesava Rao; Ruggeri, Bernardo
Sea is a store house for varied types of microbes with an ability to reduce and oxidize substances like iron, sulphur, carbon dioxide, etc. Most of these processes happen in the sea water environment, but can be applied for purification of wastewater. In the present paper, we discuss the use of a consortium of seawater bacteria in a fuel cell to produce electricity by oxidizing organic matter and reducing nitrates. We also discuss how the growth of the bacterial consortium can lead to an increased electricity production and decreased diffusional resistance in the cell. The analysis was done using electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Here, we use bicarbonate buffered solution, which is the natural buffering agent found in sea. We show that the seawater bacterial consortium can be used in both the anode and cathode parts of the cell. The results confirm the adaptability of the seawater bacteria to different environments and can be used for various applications. Heritage, Erasmus Mundus Programme, European Commission.
Sadigh-Eteghad, S; Talebi, M; Mahmoudi, J; Babri, S; Shanehbandi, D
2015-07-09
Agonists of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as therapeutic approaches for managing cognitive deficits in Alzheimer's disease (AD). Present study was designed to evaluate the effect of α7 nAChR selective activation by PHA-543613 (PHA) on beta-amyloid (Aβ)25-35-mediated cognitive deficits in mice. For this purpose, PHA (1mg/kg, i.p.), a selective α7 nAChR agonist, and galantamine (Gal) (3mg/kg, s.c.), an acetylcholine-esterase inhibitor (AChEI) effects on α7 nAChR were tested in Aβ25-35-received (intracerebroventricular, 10 nmol) mice model of AD. Methyllycaconitine (MLA) (1mg/kg, i.p.), a α7 nAChR antagonist, was used for receptor blockage effects evaluation. Working and reference memory in animals was assessed by the Morris water maze (MWM) task. The mRNA and protein levels of α7 subunit were analyzed by real-time PCR and Western blotting, respectively. PHA and Gal, ameliorate Aβ-impaired working and reference memory. However, Gal had less effect than PHA in this regard. Pretreatment with MLA reverses both Gal and PHA effects in MWM. PHA and Gal treatment prevent Aβ-induced α7 subunit protein reduction, but Gal has lesser effect than PHA. This effect blocked by pretreatment with MLA. In neither the pretreatment nor treatment group, the mRNA levels of nAChR α7 subunit were significantly changed. Therefore, α7 nAChR activation, reduces Aβ-induced cognitive deficits and increases the α7 protein level and subsequent neuron survival. However, blockage of receptor, increases Aβ toxicity and cognitive impairment and reduces the α7 nAChR protein level and flowing neuroprotection. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Wang, Xiaofei; Oehmen, Adrian; Freitas, Elisabete B; Carvalho, Gilda; Reis, Maria A M
2017-04-01
Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polyesters with the potential to replace conventional plastics. Aeration requires large amounts of energy in PHA production by mixed microbial cultures (MMCs), particularly during the feast phase due to substrate uptake. The objective of this study was to investigate the impact of DO concentrations on microbial selection, substrate competition and PHA production performance by MMCs. This represents the first study investigating DO impact on PHA production while feeding the multiple volatile fatty acids (VFAs) typically encountered in real fermented feedstocks, as well as the substrate preferences at different DO levels. Efficient microbial cultures were enriched under both high (3.47 ± 1.12 mg/L) and low (0.86 ± 0.50 mg/L) DO conditions in the feast phase containing mostly the same populations but with different relative abundance. The most abundant microorganisms in the two MMCs were Plasticicumulans, Zoogloea, Paracoccus, and Flavobacterium. Butyrate and valerate were found to be the preferred substrates as compared to acetate and propionate regardless of DO concentrations. In the accumulation step, the PHA storage capacity and yield were less affected by the change of DO levels when applying the culture selected under low DO in the feast phase (PHA storage capacity >60% and yield > 0.9 Cmol PHA/Cmol VFA). A high DO level is required for maximal PHA accumulation rates with the four VFAs (acetate, propionate, butyrate and valerate) present, due to the lower specific uptake rates of acetate and propionate under low DO conditions. However, butyrate and valerate specific uptake rates were less impacted by DO levels and hence low DO for PHA accumulation may be effective when feed is composed of these substrates only. Copyright © 2017 Elsevier Ltd. All rights reserved.
Voelker, Toni A.; Staswick, Paul; Chrispeels, Maarten J.
1986-01-01
Phytohemagglutinin (PHA), the seed lectin of the common bean, Phaseolus vulgaris, is encoded by two highly homologous, tandemly linked genes, dlec1 and dlec2, which are coordinately expressed at high levels in developing cotyledons. Their respective transcripts translate into closely related polypeptides, PHA-E and PHA-L, constituents of the tetrameric lectin which accumulates at high levels in developing seeds. In the bean cultivar Pinto UI111, PHA-E is not detectable, and PHA-L accumulates at very reduced levels. To investigate the cause of the Pinto phenotype, we cloned and sequenced the two PHA genes of Pinto, called Pdlec1 and Pdlec2, and determined the abundance of their respective mRNAs in developing cotyledons. Both genes are more than 90% homologous to the normal PHA genes found in other cultivars. Pdlec1 carries a 1-bp frameshift mutation close to the 5' end of its coding sequence. Only very truncated polypeptides could be made from its mRNA. The gene Pdlec2 encodes a polypeptide, which resembles PHA-L and its predicted amino acid sequence agrees with the available Pinto PHA amino acid sequence data. Analysis of the mRNA of developing cotyledons revealed that the Pdlec1 message is reduced 600-fold, and Pdlec2 mRNA is reduced 20-fold with respect to mRNA levels in normal cultivars. A comparison of the sequences which are upstream from the coding sequence shows that Pdlec2 has a 100-bp deletion compared to the other genes (dlec1, dlec2 and Pdlec1). This deletion which contains a large tandem repeat may be responsible for the low level of expression of Pdlec2. The very low expression of Pdlec1 is as yet unexplained. ImagesFig. 5. PMID:16453730
Awara, W; Hillier, K; Jones, D
1986-01-01
The immunomodulatory effects of thromboxane A2 and prostaglandin E2 on peripheral blood mononuclear leucocytes stimulated with PHA in vitro, and the relationship of this to the time-course of their synthesis in culture, were investigated using prostaglandin E2, a thromboxane A2 synthesis inhibitor (UK37248), a thromboxane A2 mimic (U46619) and a thromboxane A2 receptor blocker (EP045). The inhibitory effect of prostaglandin E2 on PHA-induced human peripheral blood mononuclear leucocyte proliferation diminishes if the addition of PGE2 is delayed. If added 4 hr after a maximum concentration of PHA (5 micrograms/ml), the effect of PGE2 was reduced by 60%. If a submaximal concentration of PHA (1 microgram/ml) was used, the effect of PGE2 was not reduced if added 4 hr later but fell by about 60% after 16 hr. UK37248 moderately inhibited PHA-induced activation while substantially inhibiting thromboxane A2 synthesis and simultaneously enhancing PGE2 synthesis. The enhanced accumulation of PGE2 occurs while sensitivity to PGE2 is dropping. U46619, exogenously applied as a thromboxane A2 mimic, inhibited PHA-induced activation at concentrations that did not significantly alter PGE2 synthesis. EP045, which may modulate the effects of endogenous thromboxane A2 by blocking receptors, did not alter PHA-induced activation. We conclude that thromboxane A2 may have a role in inhibiting PHA-induced activation on the basis of the effect of U46619. However, this study highlights difficulties in utilizing prostaglandin and thromboxane receptor and synthesis inhibitors to examine their endogenous role in the modulation of mitogen-induced activation in vitro. If sensitivity to the purported endogenous substance is limited to the early stages of culture and if only low levels are synthesized at this early stage, then blocking drugs would have little effect. PMID:3468061
Zhi, Jie; Li, Zhongxin; Lv, Jian; Feng, Bo; Yang, Donghai; Xue, Liang; Zhao, Zhaolong; Zhang, Yanni; Wu, Jianhua; Jv, Yingchao; Jia, Yitao
2018-03-01
It remains unknown whether blockade of B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E signaling and MET proto-oncogene, receptor tyrosine kinase (c-Met) signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. The present study investigated the effects of the vemurafenib alone and in combination with c-Met inhibitor PHA-665752 on the growth of human CRC cells in vitro and in mouse xenografts. HT-29 and RKO CRC cell lines with BRAF V600E mutations and mice bearing HT-29 xenografts were treated with vemurafenib in the absence or presence of PHA-665752. Cell viability and cycle phase were respectively examined by using the MTT and flow cytometry assay. Immunohistochemistry was conducted to detect the protein expression levels of hepatocyte growth factor (HGF), phosphorylated (p)-c-Met, p-AKT serine/threonine kinase (AKT) and p-extracellular signal-regulated kinase (p-ERK). The MTT assay demonstrated that the growth of RKO and HT-29 cells was inhibited by PHA-665752 in a time- and dose-dependent manner (P<0.05), however no significant suppressive effects were observed with vemurafenib. Relative to the PHA-665752 or vemurafenib stand-alone treatment groups, the combination of PHA-665752 and vemurafenib had a significant inhibitory effect on the proliferation of CRC cell lines (P<0.05). The mean tumor volume in mice treated with vemurafenib in combination with PHA-665752 was significantly smaller compared with those treated with only vemurafenib or PHA-665752 (P<0.05). Flow cytometry assay revealed that the G0/G1 phase frequency was significantly increased in the combination group compared with any other treatment groups (P<0.05). Immunohistochemistry demonstrated that vemurafenib in combination with PHA-665752 effectively induced the expression of p-c-Met, p-AKT and p-ERK, however had no effect on HGF.
Rodríguez, Airam; Broggi, Juli; Alcaide, Miguel; Negro, Juan José; Figuerola, Jordi
2014-08-01
Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis. © 2014 Wiley Periodicals, Inc.
Chuah, Jo-Ann; Tomizawa, Satoshi; Yamada, Miwa; Tsuge, Takeharu; Doi, Yoshiharu
2013-01-01
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCs for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4 and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases. PMID:23584780
Post-hypercapnic alkalosis is associated with ventilator dependence and increased ICU stay.
Banga, Amit; Khilnani, G C
2009-12-01
Posthypercapnic alkalosis (PHA) is frequently overlooked as a complication of mechanical ventilation in patients with exacerbation of chronic obstructive pulmonary disease (COPD). The current study was conducted to determine the incidence, risk factors for development and effect on outcome of PHA. Eighty-four patients (62 +/- 11 years, range 42-78 years, M:F 58: 26) with exacerbation of COPD with underlying chronic hypercapnic respiratory failure requiring mechanical ventilation were included in a retrospective fashion. PHA was defined as static or rising serum bicarbonate levels, 72 hours or more after return of PaCO2 to baseline, with concurrent pH > 7.44. Development of PHA was noted in 17 patients (20.2%). Corticosteroid use >or=10 days during the hospital stay was an independent risk factor for development of PHA (Adjusted OR, 95% CI: 9.4, 1.6-55.3; P = 0.013). Development of PHA was associated with an increased incidence of ventilator dependence (64.7% vs. 37.3%, OR, 95% CI: 3.1, 1.1-9.4, P = 0.04) and duration of ICU stay (14.7 +/- 6.7 vs. 9.5 +/- 5.9, P = 0.01) but no increase in hospital mortality (43.3% vs. 41.2%, P = NS). It is concluded that PHA is a common complication in patients with exacerbation of COPD requiring mechanical ventilation and is associated with increased incidence of ventilator dependence and ICU stay.
Advances in cyanobacterial polyhydroxyalkanoates production.
Singh, Akhilesh Kumar; Mallick, Nirupama
2017-11-01
Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Code of Federal Regulations, 2014 CFR
2014-04-01
... admission—(1) Prohibiting admission of drug criminals. (i) The PHA must prohibit admission to the program of... federally assisted housing for drug-related criminal activity. However, the PHA may admit the household if the PHA determines: (A) That the evicted household member who engaged in drug-related criminal...
Code of Federal Regulations, 2011 CFR
2011-04-01
... admission—(1) Prohibiting admission of drug criminals. (i) The PHA must prohibit admission to the program of... federally assisted housing for drug-related criminal activity. However, the PHA may admit the household if the PHA determines: (A) That the evicted household member who engaged in drug-related criminal...
Code of Federal Regulations, 2012 CFR
2012-04-01
... admission—(1) Prohibiting admission of drug criminals. (i) The PHA must prohibit admission to the program of... federally assisted housing for drug-related criminal activity. However, the PHA may admit the household if the PHA determines: (A) That the evicted household member who engaged in drug-related criminal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... PHA to four key areas of a PHA's operations: (1) The physical condition of the PHA's properties; (2... and to require PHAs to be scored on performance based on evaluation of four indicators: physical... changes proposed to each of the four current PHAS indicators are as follows: Physical. The physical...
24 CFR 905.120 - Penalties for slow obligation or expenditure of CFP assistance.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT THE PUBLIC HOUSING CAPITAL FUND PROGRAM § 905.120 Penalties for... the PHA not later than September 30, 1999. (b) Exceptions to obligation requirement—(1) Extension... 12 months, based on: (i) The size of the PHA; (ii) The complexity of the capital program of the PHA...
Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul
2001-01-01
A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2-bromooctanoic acid was determined to be 60 μM, assuming a single-site binding of the inhibitor at a specific inhibition site. Thus, it seems likely that a coenzyme A thioester derivative of 2-bromooctanoic acid specifically inhibits an enzyme linking the two pathways, fatty acid de novo synthesis and PHA synthesis. We suggest that 2-bromooctanoic acid can substitute for the far more expensive (2,000 times) and cell-growth-inhibiting PHA synthesis inhibitor, cerulenin. PMID:11679314
Ricciardi, Ana Clara; López-Cancio, Elena; Pérez de la Ossa, Natalia; Sobrino, Tomás; Hernández-Pérez, María; Gomis, Meritxell; Munuera, Josep; Muñoz, Lucía; Dorado, Laura; Millán, Mónica; Dávalos, Antonio; Arenillas, Juan F
2014-01-01
Although multiple studies and meta-analyses have consistently suggested that regular physical activity (PhA) is associated with a decreased stroke risk and recurrence, there is limited data on the possible preconditioning effect of prestroke PhA on stroke severity and prognosis. We aimed to study the association of prestroke PhA with different outcome variables in patients with acute ischemic stroke due to an anterior large vessel occlusion. The Prestroke Physical Activity and Functional Recovery in Patients with Ischemic Stroke and Arterial Occlusion trial is an observational and longitudinal study that included consecutive patients with acute ischemic stroke admitted to a single tertiary stroke center. Main inclusion criteria were: anterior circulation ischemic stroke within 12 h from symptom onset; presence of a confirmed anterior large vessel occlusion, and functional independence previous to stroke. Prestroke PhA was evaluated with the International Physical Activity Questionnaire and categorized into mild, moderate and high levels by means of metabolic equivalent (MET) minutes per week thresholds. The primary outcome measure was good functional outcome at 3 months (modified Rankin scale ≤2). Secondary outcomes were severity of stroke at admission, complete early recanalization, early dramatic neurological improvement and final infarct volume. During the study period, 159 patients fulfilled the above criteria. The mean age was 68 years, 62% were men and the baseline NIHSS score was 17. Patients with high levels of prestroke PhA were younger, had more frequently distal occlusions and had lower levels of blood glucose and fibrinogen at admission. After multivariate analysis, a high level of prestroke PhA was associated with a good functional outcome at 3 months. Regarding secondary outcome variables and after adjustment for relevant factors, a high level of prestroke PhA was independently associated with milder stroke severity at admission, early dramatic improvement, early arterial recanalization after intravenous thrombolysis and lower final infarct volume. The beneficial association of prestroke PhA with stroke outcomes was already present with a cutoff point of 1,000 MET min/week, a level of PhA easily achieved by walking 1 h/day during 5 days or by doing a vigorous aerobic activity 1 h/day twice a week. Prestroke PhA is independently associated with favorable stroke outcomes after a large vessel occlusion. Future research on the underlying mechanisms is needed to understand this neuroprotective effect of PhA. © 2014 S. Karger AG, Basel.
Sznajder, Anna; Pfeiffer, Daniel; Jendrossek, Dieter
2015-03-01
Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sznajder, Anna; Pfeiffer, Daniel
2014-01-01
Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058
NASA Astrophysics Data System (ADS)
Hoefer, Heinrich Friedrich Philipp Till Nikolaus
Vascular networks are required to support the formation and function of three-dimensional tissues. Biodegradable scaffolds are being considered in order to promote vascularization where natural regeneration of lost or destroyed vascular networks fails. Particularly; composite materials are expected to fulfill the complex demands of a patient's body to support wound healing. Microbial biopolyesters are being regarded as such second and third generation biomaterials. Methylobacterium extorquens is one of several microorganisms that should be considered for the production of advanced polyhydroxyalkanoates (PHAs). M. extorquens displays a distinct advantage in that it is able to utilize methanol as an inexpensive substrate for growth and biopolyester production. The design of functionalized PHAs, which would be made of both saturated short-chain-length (scl, C ≤ 5) and unsaturated medium-chain-length (mcl, 6 ≤ C ≤ 14) monomeric units, aimed at combining desirable material properties of inert scl/mcl-PHAs with those of functionalized mcl-PHAs. By independently inserting the phaC1 or the phaC2 gene from Pseudomonas fluorescens GK13, recombinant M. extorquens strains were obtained which were capable of producing PHAs containing C-C double bonds. A fermentation process was developed to obtain gram quantities of biopolyesters employing the recombinant M. extorquens ATCC 55366 strain which harbored the phaC2 gene of P. fluorescens GK13, the better one of the two strains at incorporating unsaturated monomeric units. The PHAs produced were found in a blend of scl-PHAs and functionalized scl/mcl-PHAs (4 ≤ C ≤ 6), which were the products of the native and of the recombinant PHA synthase, respectively. Thermo-mechanical analysis confirmed that the functionalized scl/mcl-PHAs exhibited the desirable material properties expected. This project contributed to current research on polyhydroxyalkanoates at different levels. The terminal double bonds of the functionalized scl/mcl-PHAs are amenable to chemical modifications and could be transformed into reactive functional groups for covalently linking other biomacromolecules. It is anticipated that these biopolyesters will be utilized as tissue engineering materials in the future, due to their functionality and thermo-mechanical properties. Keywords: biopolyesters, functionalized polyhydroxyalkanoates, Methylobacterium extorquens, genetic modification, fermentation in pilot-scale operators, material characterization, thermo-mechanical properties, tissue engineering
Obruca, Stanislav; Marova, Ivana; Snajdar, Ondrej; Mravcova, Ludmila; Svoboda, Zdenek
2010-12-01
Waste rapeseed oil is a useful substrate for polyhydroxyalkanoates (PHA) production employing Cupriavidus necator H16. In fed-batch mode, we obtained biomass and PHA yields of 138 and 105 g l(-1), respectively. Yield coefficient and volumetric productivity were 0.83 g PHA per g oil and 1.46 g l(-1) h(-1), respectively. Propanol at 1% (v/v) enhanced both PHA and biomass formation significantly and, furthermore, resulted in incorporation of 3-hydroxyvalerate units into PHA structure. Thus, propanol can be used as an effective precursor of 3-hydroxyvalarete for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. During the fed-batch cultivation, propanol concentration was maintained at 1% which resulted in 8% content of 3-hydroxyvalerate in copolymer.
Biological enhancement of hydrocarbon extraction
Brigmon, Robin L [North Augusta, SC; Berry, Christopher J [Aiken, SC
2009-01-06
A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.
Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids
Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter
2016-01-01
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167
The Caenorhabditis elegans Homeobox Gene ceh-19 Is Required for MC Motorneuron Function
Feng, Huiyun; Hope, Ian A
2013-01-01
Simplicity has made C. elegans pharyngeal development a particularly well-studied subject. Nevertheless, here we add the previously uncharacterized homeobox gene F20D12.6/ceh-19 to the set of transcription factor genes involved. GFP reporter assays revealed that ceh-19 is expressed in three pairs of neurons, the pharyngeal pace-maker neurons MC, the amphid neurons ADF and the phasmid neurons PHA. ceh-19(tm452) mutants are viable and fertile, but grow slightly slower, produce less progeny over a prolonged period, and live longer than the wild type. These phenotypes are likely due to the moderately reduced pharyngeal pumping speed arising from the impairment of MC activity. MC neurons are still born in the ceh-19 mutants but display various morphological defects. ceh-19 expression in MC is completely lost in progeny from animals subject to RNAi for pha-4, which encodes an organ-specifying forkhead transcription factor. CEH-19 is required for the activation in MCs of the excitatory FMRFamide-like neuropeptide-encoding gene flp-2. A regulatory pathway from pha-4 through ceh-19 to flp-2 is thereby defined. The resilience of MC identity in the absence of CEH-19 may reflect the buffering qualities of transcription factor regulatory networks. genesis 51:163–178, 2013. © 2013 Wiley Periodicals, Inc. PMID:23315936
Code of Federal Regulations, 2010 CFR
2010-04-01
... of a subsidiary, affiliate, or joint venture have on a PHA? 943.144 Section 943.144 Housing and Urban... CONSORTIA AND JOINT VENTURES Subsidiaries, Affiliates, Joint Ventures in Public Housing § 943.144 What financial impact do operations of a subsidiary, affiliate, or joint venture have on a PHA? Income generated...
Code of Federal Regulations, 2012 CFR
2012-04-01
... must a PHA do to deconcentrate poverty in its developments and comply with fair housing requirements... URBAN DEVELOPMENT PUBLIC HOUSING AGENCY PLANS Deconcentration of Poverty and Fair Housing in Program Admissions § 903.2 With respect to admissions, what must a PHA do to deconcentrate poverty in its...
Code of Federal Regulations, 2014 CFR
2014-04-01
... must a PHA do to deconcentrate poverty in its developments and comply with fair housing requirements... URBAN DEVELOPMENT PUBLIC HOUSING AGENCY PLANS Deconcentration of Poverty and Fair Housing in Program Admissions § 903.2 With respect to admissions, what must a PHA do to deconcentrate poverty in its...
Code of Federal Regulations, 2013 CFR
2013-04-01
... must a PHA do to deconcentrate poverty in its developments and comply with fair housing requirements... URBAN DEVELOPMENT PUBLIC HOUSING AGENCY PLANS Deconcentration of Poverty and Fair Housing in Program Admissions § 903.2 With respect to admissions, what must a PHA do to deconcentrate poverty in its...
Response to phytohaemagglutinin of lymphocytes from mice treated with anti-lymphocyte globulin
Tursi, A.; Greaves, M. F.; Torrigiani, G.; Playfair, J. H. L.; Roitt, I. M.
1969-01-01
Thymus, spleen, lymph node and peripheral blood lymphocytes taken from mice treated with anti-lymphocyte globulin (ALG) showed a greatly diminished response to PHA in vitro. Recovery of circulating lymphocyte levels preceded recovery of responsiveness to PHA. The latter could be prevented by reinjection of ALG or by thymectomy. Grafts were rejected within a period equal to the normal rejection time after PHA responsiveness had recovered to a value of approximately 20 per cent of the normal. Thus the effect of ALG on thymus dependent lymphocytes in mice can be monitored by assessing the PHA sensitivity of peripheral white blood cells. ImagesFIG. 1 PMID:4900922
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001
Gumel, A.M.; Annuar, M.S.M.; Heidelberg, T.
2014-01-01
Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L−1 to 15.45 g L−1, respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (Tm) of 42.0 (± 0.2) °C, glass transition temperature (Tg) of −1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g−1. The molecular weight (Mw) range of the polymer was relatively narrow between 55 to 77 kDa. PMID:25242925
Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001.
Gumel, A M; Annuar, M S M; Heidelberg, T
2014-01-01
Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L(-1) to 15.45 g L(-1), respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (T m) of 42.0 (± 0.2) °C, glass transition temperature (T g) of -1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g(-1). The molecular weight (M w) range of the polymer was relatively narrow between 55 to 77 kDa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tongxin; Li, Qi; Sun, Quanquan
2014-06-20
Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediatedmore » by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.« less
King, Stephen M; Jarvie, Helen P
2012-07-03
The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.
Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Jacqueline; Hetrick, Mary; French, Todd
Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased themore » amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.« less
Zhang, Zhiqiang; Zhao, Zhijun
2015-05-01
Phytohemagglutinin (PHA)-induced swelling is widely used to investigate cell-mediated and innate immunity across different vertebrate taxa. However, its physiological mechanism is still an open question due to the complexity of the involved immune components. In the present study, we measured the synchronous variations of PHA response, the proportion of different subtypes of leukocytes, as well as serum bactericidal capacity in circulation blood at 6, 12 and 24 h after PHA versus PBS injection in striped hamster, Cricetulus barabensis. First, the results showed that PHA responses reached a peak at 6 h postinjection, then sharply declined at 12 h and 24 h postinjection. Serum bactericidal capacity was higher at 6 h and 12 h than at 24 h. The proportion of different subtypes of leukocytes, as well as the ratio of neutrophils to lymphocytes did not display significant changes across different time points. Second, PHA response was positively correlated with the proportion of neutrophils and serum bactericidal capacity. The proportion of monocytes was negatively correlated with that of eosinophils and neutrophils. The proportion of basophils was negatively correlated with that of lymphocytes. Our results indicate that earlier enhanced PHA response is important for the striped hamster to cope with changing environmental conditions due to its small body mass, and the increased components of innate immunity in circulation blood may contribute to the enhancement of PHA swelling response. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Controlling lipid oxidation via a biomimetic iron chelating active packaging material.
Tian, Fang; Decker, Eric A; Goddard, Julie M
2013-12-18
Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.
Silva, Johanna A; Tobella, Lorena M; Becerra, José; Godoy, Félix; Martínez, Miguel A
2007-06-01
Poly-beta-hydroxyalkanoate (PHA) is a biodegradable polymer accumulated in intracellular granules by different bacterial species. Its physical and chemical properties are similar to those of petroleum-derived plastics. Material generated by the acid hydrolysis of wood was evaluated for use in the bacterial synthesis of PHA. Acid-hydrolyzed sawdust was prepared and adjusted to pH 7. Mineral salts with carbon:nitrogen (C:N) proportions of 100:1, 100:3.5, 100:10, 100:30, or 100:50 and trace elements were added and these solutions were inoculated with a bacterial strain Brevundimonas vesicularis LMG P-23615 or Sphingopyxis macrogoltabida LMG 17324. The percentage of cells accumulating PHA was evaluated by flow cytometry. The hydrolyzed sawdust composition was analyzed by gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). The organic material (601.5 mg l(-1)) contained 112.5 mg l(-1) sugars. Over 96% of these sugars were consumed and more than 90% of the bacterial cells accumulated PHA. The 100:3.5 C:N proportion was optimal for growth and PHA synthesis, with yields ranging from 64% to 72% of the dry cell weight. The results suggest that acid-hydrolyzed sawdust can be used by bacteria as a carbon source for growth and PHA production. This forestry by sub-product offers a low-cost alternative for obtaining biodegradable plastics (e.g., PHA) synthesized by bacteria.
Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoh, Anthony I
2013-10-16
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2-10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment.
Okaiyeto, Kunle; Nwodo, Uchechukwu U.; Mabinya, Leonard V.; Okoh, Anthony I.
2013-01-01
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2–10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment. PMID:24135818
Voluntary Hospital Coalitions to Promote Patient Safety
2005-01-01
Health and Accountability (PHA) as a comprehensive, voluntary patient safety program. With a focus on systemic prevention strategies, PHA fulfills...Prescribed by ANSI Std Z39-18 Advances in Patient Safety: Vol. 3 494 The Partnership for Health and Accountability Background PHA, officially...Assembly recognized PHA’s Accountability and Health Safety (A&HS) Committee as a testing ground for a unique voluntary patient safety initiative
Code of Federal Regulations, 2010 CFR
2010-04-01
... the Contract, subject to review and audit by HUD. (b) Defaults by PHA and/or owner. (1) The ACC and... assure that the obligations of the PHA to the Owner are carried out. (2) The ACC shall contain a... accordance with the terms of the ACC and the Contract. (3) The Contract shall contain a provision to the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the Contract, subject to review and audit by HUD. (b) Defaults by PHA and/or owner. (1) The ACC and... assure that the obligations of the PHA to the Owner are carried out. (2) The ACC shall contain a... accordance with the terms of the ACC and the Contract. (3) The Contract shall contain a provision to the...
Gross, Gabriele; Wildner, Jessica; Schonewille, Arjan; Rademaker, Jan L. W.; van der Meer, Roelof; Snel, Johannes
2008-01-01
Application of phytohemagglutinin (PHA) in weaning feed has been suggested to stimulate intestinal epithelium maturation. In this study, PHA strongly affected the fecal bacterial population structure of rats. Escherichia coli overgrowth was not prevented by probiotic mannose-adhering Lactobacillus plantarum 299v. Therefore, use of PHA in weaning feed deserves careful evaluation. PMID:18606805
Fradinho, J C; Reis, M A M; Oehmen, A
2016-11-15
Currently, the feast and famine (FF) regime is the most widely applied strategy to select for polyhydroxyalkanoate (PHA) accumulating organisms in PHA production systems with mixed microbial cultures. As an alternative to the FF regime, this work studied the possibility of utilizing a permanent feast regime as a new operational strategy to select for PHA accumulating photosynthetic mixed cultures (PMCs). The PMC was selected in an illuminated environment and acetate was constantly present in the mixed liquor to guarantee a feast regime. During steady-state operation, the culture presented low PHA accumulation levels, likely due to low light availability, which resulted in most of the acetate being used for biomass growth (Y x/s of 0.64 ± 0.18 Cmol X/Cmol Acet). To confirm the light limitation on the PMC, SBR tests were conducted with higher light availability, at similar levels as would be expectable from natural sunlight. In this case, the Y x/s reduced to 0.11 ± 0.01 Cmol X/Cmol Acet and the culture presented a PHB production yield on acetate of 0.67 ± 0.01 Cmol PHB/Cmol Acet, leading to a maximum PHB content of 60%. Unlike other studied PMCs, the PMC was capable of simultaneous growth and PHB accumulation continuously throughout the cycle. Thus far, 60% PHA content is the maximum value ever reported for a PMC, a result that prospects the utilization of feast regimes as an alternative strategy for the selection of PHA accumulating PMCs. Furthermore, the PMC also presented high phosphate removal rates, delivering an effluent that complies with phosphate discharge limits. The advantages of selecting PMCs under a permanent feast regime are that no aeration inputs are required; it allows higher PHA contents and phosphate removal rates in comparison to FF-operated PMC systems; and it represents a novel means of integrating wastewater treatment with resource recovery in the form of PHA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C
2010-01-01
Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.
Ray, Subhasree; Kalia, Vipin Chandra
2017-01-01
Polyhydroxyalkanoate (PHA) production by Bacillus thuringiensis EGU45 was studied by co-metabolism of crude glycerol (CG) (1%, v/v), glucose (0.05-0.5%, w/v) and propionic acid (0.05-0.5%, v/v) under batch (shake flask) culture conditions. Glycerol+PA combination resulted in 15-100mg/L PHA co-polymers with a HV content of 33-81mol%. The addition of NH 4 Cl (0.5%, w/v) to CG+PA enhanced PHA production by 1.55-fold, with a HV content of 58-70mol%. The time period of incubation of PA to the feed: CG+glucose was optimized to be 3h after initiation of fermentation. The PHA contents were found to be stable at 1900-2050mg/L up scaling from 0.4 to 2.0L feed material. Biochemical characterization through GC-MS of PHA co-polymer revealed the presence of 3-hydroxydecanoate (3-HDD), 3-hydroxyoctadecanoate (3HOD), 3-hydroxyhexadecanoate (3HHD). Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Yi-Ming; Wei, Dai-Xu; Yao, Hui; Wu, Lin-Ping; Chen, Guo-Qiang
2016-08-08
A thermoresponsive graft copolymer polyhydroxyalkanoate-g-poly(N-isopropylacrylamide) or short as PHA-g-PNIPAm, was successfully synthesized via a three-step reaction. First, PNIPAm oligomer with a trithiocarbonate-based chain transfer agent (CTA), short as PNIPAm-CTA, with designed polymerization degree was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, the PNIPAm-CTA was treated with n-butylamine for aminolysis in order to obtain a pendant thiol group at the end of the chain (PNIPAm-SH). Finally, the PNIPAm-SH was grafted onto unsaturated P(3HDD-co-3H10U), a random copolymer of 3-hydroxydodecanoate (3HDD) and 3-hydroxy-10-undecylenate (3H10U), via a thiol-ene click reaction. Enhanced hydrophilicity and thermoresponsive property of the resulted PHA-g-PNIPAm were confirmed by water contact angle studies. The biocompatibility of PHA-g-PNIPAm was comparable to poly-3-hydroxybutyrate (PHB). The graft copolymer PHA-g-PNIPAm based on biopolyester PHA could be a promising material for biomedical applications.
Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui
2017-02-01
Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (Y PHA/S ) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed. Copyright © 2016. Published by Elsevier B.V.
Immune reactions in acute viral hepatitis.
Newble, D I; Holmes, K T; Wangel, A G; Forbes, I J
1975-01-01
Serial studies of PHA-induced lymphocyte transformation, serum autoantibodies, immunoglobulins and complement were performed in seventeen patients with hepatitis A and nine patients with hepatitis B. In both types of hepatitis PHA-induced transformation was markedly impaired during the 1st week after the onset of jaundice and there was less marked but prolonged impairment for a further period of 6-10 weeks. A group of eleven subjects with a previous history of hepatitis had values which were similar to those of healthy persons. Serum from patients with hepatitis A and hepatitis B contains an inhibitor of lymphocyte response to PHA. The inhibitor depresses the function of both patients' and normal lymphocytes and is only detectable during the acute phase of the illness. Washing lymphocytes free from autologous serum did not restore the PHA response to normal but the markedly impaired response present during the first 2 weeks of the illness was improved. A serum factor or factors may therefore be responsible for at least part of the impaired response of lymphocytes to PHA during the acute phase of hepatitis but does not appear to account for the more prolonged impairment of the PHA response. The protracted lymphocyte defect is possibly induced by hepatitis virus. The incidence of autoantibodies and the changes in immunoglobulin levels were similar to those reported by other workers. PMID:1204253
Miyake, Tomohiro; Iwamoto, Takuya; Tanimura, Manabu; Okuda, Masahiro
2013-12-01
In spite of current recommended safe handling procedures, the potential for the exposure of healthcare providers to hazardous drugs exists in the workplace. A reliance on biological safety cabinets to provide total protection against the exposure to hazardous drugs is insufficient. Preventing workplace contamination is the best strategy to minimize cytotoxic drug exposure in healthcare providers. This study was conducted to compare surface contamination and personnel exposure to cyclophosphamide before and after the implementation of a closed-system drug transfer device, PhaSeal, under the influence of cleaning according to the Japanese guidelines. Personnel exposure was evaluated by collecting 24 h urine samples from 4 pharmacists. Surface contamination was assessed by the wiping test. Four of 6 wipe samples collected before PhaSeal indicated a detectable level of cyclophosphamide. About 7 months after the initiation of PhaSeal, only one of 6 wipe samples indicated a detectable level of cyclophosphamide. Although all 4 employees who provided urine samples had positive results for the urinary excretion of cyclophosphamide before PhaSeal, these levels returned to minimal levels in 2 pharmacists after PhaSeal. In combination with the biological safety cabinet and cleaning according to the Japanese guidelines, PhaSeal further reduces surface contamination and healthcare providers exposure to cyclophosphamide to almost undetectable levels.
Fu, Jilagamazhi; Sharma, Umesh; Sparling, Richard; Cicek, Nazim; Levin, David B
2014-07-01
Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46 was analyzed in shake-flask-based batch reactions, using pure chemical-grade glycerol (PG), biodiesel-derived "waste" glycerol (WG), and biodiesel-derived "waste" free fatty acids (WFA). Cell growth, substrate consumption, mcl-PHA accumulation within the cells, and the monomer composition of the synthesized biopolymers were monitored. The patterns of mcl-PHA synthesis in P. putida LS46 cells grown on PG and WG were similar but differed from that of cells grown with WFA. Polymer accumulation in glycerol-based cultures was stimulated by nitrogen limitation and plateaued after 48 h in both PG and WG cultures, with a total accumulation of 17.9% cell dry mass and 16.3% cell dry mass, respectively. In contrast, mcl-PHA synthesis was independent of nitrogen concentration in P. putida LS46 cells cultured with WFA, which accumulated to 29% cell dry mass. In all cases, the mcl-PHAs synthesized consisted primarily of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)). WG and WFA supported similar or greater cell growth and mcl-PHA accumulation than PG under the experimental conditions used. These results suggest that biodiesel by-product streams could be used as low-cost carbon sources for sustainable mcl-PHA production.
Numata, Keiji; Doi, Yoshiharu
2012-06-01
Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic-anaerobic marine conditions. The PHA contents of all the samples under the aerobic-anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic-anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 10³ g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic-anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.
Wang, Ying; Chung, Ahleum; Chen, Guo-Qiang
2017-04-01
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of T m , T g , and T d5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.
Moita Fidalgo, Rita; Ortigueira, Joana; Freches, André; Pelica, João; Gonçalves, Magarida; Mendes, Benilde; Lemos, Paulo C
2014-06-25
Recent research on polyhydroxyalkanoates (PHAs) has focused on developing cost-effective production processes using low-value or industrial waste/surplus as substrate. One of such substrates is the liquid fraction resulting from pyrolysis processes, bio-oil. In this study, valorisation of bio-oil through PHA production was investigated. The impact of the complex bio-oil matrix on PHA production by an enriched mixed culture was examined. The performance of the direct utilization of pure bio-oil was compared with the utilization of three defined substrates contained in this bio-oil: acetate, glucose and xylose. When compared with acetate, bio-oil revealed lower capacity for polymer production as a result of a lower polymer yield on substrate and a lower PHA cell content. Two strategies for bio-oil upgrade were performed, anaerobic fermentation and vacuum distillation, and the resulting liquid streams were tested for polymer production. The first one was enriched in volatile fatty acids and the second one mainly on phenolic and long-chain fatty acids. PHA accumulation assays using the upgraded bio-oils attained polymer yields on substrate similar or higher than the one achieved with acetate, although with a lower PHA content. The capacity to use the enriched fractions for polymer production has yet to be optimized. The anaerobic digestion of bio-oil could also open-up the possibility to use the fermented bio-oil directly in the enrichment process of the mixed culture. This would increase the selective pressure toward an optimized PHA accumulating culture selection. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanadchangsaeng, N.; Boonyagul, S.
2018-05-01
Recently, nanofiber research has gained substantial attention from scientists. In this study, the main component of the nanofiber sheet is polyhydroxyalkanoate (PHA) polymer, which is strong, ductile, flexible and adhesive to human skin. Two major additives of nanofiber sheet that we applied are nanoclay and tricalcium phosphate. The additives are generally synthetic substances that can be chemically synthesized and compatible with tissues body. Nanoclay has a low density, strong, durable to compressive strength and humidity. While, tricalcium phosphate is a calcium phosphate ceramic that is biocompatible to human tissue. From the reasons above, we proposed to choose both nanoclay and tricalcium phosphate for adding into PHA nanofibers for film formation. Thus, this study aims to investigate the morphological and mechanical properties of the fiber mat by using PHA added with various amount of nanoclay and tricalcium phosphate at 0.1%, 1% and 10% by weight, and fabricate nanofiber samples by electrospinning technique. The tested results of scanning electron microscope (SEM) morphology show that the fibers have a uniformed pattern. The PHA containing nanoclay of all additive contents exhibited micrometer diameter distributions, while PHA loaded with 1% tricalcium phosphate still had the nano-scale diameter range, and might be the optimum additive load for further nanometer medical applications. A tensile test was performed to determine the effect of nanoclay and tricalcium phosphate contents on the mechanical properties of the electrospun PHA films, and reflect the level of modularity. With nanoclay components being integrated into the polymer matrix, subsequent reduction in fiber crystallinity was occurred after addition of nanoclay with an increase of modulus value. The results confirmed that PHA fiber mat containing 1% nanoclay may have a potential for using as a rigid scaffold which bearing force loading in human organ system. Whereas, it can be indicated that PHA fiber mat containing 1% tricalcium phosphate might be employed as a flexible scaffold for biomedical materials application due to a high elongation at break value.
Ruiz-Roso, María Belén; Olivares-Álvaro, Elena; Quintela, José Carlos; Ballesteros, Sandra; Espinosa-Parrilla, Juan F; Ruiz-Roso, Baltasar; Lahera, Vicente; de Las Heras, Natalia; Martín-Fernández, Beatriz
2018-05-30
Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H 2 O 2 ) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O 2 - ) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H 2 O 2 -induced cell viability reduction in BV-2 activated cells and O 2 - production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.
In Vitro Interleukin-1 and 2 Production and Interleukin 2 Receptor Expression in the Rhesus Monkey
NASA Technical Reports Server (NTRS)
Schmitt, Didier A.; Sonnenfeld, Gerald; Husson, David; Tkaczuk, Jean; Andre, Eric; Schaffar, Laurance
1996-01-01
Anti-human monoclonal antibodies were used to detect and quantify interleukins-1 and 2 and interleukin-2 receptor expression in peripheral blood mononuclear cells from a rhesus monkey. Interleukin-1 production could be induced by phorbol esters (PMA) and was potentiated by phytohemagglutinin (PHA). Interleukin-2 secretion could also be induced by the combination of PHA and PMA, but only weakly with PHA alone. Interleukin-2 receptor expression was present in a subpopulation of unstimulated lymphocytes and could be enhanced by PHA or PMA. These data show once again that the rhesus monkey immune system is cross-reactive with the human one and that rhesus macaque could be a good model to study interleukin therapy.
Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil.
Sydow, Mateusz; Owsianiak, Mikołaj; Szczepaniak, Zuzanna; Framski, Grzegorz; Smets, Barth F; Ławniczak, Łukasz; Lisiecki, Piotr; Szulc, Alicja; Cyplik, Paweł; Chrzanowski, Łukasz
2016-12-25
It is not known whether diesel-degrading bacterial communities are structurally and functionally robust when exposed to different hydrocarbon types. Here, we exposed a diesel-degrading consortium to model either alkanes, cycloalkanes or aromatic hydrocarbons as carbon sources to study its structural resistance. The structural resistance was low, with changes in relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial taxon. This low resistance is explained by the presence of hydrocarbon-degrading specialists in the consortium and differences in growth kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes in consortium structure and function, or the ability of some consortium members to be maintained during exposure on degradation intermediates produced by other members. Thus, the consortium is expected to cope with short-term exposures to narrow carbon feeds, while maintaining its structural and functional integrity, which remains an advantage over biodegradation approaches using single species cultures. Copyright © 2016 Elsevier B.V. All rights reserved.
Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts
Lammers, Peter J.; Huesemann, Michael; Boeing, Wiebke; ...
2016-12-12
The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium testbeds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive andmore » costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus, which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal wastewater streams for cultivation. In conclusion, this review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production.« less
PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae.
Batista, Marcelo B; Teixeira, Cícero S; Sfeir, Michelle Z T; Alves, Luis P S; Valdameri, Glaucio; Pedrosa, Fabio de Oliveira; Sassaki, Guilherme L; Steffens, Maria B R; de Souza, Emanuel M; Dixon, Ray; Müller-Santos, Marcelo
2018-01-01
The ability of bacteria to produce polyhydroxyalkanoates such as poly(3-hydroxybutyrate) (PHB) enables provision of a carbon storage molecule that can be mobilized under demanding physiological conditions. However, the precise function of PHB in cellular metabolism has not been clearly defined. In order to determine the impact of PHB production on global physiology, we have characterized the properties of a Δ phaC1 mutant strain of the diazotrophic bacterium Herbaspirillum seropedicae . The absence of PHB in the mutant strain not only perturbs redox balance and increases oxidative stress, but also influences the activity of the redox-sensing Fnr transcription regulators, resulting in significant changes in expression of the cytochrome c -branch of the electron transport chain. The synthesis of PHB is itself dependent on the Fnr1 and Fnr3 proteins resulting in a cyclic dependency that couples synthesis of PHB with redox regulation. Transcriptional profiling of the Δ phaC1 mutant reveals that the loss of PHB synthesis affects the expression of many genes, including approximately 30% of the Fnr regulon.
[Modification of red cell membranes with perftoran in papaine emphysema in rats].
Zoirova, N I; Arifkhanov, S I; Rakhmatullaev, Kh U; Tadzhikhodzhaev, Iu Kh
2006-01-01
Papaine emphysema model on 75 mongrel mature white male rats (10 intact rats were control) was used to study the size, form, surface architechtonics, deformability and state of membrane-receptor erythrocyte complex before and after perftoran intraperitoneal administration. Perftoran emulsion produced a membrane-modulating effect with recovery of hormonal reception sensitivity, PHA-, cAMP-receptor systems as well as restoration of erythrocytic normocytosis and diskocytosis.
Spieler, Valerie; Valldorf, Bernhard; Maaß, Franziska; Kleinschek, Alexander; Hüttenhain, Stefan H; Kolmar, Harald
2016-07-01
Chiral alcohols are important building blocks for specialty chemicals and pharmaceuticals. The production of chiral alcohols from ketones can be carried out stereo selectively with alcohol dehydrogenases (ADHs). To establish a process for cost-effective enzyme immobilization on solid phase for application in ketone reduction, we used an established enzyme pair consisting of ADH from Rhodococcus erythropolis and formate dehydrogenase (FDH) from Candida boidinii for NADH cofactor regeneration and co-immobilized them on modified poly-p-hydroxybutyrate synthase (PhaC)-inclusion bodies that were recombinantly produced in Escherichia coli cells. After separate production of genetically engineered and recombinantly produced enzymes and particles, cell lysates were combined and enzymes endowed with a Kcoil were captured on the surface of the Ecoil presenting particles due to coiled-coil interaction. Enzyme-loaded particles could be easily purified by centrifugation. Total conversion of 4'-chloroacetophenone to (S)-4-chloro-α-methylbenzyl alcohol could be accomplished using enzyme-loaded particles, catalytic amounts of NAD(+) and formate as substrates for FDH. Chiral GC-MS analysis revealed that immobilized ADH retained enantioselectivity with 99 % enantiomeric excess. In conclusion, this strategy may become a cost-effective alternative to coupled reactions using purified enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis.
Moafi, M; Rezvan, H; Sherkat, R; Taleban, R; Asilian, A; Hamid Zarkesh-Esfahani, S; Nilforoushzadeh, M A; Jaffary, F; Mansourian, M; Sokhanvari, F; Ansari, N
2017-04-01
Cutaneous leishmaniasis (CL) heals spontaneously within several weeks or months, but, in rare cases, CL-active lesions last for many years. In this study, we assessed cell-mediated immunity in non-healing CL through the measurement of three pro-inflammatory cytokines: Interferon-γ (IFN-γ), IL-17a and CXCL-11. For this, 32 patients afflicted with healing or non-healing CL were recruited in this study. Peripheral blood mononuclear cells (PBMCs) of every patient were treated with three antigens: purified protein derivative (PPD), soluble Leishmania antigen (SLA) and phytohaemagglutinin (PHA). Cytokine quantification was performed using enzyme-linked immunosorbent assay (ELISA) method. Results of our study showed that neither cytokine produced in the presence of a PPD stimulator (as an irrelevant antigen) significantly differed between the healing and non-healing groups (P-value ≥0.05 for all of them). However, IFN-γ, CXCL-11 and IL-17a levels produced in the presence of PHA or SLA were significantly higher within the healing than in the non-healing group (P-value <0.01 for all of them). It seems that appropriate levels of IFN-γ, as well as IL-17a and CXCL-11, contribute to the control of Leishmania infection. © 2017 The Foundation for the Scandinavian Journal of Immunology.
Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry
NASA Astrophysics Data System (ADS)
Pederson, Erik Norman
Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.
Fonda, Stephanie J; Kedziora, Richard J; Vigersky, Robert A; Bursell, Sven-Erik
2010-05-01
The aim of this project is to create a prototype for a personal health application (PHA) for patients (i.e., consumers) with diabetes by employing a user-centered design process. This article describes the design process for and resulting architecture, workflow, and functionality of such a PHA. For the design process, we conducted focus groups with people who have diabetes (n = 21) to ascertain their needs for a PHA. We then developed a prototype in response to these needs, and through additional focus groups and step-by-step demonstrations for people with diabetes as well as healthcare providers, we obtained feedback about the prototype. The feedback led to changes in the PHA's presentation and function. Focus group participants said they wanted a tool that could give them timely, readily available information on how diabetes-related domains interact, how their behaviors affect them, and what to do next. Thus, the prototype PHA is Internet-based, retrieves data for diabetes self-management from a personal health record, displays those data using gadgets in the consumer's iGoogle page, and makes the data available to a decision-support component that provides lifestyle-oriented advice. Manipulation of the data enables consumers to anticipate the results of future actions and to see interrelationships. A user-centered design process resulted in a PHA that uses technology that is publicly available, employs a personal health record, and is Internet based. This PHA can provide the backbone for a decision support system that can bring together the cornerstones of diabetes self-management and integrate them into the life of the person with diabetes.
Wang, Xun; Li, Zhou; Li, Xin; Qian, Hongliang; Cai, Xia; Li, Xinfeng; He, Jin
2016-01-01
Poly-3-hydroxybutyrate (PHB) is a natural polymer synthesized by many bacteria as a carbon-energy storage material. It was accumulated maximally prior to the spore formation but was degraded during the process of sporulation in Bacillus thuringiensis. Intriguingly, B. thuringiensis also accumulates large amounts of insecticidal crystal proteins (ICPs) during sporulation, which requires considerable input of carbon and energy sources. How PHB accumulation affects sporulation and ICP formation remains unclear to date. Intuitively, one would imagine that accumulated PHB provides the energy required for ICP formation. Yet our current data indicate that this is not the case. First, growth curves of the deletion mutants of phaC (encoding the PHB synthase) and phaZ (encoding the PHB depolymerase) were found to be similar to the parent strain BMB171; no difference in growth rate could be observed. In addition we further constructed the cry1Ac10 ICP gene overexpression strains of BMB171 (BMB171-cry), as well as its phaC and phaZ deletion mutants ΔphaC-cry and ΔphaZ-cry to compare their spore and ICP production rates. Again, not much change of ICP production was observed among these strains either. In fact, PHB was still degraded in most ΔphaZ-cry cells as observed by transmission electron microscopy. Together these results indicated that there is no direct association between the PHB accumulation and the sporulation and ICP formation in B. thuringiensis. Some other enzymes for PHB degradation or other energy source may be responsible for the sporulation and/or ICP formation in B. thuringiensis.
Varan, Hacer Dogan; Bolayir, Basak; Kara, Ozgur; Arik, Gunes; Kizilarslanoglu, Muhammet Cemal; Kilic, Mustafa Kemal; Sumer, Fatih; Kuyumcu, Mehmet Emin; Yesil, Yusuf; Yavuz, Burcu Balam; Halil, Meltem; Cankurtaran, Mustafa
2016-12-01
Phase angle (PhA) value determined by bioelectrical impedance analysis (BIA) is an indicator of cell membrane damage and body cell mass. Recent studies have shown that low PhA value is associated with increased nutritional risk in various group of patients. However, there have been only a few studies performed globally assessing the relationship between nutritional risk and PhA in hospitalized geriatric patients. The aim of the study is to evaluate the predictive value of the PhA for malnutrition risk in hospitalized geriatric patients. One hundred and twenty-two hospitalized geriatric patients were included in this cross-sectional study. Comprehensive geriatric assessment tests and BIA measurements were performed within the first 48 h after admission. Nutritional risk state of the patients was determined with NRS-2002. Phase angle values of the patients with malnutrition risk were compared with the patients that did not have the same risk. The independent variables for predicting malnutrition risk were determined. SPSS version 15 was utilized for the statistical analyzes. The patients with malnutrition risk had significantly lower phase angle values than the patients without malnutrition risk (p = 0.003). ROC curve analysis suggested that the optimum PhA cut-off point for malnutrition risk was 4.7° with 79.6 % sensitivity, 64.6 % specificity, 73.9 % positive predictive value, and 73.9 % negative predictive value. BMI, prealbumin, PhA, and Mini Mental State Examination Test scores were the independent variables for predicting malnutrition risk. PhA can be a useful, independent indicator for predicting malnutrition risk in hospitalized geriatric patients.
Tashiro, Yukihiro; Matsumoto, Hiroko; Miyamoto, Hirokuni; Okugawa, Yuki; Pramod, Poudel; Miyamoto, Hisashi; Sakai, Kenji
2013-10-01
We investigated L-lactic acid production in static batch fermentation of kitchen refuse using a bacterial consortium from marine-animal-resource (MAR) composts at temperatures ranging from 30 to 65 °C. At relatively low temperatures butyric acid accumulated, whereas at higher temperatures L-lactic acid was produced. In particular, fermentation at 50 °C produced 34.5 g L(-1) L-lactic acid with 90% lactic acid selectivity and 100% optical purity. Denaturing gradient gel electrophoresis indicated that dominant bacteria present in the original MAR composts diminished rapidly and Bacillus coagulans strains became the dominant contributors to L-lactic acid production at 45, 50 and 55 °C. This is the first report of the achievement of 100% optical purity of L-lactic acid using a bacterial consortium. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wei, Dai-Xu; Dao, Jin-Wei; Chen, Guo-Qiang
2018-06-19
To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Yilin; Ling, Chen; Hajnal, Ivan; Wu, Qiong; Chen, Guo-Qiang
2018-05-01
High-cell-density cultivation is an effective way to improve the productivity of microbial fermentations and in turn reduce the cost of the final products, especially in the case of intracellular products. Halomonas bluephagenesis TD01 is a halophilic platform bacterium for the next generation of industrial biotechnology with a native PHA synthetic pathway, able to grow under non-sterile continuous fermentation conditions. A selection strategy for mutant strains that can grow to a high cell density was developed. Based on an error-prone DNA polymerase III ε subunit, a genome-wide random mutagenesis system was established and used in conjunction with an artificial high cell density culture environment during the selection process. A high-cell-density H. bluephagenesis TDHCD-R3 obtained after 3 rounds of selection showed an obvious enhancement of resistance to toxic metabolites including acetate, formate, lactate and ethanol compared to wild-type. H. bluephagenesis TDHCD-R3-8-3 constructed from H. bluephagenesis TDHCD-R3 by overexpressing an optimized phaCAB operon was able to grow to 15 g/L cell dry weight (CDW) containing 94% PHA in shake flask studies. H. bluephagenesis TDHCD-R3-8-3 was grown to more than 90 g/L CDW containing 79% PHA compared with only 81 g/L with 70% PHA by the wild type when incubated in a 7-L fermentor under the same conditions.
Pieper-Fürst, U.; Madkour, M. H.; Mayer, F.; Steinbüchel, A.
1994-01-01
The N-terminal amino acid sequence of the polyhydroxyalkanoic acid (PHA) granule-associated M(r)-15,500 protein of Rhodococcus ruber (the GA14 protein) was analyzed. The sequence revealed that the corresponding structural gene is represented by open reading frame 3, encoding a protein with a calculated M(r) of 14,175 which was recently localized downstream of the PHA synthase gene (U. Pieper and A. Steinbüchel, FEMS Microbiol. Lett. 96:73-80, 1992). A recombinant strain of Escherichia coli XL1-Blue carrying the hybrid plasmid (pSKXA10*) with open reading frame 3 overexpressed the GA14 protein. The GA14 protein was subsequently purified in a three-step procedure including chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and Superose 12. Determination of the molecular weight by gel filtration as well as electron microscopic studies indicates that a tetrameric structure of the recombinant, native GA14 protein is most likely. Immunoelectron microscopy demonstrated a localization of the GA14 protein at the periphery of PHA granules as well as close to the cell membrane in R. ruber. Investigations of PHA-leaky and PHA-negative mutants of R. ruber indicated that expression of the GA14 protein depended strongly on PHA synthesis. Images PMID:8021220
Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia.
Basile, Claudia; Della-Morte, David; Cacciatore, Francesco; Gargiulo, Gaetano; Galizia, Gianluigi; Roselli, Mario; Curcio, Francesco; Bonaduce, Domenico; Abete, Pasquale
2014-10-01
Several markers have been associated with sarcopenia in the elderly, including bioelectrical indices. Phase angle (PhA) is an impedance parameter and it has been suggested as an indicator of cellular death. Thus, the relationship between PhA and muscle mass and strength was investigated in 207 consecutively elderly participants (mean age 76.2±6.7years) admitted for multidimensional geriatric evaluation. Muscle strength by grip strength using a hand-held dynamometer and muscle mass was measured by bioimpedentiometer. PhA was calculated directly with its arctangent (resistance/reactance×180°/π). Linear relationship among muscular mass and strength and with clinical and biochemical parameters, including PhA at uni- and multivariate analysis were performed. Linear regression analysis demonstrated that lower level of PhA is associated with reduction in grip strength (y=3.16+0.08x; r=0.49; p<0.001), and even more, with muscle mass (y=3.04+0.25x; r=0.60; p<0001). Multivariate analysis confirms these relationships (grip strength β=0.245, p=0.031; muscular mass β=0.623, p<0.01). Thus, PhA is inversely related to muscle mass and strength in elderly subjects and it may be considered a good bioelectrical marker to identify elderly patients at risk of sarcopenia. Copyright © 2014 Elsevier Inc. All rights reserved.
Albuquerque, M G E; Concas, S; Bengtsson, S; Reis, M A M
2010-09-01
Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers. The use of mixed microbial cultures (MMC) and low cost feedstocks have a positive impact on the cost-effectiveness of the process. It has typically been carried out in Sequencing Batch Reactors (SBR). In this study, a 2-stage CSTR system (under Feast and Famine conditions) was used to effectively select for PHA-storing organisms using fermented molasses as feedstock. The effect of influent substrate concentration (60-120 Cmmol VFA/L) and HRT ratio between the reactors (0.2-0.5h/h) on the system's selection efficiency was assessed. It was shown that Feast reactor residual substrate concentration impacted on the selective pressure for PHA storage (due to substrate-dependent kinetic limitation). Moreover, a residual substrate concentration coming from the Feast to the Famine reactor did not jeopardize the physiological adaptation required for enhanced PHA storage. The culture reached a maximum PHA content of 61%. This success opens new perspectives to the use of wastewater treatment infrastructure for PHA production, thus valorizing either excess sludge or wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.
Arikawa, Hisashi; Sato, Shunsuke; Fujiki, Tetsuya; Matsumoto, Keiji
2017-08-01
We developed a new method for isolation and quantitation of polyhydroxyalkanoate (PHA) from culture broth. In this method, the cells were sonicated in sodium dodecyl sulfate (SDS) solution and centrifuged to recover PHA. The recovered PHA was rinsed with deionized water and ethanol, and then weighed after drying. Hazardous chemicals such as chloroform, methanol, and sulfuric acid were not used, and no expensive analytical instruments were needed. We applied this method to Cupriavidus necator culture broths that included various amounts of poly(3-hydroxybutyrate) (PHB) or poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) from flasks and jar fermentors. The quantitation by this method was practical for use with a wide range of production amounts and PHA monomer compositions compared to the conventional whole-cell methanolysis method with gas chromatographic analysis, and besides, the recovered PHAs were adequately pure (≥96% purity). Therefore, this new method would be valuable not only for quantitation of PHA but also for preparation of samples to characterize their mechanical properties. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cooper, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)
1998-01-01
Utilizing clinostatic rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity, we found phytohemagglutinin (PHA) responsiveness to be almost completely diminished. Activation marker expression was significantly reduced in RWV cultures. Furthermore, cytokine secretion profiles suggested that monocytes are not as adversely affected by simulated microgravity as T cells. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness because placing peripheral blood mononuclear cells (PBMC) within small collagen beads did partially restore PHA responsiveness. However, activation of purified T cells with cross-linked CD2/CD28 and CD3/CD28 antibody pairs was completely suppressed in the RWV, suggesting a defect in signal transduction. Activation of purified T cells with PMA and ionomycin was unaffected by RWV culture. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.
Wang, Yung Lin; Lin, Yi Ting; Chen, Chia Lin; Shaw, Gwo Chyuan; Liaw, Shwu Huey
2014-10-01
Poly[(R)-3-hydroxybutyrate] (PHB) is a microbial biopolymer that has been commercialized as biodegradable plastics. The key enzyme for the degradation is PHB depolymerase (PhaZ). A new intracellular PhaZ from Bacillus thuringiensis (BtPhaZ) has been screened for potential applications in polymer biodegradation. Recombinant BtPhaZ was crystallized using 25% polyethylene glycol 3350, 0.2 M ammonium acetate, 0.1 M bis-tris pH 6.5 at 288 K. The crystals belonged to space group P1, with unit-cell parameters a = 42.97, b = 83.23, c = 85.50 Å, α = 73.45, β = 82.83, γ = 83.49°. An X-ray diffraction data set was collected to 1.42 Å resolution with an Rmerge of 6.4%. Unexpectedly, a molecular-replacement solution was obtained using the crystal structure of Streptomyces lividans chloroperoxidase as a template, which shares 24% sequence identity to BtPhaZ. This is the first crystal structure of an intracellular poly(3-hydroxybutyrate) depolymerase.
Qiao, Yu; Yang, Jihong; Liu, Lili; Zeng, Yixin; Ma, Jie; Jia, Jing; Zhang, Li; Li, Xiaoguang; Wu, Peihong; Wang, Wenchao; Liu, Dongge; Chen, Huan; Zhao, Yunbo; Xi, Huan; Wang, Yao
2018-02-21
Primary hepatic angiosarcoma (PHA) is a rare and aggressive solid tumor, with high rates of local recurrence and distant metastasis, and poor prognosis. There are no established treatment guidelines for PHA. A 78-year-old asymptomatic man with PHA that was successfully treated with pazopanib plus PD-1 inhibitor and RetroNectin-activated killer cells (RAK cells). After one month of treatment, there was a clear reduction in the size and number of the liver metastases; and after nearly 15 months, most of the lesions were stable, no new lesions had developed, and the side effect of treatment was minor. Pazopanib, PD-1 inhibitor and RAK cells could serve as a potential option for the treatment of advanced PHA.
NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Farrington, Phillip A.
2016-01-01
The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.
NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Farrington, Phillip A.
2016-01-01
The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.
Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna
2017-07-25
A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL -1 d -1 (i.e. 260CmmolL -1 d -1 ), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL -1 ) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt -1 ). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol -1 , respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol -1 (0.41±0.05 gCOD PHA gCOD VFA -1 and 0.38±0.05 gCOD PHA gCOD VFA -1 , respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Chauvin, James; Shukla, Mahesh; Rice, James; Rispel, Laetitia
2016-03-11
National public health associations (PHAs) are key partners with governments and communities to improve, protect and promote the public's health. Governance and organizational capacity are among the key determinants of a PHA's effectiveness as an advocate for appropriate public health policies and practice. During 2014, the World Federation of Public Health Associations (WFPHA) conducted an on-line survey of its 82 PHA members, to identify the state of organizational governance of national public health associations, as well as the factors that influence optimal organizational governance. The survey consisted of 13 questions and focused on the main elements of organizational governance: cultivating accountability; engaging stakeholders; setting shared direction; stewarding resources; and, continuous governance enhancement. Four questions included a qualitative open-ended response for additional comments. The survey data were analyzed using Microsoft Excel. The qualitative data was analyzed using thematic content analysis Responses were received from 62 PHAs, constituting a 75.6 % response rate. The two most important factors that support governance effectiveness were a high degree of integrity and ethical behavior of the PHA's leaders (77 %) and the competence of people serving on the PHA's governing body (76 %). The lack of financial resources was considered as the most important factor that negatively affected organizational governance effectiveness (73 %). The lack of mentoring for future PHA leaders; ineffective or incompetent leadership; lack of understanding about good governance practices; and lack of accurate information for strategic planning were identified as factors influencing PHA governance effectiveness. Critical elements for PHA sustainability included diversity, gender-responsiveness and inclusive governance practices, and strategies to build the future generation of public health leaders. National PHA have a responsibility to put into place the practices and infrastructure that enhance organizational governance. This will enhance their ability to be effective advocates for policies and practices that enhance, protect and promote the public's health. The WFPHA has an important role to play in providing the technical assistance and financial resources to assist PHAs in attaining and sustaining a higher level of governance capacity.
Norman, Kristina; Wirth, Rainer; Neubauer, Maxi; Eckardt, Rahel; Stobäus, Nicole
2015-02-01
We investigated the impact of low phase angle (PhA) values on muscle strength, quality of life, symptom severity, and 1-year mortality in older cancer patients. Prospective study with 1-year follow-up. Cancer patients aged >60 years. PhA was derived from whole body impedance analysis. The fifth percentile of age-, sex-, and body mass index-stratified reference values were used as cut-off. Quality of life was determined with the European Organization of Research and Treatment in Cancer questionnaire, reflecting both several function scales and symptom severity. Muscle strength was assessed by hand grip strength, knee extension strength, and peak expiratory flow. 433 cancer patients, aged 60-95 years, were recruited. Patients with low PhA (n = 197) exhibited decreased muscle strength compared with patients with normal PhA (hand grip strength: 22 ± 8.6 vs 28.9 ± 8.9 kg, knee extension strength: 20.8 ± 11.8 vs 28.1 ± 14.9 kg, and peak expiratory flow: 301.1 ± 118 vs 401.7 ± 142.6 L/min, P < .001). Physical function, global health status, and role function from the European Organization of Research and Treatment in Cancer questionnaire were reduced, and most symptoms (fatigue, anorexia, pain, and dyspnea) increased in patients with low PhA (P < .001). In a risk-factor adjusted regression analysis, PhA emerged as independent predictor of physical function (ß:-0.538, P = .023), hand grip strength (ß:-4.684, P < .0001), knee extension strength (ß:-4.548, P = .035), and peak expiratory flow (ß:-66.836, P < .0001). Low PhA moreover predicted 1-year mortality in the Cox proportional hazards regression model, whereas grip strength was no longer significant. PhA below the fifth reference percentile is highly predictive of decreased muscle strength, impaired quality of life, and increased mortality in old patients with cancer and should be evaluated in routine assessment. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Evaluation of thermophilic fungal consortium for organic municipal solid waste composting.
Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin; Bundela, Pushpendra Singh; Wong, Jonathan W C; Selvam, Ammaiyappan
2014-09-01
Influence of fungal consortium and different turning frequency on composting of organic fraction of municipal solid waste (OFMSW) was investigated to produce compost with higher agronomic value. Four piles of OFMSW were prepared: three piles were inoculated with fungal consortium containing 5l each spore suspensions of Trichoderma viride, Aspergillus niger and Aspergillus flavus and with a turning frequency of weekly (Pile 1), twice a week (Pile 2) and daily (Pile 3), while Pile 4 with weekly turning and without fungal inoculation served as control. The fungal consortium with weekly (Pile 1) turning frequency significantly affected temperature, pH, TOC, TKN, C/N ratio and germination index. High degradation of organic matter and early maturity was observed in Pile 1. Results indicate that fungal consortium with weekly turning frequency of open windrows were more cost-effective in comparison with other technologies for efficient composting and yield safe end products. Copyright © 2014 Elsevier Ltd. All rights reserved.