Vibration signal correction of unbalanced rotor due to angular speed fluctuation
NASA Astrophysics Data System (ADS)
Cao, Hongrui; He, Dong; Xi, Songtao; Chen, Xuefeng
2018-07-01
The rotating speed of a rotor is hardly constant in practice due to angular speed fluctuation, which affects the balancing accuracy of the rotor. In this paper, the effect of angular speed fluctuation on vibration responses of the unbalanced rotor is analyzed quantitatively. Then, a vibration signal correction method based on zoom synchrosqueezing transform (ZST) and tacholess order tracking is proposed. The instantaneous angular speed (IAS) of the rotor is extracted by the ZST firstly and then used to calculate the instantaneous phase. The vibration signal is further resampled in angular domain to reduce the effect of angular speed fluctuation. The signal obtained in angular domain is transformed into order domain using discrete Fourier transform (DFT) to estimate the amplitude and phase of the vibration signal. Simulated and experimental results show that the proposed method can successfully correct the amplitude and phase of the vibration signal due to angular speed fluctuation.
NASA Astrophysics Data System (ADS)
Diamond, D. H.; Heyns, P. S.; Oberholster, A. J.
2016-12-01
The measurement of instantaneous angular speed is being increasingly investigated for its use in a wide range of condition monitoring and prognostic applications. Central to many measurement techniques are incremental shaft encoders recording the arrival times of shaft angular increments. The conventional approach to processing these signals assumes that the angular increments are equidistant. This assumption is generally incorrect when working with toothed wheels and especially zebra tape encoders and has been shown to introduce errors in the estimated shaft speed. There are some proposed methods in the literature that aim to compensate for this geometric irregularity. Some of the methods require the shaft speed to be perfectly constant for calibration, something rarely achieved in practice. Other methods assume the shaft speed to be nearly constant with minor deviations. Therefore existing methods cannot calibrate the entire shaft encoder geometry for arbitrary shaft speeds. The present article presents a method to calculate the shaft encoder geometry for arbitrary shaft speed profiles. The method uses Bayesian linear regression to calculate the encoder increment distances. The method is derived and then tested against simulated and laboratory experiments. The results indicate that the proposed method is capable of accurately determining the shaft encoder geometry for any shaft speed profile.
Steering Law Controlling the Constant Speeds of Control Moment Gyros
NASA Astrophysics Data System (ADS)
KOYASAKO, Y.; TAKAHASHI, M.
2016-09-01
To enable the agile control of satellites, using control moment gyros (CMGs) has become increasingly necessary because of their ability to generate large amounts of torque. However, CMGs have a singularity problem whereby the torque by the CMGs degenerates from three dimensions to two dimensions, affecting spacecraft attitude control performance. This study proposes a new steering control law for CMGs by controlling the constant speed of a CMG. The proposed method enables agile attitude changes, according to the required task, by managing the total angular momentum of the CMGs by considering the distance to external singularities. In the proposed method, the total angular momentum is biased in a specific direction and the angular momentum envelope is extended. The design method can increase the net angular momentum of CMGs which can be exchanged with the satellite. The effectiveness of the proposed method is demonstrated by numerical simulations.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
Determination of the wind power systems load to achieve operation in the maximum energy area
NASA Astrophysics Data System (ADS)
Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.
2018-01-01
This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.
NASA Astrophysics Data System (ADS)
Schulz, Ulrich; Sierro, Philippe; Nijman, Jint
2008-07-01
The design and implementation of an angular speed control loop for a universal rheometer is not a trivial task. The combination of a highly dynamic, very low inertia (drag cup) motor (motor inertia is 10-5 kg m2) with samples which can range in viscosity from 10-3 Pas to 108 Pas, which can be between purely viscous and higly viscoelastic, which can exhibit yield-stresses, etc. asks for a highly adaptive digital control loop. For the HAAKE MARS rotational rheometer a new adaptive control loop was developed which allows the control of angular speeds as low 5×10-9 rad/s and response times a short as 10 ms. The adaptation of the control loop to "difficult" samples is performed by analysing the response of the complete system to a short pre-test. In this paper we will show that the (very) short response times at (very) low angular speeds are not only achieved with ideal samples, but due to the adaptable control loop, also with "difficult" samples. We will show measurement results on "difficult" samples like cosmetic creams and emulsions, a laponite gel, etc. to proof that angular speeds down to 10-4 rad/s are reached within 10 ms to 20 ms and angular speeds down to 10-7 rad/s within 1 s to 2 s. The response times for reaching ultra low angular speeds down to 5×10-9 rad/s are in the order of 10 s to 30 s. With this new control loop it is, for the first time, possible to measure yield stresses by applying a very low constant shear-rate to the sample and measuring the torque response as a function of time.
ERIC Educational Resources Information Center
Coleman, J. J.
1982-01-01
Describes mathematics of the nonliner relationships between a constant-speed, capstan-driven magnetic tape transport mechanism and a constant-angular-velocity take-up reel. The relationship, derived from the sum of a partial, serves in recognition of a finite tape. Thickness can serve as an example of rotational kinematics. (Author/SK)
An ice-cream cone model for coronal mass ejections
NASA Astrophysics Data System (ADS)
Xue, X. H.; Wang, C. B.; Dou, X. K.
2005-08-01
In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
NASA Astrophysics Data System (ADS)
Sheheitli, H.; Touma, J. R.
2018-06-01
We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.
Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy.
Damiano, Diane L; Laws, Edward; Carmines, Dave V; Abel, Mark F
2006-01-01
This study investigated the effects of spasticity in the hamstrings and quadriceps muscles on gait parameters including temporal spatial measures, knee position, excursion and angular velocity in 25 children with spastic diplegic cerebral palsy (CP) as compared to 17 age-matched peers. While subjects were instructed to relax, an isokinetic device alternately flexed and extended the left knee at one of the three constant velocities 30 degrees/s, 60 degrees/s and 120 degrees/s, while surface electromyography (EMG) electrodes over the biceps femoris and the rectus femoris recorded muscle activity. Patients then participated in 3D gait analysis at a self-selected speed. Results showed that, those with CP who exhibited heightened stretch responses (spasticity) in both muscles, had significantly slower knee angular velocities during the swing phase of gait as compared to those with and without CP who did not exhibit stretch responses at the joint and the tested speeds. The measured amount (torque) of the resistance to passive flexion or extension was not related to gait parameters in subjects with CP; however, the rate of change in resistance torque per unit angle change (stiffness) at the fastest test speed of 120 degrees/s showed weak to moderate relationships with knee angular velocity and motion during gait. For the subset of seven patients with CP who subsequently underwent a selective dorsal rhizotomy, knee angular extension and flexion velocity increased post-operatively, suggesting some degree of causality between spasticity and movement speed.
NASA Astrophysics Data System (ADS)
Kağan Temiz, Burak; Yavuz, Ahmet
2015-08-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the wheel starts to turn at a constant angular speed. A rod that is fixed on the wheel turns at the same constant angular speed, too. A tight string that the wave will be created on is placed at a distance where the rod can touch the string. During each rotation of the wheel, the rod vibrates the string up and down. The vibration frequency of this rod equals the wheel’s rotation frequency, and this frequency value can be measured easily with a small magnet and a bicycle speedometer. In this way, the frequency of the waves formed in the rope can also be measured.
Enhancement of Speed Margins for 16× Digital Versatile Disc-Random Access Memory
NASA Astrophysics Data System (ADS)
Watanabe, Koichi; Minemura, Hiroyuki; Miyamoto, Makoto; Iimura, Makoto
2006-02-01
We have evaluated the speed margins of write/read 16× digital versatile disc-random access memory (DVD-RAM) test discs using write strategies for 6--16× constant angular velocity (CAV) control. Our approach is to determine the writing parameters for the middle zones by interpolating the zone numbers. Using this interpolation strategy, we successfully obtained overwrite jitter values of less than 8% and bit error rates of less than 10-5 in 6--16× DVD-RAM. Moreover, we confirmed that the speed margins were ± 20% for a 6--16× CAV.
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Ong, Yen Chin
2015-02-01
A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.
Active motion assisted by correlated stochastic torques.
Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter
2011-07-01
The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.
Cosmologies with varying speed of light: kinematic tests
NASA Astrophysics Data System (ADS)
Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.
2003-08-01
In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.
Detonation propagation in annular arcs of condensed phase explosives
NASA Astrophysics Data System (ADS)
Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa
2017-11-01
We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
Experimental Investigation of Rotating Menisci
NASA Astrophysics Data System (ADS)
Reichel, Yvonne; Dreyer, Michael E.
2014-07-01
In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.
NASA Technical Reports Server (NTRS)
Dome, G. J.; Fung, A. K.; Moore, R. K.
1977-01-01
Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.
Rotation of an immersed cylinder sliding near a thin elastic coating
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.
2017-07-01
It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.
Instantaneous flywheel torque of IC engine grey-box identification
NASA Astrophysics Data System (ADS)
Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.
2018-01-01
In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.
Analysis of tonal noise generating mechanisms in low-speed axial-flow fans
NASA Astrophysics Data System (ADS)
Canepa, Edward; Cattanei, Andrea; Zecchin, Fabio Mazzocut
2016-08-01
The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans. A nine blade rotor has been operated at free discharge conditions and in four geometrical configurations in which different kinds of tonal noise generating mechanisms are present: large-scale inlet turbulent structures, tip-gap flow, turbulent wakes, and rotor-stator interaction. The measurements have been taken in a hemi-anechoic chamber at constant rotational speed and, in order to vary the acoustic source strength, during low angular acceleration, linear speed ramps. In order to avoid erroneous quantitative evaluations if the acoustic propagation effects are not considered, the acoustic response functions of the different test configurations have been computed by means of the spectral decomposition method. Then, the properties of the tonal noise generating mechanisms have been studied. To this aim, the constant-Strouhal number SPL, obtained by means of measurements taken during the speed ramps, have been compared with the propagation function. Finally, the analysis of the phase of the acoustic pressure has allowed to distinguish between random and deterministic tonal noise generating mechanisms and to collect information about the presence of important propagation effects.
Ring rotational speed trend analysis by FEM approach in a Ring Rolling process
NASA Astrophysics Data System (ADS)
Allegri, G.; Giorleo, L.; Ceretti, E.
2018-05-01
Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.
Development of guidance laws for a variable-speed missile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazit, R.; Gutman, S.
1991-05-01
The most used guidance law for short-range homing missiles is proportional navigation (PN). In PN, the acceleration command is proportional to the line-of-sight (LOS) angular velocity. Indeed, if a missile and a target move on a collision course with constant speeds, the LOS rate is zero. The speed of a highly maneuverable modern missile varies considerably during flight. The performance of PN is far from being satisfactory in that case. In this article the collision course for a variable-speed missile is analyzed and a guidance law that steers the heading of the missile to the collision course is defined. Guidancemore » laws based on optimal control and differential game formulations are developed, and note that both optimal laws coincide with the Guidance to Collision law at impact. The performance improvement of the missile using the new guidance law as compared to PN is demonstrated. 19 refs.« less
THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, C.; Opher, M., E-mail: ckay@bu.edu
2015-10-01
Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which themore » CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.« less
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Angular circulation speed of tablets in a vibratory tablet coating pan.
Kumar, Rahul; Wassgren, Carl
2013-03-01
In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.
Nonlinear model of a rotating hub-beams structure: Equations of motion
NASA Astrophysics Data System (ADS)
Warminski, Jerzy
2018-01-01
Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.
Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae
Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L. Christoffer
2012-01-01
Summary The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0–7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, Std, is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The Std is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance. PMID:23259057
Motion-based nearest vector metric for reference frame selection in the perception of motion.
Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk
2016-05-01
We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.
NASA Astrophysics Data System (ADS)
SONG, O.; JEONG, N.-H.; LIBRESCU, L.
2000-10-01
A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.
Natural roller bearing fault detection by angular measurement of true instantaneous angular speed
NASA Astrophysics Data System (ADS)
Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.
2010-10-01
The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.
Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip
2005-06-01
A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.
The significance of the quadratic Doppler effect for space travel and astrophysics
NASA Astrophysics Data System (ADS)
Boehm, M.
1985-09-01
It is shown that a distinct frame of reference exists for light for which the Kennedy-Thorndike experiment provides unequivocal evidence. This leads to the postulate of a rotating instead of an expanding universe. It is shown that the cosmic red shift can be understood as the result of a Coriolis acceleration of the light propagating between two arbitrary points of different gravitational potential. Methods for determining the angular velocity of the rotating universe are given, and it is discussed whether the speed of light and the gravitational constant are universal constants or whether they are functions of distance from the center of the universe. Suggestions are made for further experimental studies and for practical application of the quadratic Doppler effect.
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils
Li, Jian; Wu, Dan; Han, Yan
2016-01-01
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.
Li, Jian; Wu, Dan; Han, Yan
2016-09-30
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.
Form features provide a cue to the angular velocity of rotating objects
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2013-01-01
As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970
Form features provide a cue to the angular velocity of rotating objects.
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2014-02-01
As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey
Wilson, John W.; Mills, Michael G. L.; Wilson, Rory P.; Peters, Gerrit; Mills, Margaret E. J.; Speakman, John R.; Durant, Sarah M.; Bennett, Nigel C.; Marks, Nikki J.; Scantlebury, Michael
2013-01-01
Predator–prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s−1 and accelerated up to 7.5 m s−2 with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5–8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival. PMID:24004493
Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey.
Wilson, John W; Mills, Michael G L; Wilson, Rory P; Peters, Gerrit; Mills, Margaret E J; Speakman, John R; Durant, Sarah M; Bennett, Nigel C; Marks, Nikki J; Scantlebury, Michael
2013-10-23
Predator-prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s(-1) and accelerated up to 7.5 m s(-2) with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5-8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
Barratt, Paul Richard; Martin, James C; Elmer, Steve J; Korff, Thomas
2016-04-01
During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s(-1) and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system's attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians.
Fundamentals of Physics, Part 1 (Chapters 1-11)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2003-12-01
Chapter 1.Measurement. How does the appearance of a new type of cloud signal changes in Earth's atmosphere? 1-1 What Is Physics? 1-2 Measuring Things. 1-3 The International System of Units. 1-4 Changing Units. 1-5 Length. 1-6 Time. 1-7 Mass. Review & Summary. Problems. Chapter 2.Motion Along a Straight Line. What causes whiplash injury in rear-end collisions of cars? 2-1 What Is Physics? 2-2 Motion. 2-3 Position and Displacement. 2-4 Average Velocity and Average Speed. 2-5 Instantaneous Velocity and Speed. 2-6 Acceleration. 2-7 Constant Acceleration: A Special Case. 2-8 Another Look at Constant Acceleration. 2-9 Free-Fall Acceleration. 2-10 Graphical Integration in Motion Analysis. Review & Summary. Questions. Problems. Chapter 3.Vectors. How does an ant know the way home with no guiding clues on the deser t plains? 3-2 Vectors and Scalars. 3-3 Adding Vectors Geometrically. 3-4 Components of Vectors. 3-5 Unit Vectors. 3-6 Adding Vectors by Components. 3-7 Vectors and the Laws of Physics. 3-8 Multiplying Vectors. Review & Summary. Questions. Problems. Chapter 4.Motion in Two and Three Dimensions. In a motorcycle jump for record distance, where does the jumper put the second ramp? 4-1 What Is Physics? 4-2 Position and Displacement. 4-3 Average Velocity and Instantaneous Velocity. 4-4 Average Acceleration and Instantaneous Acceleration. 4-5 Projectile Motion. 4-6 Projectile Motion Analyzed. 4-7 Uniform Circular Motion. 4-8 Relative Motion in One Dimension. 4-9 Relative Motion in Two Dimensions. Review & Summary. Questions. Problems. Chapter 5.Force and Motion-I. When a pilot takes off from an aircraft carrier, what causes the compulsion to fly the plane into the ocean? 5-1 What Is Physics? 5-2 Newtonian Mechanics. 5-3 Newton's First Law. 5-4 Force. 5-5 Mass. 5-6 Newton's Second Law. 5-7 Some Particular Forces. 5-8 Newton's Third Law. 5-9 Applying Newton's Laws. Review & Summary. Questions. Problems. Chapter 6.Force and Motion-II. Can a Grand Prix race car be driven upside down on a ceiling? 6-1 What Is Physics? 6-2 Friction. 6-3 Properties of Friction. 6-4 The Drag Force and Terminal Speed. 6-5 Uniform Circular Motion. Review & Summary. Questions. Problems. Chapter 7.Kinetic Energy and Work. In an epidural procedure, what sensations clue a surgeon that the needle has reached the spinal canal? 7-1 What Is Physics? 7-2 What Is Energy? 7-3 Kinetic Energy. 7-4 Work. 7-5 Work and Kinetic Energy. 7-6 Work Done by the Gravitational Force. 7-7 Work Done by a Spring Force. 7-8 Work Done by a General Variable Force. 7-9 Power. Review & Summary. Questions. Problems. Chapter 8.Potential Energy and Conservation of Energy. In rock climbing, what subtle factor determines if a falling climber will snap the rope? 8-1 What Is Physics? 8-2 Work and Potential Energy. 8-3 Path Independence of Conservative Forces. 8-4 Determining Potential Energy Values. 8-5 Conservation of Mechanical Energy. 8-6 Reading a Potential Energy Curve. 8-7 Work Done on a System by an External Force. 8-8 Conservation of Energy. Review & Summary. Questions. Problems. Chapter 9.Center of Mass and Linear Momentum. Does the presence of a passenger reduce the fatality risk in head-on car collisions? 9-1 What Is Physics? 9-2 The Center of Mass. 9-3 Newton's Second Law for a System of Particles. 9-4 Linear Momentum. 9-5 The Linear Momentum of a System of Particles. 9-6 Collision and Impulse. 9-7 Conservation of Linear Momentum. 9-8 Momentum and Kinetic Energy in Collisions. 9-9 Inelastic Collisions in One Dimension. 9-10 Elastic Collisions in One Dimension. 9-11 Collisions in Two Dimensions. 9-12 Systems with Varying Mass: A Rocket. Review & Summary. Questions. Problems. Chapter 10.Rotation. What causes roller-coaster headache? 10-1 What Is Physics? 10-2 The Rotational Variables. 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration. 10-5 Relating the Linear and Angular Variables. 10-6 Kinetic Energy of Rotation. 10-7 Calculating the Rotational Inertia. 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11.Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Appendix A: The International System of Units (SI). Appendix B: Some Fundamental Constants of Physics. Appendix C: Some Astronomical Data. Appendix D: Conversion Factors. Appendix E: Mathematical Formulas. Appendix F: Properties of the Elements. Appendix G: Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
ERIC Educational Resources Information Center
Strange, P.
2012-01-01
In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…
Double pendulum model for a tennis stroke including a collision process
NASA Astrophysics Data System (ADS)
Youn, Sun-Hyun
2015-10-01
By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.
Carter constant and angular momentum
NASA Astrophysics Data System (ADS)
Mukherjee, Sajal; Nayak, K. Rajesh
We investigate the Carter-like constant in the case of a particle moving in a nonrelativistic dipolar potential. This special case is a missing link between the Carter constant in stationary and axially symmetric spacetimes (SASS) such as Kerr solution and its possible Newtonian counterpart. We use this system to carry over the definition of angular momentum from the Newtonian mechanics to the relativistic SASS.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling
BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS
2016-01-01
ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455
Lee, Chan-Bok; Eun, Denny; Kim, Kang-Ho; Park, Jae-Wan; Jee, Yong-Seok
2017-01-01
Most protocols for testing and rehabilitation for recovery and improvement of muscular endurance have been set at 180°/sec, 240°/sec, and 300°/sec. These protocols can cause confusion to clinical providers or other researchers. This study was aimed at investigating the optimal isokinetic angular speed for measuring or developing muscular endurance after assessing the relationship between cardiopulmonary responses and isokinetic moments. This study was conducted with 31 male and female college students. Graded exercise test and body composition were measured as well as the isokinetic moments of the knee muscles at three angular speeds: 180°/sec, 240°/sec, and 300°/sec. The specific isokinetic moments of knee muscles that were measured included: peak torque (PT) and total work (TW) on extensor (e) and flexor (f) of knee joints, which were denoted as ePT180, fPT180, eTW180, fTW180, ePT240, fPT240, eTW240, fTW240, ePT300, fPT300, eTW300, and fTW300 according to the three angular speeds. Spearman correlation test was used to examine the relationship between the sum means of cardiopulmonary responses and the variables of isokinetic moments. This study confirmed that the optimal angular speed for testing or training for muscular endurance was 180°/sec, which showed a stronger relationship between cardiopulmonary responses and isokinetic moments. Therefore, this angular speed is recommended for testing and training for muscular endurance of the knee joints. PMID:28503531
Lee, Chan-Bok; Eun, Denny; Kim, Kang-Ho; Park, Jae-Wan; Jee, Yong-Seok
2017-04-01
Most protocols for testing and rehabilitation for recovery and improvement of muscular endurance have been set at 180°/sec, 240°/sec, and 300°/sec. These protocols can cause confusion to clinical providers or other researchers. This study was aimed at investigating the optimal isokinetic angular speed for measuring or developing muscular endurance after assessing the relationship between cardiopulmonary responses and isokinetic moments. This study was conducted with 31 male and female college students. Graded exercise test and body composition were measured as well as the isokinetic moments of the knee muscles at three angular speeds: 180°/sec, 240°/sec, and 300°/sec. The specific isokinetic moments of knee muscles that were measured included: peak torque (PT) and total work (TW) on extensor (e) and flexor (f) of knee joints, which were denoted as ePT180, fPT180, eTW180, fTW180, ePT240, fPT240, eTW240, fTW240, ePT300, fPT300, eTW300, and fTW300 according to the three angular speeds. Spearman correlation test was used to examine the relationship between the sum means of cardiopulmonary responses and the variables of isokinetic moments. This study confirmed that the optimal angular speed for testing or training for muscular endurance was 180°/sec, which showed a stronger relationship between cardiopulmonary responses and isokinetic moments. Therefore, this angular speed is recommended for testing and training for muscular endurance of the knee joints.
Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft
NASA Astrophysics Data System (ADS)
Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.
2010-07-01
This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.
Couple stress fluid flow in a rotating channel with peristalsis
NASA Astrophysics Data System (ADS)
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
NASA Astrophysics Data System (ADS)
Shibata, Masaru
2004-04-01
We study secular stability against a quasi-radial oscillation for rigidly rotating stars with soft equations of state in general relativity. The polytropic equations of state with polytropic index n between 3 and 3.05 are adopted for modeling the rotating stars. The stability is determined in terms of the turning-point method. It is found that (1) for n>~3.04, all the rigidly rotating stars are unstable against the quasi-radial oscillation and (2) for n>~3.01, the nondimensional angular momentum parameter q≡cJ/GM2 (where J, M, G, and c denote the angular momentum, the gravitational mass, the gravitational constant, and the speed of light, respectively) for all marginally stable rotating stars is larger than unity. A semianalytic calculation is also performed, and good agreement with the numerical results is confirmed. The final outcome after axisymmetric gravitational collapse of rigidly rotating and marginally stable massive stars with q>1 is predicted, assuming that the rest-mass distribution as a function of the specific angular momentum is preserved and that the pressure never halt the collapse. It is found that even for 1~2.5, the significant angular momentum will prevent the direct formation of a black hole.
MEMS high-speed angular-position sensing system with rf wireless transmission
NASA Astrophysics Data System (ADS)
Sun, Winston; Li, Wen J.
2001-08-01
A novel surface-micromachined non-contact high-speed angular-position sensor with total surface area under 4mm2 was developed using the Multi-User MEMS Processes (MUMPs) and integrated with a commercial RF transmitter at 433MHz carrier frequency for wireless signal detection. Currently, a 2.3 MHz internal clock of our data acquisition system and a sensor design with a 13mg seismic mass is sufficient to provide visual observation of a clear sinusoidal response wirelessly generated by the piezoresistive angular-position sensing system within speed range of 180 rpm to around 1000 rpm. Experimental results showed that the oscillation frequency and amplitude are related to the input angular frequency of the rotation disk and the tilt angle of the rotation axis, respectively. These important results could provide groundwork for MEMS researchers to estimate how gravity influences structural properties of MEMS devices under different circumstances.
Communication: Memory effects and active Brownian diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Pulak K.; Li, Yunyun, E-mail: yunyunli@tongji.edu.cn; Marchegiani, Giampiero
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer’s diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer’s propulsion are exponentially correlated in time, whereas in the second one, we account for possiblemore » damped fluctuations of the propulsion velocity around the swimmer’s axis. The corresponding swimmer’s diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.« less
Communication: Memory effects and active Brownian diffusion
NASA Astrophysics Data System (ADS)
Ghosh, Pulak K.; Li, Yunyun; Marchegiani, Giampiero; Marchesoni, Fabio
2015-12-01
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer's diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer's propulsion are exponentially correlated in time, whereas in the second one, we account for possible damped fluctuations of the propulsion velocity around the swimmer's axis. The corresponding swimmer's diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.
Boumans, L J; Rodenburg, M; Maas, A J
1983-01-01
The response of the human vestibulo-ocular reflex system to a constant angular acceleration is calculated using a second order model with an adaptation term. After first reaching a maximum the peracceleratory response declines. When the stimulus duration is long the decay is mainly governed by the adaptation time constant Ta, which enables to reliably estimate this time constant. In the postacceleratory period of constant velocity there is a reversal in response. The magnitude and the time course of the per- and postacceleratory response are calculated for various values of the cupular time constant T1, the adaptation time constant Ta, and the stimulus duration, thus enabling their influence to be assessed.
Measurement of angular velocity in the perception of rotation.
Barraza, José F; Grzywacz, Norberto M
2002-09-01
Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean (Inventor); Howard, David (Inventor)
1994-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)
1995-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
NASA Technical Reports Server (NTRS)
Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.
1994-01-01
This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.
Non-invasive determination of external forces in vortex-pair-cylinder interactions
NASA Astrophysics Data System (ADS)
Hartmann, D.; Schröder, W.; Shashikanth, B. N.
2012-06-01
Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.
Radiation from an accelerating neutral body: The case of rotation
NASA Astrophysics Data System (ADS)
Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.
2013-11-01
When an object is bound at rest to an attractional field, its rest mass (owing to the law of energy conservation, including the mass and energy equivalence of the Special Theory of Relativity) must decrease. The mass deficiency coming into play indicates a corresponding rest energy discharge. Thus, bringing an object to a rotational motion means that the energy transferred for this purpose serves to extract just as much rest mass (or similarly "rest energy", were the speed of light in empty space taken to be unity) out of it. Here, it is shown that during angular acceleration, photons of fundamental energy are emitted, while the object is kept on being delivered to a more and more intense rotational accelerational field, being the instantaneous angular velocity of the rotating object. This fundamental energy, as seen, does not depend on anything else (such as the mass or charge of the object), and it is in harmony with Bohr's Principle of Correspondence. This means at the same time, that emission will be achieved, as long as the angular velocity keeps on increasing, and will cease right after the object reaches a stationary rotational motion (a constant centrifugal acceleration), but if the object were brought to rotation in vacuum with no friction. By the same token, one can affirm that even the rotation at a macroscopic level is quantized, and can only take on "given angular velocities" (which can only be increased, bit by bit). The rate of emission of photons of concern is, on the other hand, proportional to the angular acceleration of the object, similarly to the derivative of the tangential acceleration with respect to time. It is thus constant for a "constant angular acceleration", although the energy of the emitted photons will increase with increasing , until the rotation reaches a stationary level, after which we expect no emission --let us stress-- if the object is in rotation in vacuum, along with no whatsoever friction (such as the case of a rotating diatomic molecule, for instance). If the object reaches its final state in a given medium, say air, and "friction" is present, such as the case of a dental drill, then energy should keep being supplied to it, to overcome friction, which is present either inside the "inner mechanism of rotation" or in its surroundings. In other words, the object in the latter case, would be constantly subject to a friction force, countering its motion, and tending to make it fall to lower rotational energy states. Any fluctuations in the power supply, on the other hand, will slow down the rotating object, no matter how indiscernibly. The small decrease in the rotational velocity is yet reincreased by restoring the power supply, thus perpetually securing a stationary rotational motion. Thereby, the object in this final state, due to fluctuations in either friction or power supply, or both, shall further be expected to emit a radiation of energy , where is the final angular velocity of the object in rotation. What is more is that our team has very successfully measured what is predicted here, and they will report their experimental results in a subsequent article. The approach presented here seems to shed light on the mysterious sonoluminescence. It also triggers the possibility of sensing earthquakes due to radiation that should be emitted by the faults, on which the seismic stress keeps increasing until the crackdown. By the same token, also two colliding (neutral) objects are expected to emit radiation.
Brushless Low-Speed dc Tachometer
NASA Technical Reports Server (NTRS)
Handlykken, M. B.
1984-01-01
Proposed tachometer produces voltages proportional to shaft angular velocity and (by differentiation) acceleration. Coil moving in homopolar field generates emf proportional to shaft angular velocity.
Urbin, M A; Fleisig, Glenn S; Abebe, Asheber; Andrews, James R
2013-02-01
A baseball pitcher's ability to maximize ball speed while avoiding shoulder and elbow injuries is an important determinant of a successful career. Pitching injuries are attributed to microtrauma brought about by the repetitive stress of high-magnitude shoulder and elbow kinetics. Over a number of pitches, variations in timing peak angular velocities of trunk segment rotations will be significantly associated with ball speed and upper extremity kinetic parameters. Descriptive laboratory study. Kinematic and kinetic data were derived from 9 to 15 fastball pitches performed by 16 active, healthy collegiate (n = 8) and professional (n = 8) pitchers via 3-dimensional motion capture (240 Hz). Each pitch was decomposed into 4 phases corresponding to the time between peak angular velocities of sequential body segment rotations. Four mixed models were used to evaluate which phases varied significantly in relation to ball speed, peak shoulder proximal force, peak shoulder internal rotation torque, and peak elbow varus torque. Mixed-model parameter coefficient estimates were used to quantify the influence of these variations in timing on ball speed and upper extremity kinetics. All 4 mixed models were significant (P < .05). The time from stride-foot contact to peak pelvis angular velocity varied significantly in relation to all upper extremity kinetic parameters and ball speed. Increased time in this phase correlated with decreases in all parameters. Decreased ball speed also correlated with increased time between peak upper torso and elbow extension angular velocities. Decreased shoulder proximal force also correlated with increased time between peak pelvis and upper torso angular velocities. There are specific phases that vary in relation to ball speed and upper extremity kinetic parameters, reinforcing the importance of effectively and consistently timing segmental interactions. For the specific interactions that varied significantly, increased phase times were associated with decreased kinetics and ball speed. Although increased time within specific phases correlates with decreases in the magnitude of upper extremity kinetics linked to overuse injuries, it also correlates with decreased ball speed. Based on these findings, it may appear that minimizing the risk of injury (ie, decreased kinetics) and maximizing performance quality (ie, increased ball speed) are incompatible with one another. However, there may be an optimal balance in timing that is effective for satisfying both outcomes.
Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, V. A.
2012-01-01
We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…
A complete solution for GP-B's gyroscopic precession by retarded gravitational theory
NASA Astrophysics Data System (ADS)
Tang, Keyun
Mainstream physicists generally believe that Mercury’s Perihelion precession and GP-B’ gyroscopic precession are two of the strongest evidences supporting Einstein’ curved spacetime and general relativity. However, most classical literatures and textbooks (e.g. Ohanain: Gravitation and Spacetime) paint an incorrect picture of Mercury’s orbit anomaly, namely Mercury’s perihelion precessed 43 arc-seconds per century; a correct picture should be that Mercury rotated 43 arc-seconds per century more than along Newtonian theoretical orbit. The essence of Le Verrier’s and Newcomb’s observation and analysis is that the angular speed of Mercury is slightly faster than the Newtonian theoretical value. The complete explanation to Mercury’s orbit anomaly should include two factors, perihelion precession is one of two factors, in addition, the change of orbital radius will also cause a change of angular speed, which is another component of Mercury's orbital anomaly. If Schwarzschild metric is correct, then the solution of the Schwarzschild orbit equation must contain three non-ignorable items. The first corresponds to Newtonian ellipse; the second is a nonlinear perturbation with increasing amplitude, which causes the precession of orbit perihelion; this is just one part of the angular speed anomaly of Mercury; the third part is a linear perturbation, corresponding to a similar figure of the Newton's ellipse, but with a minimal radius; this makes no contribution to the perihelion precession of the Schwarzschild orbit, but makes the Schwarzschild orbital radius slightly smaller, leading to a slight increase in Mercury’s angular speed. All classical literatures of general relativity ignored this last factor, which is a gross oversight. If you correctly take all three factors into consideration, the final result is that the difference between the angles rotated along Schwarzschild’s orbit and the angle rotated along Newton’s orbit for one hundred years should be more than 130.5 arc-seconds; this means that Le Verrier’s observation on Mercury’s orbital anomaly can not be explained correctly by the Schwarzschild metric. In contrast, Mercury’s angular speed anomaly can be explained satisfactorily by the radial induction component and angular component of retarded gravitation. From the perspective of energy, the additional radial component of retarded gravitation makes the radius of Mercury’s orbit slightly smaller, i.e. some potential energy is lost. And the angular component of retarded gravitation changes the Mercury's angular momentum; this proves that the changes of Mercury’s orbit and angular speed are the results of gravitational radiation. I have found that there are similar errors in the explanation on the gyroscopic precession of GP-B, i.e. physicists only consider the contribution of the nonlinear perturbation terms and never consider the contribution of linear perturbation terms. For the precession of GP-B, the complete Schwarzschild’s solution should be about 19.8 arc-seconds per year; it is far more than the experimental results of 6.602 arc-seconds per year. I have calculated the gyroscopic precession of GP-B due to retarded gravitation, the result is 6.607 arc-seconds per year; this matches well with the experimental results. These successful explanations for both anomalies of Mercury’s orbit and the gyroscopic precession of GP -B shows that Retarded Gravitation is indeed a sound gravitational theory, and that spacetime is in fact flat, and gravity travels at the speed of light. Both Mercury’s angular speed anomaly and GP - B gyro precession were the result of the gravitational radiation!
Functional form for plasma velocity in a rapidly rotating tokamak discharge
Burrell, Keith H.; Chrystal, C. olin
2014-07-25
A recently developed technique using charge exchange spectroscopy determines the ion poloidal rotation in tokamak plasmas from the poloidal variation in the toroidal angular rotation speed. The basis for this technique is the functional form for the plasma velocity calculated from the equilibrium equations. The initial development of this technique utilized the functional form determined for conditions where the ion toroidal rotation speed is much smaller than the ion thermal speed. There are cases, however, where the toroidal rotation can be comparable to the ion thermal speed, especially for high atomic number impurities. Furthermore, the present paper extends the previousmore » analysis to this high rotation speed case and demonstrates how to extract the poloidal rotation speed from measurements of the toroidal angular rotation speed at two points on a flux surface.« less
Baryshnikov, F F
1995-10-20
The influence of angular aberration of radiation as a result of the difference in speed of a geostationary satellite and the speed of the Earth's surface on laser power beaming to satellites is considered. Angular aberration makes it impossible to direct the energy to the satellite, and additional beam rotation is necessary. Because the Earth's rotation may cause bad phase restoration, we face a serious problem: how to transfer incoherent radiation to remote satellites. In the framework of the Kolmogorov turbulence model simple conditions of energy transfer are derived and discussed.
Van Wassenbergh, Sam; Aerts, Peter
2013-01-01
The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards. PMID:23658116
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jinhye; Moon, Y.-J.; Lee, Harim, E-mail: jinhye@khu.ac.kr
We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are asmore » follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.« less
NASA Astrophysics Data System (ADS)
Pan, Z. H.; Wang, C. B.; Wang, Yuming; Xue, X. H.
2011-06-01
It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 - 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.
Wang, Xinghua; Peng, Yong; Yi, Shengen
2017-11-01
To investigate the differences of the head impact responses between bicyclists and motorcyclists in vehicle collisions. A series of vehicle-bicycle and vehicle-motorcycle lateral impact simulations on four vehicle types at seven vehicle speeds (30, 35, 40, 45, 50, 55 and 60 km/h) and three two-wheeler moving speeds (5, 7.5 and 10 km/h for bicycle, 10, 12.5 and 15 km/h for motorcycle) were established based on PC-Crash software. To further comprehensively explore the differences, additional impact scenes with other initial conditions, such as impact angle (0, π/3, 2π/3 and π) and impact position (left, middle and right part of vehicle front-end), also were supplemented. And then, extensive comparisons were accomplished with regard to average head peak linear acceleration, average head impact speed, average head peak angular acceleration, average head peak angular speed and head injury severity. The results showed there were prominent differences of kinematics and body postures for bicyclists and motorcyclists even under same impact conditions. The variations of bicyclist head impact responses with the changing of impact conditions were a far cry from that of motorcyclists. The average head peak linear acceleration, average head impact speed and average head peak angular acceleration values were higher for motorcyclists than for bicyclists in most cases, while the bicyclists received greater average head peak angular speed values. And the head injuries of motorcyclists worsened faster with increased vehicle speed. The results may provide even deeper understanding of two-wheeler safety and contribute to improve the public health affected by road traffic accidents.
Investigation on wear and corrosion behavior of equal channel angular pressed aluminium 2014 alloy
NASA Astrophysics Data System (ADS)
Divya, S. P.; Yoganandan, G.; Balaraju, J. N.; Srinivasan, S. A.; Nagaraj, M.; Ravisankar, B.
2018-02-01
Aluminium 2014 alloy solutionized at 495°C, aged at 195°C was subjected to Equal Channel Angular Pressing (ECAP). Dry sliding wear tests were conducted using pin on disc tribometer system under nominal loads of 10N and 30N with constant speed 2m/s for 2000m in order to investigate their wear behavior after ECAP. The Co-efficient of friction and loss in volume were decreased after ECAP. The dominant wear mechanism observed was adhesion, delamination in addition to these wear mechanisms, oxidation and transfer of Fe from the counter surface to the Al 2014 pin were observed at higher loading condition. The corrosion behavior was evaluated by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results obtained from PDP showed higher corrosion potential and lower corrosion density after ECAP than base. Electrochemical impedance spectroscopy (EIS) showed higher charge transfer resistance after ECAP. Surface morphology showed decreased pit size and increased oxygen content in ECAP sample than base after PDP.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.
1993-01-01
1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.
Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer
Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei
2017-01-01
This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793
Modification of the DSN radio frequency angular tropospheric refraction model
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
The previously derived DSN Radio Frequency Angular Tropospheric Refraction Model contained an assumption which was subsequently seen to be at a variance with the theoretical basis of angular refraction. The modification necessary to correct the model is minor in that the value of a constant is changed.
Structural optimization of Beach-Cleaner snatch mechanism
NASA Astrophysics Data System (ADS)
Ouyang, Lian-ge; Wei, Qin-rui; Zhou, Shui-ting; Peng, Qian; Zhao, Yuan-jiang; Wang, Fang
2017-12-01
In the working process of one Beach-Cleaner snatch institution, the second knuckle arm angular speed was too high, which resulted in the pick-up device would crash into the basic arm in the fold process. The rational position of joint to reduce the second knuckle arm angular speed and the force along the axis direction of the most dangerous point can be obtained from the kinematics simulation of snatch institution in the code of Automatic Dynamic Analysis off Mechanical Systems (ADAAMS). The feasible of scheme was validated by analyzing the optimized model in the software of ANSYS. The analysis results revealed: the open angle between the basic arm and the second knuckle arm improved from 125.0° too 135.24°, thee second knuckle arm angular speed decreased from 990.74rad/s to 58.53 rad/s, Not only improved work efficiency of snatch institution, but also prolonged its operation smoothness.
Control of interjoint coordination during the swing phase of normal gait at different speeds
Shemmell, Jonathan; Johansson, Jennifer; Portra, Vanessa; Gottlieb, Gerald L; Thomas, James S; Corcos, Daniel M
2007-01-01
Background It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. Methods Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. Results The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. Conclusion Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint. PMID:17466065
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-09-18
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-01-01
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606
NASA Astrophysics Data System (ADS)
Kochemasov, Gennady Gregory
2016-10-01
Two enigmatic structural and petrologic features of two satellites are widely discussed: origin and global spreading of high-Ti lunar basalts and intercrossing ripples of Phobos. The rippling covers the whole surface of this small satellite constantly moving towards Mars, thus narrowing its orbit and increasing its orbital frequency and speed of rotation. The increasing speed of rotation means increasing angular momentum of Phobos and this must be compensated by diminishing radius. Very "fresh" overall rippling cutting majority of structural forms of Phobos is a trace of this global contracting process. Another trend is in the moving off Moon. Loosing its angular momentum due to slowing rotation a necessary compensation is fulfilled by sending dense basaltic lava into the crust. Varying density basalt flows (high, low, very low-Ti) reflect various stages of the slowing rotation process. Various contents of dense mineral component - ilmenite in basalts means various densities of the rock. Iron in basalts can be in less dense dark minerals and denser ilmenite thus influencing overall basalt densities corresponding to requirements of "healing" diminishing angular momentum. Spectral mapping of basalt types [3] indicate that for large parts of Oceanus Procellarum younger basalts are more titanium rich than the older basalts, thus somewhat reversing the trend found in the returned samples [2]. In some smaller basins spectral mapping also shows titanium richer basalts being older than titanium pure ones [1]. Thus, one may conclude that decreasing rotation rate of the Moon was not smooth but rather uneven. References: [1] H. Hiesinger, R. Jaumann, G.Neukum, J,W. Head, III. Ages of mare basalts on the lunar nearside // J.Geoph.Res., 2000, v.185, #E12, 29239-275. [2] H.Hiesinger and J.W. Head III. Ages of Oceanus Procellarum basalts and other nearside mare basalts //Workshop on New Views of the Moon II, 2016, abs.8030.[3] Pieters C.M.// Proc. Lunar Planet. Sci. Conf., 9th, 1978, 2825-2849.
Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J
2006-02-01
We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.
Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-05-04
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.
Photonic Interrogation and Control of Nano Processes
NASA Technical Reports Server (NTRS)
Jassemnejad, Baha
2003-01-01
My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were able to generate laser tweezers modes of different orbital angular momentum using a spatial light modulator incorporated into a laser tweezers system. The motivation for investigating these types of modes stems from being able to spin particles at high speeds and also to orient two particles in separate traps and then join them together. Also, there has been recent intense interest on fundamental physics research on orbital angular momentum of light. The fact that circularly polarized light may have associated with it angular momentum that relates to the spin of individual photons (spin 0 for the plane polarized light, spin +1 for the right-circularly polarized light and spin -1 for the left-circularly polarized light) was first demonstrated by Beth in 1936. Orbital angular momentum is, however, distinct from spin in that the spin angular momentum of light is intrinsically linked to the behavior of the electric field in the light whereas orbital angular momentum is a consequence of inclined wavefronts. In 1992 L. Allen, et al showed that the Laguerre-Gaussian (LG) modes could possess well-defined orbital angular momentum that can exceed 1 planck's constant, i.e. l plancks constant per photon, where l is the azimuthal index of the mode.
Investigation of dynamic characteristics of a turbine-propeller engine
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L; Jacques, James R
1951-01-01
Time constants that characterize engine speed response of a turbine-propeller engine over the cruising speed range for various values of constant fuel flow and constant blade angle were obtained both from steady-state characteristics and from transient operation. Magnitude of speed response to changes in fuel flow and blade angle was investigated and is presented in the form of gain factors. Results indicate that at any given value of speed in the engine cruising speed range, time constants obtained both from steady-state characteristics and from transient operation agree satisfactorily for any given constant fuel flow, whereas time constants obtained from transient operation exceed time constants obtained from steady-state characteristics by approximately 14 percent for any given blade angle.
Optimization of Angular-Momentum Biases of Reaction Wheels
NASA Technical Reports Server (NTRS)
Lee, Clifford; Lee, Allan
2008-01-01
RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
HELICAL MOTIONS OF FINE-STRUCTURE PROMINENCE THREADS OBSERVED BY HINODE AND IRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Takenori J.; Liu, Wei; Tsuneta, Saku, E-mail: joten.okamoto@nao.ac.jp
Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the Hinode and/or Interface Region Imaging Spectrograph satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55 km s{sup -1} seen in the plane of the sky. Such motions appeared as sinusoidal space–time trajectories with a typical period of ∼390 s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest themore » propagation of twists along the threads at phase speeds of 90–270 km s{sup -1}. At least 15 episodes of such motions occurred in two days, none associated with an eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found Doppler velocities of 30–40 km s{sup -1} in opposite directions in the top and bottom portions of the prominence, comparable to the plane-of-sky speed. The moving threads have about twice broader line widths than stationary threads. These observations, when taken together, provide strong evidence for rotations of helical prominence threads, which were likely driven by unwinding twists triggered by magnetic reconnection between twisted prominence magnetic fields and ambient coronal fields.« less
NASA Technical Reports Server (NTRS)
Longuski, J. M.
1982-01-01
During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.
Implications of causality for quantum biology - I: topology change
NASA Astrophysics Data System (ADS)
Scofield, D. F.; Collins, T. C.
2018-06-01
A framework for describing the causal, topology changing, evolution of interacting biomolecules is developed. The quantum dynamical manifold equations (QDMEs) derived from this framework can be related to the causality restrictions implied by a finite speed of light and to Planck's constant to set a transition frequency scale. The QDMEs imply conserved stress-energy, angular-momentum and Noether currents. The functional whose extremisation leads to this result provides a causal, time-dependent, non-equilibrium generalisation of the Hohenberg-Kohn theorem. The system of dynamical equations derived from this functional and the currents J derived from the QDMEs are shown to be causal and consistent with the first and second laws of thermodynamics. This has the potential of allowing living systems to be quantum mechanically distinguished from non-living ones.
Multi-Observation Continuous Density Hidden Markov Models for Anomaly Detection in Full Motion Video
2012-06-01
response profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Method for measuring angular movement versus average direction...of movement 49 3.6 Method for calculating Angular Deviation, Θ . . . . . . . . . . . . . . . . . . 50 4.1 HMM produced by K Means Learning for agent H... Angular Deviation. A random variable, the difference in heading (in degrees) from the overall direction of movement over the sequence • S : Speed. A
Comparison between variable and constant rotor speed operation on WINDMEL-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji
1996-10-01
On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.
The Dependence of Characteristic Times of Gradual SEP Events on Their Associated CME Properties
NASA Astrophysics Data System (ADS)
Pan, Z. H.; Wang, C. B.; Xue, X. H.; Wang, Y. M.
It is generally believed that coronal mass ejections CMEs are the drivers of shocks that accelerate gradual solar energetic particles SEPs One might expect that the characteristics of the SEP intensity time profiles observed at 1 AU are determined by properties of the associated CMEs such as the radial speed and the angular width Recently Kahler statistically investigated the characteristic times of gradual SEP events observed from 1998-2002 and their associated coronal mass ejection properties Astrophys J 628 1014--1022 2005 Three characteristic times of gradual SEP events are determined as functions of solar source longitude 1 T 0 the time from associated CME launch to SEP onset at 1 AU 2 T R the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity and 3 T D the duration over which the SEP intensity is within a factor of 2 of the peak intensity However in his study the CME speeds and angular widths are directly taken from the LASCO CME catalog In this study we analyze the radial speeds and the angular widths of CMEs by an ice-cream cone model and re-investigate their correlationships with the characteristic times of the corresponding SEP events We find T R and T D are significantly correlated with radial speed for SEP events in the best-connected longitude range and there is no correlation between T 0 and CME radial speed and angular width which is consistent with Kahler s results On the other hand it s found that T R and T D are also have
NASA Astrophysics Data System (ADS)
Luznik, Luksa; van Benthem, Max; Flack, Karen; Lust, Ethan
2013-11-01
Near wake measurements are presented for a 0.8 m diameter (D) two bladed horizontal axis tidal turbine model for two inflow conditions. The first case had steady inflow conditions, i.e. turbine was towed at a constant carriage speed and the second case had a constant carriage speed and incoming regular waves with a period of 1.6 seconds and 0.09 m wave height. The test matrix in the wake covered four radial positions from r/D = 0.3 to 0.5 and five axial positions from x/D = 0.19 to 0.95. All measurements were performed at the nominal tip speed ratio (TSR) of 7.4. The distribution of mean velocities for the steady inflow case exhibit significant spatial variability in the wake region. Normalized mean streamwise velocity show a decrease in magnitude with the axial direction for all radial locations ranging from U/Utow = 0.55 at r/D = 0.49 to 0.35 at r/D = 0.3. Vertical and lateral mean velocities are small but consistent with counterclockwise fluid angular momentum for a clockwise rotor rotation. The Reynolds shear stresses consistently show elevated levels for measurements near the rotor tip (r/D = 0.49) and are significantly reduced by x/D = 0.6 downstream. This suggests low turbulence levels in the wake which is consistent with very low free stream turbulence. For the case with waves, evidence of enhanced turbulence intensities and shear stresses within spatial coverage of the experiment suggest increased in localized turbulence production in the blade tip region over the entire near wake region.
NASA Technical Reports Server (NTRS)
Dugan, James F , Jr
1955-01-01
Engine performance is better for constant outer-spool mechanical-speed operation than for constant inner-spool mechanical-speed operation over most of the flight range considered. Combustor and afterburner frontal areas are about the same for the two modes. Engine performance for a mode characterized by a constant outer-spool equivalent speed over part of the flight range and a constant outer-spool mechanical speed over the rest of the flight range is better that that for constant outer-spool mechanical speed operation. The former mode requires larger outer-spool centrifugal stresses and larger component frontal areas.
PIV and LDA measurements of the wake behind a wind turbine model
NASA Astrophysics Data System (ADS)
Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.
2014-06-01
In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.
Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Kato, Chieri; Inohara, Hidenori
2016-11-01
To assess the angular velocity between the vocal folds just before the compression phase of throat clearing (TC) using high-speed digital imaging (HSDI) of the larynx. Twenty normal healthy adults (13 males and seven females) were enrolled in the study. Each participant underwent transnasal laryngo-fiberscopy, and was asked to perform weak/strong TC followed by a comfortable, sustained vowel phonation while recording an HSDI movie (4000 frames/s) of the larynx. Using a motion analysis, the changes in the vocal fold angle and angular velocity during vocal fold adduction were assessed. Subsequently, we calculated the average angular velocities in the ranges of 100-80%, 80-20%, and 20-0% from all of the angular changes. The motion analysis demonstrated that the changes in the angular velocity resulted in polynomial-like and sigmoid curves during TC and vowel phonation, respectively. The angular velocities during weak TC were significantly higher in the 20-0%, 80-20%, and 100-80% regions (in order); the 80-20% angular velocity in vocal fold adduction during phonation was highest. The 20-0% angular velocity during strong TC was more than twofold higher than 20-0% angular velocity during phonation. The present results confirmed that the closing motions of the vocal folds accelerate throughout the precompression closing phase of a TC episode, and decelerate just before the impact between the vocal folds at the onset of phonation, suggesting that the vocal fold velocity generated by TC is sufficient to damage the laryngeal tissues. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco
2015-01-01
We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less
Dynamics of the Venus atmosphere
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.
1992-01-01
The superrotation of the Venus atmosphere is a major unanswered problem in planetary science. At cloud-top levels (65-70 km altitude) the atmosphere rotates with a five-day period, corresponding to an equatorial wind speed of 90 m/s. Angular velocity is roughly constant on spherical shells, and decreases linearly with altitude to zero at the surface. The direction of rotation is the same as that of the solid planet, which is retrograde--opposite to the direction of orbital motion, but the 5-day period is short compared to the 243-day spin period of the solid planet or to the mean solar day, which is 117 Earth-days at the surface. The problem with the superrotation is that shearing stresses tend to transfer angular momentum downward, and would slow the atmosphere until it is spinning with the solid planet. Some organized circulation pattern is counteracting the tendency, but the pattern has not been identified. A simple Hadley-type circulation cannot do it because such a circulation is zonally symmetric and Hide's Theorem states that in an axisymmetric circulation an extremum in angular momentum per unit mass M can exist only at the surface. Venus violates the last condition, having a maximum of retrograde M on the equator at 70-80 km altitude. This leaves waves and eddies to maintain the superrotation but the length scales and forcing mechanisms for these motions need to be specified. Possible forcing mechanisms associated with waves, eddies and tides are discussed.
Kinematics of preferred and non-preferred handballing in Australian football.
Parrington, Lucy; Ball, Kevin; MacMahon, Clare
2015-01-01
In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.
Muscular control of a learned movement: the speed control system hypothesis.
Enoka, R M
1983-01-01
The "speed control system" hypothesis, which represents an attempt to identify an invariant characteristic of learned movements, postulates that movements of variable extent are controlled by regulating the intensity of muscle contractions such that the contraction duration remains constant. The contingency set originally utilized to develop this hypothesis was expanded by examining a movement that was multidirectional and multiarticular, and executed by large muscle groups generating near maximum torques. The investigation focused on the techniques utilized by weightlifters to control lower extremity displacement during the initial phase of the double knee bend execution of the "clean" in Olympic weightlifting. The combination of the quantified muscle activity and the angular velocity, both about the knee joint, revealed a sequence of shortening-lengthening muscle contractions throughout the movement. The first two periods of net muscular activity, one extensor and the other flexor, were utilized to examine the movement for invariant characteristics. As predicted by the speed control system hypothesis, the duration of the first period of net muscle torque activity (extensor) did not vary significantly, for either group of subjects, over the relative loads examined. The duration of the second period of activity (resultant flexor muscle torque), however, was not constant across loads, and further, the direction of the change depended upon the level of expertise. The more capable lifters tended to increase the duration of the resultant flexor involvement while the less skilled athletes utilized the reverse strategy when the load was increased. Conversely, the intensity of the muscle activity for both groups of subjects and both the extensor and flexor periods covaried with load, as predicted by the hypothesis. The speed control system hypothesis, therefore, provided an appropriate explanation for the first component of the movement, the period of extensor dominated (shortening contraction) muscle torque, but was inappropriate for the subsequent interval, a resultant flexor (largely lengthening contraction) muscle torque.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-01-01
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707
Habituation of self-motion perception following unidirectional angular velocity steps.
Clément, Gilles; Terlevic, Robert
2016-09-07
We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.
Crank inertial load has little effect on steady-state pedaling coordination.
Fregly, B J; Zajac, F E; Dairaghi, C A
1996-12-01
Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state pedaling is largely unaffected, though less well regulated, when crank inertial load is increased.
Adiabatic elimination of inertia of the stochastic microswimmer driven by α -stable noise
NASA Astrophysics Data System (ADS)
Noetel, Joerg; Sokolov, Igor M.; Schimansky-Geier, Lutz
2017-10-01
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α -stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τϕ, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t ≫τϕ , is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.
Noetel, Joerg; Sokolov, Igor M; Schimansky-Geier, Lutz
2017-10-01
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α-stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τ_{ϕ}, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t≫τ_{ϕ}, is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
First order ball bearing kinematics
NASA Technical Reports Server (NTRS)
Kingbury, E.
1984-01-01
Two first order equations are given connecting geometry and internal motions in an angular contact ball bearing. Total speed, kinematic equivalence, basic speed ratio, and modal speed ratio are defined and discussed; charts are given for the speed ratios covering all bearings and all rotational modes. Instances where specific first order assumptions might fail are discussed, and the resulting effects on bearing performance reviewed.
Nakagawa, Hideki; Nishida, Yuuya
2012-01-01
Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389
Logarithmic Compression of Sensory Signals within the Dendritic Tree of a Collision-Sensitive Neuron
2012-01-01
Neurons in a variety of species, both vertebrate and invertebrate, encode the kinematics of objects approaching on a collision course through a time-varying firing rate profile that initially increases, then peaks, and eventually decays as collision becomes imminent. In this temporal profile, the peak firing rate signals when the approaching object's subtended size reaches an angular threshold, an event which has been related to the timing of escape behaviors. In a locust neuron called the lobula giant motion detector (LGMD), the biophysical basis of this angular threshold computation relies on a multiplicative combination of the object's angular size and speed, achieved through a logarithmic-exponential transform. To understand how this transform is implemented, we modeled the encoding of angular velocity along the pathway leading to the LGMD based on the experimentally determined activation pattern of its presynaptic neurons. These simulations show that the logarithmic transform of angular speed occurs between the synaptic conductances activated by the approaching object onto the LGMD's dendritic tree and its membrane potential at the spike initiation zone. Thus, we demonstrate an example of how a single neuron's dendritic tree implements a mathematical step in a neural computation important for natural behavior. PMID:22492048
Vestibular functions and sleep in space experiments. [using rhesus and owl monkeys
NASA Technical Reports Server (NTRS)
Perachio, A. A.
1977-01-01
Physical indices of sleep were continuously monitored in an owl monkey living in a chamber continuously rotating at a constant angular velocity. The electrophysiological data obtained from chronically implanted electrodes was analyzed to determine the chronic effects of vestibular stimulation on sleep and wakefulness cycles. The interaction of linear and angular acceleration on the vestibulo-ocular reflex was investigated in three rhesus monkeys at various angular accelerations.
Black hole shadow in an expanding universe with a cosmological constant
NASA Astrophysics Data System (ADS)
Perlick, Volker; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S.
2018-05-01
We analytically investigate the influence of a cosmic expansion on the shadow of the Schwarzschild black hole. We suppose that the expansion is driven by a cosmological constant only and use the Kottler (or Schwarzschild-de Sitter) spacetime as a model for a Schwarzschild black hole embedded in a de Sitter universe. We calculate the angular radius of the shadow for an observer who is comoving with the cosmic expansion. It is found that the angular radius of the shadow shrinks to a nonzero finite value if the comoving observer approaches infinity.
Hergovich, Andreas; Gröbl, Kristian; Carbon, Claus-Christian
2011-01-01
Following Gustav Kuhn's inspiring technique of using magicians' acts as a source of insight into cognitive sciences, we used the 'paddle move' for testing the psychophysics of combined movement trajectories. The paddle move is a standard technique in magic consisting of a combined rotating and tilting movement. Careful control of the mutual speed parameters of the two movements makes it possible to inhibit the perception of the rotation, letting the 'magic' effect emerge--a sudden change of the tilted object. By using 3-D animated computer graphics we analysed the interaction of different angular speeds and the object shape/size parameters in evoking this motion disappearance effect. An angular speed of 540 degrees s(-1) (1.5 rev. s(-1)) sufficed to inhibit the perception of the rotary movement with the smallest object showing the strongest effect. 90.7% of the 172 participants were not able to perceive the rotary movement at an angular speed of 1125 degrees s(-1) (3.125 rev. s(-1)). Further analysis by multiple linear regression revealed major influences on the effectiveness of the magic trick of object height and object area, demonstrating the applicability of analysing key factors of magic tricks to reveal limits of the perceptual system.
Kodek, Timotej; Munih, Marko
2003-01-01
The goal of this study was an assessment of the shoulder and elbow joint passive moments in the sagittal plane for six healthy individuals. Either the shoulder or elbow joints were moved at a constant speed, very slowly throughout a large portion of their range by means of an industrial robot. During the whole process the arm was held fully passively, while the end point force data and the shoulder, elbow and wrist angle data were collected. The presented method unequivocally reveals a large passive moment adjacent angle dependency in the central angular range, where most everyday actions are performed. It is expected to prove useful in the future work when examining subjects with neuromuscular disorders. Their passive moments may show a fully different pattern than the ones obtained in this study.
Pryce-Hoyle Tensor in a Combined Einstein-Cartan-Brans-Dicke Model
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
2009-03-01
In addition to introducing matter injection through a scalar field determined by Pryce-Hoyle tensor, we also combine it with a BCDE (Brans-Dicke-Einstein-Cartan) theory with lambda-term developed earlier by Berman (Astrophys. Space Sci. 314:79-82, 2008), for inflationary scenario. It involves a variable cosmological constant, which decreases with time, jointly with energy density, cosmic pressure, shear, vorticity, and Hubble’s parameter, while the scale factor, total spin and scalar field increase exponentially. The post-inflationary fluid resembles a perfect one, though total spin grows, but not the angular speed (Berman, in Astrophys. Space Sci. 312:275, 2007). The Pryce-Hoyle tensor, which can measured by the number of injected particles per unit proper volume and time, as well as shear and vorticity, can be neglected in the aftermath of inflation (“no-hair”).
Differential processing: towards a unified model of direction and speed perception.
Farrell-Whelan, Max; Brooks, Kevin R
2013-11-01
In two experiments, we demonstrate a misperception of the velocity of a random-dot stimulus moving in the presence of a static line oriented obliquely to the direction of dot motion. As shown in previous studies, the perceived direction of the dots is shifted away from the orientation of the static line, with the size of the shift varying as a function of line orientation relative to dot direction (the statically-induced direction illusion, or 'SDI'). In addition, we report a novel effect - that perceived speed also varies as a function of relative line orientation, decreasing systematically as the angle is reduced from 90° to 0°. We propose that these illusions both stem from the differential processing of object-relative and non-object-relative component velocities, with the latter being perceptually underestimated with respect to the former by a constant ratio. Although previous proposals regarding the SDI have not allowed quantitative accounts, we present a unified formal model of perceived velocity (both direction and speed) with the magnitude of this ratio as the only free parameter. The model was successful in accounting for the angular repulsion of motion direction across line orientations, and in predicting the systematic decrease in perceived velocity as the line's angle was reduced. Although fitting for direction and speed produced different best-fit values of the ratio of underestimation of non-object-relative motion compared to object-relative motion (with the ratio for speed being larger than that for direction) this discrepancy may be due to differences in the psychophysical procedures for measuring direction and speed. Copyright © 2013 Elsevier B.V. All rights reserved.
There are many ways to spin a photon: Half-quantization of a total optical angular momentum
Ballantine, Kyle E.; Donegan, John F.; Eastham, Paul R.
2016-01-01
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization. PMID:28861467
Spherical transceivers for ultrafast optical wireless communications
NASA Astrophysics Data System (ADS)
Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.
2016-02-01
Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.
Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud
2012-01-01
Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).
Brighton, Caroline H.; Thomas, Adrian L. R.
2017-01-01
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660
Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K
2017-12-19
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.
Fundamentals of Physics, Volume 1, (Chapters 1 - 21)
NASA Astrophysics Data System (ADS)
Walker, Jearl
2004-01-01
Chapter 1. Measurement 1. How does the appearance of a new type of cloud signal changes in Earth's atmosphere? 1-1 What Is Physics? 1-2 Measuring Things. 1-3 The International System of Units. 1-4 Changing Units. 1-5 Length. 1-6 Time. 1-7 Mass. Review & Summary. Problems. Chapter 2. Motion Along a Straight Line. What causes whiplash injury in rear-end collisions of cars? 2-1 What Is Physics? 2-2 Motion. 2-3 Position and Displacement. 2-4 Average Velocity and Average Speed. 2-5 Instantaneous Velocity and Speed. 2-6 Acceleration. 2-7 Constant Acceleration: A Special Case. 2-8 Another Look at Constant Acceleration. 2-9 Free-Fall Acceleration. 2-10 Graphical Integration in Motion Analysis. 2 Review & Summary. Questions. Problems. Chapter 3. Vectors. How does an ant know the way home with no guiding clues on the desert plains? 3-1 What Is Physics? 3-2 Vectors and Scalars. 3-3 Adding Vectors Geometrically. 3-4 Components of Vectors. 3-5 Unit Vectors. 3-6 Adding Vectors by Components. 3-7 Vectors and the Laws of Physics. 3-8 Multiplying Vectors. Review & Summary. Questions. Problems. Chapter 4. Motion in Two and Three Dimensions. In a motorcycle jump for record distance, where does the jumper put the second ramp? 4-1 What Is Physics? 4-2 Position and Displacement. 4-3 Average Velocity and Instantaneous Velocity. 4-4 Average Acceleration and Instantaneous Acceleration. 4-5 Projectile Motion. 4-6 Projectile Motion Analyzed. 4-7 Uniform Circular Motion. 4-8 Relative Motion in One Dimension. 4-9 Relative Motion in Two Dimensions. Review & Summary. Questions. Problems. Chapter 5. Force and Motion--I. When a pilot takes off from an aircraft carrier, what causes the compulsion to .y the plane into the ocean? 5-1 What Is Physics? 5-2 Newtonian Mechanics. 5-3 Newton's First Law. 5-4 Force. 5-5 Mass. 5-6 Newton's Second Law. 5-7 Some Particular Forces. 5-8 Newton's Third Law. 5-9 Applying Newton's Laws. Review & Summary. Questions. Problems. Chapter 6. Force and Motion--II. Can a Grand Prix race car be driven upside down on a ceiling? 6-1 What Is Physics? 6-2 Friction. 6-3 Properties of Friction. 6-4 The Drag Force and Terminal Speed. 6-5 Uniform Circular Motion. Review & Summary. Questions. Problems. Chapter 7. Kinetic Energy and Work. In an epidural procedure, what sensations clue a surgeon that the needle has reached the spinal canal? 7-1 What Is Physics? 7-2 What Is Energy? 7-3 Kinetic Energy. 7-4 Work. 7-5 Work and Kinetic Energy. 7-6 Work Done by the Gravitational Force. 7-7 Work Done by a Spring Force. 7-8 Work Done by a General Variable Force. 7-9 Power. Review & Summary. Questions. Problems. Chapter 8. Potential Energy and Conservation of Energy. In rock climbing, what subtle factor determines if a falling climber will snap the rope? 8-1 What Is Physics? 8-2 Work and Potential Energy. 8-3 Path Independence of Conservative Forces. 8-4 Determining Potential Energy Values. 8-5 Conservation of Mechanical Energy. 8-6 Reading a Potential Energy Curve. 8-7 Work Done on a System by an External Force. 8-8 Conservation of Energy. Review & Summary. Questions. Problems. Chapter 9. Center of Mass and Linear Momentum. Does the presence of a passenger reduce the fatality risk in head-on car collisions? 9-1 What Is Physics? 9-2 The Center of Mass. 9-3 Newton's Second Law for a System of Particles. 9-4 Linear Momentum. 9-5 The Linear Momentum of a System of Particles. 9-6 Collision and Impulse. 9-7 Conservation of Linear Momentum. 9-8 Momentum and Kinetic Energy in Collisions. 9-9 Inelastic Collisions in One Dimension. 9-10 Elastic Collisions in One Dimension. 9-11 Collisions in Two Dimensions. 9-12 Systems with Varying Mass: A Rocket. Review & Summary. Questions. Problems. Chapter 10. Rotation. What causes roller-coaster headache? 10-1 What Is Physics? 10-2 The Rotational Variables. 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration. 10-5 Relating the Linear and Angular Variables. 10-6 Kinetic Energy of Rotation. 10-7 Calculating the Rotational Inertia. 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11. Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Chapter 12. Equilibrium and Elasticity. What injury can occur to a rock climber hanging by a crimp hold? 12-1 What Is Physics? 12-2 Equilibrium. 12-3 The Requirements of Equilibrium. 12-4 The Center of Gravity. 12-5 Some Examples of Static Equilibrium. 12-6 Indeterminate Structures. 12-7 Elasticity. Review & Summary. Questions. Problems. Chapter 13. Gravitation. What lies at the center of our Milky Way galaxy? 13-1 What Is Physics? 13-2 Newton's Law of Gravitation. 13-3 Gravitation and the Principle of Superposition. 13-4 Gravitation Near Earth's Surface. 13-5 Gravitation Inside Earth. 13-6 Gravitational Potential Energy. 13-7 Planets and Satellites: Kepler's Laws. 13-8 Satellites: Orbits and Energy. 13-9 Einstein and Gravitation. Review & Summary. Questions. Problems. Chapter 14. Fluids. What causes ground effect in race car driving? 14-1 What Is Physics? 14-2 What Is a Fluid? 14-3 Density and Pressure. 14-4 Fluids at Rest. 14-5 Measuring Pressure. 14-6 Pascal's Principle. 14-7 Archimedes' Principle. 14-8 Ideal Fluids in Motion. 14-9 The Equation of Continuity. 14-10 Bernoulli's Equation. Review & Summary. Questions. Problems. Chapter 15. Oscillations. What is the "secret" of a skilled diver's high catapult in springboard diving? 15-1 What Is Physics? 15-2 Simple Harmonic Motion. 15-3 The Force Law for Simple Harmonic Motion. 15-4 Energy in Simple Harmonic Motion. 15-5 An Angular Simple Harmonic Oscillator. 15-6 Pendulums. 15-7 Simple Harmonic Motion and Uniform Circular Motion. 15-8 Damped Simple Harmonic Motion. 15-9 Forced Oscillations and Resonance. Review & Summary. Questions. Problems. Chapter 16. Waves--I. How can a submarine wreck be located by distant seismic stations? 16-1 What Is Physics? 16-2 Types of Waves. 16-3 Transverse and Longitudinal Waves. 16-4 Wavelength and Frequency. 16-5 The Speed of a Traveling Wave. 16-6 Wave Speed on a Stretched String. 16-7 Energy and Power of a Wave Traveling Along a String. 16-8 The Wave Equation. 16-9 The Principle of Superposition for Waves. 16-10 Interference of Waves. 16-11 Phasors. 16-12 Standing Waves. 16-13 Standing Waves and Resonance. Review & Summary. Questions. Problems. Chapter 17. Waves--II. How can an emperor penguin .nd its mate among thousands of huddled penguins? 17-1 What Is Physics? 17-2 Sound Waves. 17-3 The Speed of Sound. 17-4 Traveling Sound Waves. 17-5 Interference. 17-6 Intensity and Sound Level. 17-7 Sources of Musical Sound. 17-8 Beats. 17-9 The Doppler Effect. 17-10 Supersonic Speeds, Shock Waves. Review & Summary. Questions. Problems. Chapter 18. Temperature, Heat, and the First Law of Thermodynamics. How can a dead rattlesnake detect and strike a reaching hand? 18-1 What Is Physics? 18-2 Temperature. 18-3 The Zeroth Law of Thermodynamics. 18-4 Measuring Temperature. 18-5 The Celsius and Fahrenheit Scales. 18-6 Thermal Expansion. 18-7 Temperature and Heat. 18-8 The Absorption of Heat by Solids and Liquids. 18-9 A Closer Look at Heat and Work. 18-10 The First Law of Thermodynamics. 18-11 Some Special Cases of the First Law of Thermodynamics. 18-12 Heat Transfer Mechanisms. Review & Summary. Questions. Problems. Chapter 19. The Kinetic Theory of Gases. How can cooling steam inside a railroad tank car cause the car to be crushed? 19-1 What Is Physics? 19-2 Avogadro's Number. 19-3 Ideal Gases. 19-4 Pressure, Temperature, and RMS Speed. 19-5 Translational Kinetic Energy. 19-6 Mean Free Path. 19-7 The Distribution of Molecular Speeds. 19-8 The Molar Speci.c Heats of an Ideal Gas. 19-9 Degrees of Freedom and Molar Speci.c Heats. 19-10 A Hint of Quantum Theory. 19-11 The Adiabatic Expansion of an Ideal Gas. Review & Summary. Questions. Problems. Chapter 20. Entropy and the Second Law of Thermodynamics. Why is the popping of popcorn irreversible? 20-1 What Is Physics? 20-2 Irreversible Processes and Entropy. 20-3 Change in Entropy. 20-4 The Second Law of Thermodynamics. 20-5 Entropy in the Real World: Engines. 20-6 Entropy in the Real World: Refrigerators. 20-7 The Ef.ciencies of Real Engines. 20-8 A Statistical View of Entropy. Review & Summary. Questions. Problems. Appendices. A The International System of Units (SI). B Some Fundamental Constants of Physics. C Some Astronomical Data. D Conversion Factors. E Mathematical Formulas. F Properties of the Elements. G Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation
NASA Astrophysics Data System (ADS)
Medina, H.; Mutu, R.
2017-07-01
An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.
NASA Technical Reports Server (NTRS)
Aggarwal, Arun K.
1993-01-01
Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.
NASA Technical Reports Server (NTRS)
Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.
2001-01-01
Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.
Tilted wheel satellite attitude control with air-bearing table experimental results
NASA Astrophysics Data System (ADS)
Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.
2015-12-01
Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.
NASA Astrophysics Data System (ADS)
Lin, Jian Hung; Lai, Ngoc Diep; Hsu, Chia Chen
2006-03-01
Recovery speed of photoinduced third-harmonic (TH) generation in azo-copolymer thin films can be controlled by a nanosecond laser excitation. When the excitation is tuned on, the TH signal decreases because of angular hole burning and angular redistribution effects. After turning off the excitation, the TH signal can recover to its original level either within 1min (high intensity excitation) or longer than several days (low intensity excitation). The fast recovery of the TH signal is attributed to the increase of temperature in the sample that causes molecules to more easily reorient and return to the original trans form.
NASA Astrophysics Data System (ADS)
Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie
2017-04-01
Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.
Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronchi, G.; Severo, J. H. F.; Salzedas, F.
The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreasesmore » quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.« less
Paramecia Swim with a constant propulsion in Solutions of Varying Viscosity
NASA Astrophysics Data System (ADS)
Valles, James M., Jr.; Jung, Ilyong; Mickalide, Harry; Park, Hojin; Powers, Thomas
2012-02-01
Paramecia swim through the coordinated beating of the 1000's of cilia covering their body. We have measured the swimming speed of populations of Paramecium Caudatam in solutions of different viscosity, η, to see how their propulsion changes with increased drag. We have found the average instantaneous speed, V to decrease monotonically with increasing η. The product ηv is roughly constant over a factor of 7 change in viscosity suggesting that paramecia swim at constant propulsion force. The distribution of swimming speeds is Gaussian. The width appears proportional to the average speed implying that both fast and slow swimmers exert a constant propulsion. We discuss the possibility that this behavior implies that the body cilia beat at constant force with varying viscosity.
Effect of differential speed rolling on the texture evolution of Mg-4Zn-1Gd alloy
NASA Astrophysics Data System (ADS)
Shim, Myeong-Shik; Suh, Byeong-Chan; Kim, Jae H.; Kim, Nack J.
2015-05-01
The microstructural and texture evolution during differential speed rolling process of Mg 4Zn-1Gd (wt%) alloy have been investigated by means of electron backscatter diffraction observation and texture analysis. The angular distribution of basal poles are inclined about 10° from the normal direction towards the rolling direction and the maximum intensities of basal poles are decreased, compared to the conventional rolling process. Such an inclination of angular distribution of basal poles can be induced by the operation of shear stress along the rolling direction, as much as one quarter of tensile stress along the RD and one quarter of compressive stress along the ND. When the reduction ratios in differential speed rolling increase, there is no difference in texture evolution although there is a significant change in activated twinning systems. In addition, the engineering stresses after differential speed rolling are also similar to that after conventional rolling process, while ductility and stretch formability in the former are worse than those in the latter.
Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud
2012-01-01
Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276
Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.
Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc
2013-02-01
We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.
Price of shifting the Hubble constant
NASA Astrophysics Data System (ADS)
Evslin, Jarah; Sen, Anjan A.; Ruchika
2018-05-01
An anisotropic measurement of the baryon acoustic oscillation (BAO) feature fixes the product of the Hubble constant and the acoustic scale H0rd. Therefore, regardless of the dark energy dynamics, to accommodate a higher value of H0 one needs a lower rd and so necessarily a modification of early time cosmology. One must either reduce the age of the Universe at the drag epoch or else the speed of sound in the primordial plasma. The first can be achieved, for example, with dark radiation or very early dark energy, automatically preserving the angular size of the acoustic scale in the cosmic microwave background (CMB) with no modifications to post-recombination dark energy. However, it is known that the simplest such modifications fall afoul of CMB constraints at higher multipoles. As an example, we combine anisotropic BAO with geometric measurements from strong lensing time delays from H0LiCOW and megamasers from the Megamaser Cosmology Project to measure rd, with and without the local distance ladder measurement of H0. We find that the best fit value of rd is indeed quite insensitive to the dark energy model and is also hardly affected by the inclusion of the local distance ladder data.
Zheng, Yanting; Shen, Ming; Yang, Xianfeng
2018-01-01
To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider's brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders' brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas. PMID:29770161
Grip and limb force limits to turning performance in competition horses
Tan, Huiling; Wilson, Alan M.
2011-01-01
Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator–prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof–surface interaction setting the limit to centripetal force to avoid slipping. PMID:21147799
Grip and limb force limits to turning performance in competition horses.
Tan, Huiling; Wilson, Alan M
2011-07-22
Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator-prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof-surface interaction setting the limit to centripetal force to avoid slipping.
In-flight alignment using H ∞ filter for strapdown INS on aircraft.
Pei, Fu-Jun; Liu, Xuan; Zhu, Li
2014-01-01
In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition.
How Do Changes in Speed Affect the Perception of Duration?
ERIC Educational Resources Information Center
Matthews, William J.
2011-01-01
Six experiments investigated how changes in stimulus speed influence subjective duration. Participants saw rotating or translating shapes in three conditions: constant speed, accelerating motion, and decelerating motion. The distance moved and average speed were the same in all three conditions. In temporal judgment tasks, the constant-speed…
Role of Cerebellum in Motion Perception and Vestibulo-ocular Reflex—Similarities and Disparities
Shaikh, Aasef G.; Palla, Antonella; Marti, Sarah; Olasagasti, Itsaso; Optican, Lance M.; Zee, David S.; Straumann, Dominik
2012-01-01
Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP. PMID:22777507
Adaptation of vestibular signals for self-motion perception
St George, Rebecca J; Day, Brian L; Fitzpatrick, Richard C
2011-01-01
A fundamental concern of the brain is to establish the spatial relationship between self and the world to allow purposeful action. Response adaptation to unvarying sensory stimuli is a common feature of neural processing, both peripherally and centrally. For the semicircular canals, peripheral adaptation of the canal-cupula system to constant angular-velocity stimuli dominates the picture and masks central adaptation. Here we ask whether galvanic vestibular stimulation circumvents peripheral adaptation and, if so, does it reveal central adaptive processes. Transmastoidal bipolar galvanic stimulation and platform rotation (20 deg s−1) were applied separately and held constant for 2 min while perceived rotation was measured by verbal report. During real rotation, the perception of turn decayed from the onset of constant velocity with a mean time constant of 15.8 s. During galvanic-evoked virtual rotation, the perception of rotation initially rose but then declined towards zero over a period of ∼100 s. For both stimuli, oppositely directed perceptions of similar amplitude were reported when stimulation ceased indicating signal adaptation at some level. From these data the time constants of three independent processes were estimated: (i) the peripheral canal-cupula adaptation with time constant 7.3 s, (ii) the central ‘velocity-storage’ process that extends the afferent signal with time constant 7.7 s, and (iii) a long-term adaptation with time constant 75.9 s. The first two agree with previous data based on constant-velocity stimuli. The third component decayed with the profile of a real constant angular acceleration stimulus, showing that the galvanic stimulus signal bypasses the peripheral transformation so that the brainstem sees the galvanic signal as angular acceleration. An adaptive process involving both peripheral and central processes is indicated. Signals evoked by most natural movements will decay peripherally before adaptation can exert an appreciable effect, making a specific vestibular behavioural role unlikely. This adaptation appears to be a general property of the internal coding of self-motion that receives information from multiple sensory sources and filters out the unvarying components regardless of their origin. In this instance of a pure vestibular sensation, it defines the afferent signal that represents the stationary or zero-rotation state. PMID:20937715
Ground simulation of wide frequency band angular vibration for Lander's optic sensors
NASA Astrophysics Data System (ADS)
Xing, Zhigang; Xiang, Jianwei; Zheng, Gangtie
2017-11-01
To guide a lander of Moon or Mars exploration spacecraft during the stage of descent onto a desired place, optic sensors have been chosen to take the task, which include optic cameras and laser distance meters. However, such optic sensors are sensitive to vibrations, especially angular vibrations, from the lander. To reduce the risk of abnormal function and ensure the performance of optic sensors, ground simulations are necessary. More importantly, the simulations can be used as a method for examining the sensor performance and finding possible improvement on the sensor design. In the present paper, we proposed an angular vibration simulation method during the landing. This simulation method has been realized into product and applied to optic sensor tests for the moon lander. This simulator can generate random angular vibration in a frequency range from 0 to 2000Hz, the control precision is +/-1dB, and the linear translational speed can be set to the required descent speed. The operation and data processing methods of this developed simulator are the same as a normal shake table. The analysis and design methods are studied in the present paper, and test results are also provided.
Measuring the speed of light with ultra-compact radio quasars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shuo; Biesiada, Marek; Jackson, John
In this paper, based on a 2.29 GHz VLBI all-sky survey of 613 milliarcsecond ultra-compact radio sources with 0.0035< z <3.787, we describe a method of identifying the sub-sample which can serve as individual standard rulers in cosmology. If the linear size of the compact structure is assumed to depend on source luminosity and redshift as l {sub m} = l L {sup β} (1+ z ) {sup n} , only intermediate-luminosity quasars (10{sup 27} W/Hz< L < 10{sup 28} W/Hz) show negligible dependence (| n |≅ 10{sup −3}, |β|≅ 10{sup −4}), and thus represent a population of such rulersmore » with fixed characteristic length l =11.42 pc. With a sample of 120 such sources covering the redshift range 00.46< z <2.8, we confirm the existence of dark energy in the Universe with high significance under the assumption of a flat universe, and obtain stringent constraints on both the matter density Ω {sub m} =0.323{sup +0.245}{sub −0.145} and the Hubble constant H {sub 0}=66.30{sup +7.00}{sub −8.50} km sec{sup −1} Mpc{sup −1}. Finally, with the angular diameter distances D {sub A} measured for quasars extending to high redshifts (0 z ∼ 3.), we reconstruct the D {sub A} ( z ) function using the technique of Gaussian processes. This allows us to identify the redshift corresponding to the maximum of the D {sub A} ( z ) function: 0 z {sub m} =1.7 and the corresponding angular diameter distance D {sub A} ( z {sub m} )=1719.01±43.46 Mpc. Similar reconstruction of the expansion rate function H ( z ) based on the data from cosmic chronometers and BAO gives us H ( z {sub m} )=176.77±6.11 km sec{sup −1} Mpc{sup −1}. These measurements are used to estimate the speed of light: c =3.039(±0.180)× 10{sup 5} km/s. This is the first measurement of the speed of light in a cosmological setting referring to the distant past.« less
NASA Astrophysics Data System (ADS)
Eversman, Walter
The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.
All You Need to Know about Videodiscs: One Easy Lesson.
ERIC Educational Resources Information Center
Padgett, Helen L.
1993-01-01
Explains videodisc technology and its uses in education. Topics addressed include formats of videodiscs, including CAV discs (constant angular velocity) and CLV discs (constant linear velocity); the three industry-standard levels of interactivity; bar codes; bar-code readers; and finding information on a videodisc. (LRW)
Videodiscs in Schools: Selecting Essential Players and Videodiscs.
ERIC Educational Resources Information Center
Bennett, Priscilla
1995-01-01
Discusses the use of videodiscs in schools and suggests criteria for the selection of videodiscs and videodisc players. Topics include different videodisc formats, including CLV (constant linear velocity) and CAV (constant angular velocity); mapping; repurposing; content and age suitability; documentation; vendors; and Level I and Level II…
Angular momentum transfer in primordial discs and the rotation of the first stars
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Bromm, Volker
2018-05-01
We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.
Inequality between size and angular momentum for bodies.
Dain, Sergio
2014-01-31
A universal inequality that bounds the angular momentum of a body by the square of its size is presented and heuristic physical arguments are given to support it. We prove a version of this inequality, as consequence of the Einstein equations, for the case of rotating axially symmetric, constant density, bodies. Finally, the physical relevance of this result is discussed.
Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun
2014-01-01
This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. PMID:25201996
Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun
2014-10-13
This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Robert B.; Oh, John J.; Park, Mu-In
2009-03-15
We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses undermore » certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.« less
Dionisio, Valdeci C; Brown, David A
2016-06-16
Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface. To understand the level of transparency (i.e., interference with movement due to the mechanical interface) between human and robot, and to estimate and account for changes in the kinetics and kinematics of the gait pattern, we tested the KineAssist under conditions of self-drive and horizontal push assistance. The aims of this study were to compare the joint kinematics, forces and moments during walking at a fixed constant treadmill belt speed and constrained walking cadence, with and without the robotic device (OUT) and to compare the biomechanics of assistive and self-drive modes in the device. Twenty non-neurologically impaired adults participated in this study. We evaluated biomechanical parameters of walking at a fixed constant treadmill belt speed (1.0 m/s), with and without the robotic device in assistive mode. We also tested the self-drive condition, which enables the user to drive the speed and direction of a treadmill belt. Hip, knee and ankle angular displacements, ground reaction forces, hip, knee and ankle moments, and center of mass displacement were compared "in" vs "out" of the device. A repeated measures ANOVA test was applied with the three level factor of condition (OUT, AM, and SDM), and each participant was used as its own comparison. When comparing "in" and "out" of the device, we did not observe any interruptions and/or reversals of direction of the basic gait pattern trajectory, but there was increased ankle and hip angular excursions, vertical ground reaction force and hip moments and reduced center of mass displacement during the "in device" condition. Comparing assistive vs self-drive mode in device, participants had greater flexed posture and accentuated hip moments and propulsive force, but reduced braking force. Although the magnitudes and/or range of certain gait pattern components were altered by the device, we did not observe any interruption from the mechanical interface upon the advancement of the trajectories nor reversals in direction of movement which suggests that the KineAssist permits relative transparency (i.e.. lack of interference of movement by the device mechanism) to the individual's gait pattern. However, there are interactive forces to take into account, which appear to be overcome by kinematic and kinetic adjustments.
Cyclostationarity approach for monitoring chatter and tool wear in high speed milling
NASA Astrophysics Data System (ADS)
Lamraoui, M.; Thomas, M.; El Badaoui, M.
2014-02-01
Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.
Control of speed during the double poling technique performed by elite cross-country skiers.
Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer
2009-01-01
Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.
Radio-scintillation observations of interplanetary disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1984-01-01
Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)
1999-01-01
A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.
The Fine Art of Using a Laserdisc in the Art Classroom.
ERIC Educational Resources Information Center
Porter, Sharon
1998-01-01
Laserdiscs are an efficient and flexible medium for art presentations in schools. This article discusses laserdiscs, also called videodiscs; distinguishes between constant linear velocity (CLV) and constant angular velocity (CAV) which allows more flexible access; describes the use of bar coding for access; and lists selected visual art…
Vibration-based angular speed estimation for multi-stage wind turbine gearboxes
NASA Astrophysics Data System (ADS)
Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan
2017-05-01
Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.
Constant angular velocity of the wrist during the lifting of a sphere.
Chappell, P H; Metcalf, C D; Burridge, J H; Yule, V T; Pickering, R M
2010-05-01
The primary objective of the experiments was to investigate the wrist motion of a person while they were carrying out a prehensile task from a clinical hand function test. A six-camera movement system was used to observe the wrist motion of 10 participants. A very light sphere and a heavy sphere were used in the experiments to study any mass effects. While seated at a table, a participant moved a sphere over a small obstacle using their dominant hand. The participants were observed to move their wrist at a constant angular velocity. This phenomenon has not been reported previously. Theoretically, the muscles of the wrist provide an impulse of force at the start of the rotation while the forearm maintains a constant vertical force on a sphere. Light-heavy mean differences for the velocities, absolute velocities, angles and times taken showed no significant differences (p = 0.05).
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
A theoretical equation was derived to predict the spring constant (load/deflection) for a simply supported cylindrical section with a line force applied at the center. Curved leaves of PBN were mechanically deformed and the force versus deflection data was recorded and compared to the derived theoretical equation to yield an effective modulus for each leaf. The effective modulus was found to vary from the pure shear modulus for a flat plate to a mixed mode for a half cylinder as a function of the sine of one half the angular leaf span. The spring constants of individual PBN leaves were usually predicted to within 30%.
Blending Velocities In Task Space In Computing Robot Motions
NASA Technical Reports Server (NTRS)
Volpe, Richard A.
1995-01-01
Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.
Algorithm for Autonomous Landing
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki
2011-01-01
Because of their small size, high maneuverability, and easy deployment, micro aerial vehicles (MAVs) are used for a wide variety of both civilian and military missions. One of their current drawbacks is the vast array of sensors (such as GPS, altimeter, radar, and the like) required to make a landing. Due to the MAV s small payload size, this is a major concern. Replacing the imaging sensors with a single monocular camera is sufficient to land a MAV. By applying optical flow algorithms to images obtained from the camera, time-to-collision can be measured. This is a measurement of position and velocity (but not of absolute distance), and can avoid obstacles as well as facilitate a landing on a flat surface given a set of initial conditions. The key to this approach is to calculate time-to-collision based on some image on the ground. By holding the angular velocity constant, horizontal speed decreases linearly with the height, resulting in a smooth landing. Mathematical proofs show that even with actuator saturation or modeling/ measurement uncertainties, MAVs can land safely. Landings of this nature may have a higher velocity than is desirable, but this can be compensated for by a cushioning or dampening system, or by using a system of legs to grab onto a surface. Such a monocular camera system can increase vehicle payload size (or correspondingly reduce vehicle size), increase speed of descent, and guarantee a safe landing by directly correlating speed to height from the ground.
Phase Resolved Angular Velocity Control of Cross Flow Turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2015-11-01
Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.
40 CFR 1039.120 - What emission-related warranty requirements apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of operation and years, whichever comes first. You may offer an emission-related warranty more... Any speed 1,500 hours or two years, whichever comes first. Constant speed 19 ≤kW comes first. Constant speed 19 ≤kW <37 Less than 3,000 rpm 3...
Seethapathi, Nidhi; Srinivasan, Manoj
2015-09-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).
Seethapathi, Nidhi; Srinivasan, Manoj
2015-01-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072
Pursuit Latency for Chromatic Targets
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Ellis, Stephen R. (Technical Monitor)
1998-01-01
The temporal dynamics of eye movement response to a change in direction of stimulus motion has been used to compare the processing speeds of different types of stimuli (Mulligan, ARVO '97). In this study, the pursuit response to colored targets was measured to test the hypothesis that the slow response of the chromatic system (as measured using traditional temporal sensitivity measures such as contrast sensitivity) results in increased eye movement latencies. Subjects viewed a small (0.4 deg) Gaussian spot which moved downward at a speed of 6.6 deg/sec. At a variable time during the trajectory, the dot's direction of motion changed by 30 degrees, either to the right or left. Subjects were instructed to pursue the spot. Eye movements were measured using a video ophthalmoscope with an angular resolution of approximately 1 arc min and a temporal sampling rate of 60 Hz. Stimuli were modulated in chrominance for a variety of hue directions, combined with a range of small luminance increments and decrements, to insure that some of the stimuli fell in the subjects' equiluminance planes. The smooth portions of the resulting eye movement traces were fit by convolving the stimulus velocity with an exponential having variable onset latency, time constant and amplitude. Smooth eye movements with few saccades were observed for all stimuli. Pursuit responses to stimuli having a significant luminance component are well-fit by exponentials having latencies and time constants on the order of 100 msec. Increases in pursuit response latency on the order of 100-200 msec are observed in response to certain stimuli, which occur in pairs of complementary hues, corresponding to the intersection of the stimulus section with the subjects' equiluminant plane. Smooth eye movements can be made in response to purely chromatic stimuli, but are slower than responses to stimuli with a luminance component.
NASA Astrophysics Data System (ADS)
Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.
2017-12-01
Turbulence is the leading candidate for angular momentum transport in protoplanetary disks and therefore influences disk lifetimes and planet formation timescales. However, the turbulent properties of protoplanetary disks are poorly constrained observationally. Recent studies have found turbulent speeds smaller than what fully-developed MRI would produce (Flaherty et al.). However, existing studies assumed a constant CO/H2 ratio of 10-4 in locations where CO is not frozen-out or photo-dissociated. Our previous studies of evolving disk chemistry indicate that CO is depleted by incorporation into complex organic molecules well inside the freeze-out radius of CO. We consider the effects of this chemical depletion on measurements of turbulence. Simon et al. suggested that the ratio of the peak line flux to the flux at line center of the CO J = 3-2 transition is a reasonable diagnostic of turbulence, so we focus on that metric, while adding some analysis of the more complex effects on spatial distribution. We simulate the emission lines of CO based on chemical evolution models presented in Yu et al., and find that the peak-to-trough ratio changes as a function of time as CO is destroyed. Specifically, a CO-depleted disk with high turbulent velocity mimics the peak-to-trough ratios of a non-CO-depleted disk with lower turbulent velocity. We suggest that disk observers and modelers take into account the possibility of CO depletion when using line profiles or peak-to-trough ratios to constrain the degree of turbulence in disks. Assuming that {CO}/{{{H}}}2={10}-4 at all disk radii can lead to underestimates of turbulent speeds in the disk by at least 0.2 km s-1.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario
2013-02-15
Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.
Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki
NASA Astrophysics Data System (ADS)
Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.
2017-09-01
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m s-1 at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m s-1 using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venus's atmospheric superrotation.
Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki.
Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F
2017-01-01
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus's atmospheric superrotation.
The relationship between loads and power of a rotor and an actuator disc
NASA Astrophysics Data System (ADS)
van Kuik, Gijs A. M.
2014-12-01
Most state of the art rotor design methods are based on the actuator disc theory developed about one century ago. The actuator disc is an axisymmetric permeable surface carrying a load that represents the load on a real rotor with a finite number of blades N. However, the mathematics of the transition from a real rotor load to an axisymmetrically loaded disc is not yet presented in literature. By formulating an actuator disc equation of motion in which the Bernoulli constant H is expressed in kinematical terms, a comparison of the power conversion and load on the disc and rotor is possible. For both the converted power is expressed as a change of angular momentum times rotational speed. The limits for N → ∞ while the chord c → 0, the rotational speed Ω → ∞, the load F becoming uniform by ∂F/∂r → 0 and the thickness epsilon → 0 confirm that the classical disc represents the rotor with an infinite number of blades. Furthermore, the expressions for the blade load are compared to the expressions in current design and analysis tools. The latter do not include the load on chord-wise vorticity. Including this is expected to give a better modelling of the tip and root flow.
Demonstrating the conservation of angular momentum using spherical magnets
NASA Astrophysics Data System (ADS)
Lindén, Johan; Slotte, Joakim; Källman, Kjell-Mikael
2018-01-01
An experimental setup for demonstrating the conservation of angular momentum of rotating spherical magnets is described. Two spherical Nd-Fe-B magnets are placed on a double inclined plane and projected towards each other with pre-selected impact parameters ranging from zero to a few tens of millimeters. After impact, the two magnets either revolve vigorously around the common center of mass or stop immediately, depending on the value of the impact parameter. Using a pick-up coil connected to an oscilloscope, the angular frequency for the rotating magnets was measured, and an estimate for the angular momentum was obtained. A high-speed video camera captured the impact and was used for measuring linear and angular velocities of the magnets. A very good agreement between the initial angular momentum before the impact and the final angular momentum of the revolving dumbbell is observed. The two rotating magnets, and the rotating electromagnetic field emanating from them, can also be viewed as a toy model for the newly discovered gravitational waves, where two black holes collide after revolving around each other. (Enhanced online)
Ball to separator contact forces in angular contact ball bearings under thrust and radial loads
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1977-01-01
Experimental data is reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
Simulating the dynamic behavior of chain drive systems by advanced CAE programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J.; Meyer, J.
1996-09-01
Due to the increased requirements for chain drive systems of 4-stroke internal combustion engines CAE-tools are necessary to design the optimum dynamic system. In comparison to models used din the past the advantage of the new model CDD (Chain Drive Dynamics) is the capability of simulating the trajectory of each chain link around the drive system. Each chain link is represented by a mass with two degrees of freedom and is coupled to the next by a spring-damper element. The drive sprocket can be moved with a constant or non-constant speed. As in reality the other sprockets are driven bymore » the running chain and can be excited by torques. Due to these unique model features it is possible to calculate all vibration types of the chain, polygon effects and radial or angular vibrations of the sprockets very accurately. The model includes the detailed simulation of a mechanical or a hydraulic tensioner as well. The method is ready to be coupled to other detailed calculation models (e.g. valve train systems, crankshaft, etc.). The high efficiency of the tool predicting the dynamic and acoustic behavior of a chain drive system will be demonstrated in comparison to measurements.« less
Effects of changes in size, speed and distance on the perception of curved 3D trajectories
Zhang, Junjun; Braunstein, Myron L.; Andersen, George J.
2012-01-01
Previous research on the perception of 3D object motion has considered time to collision, time to passage, collision detection and judgments of speed and direction of motion, but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment. PMID:23007204
Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro
2017-01-20
Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω 1 ), the planet axis (ω 2 ) and the satellite axis (the central axis of the column) (ω 3 ) according to the following formula: ω 1 =ω 2 +ω 3 . Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3: 2: 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), and (1:4:5, v/v) for the upper mobile phase at (300:100:200rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω 2 and ω 3 under the constant revolution speed at ω 1 =300rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω 2 and ω 3 , while with the upper mobile phase these two values were sensitively varied according to the different combination of ω 2 and ω 3 . For example, when ω 2 =147 or 200rpm is used, no stationary phase was retained in the coiled column while ω 2 =150rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω 1 , ω 2 , ω 3 )=(300, 300, 0rpm) or (300, 0, 300rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300rpm) with the upper mobile phase. At lower rotation speed of ω 1 =300rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω 3 ) than by the planetary motion (ω 2 ), or ω 3 >ω 2 . The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200rpm) showed double loops in the acceleration track, whereas (300, 150, 150rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro
2016-01-01
Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3) according to the following formula: ω1 = ω2 + ω3. Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω1, ω2, ω3) = (300, 150, 150 rpm), and (1 : 4 : 5, v/v) for the upper mobile phase at (300 : 100 : 200 rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω2 and ω3 under the constant revolution speed at ω1 = 300 rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω2 and ω3, while with the upper mobile phase these two values were sensitively varied according to the different combination of ω2 and ω3. For example, when ω2 = 147 or 200 rpm is used, no stationary phase was retained in the coiled column while ω2 = 150 rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω1, ω2, ω3) = (300, 300, 0 rpm) or (300, 0, 300 rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300 rpm) with the upper mobile phase. At lower rotation speed of ω1 = 300 rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω3) than by the planetary motion (ω2), or ω3 > ω2. The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω1, ω2, ω3) = (300, 150, 150 rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200 rpm) showed double loops in the acceleration track, whereas (300, 150, 150 rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. PMID:28040269
Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern
NASA Astrophysics Data System (ADS)
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike
2018-03-01
Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.
Radially dependent angular acceleration of twisted light.
Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew
2017-02-15
While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.
Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime
NASA Astrophysics Data System (ADS)
Frolov, Andrei V.; Frolov, Valeri P.
2014-12-01
A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.
Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales
NASA Technical Reports Server (NTRS)
Houghton, Anthony; Timbie, Peter
1998-01-01
This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.
A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.
Quan, Wei; Fang, Jiancheng
2010-01-01
A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.
NASA Technical Reports Server (NTRS)
Barcilon, V.
1978-01-01
The problem of inferring the speed of sound in a contained spherically symmetric fluid solely from its natural frequencies of vibration is considered. An investigation of the case in which the data consist of the two spectra associated with the angular numbers 0 and 1, suggests the possibility that a one-parameter family of slowness profiles can be constructed. These profiles are compatible with the data, up to first order in the non-uniformity of the fluid. It is conjectured that for other angular numbers, the loss of information increases as the difference between them increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.
Balbinot, G
2017-05-01
Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (W ext ) and internal mechanical work (W int ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W + ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W - ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W - ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A preliminary study of the benefits of flying by ground speed during final approach
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.
1978-01-01
A study was conducted to evaluate the benefits of an approach technique which utilized constant ground speed on approach. It was determined that the technique reduced the capacity losses in headwinds experienced with the currently used constant airspeed technique. The benefits of technique were found to increase as headwinds increased and as the wake avoidance separation intervals were reduced. An additional benefit noted for the constant ground speed technique was a reduction in stopping distance variance due to the approach wind environment.
Ball to separator contact forces in angular contact ball bearings under thrust and radial loads
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1978-01-01
Experimental data are reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12,000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.
In-Flight Alignment Using H ∞ Filter for Strapdown INS on Aircraft
Pei, Fu-Jun; Liu, Xuan; Zhu, Li
2014-01-01
In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition. PMID:24511300
NASA Technical Reports Server (NTRS)
Garrison, Charlie C.
1949-01-01
A 0.1-size powered dynamic model of a large, high-speed flying boat was landed in Langley tank no. 1 into oncoming waves 4 feet high (full size). The model was tested with two afterbodies of differing lengths (4.12 and 6.63 beams). The short afterbody had a constant angle of dead rise of 22.5deg and a keel angle of 6.5deg. The long afterbody had warped dead rise and a keel angle of 8.5deg. The vertical accelerations were slightly greater and the maximum angular accelerations and maxim= trims were slightly less for the model with the long afterbody than for the model with -the short afterbody. A wave length of 210 feet (full size) imposed the highest accelerations on the model with either the long or the short afterbody.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less
The critical role of velocity storage in production of motion sickness
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Dai, Mingjia; Raphan, Theodore; Young, L. R. (Principal Investigator)
2003-01-01
We propose that motion sickness is mediated through the orientation properties of velocity storage in the vestibular system that tend to align eye velocity produced by the angular vestibulo-ocular reflex (aVOR) with gravito-inertial acceleration (GIA). (GIA is the sum of the linear accelerations acting on the head. In the absence of translational accelerations, gravity is the GIA.) We further postulate that motion sickness produced by cross-coupled vestibular stimulation can be characterized by a metric composed of the disparity between the axis of eye rotation and the GIA, the strength of the response to angular motion, and the response duration, as determined by the central vestibular time constant, that is, by the time constant of velocity storage. The nodulus and uvula of the vestibulocerebellum are likely to be the central sites where the disparity is sensed, where the vestibular time constants are habituated, and where links are made to the autonomic system to produce the symptoms and signs.
Kinematic analysis of crank -cam mechanism of process equipment
NASA Astrophysics Data System (ADS)
Podgornyj, Yu I.; Skeeba, V. Yu; Martynova, T. G.; Pechorkina, N. S.; Skeeba, P. Yu
2018-03-01
This article discusses how to define the kinematic parameters of a crank-cam mechanism. Using the mechanism design, the authors have developed a calculation model and a calculation algorithm that allowed the definition of kinematic parameters of the mechanism, including crank displacements, angular velocities and acceleration, as well as driven link (rocker arm) angular speeds and acceleration. All calculations were performed using the Mathcad mathematical package. The results of the calculations are reported as numerical values.
Kinematic Analysis of Javelin Throw Performed by Wheelchair Athletes of Different Functional Classes
Chow, John W.; Kuenster, Ann F.; Lim, Young-tae
2003-01-01
The purpose of this study was to identify those kinematic characteristics that are most closely related to the functional classification of a wheelchair athlete and measured distance of a javelin throw. Two S-VHS camcorders (60 field·s-1) were used to record the performance of 15 males of different classes. Each subject performed 6-10 throws and the best two legal throws from each subject were selected for analysis. Three-dimensional kinematics of the javelin and upper body segments at the instant of release and during the throw (delivery) were determined. The selection of kinematic parameters that were analyzed in this study was based on a javelin throw model showing the factors that determine the measured distance of a throw. The average of two throws for each subject was used to compute Spearman rank correlation coefficients between selected parameters and measured distance, and between selected parameters and the functional classification. The speeds and angles of the javelin at release, ranged from 9.1 to 14.7 m·s-1 and 29.6 to 35.8°, respectively, were smaller than those exhibited by elite male able-bodied throwers. As expected, the speed of the javelin at release was significantly correlated to both the classification (p<0.01) and measured distance (p<0.001). Of the segmental kinematic parameters, significant correlations were found between the trunk inclination at release and classification and between the angular speed at release and measured distance (p<0.01 for both). The angular speed of the shoulder girdle at release and the average angular speeds of the shoulder girdle during the delivery were significantly correlated to both the classification and measured distance (p<0.05). The results indicate that shoulder girdle movement during the delivery is an important determinant of classification and measured distance. PMID:24616609
Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules
He, Peng; Wei, Biao; Wang, Steve; ...
2013-01-01
Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less
Bańkosz, Ziemowit; Winiarski, Sławomir
2018-01-01
The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands – after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and “heavy” topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force –”heavy” topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke. Key points The aim of this study was to calculate correlations between racket velocity and the angular velocities of individual joints and for variants of topspin forehand and backhand strokes in table tennis. A novel model was used to estimate range of motion (specially developed placement protocol for upper body markers and identification of a ball-racket contact using an acoustic sensor attached to the racket). In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint were correlated with racket velocity. Correlations between racket velocity and the angular velocities of playing- and non-playing-side hip extension and ankle flexion were found in topspin forehands. In topspin backhands abduction of the arm had the greatest impact on the racket speed. The results can be used directly to improve training of table tennis techniques, especially topspin strokes. PMID:29769835
Comparison of Cone Model Parameters for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Y.-J.; Jang, Soojeong; Lee, Kyoung-Sun; Kim, Hae-Yeon
2013-11-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [ γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another ( R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from -0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km s-1, 169 km s-1, and 152 km s-1. We obtain the correlation coefficients between the location from the models and the flare location ( R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
A Study of Airplane Maneuvers with Special Reference to Angular Velocities
NASA Technical Reports Server (NTRS)
Reid, J E
1923-01-01
This investigation was undertaken by the National Advisory Committee for Aeronautics for the purpose of increasing our knowledge on the behavior of the airplane during various maneuvers and to obtain values of the maximum angular velocities and accelerations in flight. The method consisted in flying a JN4H airplane through various maneuvers while records were being taken of the control position, the air speed, the angular velocity and the acceleration along the Z axis. The results showed that the maximum angular velocity about the X axis of radians per second in a barrel roll. The maximum angular acceleration about the X axis of -2.10 radians per (second) to the 2nd power occurred in a spin, while the maximum about the Y axis was 1.40 radians per (second) to the 2nd power when pulling suddenly out of a dive. These results have direct application to the design of airplane parts, such as propeller shaft and instruments.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.
Holly, Jan E
2004-01-01
The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.
NASA Astrophysics Data System (ADS)
Zhang, Jinhua; Fang, Bin; Hong, Jun; Wan, Shaoke; Zhu, Yongsheng
2017-12-01
The combined angular contact ball bearings are widely used in automatic, aerospace and machine tools, but few researches on the combined angular contact ball bearings have been reported. It is shown that the preload and stiffness of combined bearings are mutual influenced rather than simply the superposition of multiple single bearing, therefore the characteristic calculation of combined bearings achieved by coupling the load and deformation analysis of a single bearing. In this paper, based on the Jones quasi-static model and stiffness analytical model, a new iterative algorithm and model are proposed for the calculation of combined bearings preload and stiffness, and the dynamic effects include centrifugal force and gyroscopic moment have to be considered. It is demonstrated that the new method has general applicability, the preload factors of combined bearings are calculated according to the different design preloads, and the static and dynamic stiffness for various arrangements of combined bearings are comparatively studied and analyzed, and the influences of the design preload magnitude, axial load and rotating speed are discussed in detail. Besides, the change rule of dynamic contact angles of combined bearings with respect to the rotating speed is also discussed. The results show that bearing arrangement modes, rotating speed and design preload magnitude have a significant influence on the preload and stiffness of combined bearings. The proposed formulation provides a useful tool in dynamic analysis of the complex bearing-rotor system.
Funama, Yoshinori; Awai, Kazuo; Hatemura, Masahiro; Shimamura, Masamitchi; Yanaga, Yumi; Oda, Seitaro; Yamashita, Yasuyuki
2008-01-01
To investigate whether it is possible to obtain adequate images at uniform image noise levels and reduced radiation exposure with our automatic tube current modulation (ATCM) technique for 64-detector CT. The study population consisted of 64 patients with known or suspected lung or abdominal disease. We used a 64-detector CT scanner (LightSpeed VCT, GE Healthcare, Waukesha, WI, USA) and a combined angular and longitudinal tube current modulation technique (Smart mA, GE Healthcare, Waukesha, WI, USA) to examine 34 patients. The scanning parameters were identical; the minimum and maximum tube current thresholds were 50 and 800 mA, respectively. For study of the constant tube current technique, 30 additional patients were examined at 350 mA. The CT number and image noise (SD of the CT number) were measured in the 64 patients at six levels, i.e., the center of the left ventricle, the liver dome, the porta hepatis, the center of the spleen and the right and left renal pelvis. When we used the ATCM technique, the mean image noise ranged from 8.40 at the center of the left ventricle to 11.31 at the porta hepatis; the mean tube current ranged from 105.9 mAs at the center of the left ventricle to 169.6 mAs at the center of the spleen. The mean dose reduction rate per constant tube current at 175 mAs ranged from 3.1 to 39.5%. By use of the ATCM technique, it is possible to maintain a constant image noise level with a 64-detector CT.
Quinn, Mitchell S; Andrews, Duncan U; Nauta, Klaas; Jordan, Meredith J T; Kable, Scott H
2017-07-07
The dynamics of CO production from photolysis of H 2 CO have been explored over a 8000 cm -1 energy range (345 nm-266 nm). Two-dimensional ion imaging, which simultaneously measures the speed and angular momentum distribution of a photofragment, was used to characterise the distribution of rotational and translational energy and to quantify the branching fraction of roaming, transition state (TS), and triple fragmentation (3F) pathways. The rotational distribution for the TS channel broadens significantly with increasing energy, while the distribution is relatively constant for the roaming channel. The branching fraction from roaming is also relatively constant at 20% of the observed CO. Above the 3F threshold, roaming decreases in favour of triple fragmentation. Combining the present data with our previous study on the H-atom branching fractions and published quantum yields for radical and molecular channels, absolute quantum yields were determined for all five dissociation channels for the entire S 1 ←S 0 absorption band, covering almost 8000 cm -1 of excitation energy. The S 0 radical and TS molecular channels are the most important over this energy range. The absolute quantum yield of roaming is fairly constant ∼5% at all energies. The T 1 radical channel is important (20%-40%) between 1500 and 4000 cm -1 above the H + HCO threshold, but becomes unimportant at higher energy. Triple fragmentation increases rapidly above its threshold reaching a maximum of 5% of the total product yield at the highest energy.
Mechanisms underlying the perceived angular velocity of a rigidly rotating object.
Caplovitz, G P; Hsieh, P-J; Tse, P U
2006-09-01
The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.
2018-03-01
Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.
Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method
NASA Astrophysics Data System (ADS)
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Studies of the Speed Stability of a Tandem Helicopter in Forward Flight
NASA Technical Reports Server (NTRS)
Tapscott, Robert J; Amer, Kenneth B
1956-01-01
Flight-test measurements, related analytical studies, and corresponding pilots' opinions of the speed stability of tandem-rotor helicopter are presented. An undesirable instability, evidenced by rearward stick motion with increasing forward speed at constant power, is indicated to be caused by variations with speed of the front-rotor downwash at the rear rotor. An analytical expression for predicting changes in speed stability caused by changes in rotor geometry is derived and constants for use with the analytical expression are presented in chart form. Means for improving stability with speed are studied both analytically and experimentally. The test results also give some information as to the flow conditions at the rear rotor.
Kinematic Description of Elite Vs. Low Level Players in Team-Handball Jump Throw
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P.; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key points Team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed. An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed. Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices. PMID:24149381
Kinematic description of elite vs. Low level players in team-handball jump throw.
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key pointsTeam-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed.An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed.Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1995-01-01
A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.
Spin-up of a rapidly rotating star by angular momentum loss - Effects of general relativity
NASA Technical Reports Server (NTRS)
Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.
1992-01-01
It has recently been shown that a rapidly rotating Newtonian star can spin up by radiating angular momentum. Extremely fast pulsars losing energy and angular momentum by magnetic dipole radiation or gravitational radiation may exhibit this behavior. Here, we show that this phenomenon is more widespread for rapidly rotating stars in general relativity. We construct and tabulate polytropic sequences of fully relativistic rotating stars of constant rest mass and entropy. We find that the range of adiabatic indices allowing spin-up extends somewhat above 4/3 because of the nonlinear effects of relativistic gravity. In addition, there is a new class of 'supramassive' stars which will inevitably spin up by losing angular momentum regardless of their equation of state. A supramassive star, spinning up via angular momentum loss, will ultimately evolve until it becomes unstable to catastrophic collapse to a black hole. Spin-up in a rapidly rotating star may thus be an observational precursor to such collapse.
McGinnis, Ryan S.; Perkins, Noel C.
2012-01-01
Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.
Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki
Horinouchi, Takeshi; Murakami, Shin-ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.
2018-01-01
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet’s rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet’s night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus’s atmospheric superrotation. PMID:29887914
Canonical angular momentum compression near the Brillouin limit
NASA Astrophysics Data System (ADS)
Jeong, E.; Gilson, E.; Fajans, J.
2000-10-01
Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.
2014-12-26
geocentric gravitational constant ν basis functions ω angular velocity of the Earth Φ fuel-air ratio φ longitude φ optimal control terminal cost (Mayer) xxvi...vehicle (r), with h as the altitude above the earth’s surface and µ as the geocentric gravitational constant (1.40764e16ft3/s2). g = µ r2 = µ (h+ re) 2 (7
Freitas, Matheus P; Bühl, Michael; O'Hagan, David
2012-02-28
1,2-Difluoroethane is widely recognised to adopt a lower energy gauche rather than anti conformation; this gauche effect has its origin in hyperconjugation; however, surprisingly the (1)J(CF) coupling constant is not influenced by hyperconjugation; instead, its magnitude changes with the overall molecular dipole. This journal is © The Royal Society of Chemistry 2012
The behaviour of lubricated EHD contacts subjected to vibrations
NASA Astrophysics Data System (ADS)
Zhang, X.; Glovnea, R. P.
2017-02-01
Machine components containing contacts working in elastohydrodynamic (EHD) conditions are often subjected to vibrations. These may be originated from the mechanism or machine the contact is part of, the surrounding environment and within the contact itself. The influence of vibrations upon the behaviour of elastohydrodynamic films has been studied experimentally in a number of papers, but a comprehensive study of the effect of the parameters of the oscillatory motion upon the film thickness has not been carried out yet. In this study the authors evaluate the effect of the frequency of the oscillatory motion upon the EHD film thickness. Optical interferometry is used to measure lubricant film thickness in a ball-on-flat disc arrangement. A high - speed camera records the interferometric images for later analysis and conversion into film thickness maps. The disc runs at a constant angular velocity while the ball is driven by the traction forces developed in the EHD film. In steady state conditions, this would ensure pure rolling conditions, however in the present investigation the ball is subjected to harmonic vibrations in a direction perpendicular to the plane of the film. The contact under study is lubricated by basic oils and the temperature is kept at a constant value of 60°C. The aim of this paper is to understand how vibrations influence the lubricant film formation.
Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S
2008-09-01
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
Testing ElEvoHI on a multi-point in situ detected Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Amerstorfer, Tanja; Möstl, Christian; Hess, Phillip; Mays, M. Leila; Temmer, Manuela
2017-04-01
The Solar TErrestrial RElations Observatory (STEREO) has provided us a deep insight into the interplanetary propagation of coronal mass ejections (CMEs). Especially the wide-angle heliospheric imagers (HI) enabled the development of a multitude of methods for analyzing the evolution of CMEs through interplanetary (IP) space. Methods able to forecast arrival times and speeds at Earth (or other targets) use the advantage of following a CME's path of propagation up to 1 AU. However, these methods were not able to reduce today's errors in arrival time forecasts to less than ±6 hours, arrival speeds are mostly overestimated by some 100 km s-1. One reason for that is the assumption of constant propagation speed, which is clearly incorrect for most CMEs—especially for those being faster than the ambient solar wind. ElEvoHI, the Ellipse Evolution model (ElEvo) based on HI observations, is a new prediction tool, which uses the benefits of different methods and observations. It provides the possibility to adjust the CME frontal shape (angular width, ellipse aspect ratio) and the direction of motion for each CME event individually. This information can be gained from Graduated Cylindrical Shell (GCS) flux-rope fitting within coronagraph images. Using the Ellipse Conversion (ElCon) method, the observed HI elongation angle is converted into a unit of distance, which reveals the kinematics of the event. After fitting the time-distance profile of the CME using the drag-based equation of motion, where real-time in situ solar wind speed from 1 AU is used as additional input, we receive all input parameters needed to run a forecast using the ElEvo model and to predict arrival times and speeds at any target of interest in IP space. Here, we present a test on a slow CME event of 3 November 2010, in situ detected by the lined-up spacecraft MESSENGER and STEREO Behind. We gain the shape of the CME front from a cut of the 3D GCS CME shape with the ecliptic plane, resulting in an almost ideal ElEvoHI forecast of arrival time and speed at 1 AU.
Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo
2015-06-01
Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization of Forest Opacity Using Multi-Angular Emission and Backscatter Data
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; O'Neill, Peggy; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.
2010-01-01
This paper discusses the results from a series of field experiments using ground-based L-band microwave active/passive sensors. Three independent approaches are employed to the microwave data to determine vegetation opacity of coniferous trees. First, a zero-order radiative transfer model is fitted to multi-angular microwave emissivity data in a least-square sense to provide "effective" vegetation optical depth. Second, a ratio between radar backscatter measurements with the corner reflector under trees and in an open area is calculated to obtain "measured" tree propagation characteristics. Finally, the "theoretical" propagation constant is determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). The results indicate that "effective" values underestimate attenuation values compared to both "theoretical" and "measured" values.
The selective use of functional optical variables in the control of forward speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.
Fast two-position initial alignment for SINS using velocity plus angular rate measurements
NASA Astrophysics Data System (ADS)
Chang, Guobin
2015-10-01
An improved two-position initial alignment model for strapdown inertial navigation system is proposed. In addition to the velocity, angular rates are incorporated as measurements. The measurement equations in full three channels are derived in both navigation and body frames and the latter of which is found to be preferred. The cross-correlation between the process and the measurement noises is analyzed and addressed in the Kalman filter. The incorporation of the angular rates, without introducing additional device or external signal, speeds up the convergence of estimating the attitudes, especially the heading. In the simulation study, different algorithms are tested with different initial errors, and the advantages of the proposed method compared to the conventional one are validated by the simulation results.
Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2017-01-01
This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.
Comparison of three-dimensional parameters of Halo CMEs using three cone models
NASA Astrophysics Data System (ADS)
Na, H.; Moon, Y.; Jang, S.; Lee, K.
2012-12-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.
NASA Astrophysics Data System (ADS)
Jang, G. H.; Yeom, J. H.; Kim, M. G.
2007-03-01
This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.
Stable plume rise in a shear layer.
Overcamp, Thomas J
2007-03-01
Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
Rotating Hele-Shaw cell with a time-dependent angular velocity
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.
2017-12-01
Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.
Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing
NASA Astrophysics Data System (ADS)
He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin
In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds accelerated the early process of visual cognition. There is a synergic effect between the effects of constant low-speed rotation and rotating speed of the background. Under certain conditions, they both served to facilitate the visual cognitive processing, and it had been started at the stage when extrastriate cortex perceiving the visual signal. Under the condition of constant low-speed rotation in higher cognitive load tasks, the rapid rotation of the background enhanced the magnitude of the signal transmission in the visual path, making signal to noise ratio increased and a higher signal to noise ratio is clearly in favor of target perception and recognition. This gave rise to the hypothesis that higher cognitive load tasks with higher top-down control had more power in counteracting the inhibition effect of higher velocity rotation background. Acknowledgements: This project was supported by National Natural Science Foundation of China (No. 30670715) and National High Technology Research and Development Program of China (No.2007AA04Z254).
Provasi, Patricio F; Sauer, Stephan P A
2006-07-01
The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.
NASA Technical Reports Server (NTRS)
Fitz-Coy, Norman; Liu, Ming-Cheng
1995-01-01
A two-phase proportional navigation scheme is developed for the case of two rigid bodies engaged in a rendezvous/docking maneuver. The target vehicle is nonmaneuvering, but does have constant nonzero angular and linear velocities. Under these conditions, it is shown that previously obtained solutions are not applicable. Analytical solutions are obtained leading to relationships between the transverse and LOS navigation constants. It is shown that the transverse navigation constant for the second phase of the maneuver must be 2. Also, initial conditions necessary for rendezvous are presented.
Observational effects of varying speed of light in quadratic gravity cosmological models
NASA Astrophysics Data System (ADS)
Izadi, Azam; Shacker, Shadi Sajedi; Olmo, Gonzalo J.; Banerjee, Robi
We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (cST) may become variable in that local frame. For theories of the form f(ℛ,ℛμνℛ μν), this variation in cST has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi
2016-01-01
Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.
2016-01-01
Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127
Study of the Structure of Turbulence in Accelerating Transitional Boundary Layers.
1987-12-23
be sufficient to relaminarize even fully turbulent boundary layers. Since local heat transfer rates are very sensitive to the state of the boundary...was calibrated for velocity and angular sensitivity in a low- .’ turbulence 1 1/2-in. dia. jet flow for approximately twenty jet flow speeds "-’ ranging...intersection of the wires of the x. The angular sensitivity of the wires was assumed to conform to Champagne’s k2 law (Ref. 20), UE2 (0) = U2(0 = 0) (cos 2
Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1. Algorithm Development
1990-06-01
Dynamic Module 39 Table 3.1 Aircraft Approach Category Classification (FAA, 1988). Category Landing Speed (1.3 Vst ,,,) A less than 91 Knots B From 91 to...inertia about the vertical axis, in Kg-m-m, a is the angular acceleration (rad/sec,) of the aircraft fuselage as it executes the turning maneuver, wb is the...breakdown of the angular acceleration yields for Eq. 3.13 the following, I/ (V R 2 / g"= m g wb Im/100 (1- Im100) (3.16) where, R represents the rate of
Angular Speed of a Compact Disc
NASA Astrophysics Data System (ADS)
Sawicki, Mikolaj ``Mik''
2006-09-01
A spinning motion of a compact disc in a CD player offers an interesting and challenging problem in rotational kinematics with a nonconstant angular acceleration that can be incorporated into a typical introductory physics class for engineers and scientists. It can be used either as an example presented during the lecture, emphasizing application of calculus, or as a homework assignment that could be handled easily with the help of a spreadsheet, thus eliminating the calculus aspect altogether. I tried both approaches, and the spreadsheet study was favored by my students.
Nickalls, R W
1996-09-01
Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.
78 FR 78294 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... Control Unit--Constant Speed Motor/Generator (GCU-CSM/G) failed the operational test. Investigations... airplanes. This proposed AD was prompted by the failure of the generator control unit-constant speed motor... costing up to $17,314, for a cost of up to $17,399 per product. We have no way of determining the number...
Recovering a redshift-extended varying speed of light signal from galaxy surveys
NASA Astrophysics Data System (ADS)
Salzano, Vincenzo
2017-04-01
We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade by Salzano, Dąbrowski, and Lazkoz [Phys. Rev. Lett.114, 101304 (2015), 10.1103/PhysRevLett.114.101304; Phys. Rev. D 93, 063521 (2016), 10.1103/PhysRevD.93.063521], where it was argued that such a signal could be detected at a single redshift location only. Here, we show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, WFirst-2.4 and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (baryon acoustic oscillations) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a ˜1 % VSL signal can be detected at 3 σ confidence level in the redshift interval z ∈[0. ,1.55 ]. Smaller signals (˜0.1 % ) will be hardly detected (even if some lower possibility for a 1 σ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a 0.01-order curvature in the same redshift range with a very high confidence.
Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig
2000-01-01
The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.
NASA Astrophysics Data System (ADS)
He, Zhen-Zong; Liang, Dong; Mao, Jun-Kui; Han, Xing-Si
2018-05-01
Not Available Project supported by the Jiangsu Provincial Natural Science Foundation, China (Grant Nos. BK20170800 and BK20160794) and the National Natural Science Foundation of China (Grant No. 51606095).
Black hole solutions in d = 5 Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Radu, Eugen
2013-11-01
The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.
Light cone structure near null infinity of the Kerr metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Shan; Shang Yu; Graduate School of Chinese Academy of Sciences, Beijing, 100080
2007-02-15
Motivated by our attempt to understand the question of angular momentum of a relativistic rotating source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then furthermore » developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr metric are also briefly discussed.« less
A straightforward method to compute average stochastic oscillations from data samples.
Júlvez, Jorge
2015-10-19
Many biological systems exhibit sustained stochastic oscillations in their steady state. Assessing these oscillations is usually a challenging task due to the potential variability of the amplitude and frequency of the oscillations over time. As a result of this variability, when several stochastic replications are averaged, the oscillations are flattened and can be overlooked. This can easily lead to the erroneous conclusion that the system reaches a constant steady state. This paper proposes a straightforward method to detect and asses stochastic oscillations. The basis of the method is in the use of polar coordinates for systems with two species, and cylindrical coordinates for systems with more than two species. By slightly modifying these coordinate systems, it is possible to compute the total angular distance run by the system and the average Euclidean distance to a reference point. This allows us to compute confidence intervals, both for the average angular speed and for the distance to a reference point, from a set of replications. The use of polar (or cylindrical) coordinates provides a new perspective of the system dynamics. The mean trajectory that can be obtained by averaging the usual cartesian coordinates of the samples informs about the trajectory of the center of mass of the replications. In contrast to such a mean cartesian trajectory, the mean polar trajectory can be used to compute the average circular motion of those replications, and therefore, can yield evidence about sustained steady state oscillations. Both, the coordinate transformation and the computation of confidence intervals, can be carried out efficiently. This results in an efficient method to evaluate stochastic oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu
2015-05-15
Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, S.; Bukhari, S.; Department of Physics, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Azad Kashmir
Keeping in view the kinetic treatment for plasma particles, the electrostatic twisted dust-acoustic (DA) and dust-ion-acoustic (DIA) waves are investigated in a collisionless unmagnetized multi-component dusty plasma, whose constituents are the electrons, singly ionized positive ions, and negatively charged massive dust particulates. With this background, the Vlasov–Poisson equations are coupled together to derive a generalized dielectric constant by utilizing the Laguerre-Gaussian perturbed distribution function and electrostatic potential in the paraxial limit. The dispersion and damping rates of twisted DA and DIA waves are analyzed with finite orbital angular momentum states in a multi-component dusty plasma. Significant modifications concerning the realmore » wave frequencies and damping rates appeared with varying twisted dimensionless parameter and dust concentration. In particular, it is shown that dust concentration enhances the phase speed of the DIA waves in contrary to DA waves, whereas the impact of twisted parameter reduces the frequencies of both DA and DIA waves. The results should be useful for the understanding of particle transport and trapping phenomena caused by wave excitation in laboratory dusty plasmas.« less
Orbital revolution of a pair of bubbles in an acoustic field
NASA Astrophysics Data System (ADS)
Shirota, Minori; Yamashita, Kou; Inamura, Takao
2011-11-01
This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging; the cyclic bubble oscillation was appeared to slow down by capturing images at the framing rate close to the forcing frequency. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along a circular orbit around the center of mass of the orbiting two bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force. The angular velocity of orbital revolution increases linearly with the increase in Bjerknes force.
The measurement of dynamic radii for passenger car tyre
NASA Astrophysics Data System (ADS)
Anghelache, G.; Moisescu, R.
2017-10-01
The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less
Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, H.; Moon, Y.
2011-12-01
Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).
Higher-speed coronal mass ejections and their geoeffectiveness
NASA Astrophysics Data System (ADS)
Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha
2018-06-01
We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°< W < 360°) and non-halo (W < 120°). From further analysis, we found that front halo coronal mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.
Air To Air Helicopter Fire Control Equations and Software Generation.
1979-11-01
A A A A v D1. Bin), velocity (VTs, VTI. VTm). and acceleration (ATs, ATI. ATm) using the measured values of range. Rm. angular rate of the LOS W s...10 second time constant. Note that the input to each integrator also has cross channel coupling terms which are cross products of the LOS angular rate...ownship’s velocity (Vs. V1. Vm). This is subtracted from the estimated target velocity ( VsT . 01T. VmT) before the inal integration so that the
Rotating black holes in higher dimensions with a cosmological constant.
Gibbons, G W; Lü, H; Page, Don N; Pope, C N
2004-10-22
We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and the Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S(D-2) bundles over S2, infinitely many for each odd D>/=5. Applications to string theory and M-theory are indicated.
Description and test results of a variable speed, constant frequency generating system
NASA Astrophysics Data System (ADS)
Brady, F. J.
1985-12-01
The variable-speed, constant frequency generating system developed for the Mod-0 wind turbine is presented. This report describes the system as it existed at the conclusion of the project. The cycloconverter control circuit is described including the addition of field-oriented control. The laboratory test and actual wind turbine test results are included.
NASA Astrophysics Data System (ADS)
Viswanathan, Sasi Prabhakaran
Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These results, obtained in the Spacecraft Guidance, Navigation and Control Laboratory at New Mexico State University, demonstrate the performance of this estimation scheme with the noisy raw data from the smartphone sensors. Keywords: Spacecraft, momentum exchange devices, control moment gyroscope, variational mechanics, geometric mechanics, variational integrators, attitude determination, attitude control, ADCS, estimation, ASCMG, VSCMG, cubesat, mechatronics, smartphone, Android, MEMS sensor, embedded programming, microcontroller, brushless DC drives, HIL simulation.
Angular oversampling with temporally offset layers on multilayer detectors in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjölin, Martin, E-mail: martin.sjolin@mi.physics.kth.se; Danielsson, Mats
2016-06-15
Purpose: Today’s computed tomography (CT) scanners operate at an increasingly high rotation speed in order to reduce motion artifacts and to fulfill the requirements of dynamic acquisition, e.g., perfusion and cardiac imaging, with lower angular sampling rate as a consequence. In this paper, a simple method for obtaining angular oversampling when using multilayer detectors in continuous rotation CT is presented. Methods: By introducing temporal offsets between the measurement periods of the different layers on a multilayer detector, the angular sampling rate can be increased by a factor equal to the number of layers on the detector. The increased angular samplingmore » rate reduces the risk of producing aliasing artifacts in the image. A simulation of a detector with two layers is performed to prove the concept. Results: The simulation study shows that aliasing artifacts from insufficient angular sampling are reduced by the proposed method. Specifically, when imaging a single point blurred by a 2D Gaussian kernel, the method is shown to reduce the strength of the aliasing artifacts by approximately an order of magnitude. Conclusions: The presented oversampling method is easy to implement in today’s multilayer detectors and has the potential to reduce aliasing artifacts in the reconstructed images.« less
NASA Astrophysics Data System (ADS)
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
NASA Astrophysics Data System (ADS)
Xiang, Y.; Chen, C. W.
2017-05-01
The magnetization distribution of a bilayer exchange spring system with mutually orthogonal anisotropies was investigated by micromagnetic simulation. Results showed that the spatial change rate of the magnetization direction could be engineered by varying the material parameters, layer thicknesses, and magnetic field. When no magnetic field is applied, this angular change rate is determined by three parameter ratios: a ratio of the exchange energy and anisotropy constants of both layers and two thickness ratios of both layers. If these three ratios are kept invariant, the ratio of the angular change of the soft layer over the hard layer will remain the same. When a magnetic field is applied, two more ratios concerning the magnetic field should be added to determine the spatial angular change of the magnetization direction.
New procedure for gear fault detection and diagnosis using instantaneous angular speed
NASA Astrophysics Data System (ADS)
Li, Bing; Zhang, Xining; Wu, Jili
2017-02-01
Besides the extreme complexity of gear dynamics, the fault diagnosis results in terms of vibration signal are sometimes easily misled and even distorted by the interference of transmission channel or other components like bearings, bars. Recently, the research field of Instantaneous Angular Speed (IAS) has attracted significant attentions due to its own advantages over conventional vibration analysis. On the basis of IAS signal's advantages, this paper presents a new feature extraction method by combining the Empirical Mode Decomposition (EMD) and Autocorrelation Local Cepstrum (ALC) for fault diagnosis of sophisticated multistage gearbox. Firstly, as a pre-processing step, signal reconstruction is employed to address the oversampled issue caused by the high resolution of the angular sensor and the test speed. Then the adaptive EMD is used to acquire a number of Intrinsic Mode Functions (IMFs). Nevertheless, not all the IMFs are needed for the further analysis since different IMFs have different sensitivities to fault. Hence, the cosine similarity metric is introduced to select the most sensitive IMF. Even though, the sensitive IMF is still insufficient for the gear fault diagnosis due to the weakness of the fault component related to the gear fault. Therefore, as the final step, ALC is used for the purpose of signal de-noising and feature extraction. The effectiveness and robustness of the new approach has been validated experimentally on the basis of two gear test rigs with gears under different working conditions. Diagnosis results show that the new approach is capable of effectively handling the gear fault diagnosis i.e., the highlighted quefrency and its rahmonics corresponding to the rotary period and its multiple are displayed clearly in the cepstrum record of the proposed method.
1986-01-01
physiological changes that contribute to the state of arousal upon which a smoking habit may depend. TheI radial muscle of the iris in the eye contracts...studied the vestibular nystagnus pattern of smokers; amplitude, frequency, speed of slow component, speed of fast component, and angular deviation of eyes ...carbon monoxide was measured before and after treatment in order to estimate the degree of inhalation, and cigarette butts were collected for analysis
Circuit Regulates Speed Of dc Motor
NASA Technical Reports Server (NTRS)
Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.
1990-01-01
Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.
NASA Astrophysics Data System (ADS)
Delhi Babu, R.; Ganesh, S.
2018-04-01
The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.
Constant power speed range extension of surface mounted PM motors
Lawler, Jack Steward; Bailey, John Milton
2001-01-01
A circuit and method for controlling a rotating machine (11) in the constant horsepower range above base speed uses an inverter (15) having SCR's (T1-T6) connected in series with the primary commutation switches (Q1-Q6) to control turn off of the primary commutation switches and to protect the primary commutation switches from faults. The primary commutation switches (Q1-Q6) are controlled by a controller (14), to fire in advance or after a time when the back emf equals the applied voltage, and then to turn off after a precise dwell time, such that suitable power is developed at speeds up to at least six times base speed.
Shaft instantaneous angular speed for blade vibration in rotating machine
NASA Astrophysics Data System (ADS)
Gubran, Ahmed A.; Sinha, Jyoti K.
2014-02-01
Reliable blade health monitoring (BHM) in rotating machines like steam turbines and gas turbines, is a topic of research since decades to reduce machine down time, maintenance costs and to maintain the overall safety. Transverse blade vibration is often transmitted to the shaft as torsional vibration. The shaft instantaneous angular speed (IAS) is nothing but the representing the shaft torsional vibration. Hence the shaft IAS has been extracted from the measured encoder data during machine run-up to understand the blade vibration and to explore the possibility of reliable assessment of blade health. A number of experiments on an experimental rig with a bladed disk were conducted with healthy but mistuned blades and with different faults simulation in the blades. The measured shaft torsional vibration shows a distinct difference between the healthy and the faulty blade conditions. Hence, the observations are useful for the BHM in future. The paper presents the experimental setup, simulation of blade faults, experiments conducted, observations and results.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
NASA Astrophysics Data System (ADS)
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
Selective Use of Optical Variables to Control Forward Speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.
Mansouri, Mahdi; Salamonsen, Robert F.; Lim, Einly; Akmeliawati, Rini; Lovell, Nigel H.
2015-01-01
In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach. PMID:25849979
Scale dependencies of proton spin constituents with a nonperturbative αs
NASA Astrophysics Data System (ADS)
Jia, Shaoyang; Huang, Feng
2012-11-01
By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.
Zhao, Hao; Feng, Hao
2013-01-01
An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911
MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-11-01
When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due tomore » anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.« less
Determination of the Limiting Magnitude
NASA Technical Reports Server (NTRS)
Kingery, Aaron; Blaauw, Rhiannon
2017-01-01
The limiting magnitude of an optical camera system is an important property to understand since it is used to find the completeness limit of observations. Limiting magnitude depends on the hardware and software of the system, current weather conditions, and the angular speed of the objects observed. If an object exhibits a substantial angular rate during the exposure, its light spreads out over more pixels than the stationary stars. This spreading causes the limiting magnitude to be brighter when compared to the stellar limiting magnitude. The effect, which begins to become important when the object moves a full width at half max during a single exposure or video frame. For targets with high angular speeds or camera systems with narrow field of view or long exposures, this correction can be significant, up to several magnitudes. The stars in an image are often used to measure the limiting magnitude since they are stationary, have known brightness, and are present in large numbers, making the determination of the limiting magnitude fairly simple. In order to transform stellar limiting magnitude to object limiting magnitude, a correction must be applied accounting for the angular velocity. This technique is adopted in meteor and other fast-moving object observations, as the lack of a statistically significant sample of targets makes it virtually impossible to determine the limiting magnitude before the weather conditions change. While the weather is the dominant factor in observing satellites, the limiting magnitude for meteors also changes throughout the night due to the motion of a meteor shower or sporadic source radiant across the sky. This paper presents methods for determining the limiting stellar magnitude and the conversion to the target limiting magnitude.
Optimum Orbit Plane Change Using a Skip Reentry Trajectory for the Space Shuttle Orbiter.
1978-12-01
by the hat symbol, " , and i,j,k represent unit vectors for the YW frame. The angular velocity of the earth is constant and denoted by w. Thus V re is...the equations of motion can be found. In component form the equations are: (6M/r3)x + 4 (Cos - sn ) vst 1 mm Msv 3 b1 bm y - (uM/r3)y + L (coso...plane change, due to the skip reentry maneuver is determined by comparing the states of the system before and after the maneuver. The angular momentum
NASA Astrophysics Data System (ADS)
Kissin, Yevgeni; Thompson, Christopher
2015-07-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.
NASA Astrophysics Data System (ADS)
Middleton, Chad A.; Weller, Dannyl
2016-04-01
We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.
Bańkosz, Ziemowit; Winiarski, Sławomir
2018-06-01
The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands - after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and "heavy" topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force -"heavy" topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke.
Effective-range parameters and vertex constants for Λ-nuclear systems
NASA Astrophysics Data System (ADS)
Rakityansky, S. A.; Gopane, I. M.
For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.
Some semiclassical structure constants for AdS 4 × CP 3
NASA Astrophysics Data System (ADS)
Ahn, Changrim; Bozhilov, Plamen
2018-02-01
We compute structure constants in three-point functions of three string states in AdS 4× CP 3 in the framework of the semiclassical approach. We consider HHL correlation functions where two of the states are "heavy" string states of finite-size giant magnons carrying one or two angular momenta and the other one corresponds to such "light" states as dilaton operators with non-zero momentum, primary scalar operators, and singlet scalar operators with higher string levels.
Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT
Ackermann, M.; Ajello, M.; Albert, A.; ...
2012-04-23
The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidencemore » level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.« less
Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT
NASA Technical Reports Server (NTRS)
Ferrara, E. C.; McEnery, J. E.; Troja, E.
2012-01-01
The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.
Research on grid connection control technology of double fed wind generator
NASA Astrophysics Data System (ADS)
Ling, Li
2017-01-01
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
Collision detection for spacecraft proximity operations
NASA Technical Reports Server (NTRS)
Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.
1991-01-01
A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Relationship of strength of turbulence to received power
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Because of contributions due to reflection, the determination of the turbulence refractive index structure constant may be affected. For pure scattering from turbulence in the inertial subrange, the radar echo power can be used to calculate the refractive index structure constant. The radar power is determined by a convolution integral. If the antenna beam is swung to sufficiently large off-zenith angles ( 12.5 deg) so that a quasi-isotropic response from the tail ends of the Gaussian angular distribution can be anticipated, the evaluation of the convolution integral depends only on the known antenna pattern of the radar. This procedure, swinging the radar beam to attenuate the reflected component, may be called angular or direction filtering. The tilted antenna also may be pick up reflected components from near the zenith through the sidelobes. This can be tested by the evaluation of the correlation function. This method applies a time domain filtering of the intensity time series but needs a very careful selection of the high pass filters.
Changes in Muscle and Joint Coordination in Learning to Direct Forces
Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.
2008-01-01
While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988
Uniform circular motion concept attainment through circle share learning model using real media
NASA Astrophysics Data System (ADS)
Ponimin; Suparmi; Sarwanto; Sunarno, W.
2017-01-01
Uniform circular motion is an important concept and has many applications in life. Student’s concept understanding of uniform circular motion is not optimal because the teaching learning is not carried out properly in accordance with the characteristics of the concept. To improve student learning outcomes required better teaching learning which is match with the characteristics of uniform circular motion. The purpose of the study is to determine the effect of real media and circle share model to the understanding of the uniform circular motion concept. The real media was used to visualize of uniform circular motion concept. The real media consists of toy car, round table and spring balance. Circle share model is a learning model through discussion sequentially and programmed. Each group must evaluate the worksheets of another group in a circular position. The first group evaluates worksheets the second group, the second group evaluates worksheets third group, and the end group evaluates the worksheets of the first group. Assessment of learning outcomes includes experiment worksheets and post-test of students. Based on data analysis we obtained some findings. First, students can explain the understanding of uniform circular motion whose angular velocity and speed is constant correctly. Second, students can distinguish the angular velocity and linear velocity correctly. Third, students can explain the direction of the linear velocity vector and the direction of the centripetal force vector. Fourth, the student can explain the influence of the mass, radius, and velocity toward the centripetal force. Fifth, students can explain the principle of combined of wheels. Sixth, teaching learning used circle share, can increase student activity, experimental results and efficiency of discussion time.
Changes in muscle and joint coordination in learning to direct forces.
Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A
2008-08-01
While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.
NASA Astrophysics Data System (ADS)
Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.
2003-11-01
We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.
Angular coherence in ultrasound imaging: Theory and applications
Li, You Leo; Dahl, Jeremy J.
2017-01-01
The popularity of plane-wave transmits at multiple transmit angles for synthetic transmit aperture (or coherent compounding) has spawned a number of adaptations and new developments of ultrasonic imaging. However, the coherence properties of backscattered signals with plane-wave transmits at different angles are unknown and may impact a subset of these techniques. To provide a framework for the analysis of the coherence properties of such signals, this article introduces the angular coherence theory in medical ultrasound imaging. The theory indicates that the correlation function of such signals forms a Fourier transform pair with autocorrelation function of the receive aperture function. This conclusion can be considered as an extended form of the van Cittert Zernike theorem. The theory is validated with simulation and experimental results obtained on speckle targets. On the basis of the angular coherence of the backscattered wave, a new short-lag angular coherence beamformer is proposed and compared with an existing spatial-coherence-based beamformer. An application of the theory in phase shift estimation and speed of sound estimation is also presented. PMID:28372139
The steady-state flow quality in a model of a non-return wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Eckert, W. T.; Kelly, M. W.
1972-01-01
The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.
A fiber optic sensor for noncontact measurement of shaft speed, torque, and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
A fiber optic sensor for noncontact measurement of shaft speed, torque and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
Effect of Hoop Stress on Ball Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; August, Richard; Coe, Harold H.
1995-01-01
A finite-element analysis (FEA) of a generic, dimensionally normalized inner race of an angular-contact ball bearing was performed under varying conditions of speed and the press (or interference) fit of the inner-race bore on a journal. The FEA results at the ball-race contact were used to derive an equation from which was obtained the radius of an equivalent cylindrical bearing race with the same or similar hoop stress. The radius of the equivalent cylinder was used to obtain a generalized closed-form approximation of the hoop stresses at the ball-inner-race contact in an angular-contact ball bearing. A life analysis was performed on both a 45- and a 120-mm-bore, angular-contact ball bearing. The predicted lives with and without hoop stress were compared with experimental endurance results obtained at 12000 and 25000 rpm with the 120-mm-bore ball bearing. A life factor equation based on hoop stress is presented.
Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain
2009-10-01
At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
2-dimensional models of rapidly rotating stars I. Uniformly rotating zero age main sequence stars
NASA Astrophysics Data System (ADS)
Roxburgh, I. W.
2004-12-01
We present results for 2-dimensional models of rapidly rotating main sequence stars for the case where the angular velocity Ω is constant throughout the star. The algorithm used solves for the structure on equipotential surfaces and iteratively updates the total potential, solving Poisson's equation by Legendre polynomial decomposition; the algorithm can readily be extended to include rotation constant on cylinders. We show that this only requires a small number of Legendre polynomials to accurately represent the solution. We present results for models of homogeneous zero age main sequence stars of mass 1, 2, 5, 10 M⊙ with a range of angular velocities up to break up. The models have a composition X=0.70, Z=0.02 and were computed using the OPAL equation of state and OPAL/Alexander opacities, and a mixing length model of convection modified to include the effect of rotation. The models all show a decrease in luminosity L and polar radius Rp with increasing angular velocity, the magnitude of the decrease varying with mass but of the order of a few percent for rapid rotation, and an increase in equatorial radius Re. Due to the contribution of the gravitational multipole moments the parameter Ω2 Re3/GM can exceed unity in very rapidly rotating stars and Re/Rp can exceed 1.5.
Complete tidal evolution of Pluto-Charon
NASA Astrophysics Data System (ADS)
Cheng, W. H.; Lee, Man Hoi; Peale, S. J.
2014-05-01
Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.
The area-angular momentum inequality for black holes in cosmological spacetimes
NASA Astrophysics Data System (ADS)
Gabach Clément, María Eugenia; Reiris, Martín; Simon, Walter
2015-07-01
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant Λ \\gt 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π | J| ≤slant A\\sqrt{(1-Λ A/4π )(1-Λ A/12π )}, which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound | J| ≤slant {J}{max}≈ 0.17/Λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π | J| ≤slant A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a ‘mass functional’, which is basically a suitably regularized harmonic map {{{S}}}2\\to {{{H}}}2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized ‘Carter-identity’, and various techniques from variational calculus, including the mountain pass theorem.
Microstrip Antenna Generates Circularly Polarized Beam
NASA Technical Reports Server (NTRS)
Huang, J.
1986-01-01
Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.
NASA Astrophysics Data System (ADS)
Cronin, V. S.
2012-12-01
First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.
Martin, Raleigh L; Kok, Jasper F
2017-06-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.
Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress
Martin, Raleigh L.; Kok, Jasper F.
2017-01-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.
2014-12-10
The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject tomore » loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. This paper reports on analytical analyses and simulations of the effects of flexibility and time dependent material properties (viscoelasticity) on aerodynamic derivatives and on lateral, longitudinal, directional and spin stability derivatives. Cases of both constant and variable flight and maneuver velocities are considered. Analytical results for maneuvers involving constant and time dependent rolling velocities are analyzed, discussed and evaluated. The relationships between rolling velocity p and aileron angular displacement β as well as control effectiveness are analyzed and discussed in detail for elastic and viscoelastic wings. Such analyses establish the roll effectiveness derivatives (∂[p(t)])/(V{sub ∞}∂β(t)) . Similar studies involving other stability and aerodynamic derivatives are also undertaken. The influence of the twin effects of viscoelastic and elastic materials and of variable flight, rolling, pitching and yawing velocities on longitudinal, lateral and directional are also investigated. Variable flight velocities, encountered during maneuvers, render the usually linear problem at constant velocities into a nonlinear one.« less
NASA Astrophysics Data System (ADS)
Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.
2014-07-01
An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.
A spectro-interferometric view of l Carinae's modulated pulsations
NASA Astrophysics Data System (ADS)
Anderson, Richard I.; Mérand, Antoine; Kervella, Pierre; Breitfelder, Joanne; Eyer, Laurent; Gallenne, Alexandre
Classical Cepheids are radially pulsating stars that enable important tests of stellar evolution and play a crucial role in the calibration of the local Hubble constant. l Carinae is a particularly well-known distance calibrator, being the closest long-period (P ~ 35.5 d) Cepheid and subtending the largest angular diameter. We have carried out an unprecedented observing program to investigate whether recently discovered cycle-to-cycle changes (modulations) of l Carinae's radial velocity (RV) variability are mirrored by its variability in angular size. To this end, we have secured a fully contemporaneous dataset of high-precision RVs and high-precision angular diameters. Here we provide a concise summary of our project and report preliminary results. We confirm the modulated nature of the RV variability and find tentative evidence of cycle-to-cycle differences in l Car's maximal angular diameter. Our analysis is exploring the limits of state-of-the-art instrumentation and reveals additional complexity in the pulsations of Cepheids. If confirmed, our result suggests a previously unknown pulsation cycle dependence of projection factors required for determining Cepheid distances via the Baade-Wesselink technique.
An explanation for the tiny value of the cosmological constant and the low vacuum energy density
NASA Astrophysics Data System (ADS)
Nassif, Cláudio
2015-09-01
The paper aims to provide an explanation for the tiny value of the cosmological constant and the low vacuum energy density to represent the dark energy. To accomplish this, we will search for a fundamental principle of symmetry in space-time by means of the elimination of the classical idea of rest, by including an invariant minimum limit of speed in the subatomic world. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks down the Lorentz symmetry. The metric of the flat space-time shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological length scales. Thus, the equation of state for the cosmological constant [ p(pressure) (energy density)] naturally emerges from such a space-time with an energy barrier of a minimum speed. The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained, being in agreement with the observational results of Perlmutter, Schmidt and Riess.
The span as a fundamental factor in airplane design
NASA Technical Reports Server (NTRS)
Lachmann, G
1928-01-01
Previous theoretical investigations of steady curvilinear flight did not afford a suitable criterion of "maneuverability," which is very important for judging combat, sport and stunt-flying airplanes. The idea of rolling ability, i.e., of the speed of rotation of the airplane about its X axis in rectilinear flight at constant speed and for a constant, suddenly produced deflection of the ailerons, is introduced and tested under simplified assumptions for the air-force distribution over the span. This leads to the following conclusions: the effect of the moment of inertia about the X axis is negligibly small, since the speed of rotation very quickly reaches a uniform value.
Barron, Andrew; Srinivasan, Mandyam V
2006-03-01
There is now increasing evidence that honey bees regulate their ground speed in flight by holding constant the speed at which the image of the environment moves across the eye (optic flow). We have investigated the extent to which ground speed is affected by headwinds. Honey bees were trained to enter a tunnel to forage at a sucrose feeder placed at its far end. Ground speeds in the tunnel were recorded while systematically varying the visual texture of the tunnel, and the strength of headwinds experienced by the flying bees. We found that in a flight tunnel bees used visual cues to maintain their ground speed, and adjusted their air speed to maintain a constant rate of optic flow, even against headwinds which were, at their strongest, 50% of a bee's maximum recorded forward velocity. Manipulation of the visual texture revealed that headwind is compensated almost fully even when the optic flow cues are very sparse and subtle, demonstrating the robustness of this visual flight control system. We discuss these findings in the context of field observations of flying bees.
Turbulence Scales, Rise Times, Caustics, and the Simulation of Sonic Boom Propagation
NASA Technical Reports Server (NTRS)
Pierce, Allan D.
1996-01-01
The general topic of atmospheric turbulence effects on sonic boom propagation is addressed with especial emphasis on taking proper and efficient account of the contributions of the portion oi the turbulence that is associated with extremely high wavenumber components. The recent work reported by Bart Lipkens in his doctoral thesis is reexamined to determine whether the good agreement between his measured rise times with the 1971 theory of the author is fortuitous. It is argued that Lipken's estimate of the distance to the first caustic was a gross overestimate because of the use of a sound speed correlation function shaped like a gaussian curve. In particular, it is argued that the expected distance to the first caustic varies with the kinematic viscosity nu and the energy epsilon dissipated per unit mass per unit time, and the sound speed c as : d(sub first caustic) = nu(exp 7/12) c(exp 2/3)/ epsilon(exp 5/12)(nu x epsilon/c(exp 4))(exp a), where the exponent a is greater than -7/12 and can be argued to be either O or 1/24. In any event, the surprising aspect of the relationship is that it actually goes to zero as the viscosity goes to zero with s held constant. It is argued that the apparent overabundance of caustics can be grossly reduced by a general computational and analytical perspective that partitions the turbulence into two parts, divided by a wavenumber k(sub c). Wavenumbers higher than kc correspond to small-scale turbulence, and the associated turbulence can be taken into account by a renormalization of the ambient sound speed so that the result has a small frequency dependence that results from a spatial averaging over of the smaller-scale turbulent fluctuations. Selection of k(sub c). can be made so large that only a very small number of caustics are encountered if one adopts the premise that the frequency dispersion of pulses is caused by that part of the turbulence spectrum which lies in the inertial range originally predicted by Kolmogoroff. The acoustic propagating wave's dispersion relation has the acoustic wavenumber being of the form k = (omega/c) + F(omega), where c is a spatially averaged sound speed and where, for mechanical turbulence, the extra term F(omega) must depend on only the angular frequency omega, the sound speed c, and the turbulent energy dissipation epsilon per unit fluid mass and per unit time. If the turbulence is weak, then the quantity F(omega) has to be of second order in the portions of the turbulent fluid velocity in the inertial range, so, following Kolmogoroff's reasoning, it must vary with epsilon as epsilon(exp 2/3). Simple dimensional analysis then reveals that F(omega) is K epsilon(exp 2/3) c(exp -7/3) omega(exp l/3), K being a universal dimensionless complex constant.
Rolling rhythms in front crawl swimming with six-beat kick.
Sanders, Ross H; Psycharakis, Stelios G
2009-02-09
The purpose of this study was to establish the rhythm characteristics of skilled front crawl swimmers using a six-beat kick. These included the amplitudes of the first three Fourier harmonics (H1, H2, H3) and their percent contributions to power contained in the angular displacement signals of the shoulders, hips, knees, and ankles with respect to the longitudinal axis in line with the swimming direction. Three-dimensional video data of seven national/international level swimmers were collected during simulated 200m front crawl races in which swimmers maintained six-beat kicking patterns. Swimmers differed in all variables but had small variability across the four 50m laps. Modest changes occurred during the 200m, with the exception of shoulder roll, which remained constant and was represented almost entirely by a single sinusoid (H1). Changes across laps reached significance for swimming speed, stroke rate, hip roll, and H3 wave velocity between the knee and ankle. A H3 body wave of moderate and increasing velocity travelled caudally from hip to ankle. In the light of existing knowledge of aquatic locomotion this was compatible with the goal of generating propulsion in an efficient manner.
Roy, G; Bissonnette, L R
2001-09-20
Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.
Subluminal group velocity and dispersion of Laguerre Gauss beams in free space.
Bareza, Nestor D; Hermosa, Nathaniel
2016-05-27
That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein's postulate in special relativity. This has been a basic assumption in light's various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light's group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam's divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.
Canonical Transformations of Kepler Trajectories
ERIC Educational Resources Information Center
Mostowski, Jan
2010-01-01
In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these…
Enlivening Physics, a Local Video Disc Project.
ERIC Educational Resources Information Center
McInerney, M.
1989-01-01
Describes how to make and use an inexpensive video disc of physics demonstrations. Discusses the background, production of the disc, subject of the disc including angular momentum, "monkey and the hunter" experiment, Doppler shift, pressure of a constant volume of gas thermometer, and wave effects, and using the disc in classroom. (YP)
Orbital-angular-momentum photons for optical communication in non-Kolmogorov atmospheric turbulence
NASA Astrophysics Data System (ADS)
Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; Hu, Zheng-Da
2018-06-01
We investigate the effects of non-Kolmogorov atmospheric turbulence on the transmission of orbital-angular-momentum single photons for different turbulence aberrations in optical communication, via the channel capacity. For non-Kolmogorov model, the characteristics of atmosphere turbulence may be determined by different cases, including the increasing altitude, the mutative index-of-refraction structure constant and the power-law exponent of non-Kolmogorov spectrum. It is found that the influences of low-order aberrations, including Z-tilt, defocus, astigmatism, and coma aberrations, are different and the turbulence Z-tilt aberration plays a more important role in the decay of the signal.
Characterizing the Peak in the Cosmic Microwave Background Angular Power Spectrum
NASA Astrophysics Data System (ADS)
Knox, Lloyd; Page, Lyman
2000-08-01
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between ~70 and 90 μK. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.
Characterizing the peak in the cosmic microwave background angular power spectrum
Knox; Page
2000-08-14
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between approximately 70 and 90 &mgr;K. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.
Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls
NASA Technical Reports Server (NTRS)
Reyhanoglu, Mahmut; Mcclamroch, N. Harris
1993-01-01
An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.
Non-minimally coupled varying constants quantum cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less
Velocity storage contribution to vestibular self-motion perception in healthy human subjects.
Bertolini, G; Ramat, S; Laurens, J; Bockisch, C J; Marti, S; Straumann, D; Palla, A
2011-01-01
Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.
A novel optical scanner for laser radar
NASA Astrophysics Data System (ADS)
Yao, Shunyu; Peng, Renjun; Gao, Jianshuang
2013-09-01
Laser radar are ideally suitable for recognizing objects, detection, target tracking or obstacle avoidance, because of the high angular and range resolution. In recent years, scannerless ladar has developed rapidly. In contrast with traditional scanner ladar, scannerless ladar has distinct characteristics such as small, compact, high frame rate, wide field of view and high reliability. However, the scannerless ladar is still in the stage of laboratory and the performance cannot meet the demands of practical applications. Hence, traditional scanner laser radar is still mainly applied. In scanner ladar system, optical scanner is the key component which can deflect the direction of laser beam to the target. We investigated a novel scanner based on the characteristic of fiber's light-conductive. The fiber bundles are arranged in a special structure which connected to a motor. When motor working properly, the laser passes through the fibers on incident plane and the location of laser spot on output plane will move along with a straight line in a constant speed. The direction of light will be deflected by taking advantage of transmitting optics, then the linear sweeping of the target can be achieved. A laser radar scheme with high speed and large field of view can be realized. Some researches on scanner are simply introduced on section1. The structure of the optical scanner will be described and the practical applications of the scanner in transmitting and receiving optical paths are discussed in section2. Some characteristic of scanner is calculated in section3. In section4, we report the simulation and experiment of our prototype.
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
NASA Astrophysics Data System (ADS)
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.
Elastic response of binary hard-sphere fluids
NASA Astrophysics Data System (ADS)
Rickman, J. M.; Ou-Yang, H. Daniel
2011-07-01
We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for example, does not. This behavior is shown to be dictated by the angular dependence (in k⃗ space) of derivatives of the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal fluids in laser trapping experiments.
Chi, Wen-Chun; Cheng, Ming-Yang
2014-03-01
Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert
2013-01-01
Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296
Kinematic effects of a short-term fatigue protocol on punt-kicking performance.
Coventry, Evan; Ball, Kevin; Parrington, Lucy; Aughey, Robert; McKenna, Michael
2015-01-01
The punt kick is a fundamental skill used in several team sports; however, there has been a lack of research on how fatigue affects its technique. The purpose of this study was to determine the effects of short-term fatigue on punt-kicking performance. Eight elite and sub-elite Australian Football players performed maximal drop punt kicks on their preferred leg prior to, during and after a match-specific fatigue protocol. Optotrak Certus collected kinematic data from kick foot toe-off until ball contact. Repeated-measures analysis of variance showed a significant increase in 20 m sprint times after each short-term protocol, indicating fatigue. Foot speed did not significantly change with fatigue; however, increases in the range of motion at the pelvis and kicking thigh, along with increases in kicking thigh angular velocity, occurred. For the support leg, maximum knee flexion angular velocity increased while there was greater flexion found at the knee and hip, and greater range of motion at the knee. Players are able to make kinematic adaptations in order to maintain foot speed while punting for maximal distance after short-term efforts.
Angular analysis of the cyclic impacting oscillations in a robotic grinding process
NASA Astrophysics Data System (ADS)
Rafieian, Farzad; Girardin, François; Liu, Zhaoheng; Thomas, Marc; Hazel, Bruce
2014-02-01
In a robotic machining process, a light-weight cutter or grinder is usually held by an articulated robot arm. Material removal is achieved by the rotating cutting tool while the robot end effector ensures that the tool follows a programmed trajectory in order to work on complex curved surfaces or to access hard-to-reach areas. One typical application of such process is maintenance and repair work on hydropower equipment. This paper presents an experimental study of the dynamic characteristics of material removal in robotic grinding, which is unlike conventional grinding due to the lower structural stiffness of the tool-holder robot. The objective of the study is to explore the cyclic nature of this mechanical operation to provide the basis for future development of better process control strategies. Grinding tasks that minimize the number of iterations to converge to the target surface can be better planned based on a good understanding and modeling of the cyclic material removal mechanism. A single degree of freedom dynamic analysis of the process suggests that material removal is performed through high-frequency impacts that mainly last for only a small fraction of the grinding disk rotation period. To detect these discrete cutting events in practice, a grinder is equipped with a rotary encoder. The encoder's signal is acquired through the angular sampling technique. A running cyclic synchronous average is applied to the speed signal to remove its non-cyclic events. The measured instantaneous rotational frequency clearly indicates the impacting nature of the process and captures the transient response excited by these cyclic impacts. The technique also locates the angular positions of cutting impacts in revolution cycles. It is thus possible to draw conclusions about the cyclic nature of dynamic changes in impact-cutting behavior when grinding with a flexible robot. The dynamics of the impacting regime and transient responses to impact-cutting excitations captured synchronously using the angular sampling technique provide feedback that can be used to regulate the material removal process. The experimental results also make it possible to correlate the energy required to remove a chip of metal through impacting with the measured drop in angular speed during grinding.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-10-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-09-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P
2016-01-01
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less
Is the dark halo of the Milky Way prolate?
NASA Astrophysics Data System (ADS)
Bowden, A.; Evans, N. W.; Williams, A. A.
2016-07-01
We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.
Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.
Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J
2013-08-15
Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.
Leadership emergence in a data-driven model of zebrafish shoals with speed modulation
NASA Astrophysics Data System (ADS)
Zienkiewicz, A.; Barton, D. A. W.; Porfiri, M.; Di Bernardo, M.
2015-11-01
Models of collective animal motion can greatly aid in the design and interpretation of behavioural experiments that seek to unravel, isolate, and manipulate the determinants of leader-follower relationships. Here, we develop an initial model of zebrafish social behaviour, which accounts for both speed and angular velocity regulatory interactions among conspecifics. Using this model, we analyse the macroscopic observables of small shoals influenced by an "informed" agent, showing that leaders which actively modulate their speed with respect to their neighbours can entrain and stabilise collective dynamics of the naïve shoal. Supplementary material in the form of two mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjst/e2015-50093-5
Measuring the speed of light with baryon acoustic oscillations.
Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth
2015-03-13
In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.
Modelling and Control of an Annular Momentum Control Device
NASA Technical Reports Server (NTRS)
Downer, James R.; Johnson, Bruce G.
1988-01-01
The results of a modelling and control study for an advanced momentum storage device supported on magnetic bearings are documented. The control challenge posed by this device lies in its dynamics being such a strong function of flywheel rotational speed. At high rotational speed, this can lead to open loop instabilities, resulting in requirements for minimum and maximum control bandwidths and gains for the stabilizing controllers. Using recently developed analysis tools for systems described by complex coefficient differential equations, the closed properties of the controllers were analyzed and stability properties established. Various feedback controllers are investigated and discussed. Both translational and angular dynamics compensators are developed, and measures of system stability and robustness to plant and operational speed variations are presented.
Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami
2004-06-17
The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.
Diffusion constant of slowly rotating black three-brane
NASA Astrophysics Data System (ADS)
Amoozad, Z.; Sadeghi, J.
2018-01-01
In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
NASA Astrophysics Data System (ADS)
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1939-01-01
The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.
Application of velocity filtering to optical-flow passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1992-01-01
The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.
Morrow, Thomas B.; Behring, II, Kendricks A.
2004-10-12
A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.
Reduced Perceived Noise Low Tip Speed Fans as a Result of Abandoning Cutoff Stator Vane Numbers
NASA Technical Reports Server (NTRS)
Dittmar, James
1998-01-01
As fan tip speeds are reduced, broadband noise is becoming more important in the calculation of perceived noise. Past experience indicates that lower vane number stators with either constant chord or constant solidity may be a way to reduce broadband noise caused by the interaction of the rotor wake turbulence with the stators. A baseline fan and a low blade number fan were investigated to determine if a noise reduction was possible. The low vane number fan showed a 2 PndB and a 1.5 PNLT noise reduction. These reductions show that this is a viable technique for reducing the perceived noise of low tip speed fans.
Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran
2015-04-23
In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range.
Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran
2015-01-01
In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590
Photoelectron imaging using an ellipsoidal display analyzer
NASA Astrophysics Data System (ADS)
Dütemeyer, T.; Quitmann, C.; Kitz, M.; Dörnemann, K.; Johansson, L. S. O.; Reihl, B.
2001-06-01
We have built an ellipsoidal display analyzer (EDA) for angle-resolved photoelectron spectroscopy and related techniques. The instrument is an improved version of a design by Eastman et al. [Nucl. Instrum. Methods 172, 327 (1980)] and measures the angle-resolved intensity distribution of photoelectrons at fixed energy I(θ,φ)|E=const.. Such two-dimensional cuts through the Brillouin zone are recorded using a position-sensitive detector. The large acceptance angle (Δθ=43° in the polar direction and Δφ=360° in the azimuthal direction) leads to a collection efficiency which exceeds that of conventional hemispherical analyzers by a factor of about 3000. Using ray-tracing calculations we analyze the electron optical properties of the various analyzer components and optimize their arrangement. This minimizes distortions and aberrations in the recorded images and greatly improves the performance compared to previous realizations of this analyzer. We present examples demonstrating the performance of the analyzer and its versatility. Using a commercial He-discharge lamp we are able to measure complete angular distribution patterns in less than 5 s. The energy and angular resolution are ΔEEDA=85 meV and Δθ=1.2°, respectively. Complete stacks of such cuts through the Brillouin zone at different kinetic energies E can be acquired automatically using custom software. The raw data are processed leading to a three-dimensional set (I(EB,k∥) of photoelectron intensity versus binding energy E and wave vector k∥. From this all relevant information, like the dispersion relations EB(k∥) along arbitrary directions of the Brillouin zone or Fermi-surface maps, can then be computed. An additional electron gun enables low-energy electron diffraction, Auger electron spectroscopy, and electron energy-loss spectroscopy. Switching between electrons and photons as the excitation source is possible without any movement of the sample or analyzer. Because of the high acquisition speed it is possible to study the electronic structure of solids as a function of an external parameter (i.e., temperature) or to make animated movies showing, for example, the evolution of electronic states in reciprocal space. After installation of this EDA at a synchrotron providing tunable photon energy, the full power of the instrument will come into play by adding techniques like constant final state or constant initial state spectroscopy, and x-ray photoelectron diffraction.
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.
Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane
2014-06-06
Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.
Things One Can Learn by Putting a Quadcopter in a Vacuum Chamber
NASA Astrophysics Data System (ADS)
Ayars, Eric; Goff, Tori; Williams, Kirk
2018-05-01
Quadcopters (also known as "drones") do not fly in vacuum. This is obvious enough that experimenting on one in a vacuum chamber would seem rather uninteresting, but there is one question that may be usefully addressed by such an experiment: the mechanism for yaw control. Quadcopters control yaw (rotation about the vertical axis) by differential rotor speed, and the question of whether those changes in rotor speed create yaw torque via conservation of angular momentum or via atmospheric drag can be addressed by "flying" a quadcopter in a vacuum where there is effectively zero atmospheric drag.
Miller, Jeff; Sproesser, Gudrun; Ulrich, Rolf
2008-07-01
In two experiments, we used response signals (RSs) to control processing time and trace out speed--accuracy trade-off(SAT) functions in a difficult perceptual discrimination task. Each experiment compared performance in blocks of trials with constant and, hence, temporally predictable RS lags against performance in blocks with variable, unpredictable RS lags. In both experiments, essentially equivalent SAT functions were observed with constant and variable RS lags. We conclude that there is little effect of advance preparation for a given processing time, suggesting that the discrimination mechanisms underlying SAT functions are driven solely by bottom-up information processing in perceptual discrimination tasks.
Operating limitations of high speed jet lubricated ball bearings
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Signer, H.; Bamberger, E. N.
1975-01-01
A parametric study was performed with 120-mm bore angular-contact ball bearings having a nominal contact angle of 20 degrees. The bearings had either an inner- or an outer-race land riding cage, and lubrication was by recirculating oil jets which had either a single or dual orifice. Thrust load, speed, and lubricant flow rate were varied. Test results were compared with those previously reported and obtained from bearings of the same design which were under-race lubricated but run under the same conditions. Jet lubricated ball bearings were limited to speeds less than 2,500,000 DN, and bearings having inner-race land riding cages produced lower temperatures than bearings with outer-race land riding cages. For a given lubricant flow rate dual orifice jets produced lower bearing temperatures than single orifice jets, but under-race lubrication produced lower bearing temperatures under all conditions of operation with no apparent bearing speed limitation.
DOT National Transportation Integrated Search
1996-12-01
Although the speed of some guided ground transportation systems continues to : increase, the reaction time and the sensory and information processing : capacities of railroad personnel remain constant. This second report in a : series examining criti...
Dynamic calibration of a wheelchair dynamometer.
DiGiovine, C P; Cooper, R A; Boninger, M L
2001-01-01
The inertia and resistance of a wheelchair dynamometer must be determined in order to compare the results of one study to another, independent of the type of device used. The purpose of this study was to describe and implement a dynamic calibration test for characterizing the electro-mechanical properties of a dynamometer. The inertia, the viscous friction, the kinetic friction, the motor back-electromotive force constant, and the motor constant were calculated using three different methods. The methodology based on a dynamic calibration test along with a nonlinear regression analysis produced the best results. The coefficient of determination comparing the dynamometer model output to the measured angular velocity and torque was 0.999 for a ramp input and 0.989 for a sinusoidal input. The inertia and resistance were determined for the rollers and the wheelchair wheels. The calculation of the electro-mechanical parameters allows for the complete description of the propulsive torque produced by an individual, given only the angular velocity and acceleration. The measurement of the electro-mechanical properties of the dynamometer as well as the wheelchair/human system provides the information necessary to simulate real-world conditions.
Galaxy clusters, type Ia supernovae and the fine structure constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holanda, R.F.L.; Busti, V.C.; Colaço, L.R.
2016-08-01
As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){supmore » 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.« less
Nilsson, Johnny E; Rosdahl, Hans G
2016-01-01
The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.
Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.
Harridge, S D; White, M J
1993-01-01
The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.
Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy
Tien, Christopher Jason; Ebeling, Robert; Hiatt, Jessica R.; Curran, Bruce; Sternick, Edward
2012-01-01
Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements. PMID:22888476
Comparison of Viscous and Pressure Energy Exchange in Fluid Flow Induction
1981-06-01
phases of the same fluid). 14 VSt PRIMARY JET NOZZLE HIGH VELOCITY CORE SUCT SECONFFARY FLUID FIGURE 1: A SIMPLE JET PUMP A.- ~is * II. BACKGROUND A...ratio. As the helix gets tighter, as from the twenty to thirty-five degree nozzles, the angular speed of the nozzle increases and the number of
Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction
2014-06-01
20 4.4 Transient Effects During the Jet Event and Time-Accuracy of...35 Figure 27. Transient effects of jet maneuver event for the no initial angular...rate case. ................36 Figure 28. Effect of time step on the coupled solution for the initial low roll rate case: (a) roll rate, (b) roll angle
Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi
2006-01-01
The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
Theory of diffusion of active particles that move at constant speed in two dimensions.
Sevilla, Francisco J; Gómez Nava, Luis A
2014-08-01
Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term. While no difference is observed for the mean-square displacement computed from the two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles with constant speed in dispersive media.
Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows
NASA Astrophysics Data System (ADS)
Mach, Patryk; Piróg, Michał; Font, José A.
2018-05-01
We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.
Chirp-Z analysis for sol-gel transition monitoring.
Martinez, Loïc; Caplain, Emmanuel; Serfaty, Stéphane; Griesmar, Pascal; Gouedard, Gérard; Gindre, Marcel
2004-04-01
Gelation is a complex reaction that transforms a liquid medium into a solid one: the gel. In gel state, some gel materials (DMAP) have the singular property to ring in an audible frequency range when a pulse is applied. Before the gelation point, there is no transmission of slow waves observed; after the gelation point, the speed of sound in the gel rapidly increases from 0.1 to 10 m/s. The time evolution of the speed of sound can be measured, in frequency domain, by following the frequency spacing of the resonance peaks from the Synchronous Detection (SD) measurement method. Unfortunately, due to a constant frequency sampling rate, the relative error for low speeds (0.1 m/s) is 100%. In order to maintain a low constant relative error, in the whole speed time evolution range, Chirp-Z Transform (CZT) is used. This operation transforms a time variant signal to a time invariant one using only a time dependant stretching factor (S). In the frequency domain, the CZT enables us to stretch each collected spectrum from time signals. The blind identification of the S factor gives us the complete time evolution law of the speed of sound. Moreover, this method proves that the frequency bandwidth follows the same time law. These results point out that the minimum wavelength stays constant and that it only depends on the gel.
NASA Astrophysics Data System (ADS)
Sait, Abdulrahman S.
This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.
Constant lift rotor for a heavier than air craft
NASA Technical Reports Server (NTRS)
Stroub, R. H. (Inventor)
1979-01-01
A rotor blade extended radially from a hub, characterized by an elongated spar and a plurality of axially aligned shells pivotally mounted on the spar is presented. Each has an aerodynamic center located in trailing relation with the spar and supported thereby for simultaneous axial and angular displacement as centrifugal forces are applied, a pitch controller plus a plurality of pivotal pitch limiting arms transversely related to the spar. A push-pull link interconnecting the arms is used for imparting simultaneous pivotal motion, whereby the angular relationship of the arms to the spar is varied for varying the motion of the trucks along the arms for thus limiting the pitch of the segments about the spar.
Anisotropies of the cosmic microwave background in nonstandard cold dark matter models
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Silk, Joseph
1992-01-01
Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.
A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Wang, Xiaoxian; Guo, Jie; Lu, Siliang; Shen, Changqing; He, Qingbo
2017-06-01
Diagnosis of motor bearing faults under variable speed is a problem. In this study, a new computer-vision-based order tracking method is proposed to address this problem. First, a video recorded by a high-speed camera is analyzed with the speeded-up robust feature extraction and matching algorithm to obtain the instantaneous rotating speed (IRS) of the motor. Subsequently, an audio signal recorded by a microphone is equi-angle resampled for order tracking in accordance with the IRS curve, through which the frequency-domain signal is transferred to an angular-domain one. The envelope order spectrum is then calculated to determine the fault characteristic order, and finally the bearing fault pattern is determined. The effectiveness and robustness of the proposed method are verified with two brushless direct-current motor test rigs, in which two defective bearings and a healthy bearing are tested separately. This study provides a new noninvasive measurement approach that simultaneously avoids the installation of a tachometer and overcomes the disadvantages of tacholess order tracking methods for motor bearing fault diagnosis under variable speed.
Exact Relativistic `Antigravity' Propulsion
NASA Astrophysics Data System (ADS)
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Implementation of Temperature Sequential Controller on Variable Speed Drive
NASA Astrophysics Data System (ADS)
Cheong, Z. X.; Barsoum, N. N.
2008-10-01
There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.
A Potential Proxy of the Second Integral of Motion (I2) in a Rotating Barred Potential
NASA Astrophysics Data System (ADS)
Shen, Juntai; Qin, Yujing
2017-06-01
The only analytically known integral of motion in a 2-D rotating barred potential is the Jacobi constant (EJ). In addition to EJ, regular orbits also obey a second integral of motion (I2) whose analytical form is unknown. We show that the time-averaged characteristics of angular momentum in a rotating bar potential resemble the behavior of the analytically-unknown I2. For a given EJ, regular orbits of various families follow a continuous sequence in the space of net angular momentum and its dispersion ("angular momentum space"). In the limiting case where regular orbits of the well-known x1/x4 orbital families dominate the phase space, the orbital sequence can be monotonically traced by a single parameter, namely the ratio of mean angular momentum to its dispersion. This ratio behaves well even in the 3-D case, and thus may be used as a proxy of I2. The potential proxy of I2 may be used as an efficient way to probe the phase space structure, and a convenient new scheme of orbit classification in addition to the frequency mapping technique.
Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.
Lukin, Igor P
2016-04-20
The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.
NASA Astrophysics Data System (ADS)
Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia
2017-02-01
We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.
D'Angelo, Giuseppe; Thibaudier, Yann; Telonio, Alessandro; Hurteau, Marie-France; Kuczynski, Victoria; Dambreville, Charline
2014-01-01
Stepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilaterally) and split-belt locomotion where one side (constant side) stepped at constant treadmill speed while the other side (varying side) stepped at several speeds. Cycle, stance, and swing durations changed in parallel in homolateral limbs with shorter and longer stance and swing durations on the fast side, respectively, compared with the slow side. Phase variations were quantified in all four limbs by measuring the slopes of the regressions between stance and cycle durations (rSTA) and between swing and cycle durations (rSW). For a given limb, rSTA and rSW were not significantly different from one another on the constant side whereas on the varying side rSTA increased relative to tied-belt locomotion while rSW became more negative. Phase variations were similar for homolateral limbs. Increasing left-right speed differences produced a large increase in homolateral double support on the slow side, while triple-support periods decreased. Increasing left-right speed differences altered homologous coupling, homolateral coupling on the fast side, and coupling between the fast hindlimb and slow forelimb. Results indicate that homolateral limbs share similar control strategies, only certain features of the interlimb pattern adjust, and spinal locomotor networks of the left and right sides are organized symmetrically. PMID:25031257
Utility of the Conconi's heart rate deflection to monitor the intensity of aerobic training.
Passelergue, Philippe A; Cormery, Bruno; Lac, Gérard; Léger, Luc A
2006-02-01
The Conconi's heart-rate deflection point (HRd) in the heart rate (HR)/speed curve is often used to set aerobic training loads. Training could either be set in percentage running speed or HR at HRd. In order to establish the limits and usefulness of various aerobic-training modalities for intermediate athletic level (physical-education students), acute responses were analyzed while running for a typical 40-minute training session. Speed, HR, lactate, and cortisol were thus recorded during training at 90 and 100% of running speed (RS: n = 14) and HR (HR: n = 16) at HRd (90% running speed [RS90], 100% running speed [RS100], 90% HR [HR90], and 100% HR [HR100]). During constant HR training, RS decreases while HR drifts upward during constant RS training. Half of the subjects can not finish the 40-minute RS100 session. For HR90, RS90, HR100, and RS100, average intensities are 67, 69, 74.9, and 77% maximal aerobic speed (multistage test), respectively. This study indicates that (1) training at HR100 and RS100 is more appropriate to improve high-intensity metabolic capacities (increased cortisol and lactate) while RS100 is too difficult to be maintained for 40 minutes for subjects at that level at least, (2) training at HR90, however, is better to improve endurance and capacity to do a large amount of work considering cortisol and lactate homeostasis, and (3) training at a constant HR using a HR monitor is a good method to control the intensity of the training with subjects not used to pacing themselves with the split-time approach.
Urban traffic pollution reduction for sedan cars using petrol engines by hydro-oxide gas inclusion.
Al-Rousan, Ammar A; Alkheder, Sharaf; Musmar, Sa'ed A
2015-12-01
Petrol cars, in particular nonhybrid cars, contribute significantly to the pollution problem as compared with other types of cars. The originality of this article falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/hr). Results indicated that through using hydro-oxy gas, a noticeable reduction in pollution was recorded. Oxygen (O2) percentage has increased by about 2.5%, and nitric oxide (NO) level has been reduced by about 500 ppm. Carbon monoxide (CO) has decreased by about 2.2%, and also CO2 has decreased by 2.1%. It's worth mentioning that for hybrid system in cars at speeds between 10 and 50 km/hr, the emission percentage change is zero. However, hybrid cars are less abundant than petrol cars. The originality of this paper falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/h).
Improving work zone safety through speed management.
DOT National Transportation Integrated Search
2013-06-01
Safety hazards are increased in highway work zones as the dynamics of a work zone introduce a constantly changing : environment with varying levels of risk. Excessive speeding through work and maintenance zones is a common occurrence : which elevates...
Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Charmousis, Christos; Esposito-Farèse, Gilles; Lehébel, Antoine
2018-06-01
The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the speed of gravity to be extremely close to that of light. We first show, on the example of an exact Schwarzschild-de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that the solution is stable in a range of the model parameters. We finally show that an infinite class of beyond-Horndeski models satisfying the equality of gravity and light speeds still provides an elegant self-tuning: the very large bare cosmological constant entering the Lagrangian is almost perfectly counterbalanced by the energy-momentum tensor of the scalar field, yielding a tiny observable effective cosmological constant.
Transistorized PWM inverter-induction motor drive system
NASA Technical Reports Server (NTRS)
Peak, S. C.; Plunkett, A. B.
1982-01-01
This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.
Digital phase-locked loop speed control for a brushless dc motor
NASA Astrophysics Data System (ADS)
Wise, M. G.
1985-06-01
Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.
Seacrist, Thomas; Mathews, Emily A; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B
2013-11-01
Debate exists in the automotive community regarding the validity of the pediatric ATD neck response and corresponding neck loads. Previous research has shown that the pediatric ATDs exhibit hyper-flexion and chin-to-chest contact resulting in overestimations of neck loads and neck injury criteria. Our previous work comparing the kinematics of the Hybrid III and Q-series 6 and 10-year-old ATDs to pediatric volunteers in low-speed frontal sled tests revealed decreased ATD cervical and thoracic spine excursions. These kinematic differences may contribute to the overestimation of upper neck loads by the ATD. The current study compared upper neck loads of the Hybrid III and Q-series 6 and 10-year-old ATDs against size-matched male pediatric volunteers in low-speed frontal sled tests. A 3-D near-infrared target tracking system quantified the position of markers on the ATD and pediatric volunteers (head top, nasion, bilateral external auditory meatus). Shear force (F x ), axial force (F z ), bending moment (M y ), and head angular acceleration ([Formula: see text]) were calculated about the upper neck using standard equations of motion. In general, the ATDs underestimated axial force and overestimated bending moment compared to the human volunteers. The Hybrid III 6, Q6, and Q10 exhibited reduced head angular acceleration and modest increases in upper neck shear compared to the pediatric volunteers. The reduction in axial force and bending moment has important implications for neck injury predictions as both are used when calculating N ij . These analyses provide insight into the biofidelity of the pediatric ATD upper neck loads in low-speed crash environments.
Design and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearings
NASA Technical Reports Server (NTRS)
Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.
1998-01-01
The computer program SHABERTH was used to analyze 35-mm-bore, angular-contact ball bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and were compared with the computer predictions. Four bearing and cage designs were studied. The bearings were lubricated either by jet lubrication or through the split inner ring with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased operating contact stresses caused by changes in contact angle and centrifugal load. For thrust loads only, the difference in calculated life for the 24 deg. and 30 deg. contact-angle bearings was insignificant. However, for combined loading, the 24 deg. contact-angle bearing gave longer life. For split-inner-ring bearings, optimal operating conditions were obtained with a 24 deg. contact angle and an inner-ring, land-guided cage, using outer-ring cooling in conjunction with low lubricant flow rates. Lower temperature and power losses were obtained with a single-outer-ring, land-guided cage for the 24 deg. contact-angle bearing having a relieved inner ring and partially relieved outer ring. Inner-ring temperatures were independent of lubrication mode and cage design. In comparison with measured values, reasonably good engineering correlation was obtained using the computer program SHABERTH for predicted bearing power loss and for inner- and outer-ring temperatures. The Parker formula for XCAV (used in SHABERTH, a measure of oil volume in the bearing cavity) may need to be refined to reflect bearing lubrication mode, cage design, and location of cage-controlling land.
Kinematics and aerodynamics of avian upstrokes during slow flight.
Crandell, Kristen E; Tobalske, Bret W
2015-08-01
Slow flight is extremely energetically costly per unit time, yet highly important for takeoff and survival. However, at slow speeds it is presently thought that most birds do not produce beneficial aerodynamic forces during the entire wingbeat: instead they fold or flex their wings during upstroke, prompting the long-standing prediction that the upstroke produces trivial forces. There is increasing evidence that the upstroke contributes to force production, but the aerodynamic and kinematic mechanisms remain unknown. Here, we examined the wingbeat cycle of two species: the diamond dove (Geopelia cuneata) and zebra finch (Taeniopygia guttata), which exhibit different upstroke styles - a wingtip-reversal and flexed-wing upstroke, respectively. We used a combination of particle image velocimetry and near-wake streamline measures alongside detailed 3D kinematics. We show that during the middle of the wingtip-reversal upstroke, the hand-wing has a high angular velocity (15.3±0.8 deg ms(-1)) and translational speed (8.4±0.6 m s(-1)). The flexed-wing upstroke, in contrast, has low wingtip speed during mid-upstroke. Instead, later in the stroke cycle, during the transition from upstroke to downstroke, it exhibits higher angular velocities (45.5±13.8 deg ms(-1)) and translational speeds (11.0±1.9 m s(-1)). Aerodynamically, the wingtip-reversal upstroke imparts momentum to the wake, with entrained air shed backward (visible as circulation of 14.4±0.09 m(2) s(-1)). In contrast, the flexed-wing upstroke imparts minimal momentum. Clap and peel in the dove enhances the time course for circulation production on the wings, and provides new evidence of convergent evolution on time-varying aerodynamic mechanisms during flapping in insects and birds. © 2015. Published by The Company of Biologists Ltd.
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
Code of Federal Regulations, 2011 CFR
2011-07-01
... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...
Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands
NASA Astrophysics Data System (ADS)
Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman
2016-08-01
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.
Faraday effect in Sn2P2S6 crystals.
Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav
2008-11-10
We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.
Measurement of Newton's constant using a torsion balance with angular acceleration feedback.
Gundlach, J H; Merkowitz, S M
2000-10-02
We measured Newton's gravitational constant G using a new torsion balance method. Our technique greatly reduces several sources of uncertainty compared to previous measurements: (1) It is insensitive to anelastic torsion fiber properties; (2) a flat plate pendulum minimizes the sensitivity due to the pendulum density distribution; (3) continuous attractor rotation reduces background noise. We obtain G = (6.674215+/-0.000092) x 10(-11) m3 kg(-1) s(-2); the Earth's mass is, therefore, M = (5.972245+/-0.000082) x 10(24) kg and the Sun's mass is M = (1.988435+/-0.000027) x 10(30) kg.
Non-Abelian cosmic string in the Starobinsky model of gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.; de Pádua Santos, A.; Bezerra de Mello, Eugênio R.; Bezerra, V. B.
In this paper, we analyze numerically the behavior of the solutions corresponding to a non-Abelian cosmic string in the framework of the Starobinsky model, i.e. where f(R) = R + ζR2. We perform the calculations for both an asymptotically flat and asymptotically (anti)-de Sitter spacetimes. We found that the angular deficit generated by the string decreases as the parameter ζ increases, in the case of a null cosmological constant. For a positive cosmological constant, we found that the cosmic horizon is affected in a nontrivial way by the parameter ζ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciraolo, Giulio, E-mail: g.ciraolo@math.unipa.it; Gargano, Francesco, E-mail: gargano@math.unipa.it; Sciacca, Vincenzo, E-mail: sciacca@math.unipa.it
2013-08-01
We study a new approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. Our approach is based on the minimization of an integral functional arising from a volume integral formulation of the radiation condition. The index of refraction does not need to be constant at infinity and may have some angular dependency as well as perturbations. We prove analytical results on the convergence of the approximate solution. Numerical examples for different shapes of the artificial boundary and for non-constant indexes of refraction will be presented.
Determination of HCME 3-D parameters using a full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae; Lee, Harim
2016-05-01
It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
Rietdyk, Shirley; McGlothlin, James D; Knezovich, Mark J
2005-12-01
Locomotor behavior at the roofing worksite is challenged by factors such as sloped surfaces, wind gusts and handling loads. Chronic exposure to this environment may result in enhanced locomotor strategies that are resistant to aging effects. The purpose of this study was to determine if roofers demonstrated enhanced locomotor strategies and if the strategies were maintained with age. The gait of ten younger roofers (mean age 27.2 years), eight older roofers (55.4 years), ten younger controls (25.4 years) and nine older controls (57.6 years) was examined during level gait and stepping up onto a wooden surface (0.15m high). Subjects either carried no load, an empty box or the same box loaded to the equivalent of 5% body mass. Work by age interactions were observed for toe clearance, step width, net angular momentum of the head, arms and trunk segment and gait speed (P<0.0001). Younger roofers demonstrated the greatest toe clearance; older roofers had a smaller lead clearance but decreased variability. Older control groups had the greatest risk of tripping due to low lead toe clearance and high variability, and were least likely to recover if they did trip due to faster gait speed and increased net angular momentum. Work experience resulted in enhanced changes in lead toe clearance and mitigated age-related changes in step width and net angular momentum. Challenging environments show promise for maintaining balance skills in older adults; however care should be taken when introducing inexperienced older adults to a challenging environment.
Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam
2014-01-01
We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350
2011-12-01
determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was...INTENTIONALLY LEFT BLANK v ABSTRACT This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical...for ethane/air flames at various pressures reproduced from [6]....................8 Figure 4. Experimentally determined laminar flame speed as a
A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation
ERIC Educational Resources Information Center
Wee, Loo Kang; Goh, Giam Hwee
2013-01-01
We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…
Vehicle test report: Battronic pickup truck
NASA Technical Reports Server (NTRS)
Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.
1982-01-01
An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.
Response of lead-acid batteries to chopper-controlled discharge: Preliminary results
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses up to 25 percent compared to constant current discharges at the same average discharge current of 100 amperes. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-ampere pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.
Response of lead-acid batteries to chopper-controlled discharge
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses at up to 25 percent compared to constant current discharges at the same average discharge current of 100 A. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-A pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.
NASA Technical Reports Server (NTRS)
Feagans, P. L.
1972-01-01
Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.
NASA Astrophysics Data System (ADS)
Krtička, J.; Kurfürst, P.; Krtičková, I.
2015-01-01
Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
De Asha, Alan R; Johnson, Louise; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G
2013-02-01
Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment. Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions. Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ≤ 0.002). The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1977-01-01
A tachometer in which sine and cosine signals responsive to the angular position of a shaft as it rotates are each multiplied by like, sine or cosine, functions of a carrier signal, the products summed, and the resulting frequency signal converted to fixed height, fixed width pulses of a like frequency. These pulses are then integrated, and the resulting dc output is an indication of shaft speed.
Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions
NASA Astrophysics Data System (ADS)
Stander, C. J.; Heyns, P. S.
2005-07-01
Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.
NASA Astrophysics Data System (ADS)
Gu, Fengshou; Yesilyurt, Isa; Li, Yuhua; Harris, Georgina; Ball, Andrew
2006-08-01
In order to discriminate small changes for early fault diagnosis of rotating machines, condition monitoring demands that the measurement of instantaneous angular speed (IAS) of the machines be as accurate as possible. This paper develops the theoretical basis and practical implementation of IAS data acquisition and IAS estimation when noise influence is included. IAS data is modelled as a frequency modulated signal of which the signal-to-noise ratio can be improved by using a high-resolution encoder. From this signal model and analysis, optimal configurations for IAS data collection are addressed for high accuracy IAS measurement. Simultaneously, a method based on analytic signal concept and fast Fourier transform is also developed for efficient and accurate estimation of IAS. Finally, a fault diagnosis is carried out on an electric induction motor driving system using IAS measurement. The diagnosis results show that using a high-resolution encoder and a long data stream can achieve noise reduction by more than 10 dB in the frequency range of interest, validating the model and algorithm developed. Moreover, the results demonstrate that IAS measurement outperforms conventional vibration in diagnosis of incipient faults of motor rotor bar defects and shaft misalignment.
Redundant unbalance compensation of an active magnetic bearing system
NASA Astrophysics Data System (ADS)
Hutterer, Markus; Kalteis, Gerald; Schrödl, Manfred
2017-09-01
To achieve a good running behavior of a magnetic levitated rotor, a well-developed position controller and different compensation methods are required. Two very important structures in this context are the reduction of the gyroscopic effect and the unbalance vibration. Both structures have in common that they need the angular velocity information for calculation. For industrial applications this information is normally provided by an angle sensor which is fixed on the rotor. The angle information is also necessary for the field oriented control of the electrical drive. The main drawback of external position sensors are the case of a breakdown or an error of the motor controller. Therefore, the magnetic bearing can get unstable, because no angular velocity information is provided. To overcome this problem the presented paper describes the development of a selfsensing unbalance rejection in combination with a selfsensing speed control of the motor controller. Selfsensing means in this context that no angle sensor is required for the unbalance or torque control. With such structures two redundant speed and angle information sources are available and can be used for the magnetic bearing and the motor controller without the usage of an angle sensor.
A method on error analysis for large-aperture optical telescope control system
NASA Astrophysics Data System (ADS)
Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei
2016-10-01
For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error sources from time domain, frequency domain and space domain respectively has a very good role in guiding to find disturbance sources for large-aperture optical telescope.
Determining Our Motion Through the Galaxy
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
Though we dont notice it from our point of view, were hurtling through space at breakneck speed and one of the contributors to our overall motion through the universe is the Suns revolutionaround the center of our galaxy. A recent study uses an unusual approach to measure the speed of this rotation.Moving While Sitting StillWe know that the Sun zips rapidly around the center of the Milky Way our orbitalspeed is somewhere around250 km/s, or 560,000 mph! Getting a precise measurement of this velocity is useful because we can combine it with the observed proper motion of Sgr A*, the black hole at the center of our galaxy, to determine the distance from us to the center of the Milky Way. This is an important baseline for lots of other measurements.Example particle orbits modeled within the galactic potential. The top panel represents a starwith zero angular momentum, which is scattered into a chaotic orbit after interacting with the galactic nucleus. [Hunt et al. 2016]But how can we measure the Suns revolutionspeed accurately? A team of scientists led by Jason Hunt (Dunlap Institute at University of Toronto, Canada) have suggested a unique approach to pin down this value: look for missing stars in the solar neighborhood.Missing StarsThe stars around us should exhibit a distribution of velocities describing their orbits about the galactic center but those stars with zero angular momentum should have plunged directly into the galactic center long ago. These stars would have been scattered onto chaotic halo orbits after their plunge, resulting in a dearth of stars with zero angular momentum around us today.By looking at the relative speeds of the stars moving around us, then, we should see a dip in the velocity distribution corresponding to the missing zero-angular-momentum stars. By noting the relative velocity at which that dip occurs, we cleverly reveal the negative of our motion around the galactic center.Velocity distribution for stars within 700 pc of the Sun. A dip in the distribution (marked with an arrow) is noticeable between 210 and 270 km/s. [Hunt et al. 2016]Where Are We and How Fast Are We Going?Hunt and collaborators use a combination of the first data release from ESAs Gaia mission and a star catalog from the Radial Velocity Experiment to examine the motions of a total of over 200,000 stars in the solar neighborhood. They find that there is indeed a lack of disk stars with velocities close to zero angular momentum. They then compare modeled stellar orbits to the data to estimate the relative speed at which the dip in the velocity distribution occurs.From this information, the authors obtain a measurement of 2399 km/s for the Suns revolutionvelocity around the galactic center. They combine this value with a proper motion measurement of Sgr A* to calculate the distance to the galactic center: 7.90.3 kpc (or about 26,000 light-years).Both of these measurements can be improved with future Gaia data releases, which will contain many orders of magnitude more stars. This clever technique, therefore, proves a useful way of better constraining our position and motion through the Milky Way.CitationJason A. S. Hunt et al 2016 ApJL 832 L25. doi:10.3847/2041-8205/832/2/L25
Why is Light Text Harder to Read Than Dark Text?
NASA Technical Reports Server (NTRS)
Scharff, Lauren V.; Ahumada, Albert J.
2005-01-01
Scharff and Ahumada (2002, 2003) measured text legibility for light text and dark text. For paragraph readability and letter identification, responses to light text were slower and less accurate for a given contrast. Was this polarity effect (1) an artifact of our apparatus, (2) a physiological difference in the separate pathways for positive and negative contrast or (3) the result of increased experience with dark text on light backgrounds? To rule out the apparatus-artifact hypothesis, all data were collected on one monitor. Its luminance was measured at all levels used, and the spatial effects of the monitor were reduced by pixel doubling and quadrupling (increasing the viewing distance to maintain constant angular size). Luminances of vertical and horizontal square-wave gratings were compared to assess display speed effects. They existed, even for 4-pixel-wide bars. Tests for polarity asymmetries in display speed were negative. Increased experience might develop full letter templates for dark text, while recognition of light letters is based on component features. Earlier, an observer ran all conditions at one polarity and then switched. If dark and light letters were intermixed, the observer might use component features on all trials and do worse on the dark letters, reducing the polarity effect. We varied polarity blocking (completely blocked, alternating smaller blocks, and intermixed blocks). Letter identification responses times showed polarity effects at all contrasts and display resolution levels. Observers were also more accurate with higher contrasts and more pixels per degree. Intermixed blocks increased the polarity effect by reducing performance on the light letters, but only if the randomized block occurred prior to the nonrandomized block. Perhaps observers tried to use poorly developed templates, or they did not work as hard on the more difficult items. The experience hypothesis and the physiological gain hypothesis remain viable explanations.
High resolution optical shaft encoder for motor speed control based on an optical disk pick-up
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.
1998-08-01
Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.
1982-08-25
where w is the angular frequency and k the wave number; the phase speed c is related by W - kc. Because of the geometry, it is assumed that the field...PSA Phase of sample PST Phase of standard STEP Step size TEMP Temperature (C) THICK Length of sample (cm) VSA Voltage of sample VST Voltage of standard...VSA/ VST 0)027 W=4001.*RS69+.8*(TEMP-24 .0)- .037*( TEMFP-24 .0) **2.*0 00o29 E=(PSA-PST)/57.2958 0030 G=E-O 0031 IF (ABS(G)-2*3.14159 *LE. 0) GO TO 50
Lemeshchenko, N A; Ivanov, A I; Lapa, V V; Davydov, V V; Zhelonkin, V I; Riabinin, V A; Golosov, S Iu
2014-01-01
The article deals with results of experimental studies conducted on flight testing desk and covering peculiarities of pilot's perception of flight information presented on on-board liquid crystal display in dependence on changes speed and update rate of the screen. The authors determine frequency characteristics of information update rate, that achieve acceptable quality of the flight parameters perception in accordance with the changes speed. Vigorous maneuvering with high angular velocities of changed parameters of roll and pitch causes visual distortions that are connected with poor frequency of information update rate, deteriorate piloting quality and can cause flight unsafety.
Critical wind speed at which trees break
NASA Astrophysics Data System (ADS)
Virot, E.; Ponomarenko, A.; Dehandschoewercker, É.; Quéré, D.; Clanet, C.
2016-02-01
Data from storms suggest that the critical wind speed at which trees break is constant (≃42 m /s ), regardless of tree characteristics. We question the physical origin of this observation both experimentally and theoretically. By combining Hooke's law, Griffith's criterion, and tree allometry, we show that the critical wind speed indeed hardly depends on the height, diameter, and elastic properties of trees.
Critical wind speed at which trees break.
Virot, E; Ponomarenko, A; Dehandschoewercker, É; Quéré, D; Clanet, C
2016-02-01
Data from storms suggest that the critical wind speed at which trees break is constant (≃42m/s), regardless of tree characteristics. We question the physical origin of this observation both experimentally and theoretically. By combining Hooke's law, Griffith's criterion, and tree allometry, we show that the critical wind speed indeed hardly depends on the height, diameter, and elastic properties of trees.
Fluid power network for centralized electricity generation in offshore wind farms
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2014-06-01
An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine ismore » greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications.« less
A Homing Missile Control System to Reduce the Effects of Radome Diffraction
NASA Technical Reports Server (NTRS)
Smith, Gerald L.
1960-01-01
The problem of radome diffraction in radar-controlled homing missiles at high speeds and high altitudes is considered from the point of view of developing a control system configuration which will alleviate the deleterious effects of the diffraction. It is shown that radome diffraction is in essence a kinematic feedback of body angular velocities which causes the radar to sense large apparent line-of-sight angular velocities. The normal control system cannot distinguish between the erroneous and actual line-of-sight rates, and entirely wrong maneuvers are produced which result in large miss distances. The problem is resolved by adding to the control system a special-purpose computer which utilizes measured body angular velocity to extract from the radar output true line-of-sight information for use in steering the missile. The computer operates on the principle of sampling and storing the radar output at instants when the body angular velocity is low and using this stored information for maneuvering commands. In addition, when the angular velocity is not low the computer determines a radome diffraction compensation which is subtracted from the radar output to reduce the error in the sampled information. Analog simulation results for the proposed control system operating in a coplanar (vertical plane) attack indicate a potential decrease in miss distance to an order of magnitude below that for a conventional system. Effects of glint noise, random target maneuvers, initial heading errors, and missile maneuverability are considered in the investigation.
Nordez, A; McNair, P J; Casari, P; Cornu, C
2009-01-01
The mechanisms behind changes in mechanical parameters following stretching are not understood clearly. This study assessed the effects of joint angular velocity on the immediate changes in passive musculo-articular properties induced by cyclic stretching allowing an appreciation of viscosity and friction, and their contribution to changes in torque that occur. Ten healthy subjects performed five passive knee extension/flexion cycles on a Biodex dynamometer at five preset angular velocities (5-120 deg/s). The passive torque and knee angle were measured, and the potential elastic energy stored during the loading and the dissipation coefficient were calculated. As the stretching velocity increased, so did stored elastic energy and the dissipation coefficient. The slope of the linear relationship between the dissipation coefficient and the angular velocity was unchanged across repetitions indicating that viscosity was unlikely to be affected. A difference in the y-intercept across repetitions 1 and 5 was indicative of a change in processes associated with solid friction. Electromyographical responses to stretching were low across all joint angular velocities. Torque changes during cyclic motion may primarily involve solid friction which is more indicative of rearrangement/slipping of collagen fibers rather than the redistribution of fluid and its constituents within the muscle. The findings also suggest that it is better to stretch slowly initially to reduce the amount of energy absorption required by tissues, but thereafter higher stretching speeds can be undertaken.
NASA Astrophysics Data System (ADS)
Guala, M.; Hu, S. J.; Chamorro, L. P.
2011-12-01
Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.
Development of a Detailed Surface Chemistry Framework in DSMC
NASA Technical Reports Server (NTRS)
Swaminathan-Gopalan, K.; Borner, A.; Stephani, K. A.
2017-01-01
Many of the current direct simulation Monte Carlo (DSMC) codes still employ only simple surface catalysis models. These include only basic mechanisms such as dissociation, recombination, and exchange reactions, without any provision for adsorption and finite rate kinetics. Incorporating finite rate chemistry at the surface is increasingly becoming a necessity for various applications such as high speed re-entry flows over thermal protection systems (TPS), micro-electro-mechanical systems (MEMS), surface catalysis, etc. In the recent years, relatively few works have examined finite-rate surface reaction modeling using the DSMC method.In this work, a generalized finite-rate surface chemistry framework incorporating a comprehensive list of reaction mechanisms is developed and implemented into the DSMC solver SPARTA. The various mechanisms include adsorption, desorption, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), Collision Induced (CI), condensation, sublimation, etc. The approach is to stochastically model the various competing reactions occurring on a set of active sites. Both gas-surface (e.g., ER, CI) and pure-surface (e.g., LH, desorption) reaction mechanisms are incorporated. The reaction mechanisms could also be catalytic or surface altering based on the participation of the bulk-phase species (e.g., bulk carbon atoms). Marschall and MacLean developed a general formulation in which multiple phases and surface sites are used and we adopt a similar convention in the current work. Microscopic parameters of reaction probabilities (for gas-surface reactions) and frequencies (for pure-surface reactions) that are require for DSMC are computed from the surface properties and macroscopic parameters such as rate constants, sticking coefficients, etc. The energy and angular distributions of the products are decided based on the reaction type and input parameters. Thus, the user has the capability to model various surface reactions via user-specified reaction rate constants, surface properties and parameters.
Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio Ignacio
2014-01-01
Postural instability is one of the major complications found in stroke survivors. Parameterising the functional reach test (FRT) could be useful in clinical practice and basic research. To analyse the reliability, sensitivity, and specificity in the FRT parameterisation using inertial sensors for recording kinematic variables in patients who have suffered a stroke. Cross-sectional study. While performing FRT, two inertial sensors were placed on the patient's back (lumbar and trunk). Five subjects over 65 who suffer from a stroke. FRT measures, lumbosacral/thoracic maximum angular displacement, maximum time of lumbosacral/thoracic angular displacement, time return initial position, and total time. Speed and acceleration of the movements were calculated indirectly. FRT measure is 12.75±2.06 cm. Intrasubject reliability values range from 0.829 (time to return initial position (lumbar sensor)) to 0.891 (lumbosacral maximum angular displacement). Intersubject reliability values range from 0.821 (time to return initial position (lumbar sensor)) to 0.883 (lumbosacral maximum angular displacement). FRT's reliability was 0.987 (0.983-0.992) and 0.983 (0.979-0.989) intersubject and intrasubject, respectively. The main conclusion could be that the inertial sensors are a tool with excellent reliability and validity in the parameterization of the FRT in people who have had a stroke.
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride
Haselsteiner, Andreas F.; Gilbert, Cole; Wang, Z. Jane
2014-01-01
Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s−1, is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier. PMID:24718454
Rotation of the asymptotic giant branch star R Doradus
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Khouri, T.; Beck, E. De; Olofsson, H.; García-Segura, G.; Villaver, E.; Baudry, A.; Humphreys, E. M. L.; Maercker, M.; Ramstedt, S.
2018-05-01
High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution (30 × 42 mas) observations, we have for the first time resolved stellar rotation of an AGB star, R Dor. We measure an angular rotation velocity of ωR sin i = (3.5 ± 0.3) × 10-9 rad s-1, which indicates a rotational velocity of |υrot sin i| = 1.0 ± 0.1 km s-1 at the stellar surface (R* = 31.2 mas at 214 GHz). The rotation axis projected on the plane of the sky has a position angle Φ = 7 ± 6°. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected, we suggest R Dor has a low-mass, close-in companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass-loss characteristics of R Dor.
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jon; Guo, Yi; Sethuraman, Latha
2016-03-18
This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.
Relationships between coordination, active drag and propelling efficiency in crawl.
Seifert, Ludovic; Schnitzler, Christophe; Bideault, Gautier; Alberty, Morgan; Chollet, Didier; Toussaint, Huub Martin
2015-02-01
This study examines the relationships between the index of coordination (IdC) and active drag (D) assuming that at constant average speed, average drag equals average propulsion. The relationship between IdC and propulsive efficiency (ep) was also investigated at maximal speed. Twenty national swimmers completed two incremental speed tests swimming front crawl with arms only in free condition and using a measurement of active drag system. Each test was composed of eight 25-m bouts from 60% to 100% of maximal intensity whereby each lap was swum at constant speed. Different regression models were tested to analyse IdC-D relationship. Correlation between IdC and ep was calculated. IdC was linked to D by linear regression (IdC=0.246·D-27.06; R(2)=0.88, P<.05); swimmers switched from catch-up to superposition coordination mode at a speed of ∼1.55ms(-1) where average D is ∼110N. No correlation between IdC and ep at maximal speed was found. The intra-individual analysis revealed that coordination plays an important role in scaling propulsive forces with higher speed levels such that these are adapted to aquatic resistance. Inter-individual analysis showed that high IdC did not relate to a high ep suggesting an individual optimization of force and power generation is at play to reach high speeds. Copyright © 2014 Elsevier B.V. All rights reserved.
Spectral dispersion and fringe detection in IOTA
NASA Technical Reports Server (NTRS)
Traub, W. A.; Lacasse, M. G.; Carleton, N. P.
1990-01-01
Pupil plane beam combination, spectral dispersion, detection, and fringe tracking are discussed for the IOTA interferometer. A new spectrometer design is presented in which the angular dispersion with respect to wavenumber is nearly constant. The dispersing element is a type of grism, a series combination of grating and prism, in which the constant parts of the dispersion add, but the slopes cancel. This grism is optimized for the display of channelled spectra. The dispersed fringes can be tracked by a matched-filter photon-counting correlator algorithm. This algorithm requires very few arithmetic operations per detected photon, making it well-suited for real-time fringe tracking. The algorithm is able to adapt to different stellar spectral types, intensity levels, and atmospheric time constants. The results of numerical experiments are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, O.V., E-mail: bov@tpu.ru; Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050; Kazinski, P.O., E-mail: kpo@phys.tsu.ru
The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energiesmore » and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.« less
Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution
NASA Astrophysics Data System (ADS)
Huang, Ruoxiang; Cao, Shixun; Ren, Wei; Zhan, Sheng; Kang, Baojuan; Zhang, Jincang
2013-10-01
We report the rotating field entropy of ErFeO3 single-crystal in a temperature range of 3-40 K. The giant magnetic entropy change, ΔSM = -20.7 J/(kg K), and the refrigerant capacity, RC = 273.5 J/kg, are observed near T =6 K. The anisotropic constants at 6 K, K1 = 1.24× 103 J/kg, K2 = 0.74 × 103 J/kg, in the bc plane are obtained. By considering the magnetocrystalline anisotropy and Fermi-Dirac angular distribution along the orientation of spontaneous magnetization, the experimental results can be well simulated. Our present work demonstrates that ErFeO3 crystal may find practical use for low temperature anisotropic magnetic refrigeration.
Planar reorientation maneuvers of space multibody systems using internal controls
NASA Technical Reports Server (NTRS)
Reyhanoglu, Mahmut; Mcclamroch, N. H.
1992-01-01
In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiland, W.; Tittes, U.; Hertel, I.V.
Angular distributions for the electronic to vibrational rotational and translational energy (E-VRT) transfer process Na*(3p)+H/sub 2/,D/sub 2/..-->..Na(3s)+H/sub 2/(v',j') with product energy analysis have been measured for the first time. The differential cross sections are forward peaked, constant but small between 35/sup 0/ and 160/sup 0/ and very slightly increasing at 180/sup 0/. The observations can be qualitatively understood by a simple model for the particle motion on the attractive A/sup 2/B/sub 2/ excited-state surface with a hop to the repulsive X/sup 2/A/sub 1/ ground state.
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
NASA Astrophysics Data System (ADS)
Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.
The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.
Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging
Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.
2014-01-01
Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653
NASA Technical Reports Server (NTRS)
Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.;
2016-01-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.
Scattering calculation and image reconstruction using elevation-focused beams
Duncan, David P.; Astheimer, Jeffrey P.; Waag, Robert C.
2009-01-01
Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering. PMID:19425653
Scattering calculation and image reconstruction using elevation-focused beams.
Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C
2009-05-01
Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.
Constant-current control method of multi-function electromagnetic transmitter.
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Constant-current control method of multi-function electromagnetic transmitter
NASA Astrophysics Data System (ADS)
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Interrupted flow reference energy mean emission levels for the FHWA Traffic Noise Model
DOT National Transportation Integrated Search
1997-01-01
This report presents the measurement, data reduction and analysis of individual vehicle sound level and speed data for non-constant speed situations. These situations are referred to as interrupted flow conditions and include acceleration from stop s...
MULTIPLE DIFFERENTIAL ROTARY MECHANICAL DRIVE
Smits, R.G.
1964-01-28
This patent relates to a mechanism suitable for such applications as driving two spaced-apart spools which carry a roll film strip under conditions where the film movement must be rapidly started, stopped, and reversed while maintaining a constant tension on the film. The basic drive is provided by a variable speed, reversible rnotor coupled to both spools through a first differential mechanism and driving both spools in the same direction. A second motor, providing a constant torque, is connected to the two spools through a second differential mechanism and is coupled to impart torque to one spool in a first direction anid to the other spool in the reverse direction thus applying a constant tension to the film passing over the two spools irrespective of the speed or direction of rotation thereof. (AEC)
Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2013-03-01
To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p < 0.01). Push time was reduced while push angle increased. The method to impose power only showed slight differences in the timing variables, however not in the force variables. Researchers and clinicians must be aware of testing and evaluation conditions that may differently affect propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Walters, D M; Stringer, S M
2010-07-01
A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.
Transduction in Drosophila olfactory receptor neurons is invariant to air speed
Zhou, Yi
2012-01-01
In the vertebrate nose, increasing air speed tends to increase the magnitude of odor-evoked activity in olfactory receptor neurons (ORNs), given constant odor concentration and duration. It is often assumed that the same is true of insect olfactory organs, but this has not been directly tested. In this study, we examined the effect of air speed on ORN responses in Drosophila melanogaster. We constructed an odor delivery device that allowed us to independently vary concentration and air speed, and we used a fast photoionization detector to precisely measure the actual odor concentration at the antenna while simultaneously recording spikes from ORNs in vivo. Our results demonstrate that Drosophila ORN odor responses are invariant to air speed, as long as odor concentration is kept constant. This finding was true across a >100-fold range of air speeds. Because odor hydrophobicity has been proposed to affect the air speed dependence of olfactory transduction, we tested a >1,000-fold range of hydrophobicity values and found that ORN responses are invariant to air speed across this full range. These results have implications for the mechanisms of odor delivery to Drosophila ORNs. Our findings are also significant because flies have a limited ability to control air flow across their antennae, unlike terrestrial vertebrates, which can control air flow within their nasal cavity. Thus, for the fly, invariance to air speed may be adaptive because it confers robustness to changing wind conditions. PMID:22815404
The speed-curvature power law of movements: a reappraisal.
Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco
2018-01-01
Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.
The Influence of Spring Length on the Physical Parameters of Simple Harmonic Motion
ERIC Educational Resources Information Center
Triana, C. A.; Fajardo, F.
2012-01-01
The aim of this work is to analyse the influence of spring length on the simple harmonic motion of a spring-mass system. In particular, we study the effect of changing the spring length on the elastic constant "[kappa]", the angular frequency "[omega]" and the damping factor "[gamma]" of the oscillations. To characterize the behaviour of these…
Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert
2016-10-01
The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.
Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.
Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P
2010-01-14
For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.
NASA Astrophysics Data System (ADS)
Kumar, K. S. Anil; Murigendrappa, S. M.; Kumar, Hemantha; Shekhar, Himanshu
2018-04-01
Friction stir welding (FSW) dissimilar joints of aluminium alloys of 2024-T351 and 7075-T651 were produced by reinforcing silicon carbide nano particle (SiCNP) in the rectangular cut groove made on the adjoining surface of the two dissimilar alloy plates joined in the butt configuration. A FSW tool of taper threaded cylindrical shape is used for producing the FSW dissimilar joints reinforced with SiCNP in the weld nugget zone (WNZ) and to produce metal matrix nano composite (MMNC) at the WNZ. In the experimental investigation, the constant FSW tool traverse speed of 40 mm/min and tool plunge depth of 6.2 mm/min is kept as constant, while the FSW tool rotation speed was varied from 400 rpm to 1800 rpm. The effect continuous varying tool rotation speed range from 400 rpm to 1800 rpm along the weld length and on the distribution of SiCNP in WNZ is analysed by conducting macro and microstructure study using optical microscopy (OM) and scanning electron microscopy (SEM) provided with energy dispersive spectrometry (EDS). In the experimental investigation, the combination of continuous varying FSW tool rotation speed range from 900rpm to 1150 rpm, constant tool traverse speed range 40 mm/min and tool plunge depth of 6.2 mm results in defect free, proper distribution of SiCNP and highest tensile properties for the FSW dissimilar joints. The highest ultimate tensile strength (UTS) of 380 MPa and yield strength (YS) of 150 MPa was observed for the combination of FSW tool rotation speed of 1000 rpm and tool traverse speed of 40 mm/min. The increasing in FSW tool rotation speed above 1250 rpm results in non homogeneous distribution of SiCNP in WNZ, excessive flash in the weld crown area and shows decreasing tendency in the tensile properties of the FSW dissimilar weld joints produced with reinforcing the SiCNP in the WNZ.
Global Plate Velocities from the Global Positioning System
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven
1997-01-01
We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.
Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine
NASA Astrophysics Data System (ADS)
Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.
2007-01-01
Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37kV with a stored energy of 4.8kJ and a deuterium filling pressure of 2.75torr. Distributions of protons and neutrons are measured with CR-39 Lantrack® nuclear track detectors, on 1.8×0.9cm2 chips, 500μm thick. A set of detectors was placed on a semicircular Teflon® holder, 13cm away from the plasma column, and covered with 15μm Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after ±40°, the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.
van der Waals torque and force between dielectrically anisotropic layered media.
Lu, Bing-Sui; Podgornik, Rudolf
2016-07-28
We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.
NASA Astrophysics Data System (ADS)
Tarulescu, R.; Tarulescu, S.; Leahu, C.
2017-10-01
The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).
40 CFR 92.116 - Engine output measurement system calibrations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... performed with the dynamometer operating at a constant speed. The flywheel torque measurement device readout... practice requires that both devices have approximately equal useful ranges of torque measurement.) The...
40 CFR 92.116 - Engine output measurement system calibrations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... performed with the dynamometer operating at a constant speed. The flywheel torque measurement device readout... practice requires that both devices have approximately equal useful ranges of torque measurement.) The...
40 CFR 92.116 - Engine output measurement system calibrations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... performed with the dynamometer operating at a constant speed. The flywheel torque measurement device readout... practice requires that both devices have approximately equal useful ranges of torque measurement.) The...
40 CFR 92.116 - Engine output measurement system calibrations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with... performed with the dynamometer operating at a constant speed. The flywheel torque measurement device readout... practice requires that both devices have approximately equal useful ranges of torque measurement.) The...
NASA Astrophysics Data System (ADS)
Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu
2018-06-01
A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.
Development and performance validation of a cryogenic linear stage for SPICA-SAFARI verification
NASA Astrophysics Data System (ADS)
Ferrari, Lorenza; Smit, H. P.; Eggens, M.; Keizer, G.; de Jonge, A. W.; Detrain, A.; de Jonge, C.; Laauwen, W. M.; Dieleman, P.
2014-07-01
In the context of the SAFARI instrument (SpicA FAR-infrared Instrument) SRON is developing a test environment to verify the SAFARI performance. The characterization of the detector focal plane will be performed with a backilluminated pinhole over a reimaged SAFARI focal plane by an XYZ scanning mechanism that consists of three linear stages stacked together. In order to reduce background radiation that can couple into the high sensitivity cryogenic detectors (goal NEP of 2•10-19 W/√Hz and saturation power of few femtoWatts) the scanner is mounted inside the cryostat in the 4K environment. The required readout accuracy is 3 μm and reproducibility of 1 μm along the total travel of 32 mm. The stage will be operated in "on the fly" mode to prevent vibrations of the scanner mechanism and will move with a constant speed varying from 60 μm/s to 400 μm/s. In order to meet the requirements of large stroke, low dissipation (low friction) and high accuracy a DC motor plus spindle stage solution has been chosen. In this paper we will present the stage design and stage characterization, describing also the measurements setup. The room temperature performance has been measured with a 3D measuring machine cross calibrated with a laser interferometer and a 2-axis tilt sensor. The low temperature verification has been performed in a wet 4K cryostat using a laser interferometer for measuring the linear displacements and a theodolite for measuring the angular displacements. The angular displacements can be calibrated with a precision of 4 arcsec and the position could be determined with high accuracy. The presence of friction caused higher values of torque than predicted and consequently higher dissipation. The thermal model of the stage has also been verified at 4K.
The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.
1995-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in six male squirrel monkeys during eccentric rotation. Monkeys were rotated in the dark at a constant velocity of 200 degrees/s (centrally or 79 cm off axis) with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's orientation (facing-motion or back-to-motion) had a dramatic influence on the VOR. These experiments show that: (a) the axis of eye rotation always shifted toward alignment with gravito-inertial force; (b) the peak value of horizontal slow phase eye velocity was greater with the monkey facing-motion than with back-to-motion; and (c) the time constant of horizontal eye movement decay was smaller with the monkey facing-motion than with back-to-motion. All of these findings were statistically significant and consistent across monkeys. In another set of tests, the same monkeys were rapidly tilted about their naso-occipital (roll) axis. Tilted orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the angular rotation, no consistent eye velocity response was observed during or following the tilt for any of the six monkeys. The absence of any eye movement response following tilt weighs against the possibility that translational linear VOR responses are due to simple high-pass filtering of the otolith signals. The VOR response during eccentric rotation was divided into the more familiar angular VOR and linear VOR components. The angular component is known to depend upon semicircular canal dynamics and central influences. The linear component of the response decays rapidly with a mean duration of only 6.6 s, while the axis of eye rotation rapidly aligns (< 10 s) with gravito-inertial force. These results are consistent with the hypothesis that the measurement of gravito-inertial force by the otolith organs is resolved into central estimates of linear acceleration and gravity, such that the central estimate of gravitational force minus the central estimate of linear acceleration approximately equals the otolith measurement of gravito-inertial force.
Critical gravitational collapse with angular momentum. II. Soft equations of state
NASA Astrophysics Data System (ADS)
Gundlach, Carsten; Baumgarte, Thomas W.
2018-03-01
We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ <1 /9 . For 1 /9 <κ ≲0.49 , the critical solution has only one unstable, growing mode, which is spherically symmetric. For supercritical data it controls the black-hole mass, while for subcritical data it controls the maximum density. For κ <1 /9 , an additional axial l =1 mode becomes unstable. This controls either the black-hole angular momentum, or the maximum angular velocity. In theory, the additional unstable l =1 mode changes the nature of the black-hole threshold completely: at sufficiently large initial rotation rates Ω and sufficient fine-tuning of the initial data to the black-hole threshold we expect to observe nontrivial universal scaling functions (familiar from critical phase transitions in thermodynamics) governing the black-hole mass and angular momentum, and, with further fine-tuning, eventually a finite black-hole mass almost everywhere on the threshold. In practice, however, the second unstable mode grows so slowly that we do not observe this breakdown of scaling at the level of fine-tuning we can achieve, nor systematic deviations from the leading-order power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).
Complex pendulum biomass sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.
A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In anmore » alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.« less
Plasmonic rainbow rings induced by white radial polarization.
Lan, Tzu-Hsiang; Chung, Yi-Kuan; Li, Jie-En; Tien, Chung-Hao
2012-04-01
This Letter presents a scheme to embed both angular/spectral surface plasmon resonance (SPR) in a unique far-field rainbow feature by tightly focusing (effective NA=1.45) a polychromatic radially polarized beam on an Au (20 nm)/SiO2 (500 nm)/Au (20 nm) sandwich structure. Without the need for angular or spectral scanning, the virtual spectral probe snapshots a wide operation range (n=1-1.42; λ=400-700 nm) of SPR excitation in a locally nanosized region. Combined with the high-speed spectral analysis, a proof-of-concept scenario was given by monitoring the NaCl liquid concentration change in real time. The proposed scheme will certainly has a promising impact on the development of objective-based SPR sensor and biometric studies due to its rapidity and versatility.
The elevation, slope, and curvature spectra of a wind roughened sea surface
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Stacy, R. A.
1973-01-01
The elevation, slope and curvature spectra are defined as a function of wave number and depend on the friction velocity. There are five wave number ranges of definition called the gravity wave-gravity equilibrium range, the isotropic turbulence range, the connecting range due to Leykin Rosenberg, the capillary range, and the viscous cutoff range. The higher wave number ranges are strongly wind speed dependent, and there is no equilibrium (or saturated) capillary range, at least for winds up to 30 meters/sec. Some properties of the angular variation of the spectra are also found. For high wave numbers, especially in the capillary range, the results are shown to be consistent with the Rayleigh-Rice backscattering theory (Bragg scattering), and certain properties of the angular variation are deduced from backscatter measurements.
Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin
2018-02-01
We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue
2012-04-01
The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
Hardware Model of a Shipboard Generator
2009-05-19
controller output PM motor power RM motor resistance Td derivative time constant Tf1 fuel valve time constant Tg1 governor time constant Tg2 governor...in speed, sending a response signal to the fuel valve that regulates gas turbine power. At this point, there is an inherent variation between the...basic response analysis [5]. 29 Electrical Power Rotor Inertia Amplifiers Fuel Valve Turbine Dynamics Rotational Friction and Windage
Kinetics of the Shanghai Maglev: Kinematical Analysis of a Real "Textbook" Case of Linear Motion
ERIC Educational Resources Information Center
Hsu, Tung
2014-01-01
A vehicle starts from rest at constant acceleration, then cruises at constant speed for a time. Next, it decelerates at a constant rate.… This and similar statements are common in elementary physics courses. Students are asked to graph the motion of the vehicle or find the velocity, acceleration, and distance traveled by the vehicle from a given…
Effects of strong laser fields on hadronic helium atoms
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Jiang, Tsin-Fu
2015-12-01
The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
A method to align a bent crystal for channeling experiments by using quasichanneling oscillations
NASA Astrophysics Data System (ADS)
Sytov, A. I.; Guidi, V.; Tikhomirov, V. V.; Bandiera, L.; Bagli, E.; Germogli, G.; Mazzolari, A.; Romagnoni, M.
2018-04-01
A method to calculate both the bent crystal angle of alignment and radius of curvature by using only one distribution of deflection angles has been developed. The method is based on measuring of the angular position of recently predicted and observed quasichanneling oscillations in the deflection angle distribution and consequent fitting of both the radius and angular alignment by analytic formulae. In this paper this method is applied on the example of simulated angular distributions over a wide range of values of both radius and alignment for electrons. It is carried out through the example of (111) nonequidistant planes though this technique is general and could be applied to any kind of planes. In addition, the method application constraints are also discussed. It is shown by simulations that this method, being in fact a sort of beam diagnostics, allows one in a certain case to increase the crystal alignment accuracy as well as to control precisely the radius of curvature inside an accelerator tube without vacuum breaking. In addition, it speeds up the procedure of crystal alignment in channeling experiments, reducing beamtime consuming.
Nikodelis, Thomas; Moscha, Dimitra; Metaxiotis, Dimitris; Kollias, Iraklis
2011-08-01
To investigate what sampling frequency is adequate for gait, the correlation of spatiotemporal parameters and the kinematic differences, between normal and CP spastic gait, for three sampling frequencies (100 Hz, 50 Hz, 25 Hz) were assessed. Spatiotemporal, angular, and linear displacement variables in the sagittal plane along with their 1st and 2nd derivatives were analyzed. Spatiotemporal stride parameters were highly correlated among the three sampling frequencies. The statistical model (2 × 3 ANOVA) gave no interactions between the factors group and frequency, indicating that group differences were invariant of sampling frequency. Lower frequencies led to smoother curves for all the variables, with a loss of information though, especially for the 2nd derivatives, having a homologous effect as the one of oversmoothing. It is proposed that in the circumstance that only spatiotemporal stride parameters, as well as angular and linear displacements are to be used, in gait reports, then commercial video camera speeds (25/30 Hz, 50/60 Hz when deinterlaced) can be considered as a low-cost solution to produce acceptable results.
NASA Astrophysics Data System (ADS)
Fereshteh-Saniee, Faramarz; Asgari, Mohammad; Fakhar, Naeimeh
2016-08-01
Despite valuable electrical characteristics, the use of pure aluminum in different applications has been limited due to its low strength. Non-equal channel angular pressing (NECAP) is a recently proposed severe plastic deformation process with greater induced plastic strain and, consequently, better grain refinement in the product, compared with the well-known equal channel angular pressing technique. This research is concerned with the effects of the process temperature and ram velocity on the mechanical, workability and electrical properties of AA1060 aluminum alloy. Increasing the process temperature can concurrently increase the workability, ductility and electrical conductivity, while it has a reverse influence on the strength of the NECAPed specimen, although the strengths of all the products are higher than the as-received alloy. The influence of the ram speed on the mechanical properties of the processed samples is lower than the process temperature. Finally, a compromised process condition is introduced in order to attain a good combination of workability and strength with well-preserved electrical conductivity for electrical applications of components made of pure aluminum.
Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Y.-J.; Lee, Harim
2017-04-01
It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).
Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr
It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limbmore » ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).« less
Modeling the effect of varying swim speeds on fish passage through velocity barriers
Castro-Santos, T.
2006-01-01
The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.
Göpfert, Caroline; Lindinger, Stefan J; Ohtonen, Olli; Rapp, Walter; Müller, Erich; Linnamo, Vesa
2016-06-01
The study investigated the effects of arm swing during leg push-off in V2-alternate/G4 skating on neuromuscular activation and force production by the leg muscles. Nine skilled cross-country skiers performed V2-alternate skating without poles at moderate, high, and maximal speeds, both with free (SWING) and restricted arm swing (NOSWING). Maximal speed was 5% greater in SWING (P<0.01), while neuromuscular activation and produced forces did not differ between techniques. At both moderate and high speed the maximal (2% and 5%, respectively) and average (both 5%) vertical force and associated impulse (10% and 14%) were greater with SWING (all P<0.05). At high speed range of motion and angular velocity of knee flexion were 24% greater with SWING (both P<0.05), while average EMG of m. biceps femoris was 31% lower (all P<0.05) in SWING. In a similar manner, the average EMG of m. vastus medialis and m. biceps femoris were lower (17% and 32%, P<0.05) during the following knee extension. Thus, swinging the arms while performing V2-alternate can enhance both maximal speed and skiing economy at moderate and, in particularly, high speeds. Copyright © 2016 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
1994-10-01
Although the speed of guided ground transportation continues to increase, the reaction : time as well as the sensory and information processing capacities of on- and off-board : operators remain constant. This report, the first of two examining criti...
DOT National Transportation Integrated Search
1996-12-01
Although the speed of some guided ground transportation systems continues to increase, the reaction time and the sensory : and information processing capacities of railroad personnel remain constant. This second report in a series examining : critica...
NASA Technical Reports Server (NTRS)
Peterson, R. L.; Warmbrodt, W.
1984-01-01
A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
Simulation evaluation of a speed-guidance law for Harrier approach transitions
NASA Technical Reports Server (NTRS)
Merrick, Vernon K.; Moralez, Ernesto; Stortz, Michael W.; Hardy, Gordon H.; Gerdes, Ronald M.
1991-01-01
An exponential-deceleration speed guidance law is formulated which mimics the technique currently used by Harrier pilots to perform decelerating approaches to a hover. This guidance law was tested along with an existing two-step constant deceleration speed guidance law, using a fixed-base piloted simulator programmed to represent a YAV-8B Harrier. Decelerating approaches to a hover at a predetermined station-keeping point were performed along a straight (-3 deg glideslope) path in headwinds up to 40 knots and turbulence up to 6 ft./sec. Visibility was fixed at one-quarter nautical mile and 100 ft. cloud ceiling. Three Harrier pilots participated in the experiment. Handling qualities with the aircraft equipped with the standard YAV-8B rate damped attitude stability augmentation system were adequate (level 2) using either speed guidance law. However, the exponential deceleration speed guidance law was rated superior to the constant-deceleration speed guidance law by a Cooper-Harper handling qualities rating of about one unit independent of the level of wind and turbulence. Replacing the attitude control system of the YAV-8B with a high fidelity model following attitude flight controller increased the approach accuracy and reduced the pilot workload. With one minor exception, the handling qualities for the approach were rated satisfactory (level 1). It is concluded that the exponential deceleration speed guidance law is the most cost effective.
The role of explicit and implicit standards in visual speed discrimination.
Norman, J Farley; Pattison, Kristina F; Norman, Hideko F; Craft, Amy E; Wiesemann, Elizabeth Y; Taylor, M Jett
2008-01-01
Five experiments were designed to investigate visual speed discrimination. Variations of the method of constant stimuli were used to obtain speed discrimination thresholds in experiments 1, 2, 4, and 5, while the method of single stimuli was used in experiment 3. The observers' thresholds were significantly influenced by the choice of psychophysical method and by changes in the standard speed. The observers' judgments were unaffected, however, by changes in the magnitude of random variations in stimulus duration, reinforcing the conclusions of Lappin et al (1975 Journal of Experimental Psychology: Human Perception and Performance 1 383 394). When an implicit standard was used, the observers produced relatively low discrimination thresholds (7.0% of the standard speed), verifying the results of McKee (1981 Vision Research 21 491-500). When an explicit standard was used in a 2AFC variant of the method of constant stimuli, however, the observers' discrimination thresholds increased by 74% (to 12.2%), resembling the high thresholds obtained by Mandriota et al (1962 Science 138 437-438). A subsequent signal-detection analysis revealed that the observers' actual sensitivities to differences in speed were in fact equivalent for both psychophysical methods. The formation of an implicit standard in the method of single stimuli allows human observers to make judgments of speed that are as precise as those obtained when explicit standards are available.
Sustained Swimming Speeds of Dolphins.
Johannessen, C L; Harder, J A
1960-11-25
Observations of fout large groups of dolphins suggest that they are able to swim at a sustained speed of 14 to 18 knots. The blackfish are able to maintain speeds of about 22 knots, and one killer whale seemed able to swim somewhat faster. This implies that the apparent coefficient of surface friction remains approximately constant for dolphins from 6 to 22 ft long, as is the case for rigid bodies.