Contact position sensor using constant contact force control system
NASA Technical Reports Server (NTRS)
Sturdevant, Jay (Inventor)
1995-01-01
A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).
Hydrophobic interactions between dissimilar surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.
1997-01-15
An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less
A method for modeling contact dynamics for automated capture mechanisms
NASA Technical Reports Server (NTRS)
Williams, Philip J.
1991-01-01
Logicon Control Dynamics develops contact dynamics models for space-based docking and berthing vehicles. The models compute contact forces for the physical contact between mating capture mechanism surfaces. Realistic simulation requires proportionality constants, for calculating contact forces, to approximate surface stiffness of contacting bodies. Proportionality for rigid metallic bodies becomes quite large. Small penetrations of surface boundaries can produce large contact forces.
Thrust Force Analysis of Tripod Constant Velocity Joint Using Multibody Model
NASA Astrophysics Data System (ADS)
Sugiura, Hideki; Matsunaga, Tsugiharu; Mizutani, Yoshiteru; Ando, Yosei; Kashiwagi, Isashi
A tripod constant velocity joint is used in the driveshaft of front wheel drive vehicles. Thrust force generated by this joint causes lateral vibration in these vehicles. To analyze the thrust force, a detailed model is constructed based on a multibody dynamics approach. This model includes all principal parts of the joint defined as rigid bodies and all force elements of contact and friction acting among these parts. This model utilizes a new contact modeling method of needle roller bearings for more precise and faster computation. By comparing computational and experimental results, the appropriateness of this model is verified and the principal factors inducing the second and third rotating order components of the thrust force are clarified. This paper also describes the influence of skewed needle rollers on the thrust force and evaluates the contribution of friction forces at each contact region to the thrust force.
Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P
2013-07-09
An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
Janeček, V; Nikolayev, V S
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces
NASA Astrophysics Data System (ADS)
Janeček, V.; Nikolayev, V. S.
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Adhesion of Particulate Materials to Mesostructured Polypyrrole
NASA Astrophysics Data System (ADS)
Hoss, Darby; Knepper, Robert; Hotchkiss, Peter; Tappan, Alexander; Boudouris, Bryan; Beaudoin, Stephen
Interactions based on van der Waals (vdW) forces will influence the performance and reliability of mesostructured polypyrrole swabs used for the collection and detection of trace particles. The vdW adhesion force between materials is described by the Hamaker constant, and these constants are measured via optical and dielectric properties (i.e., according to Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. Here, contact angle measurements were performed on films of several common materials and used to estimate Hamaker constants. This, in turn, will allow for the tuning of the design properties associated with the polypyrrole swabs. A comparison of these results to Hamaker constants estimated using Lifshitz Theory and IGC reveals the fundamental behavior of the materials. The Hamaker constants were then used in a new computational vdW adhesion model. The idealized model describes particle adhesion to an array of mesostrucures. This model elucidates the importance of where the particle makes contact with the mesostructure and the independence of vdW forces generated by each mesostructure. These results will facilitate the rational design of polypyrrole swabs optimized for harvesting microscale particles of trace materials.
Frustration in protein elastic network models
NASA Astrophysics Data System (ADS)
Lezon, Timothy; Bahar, Ivet
2010-03-01
Elastic network models (ENMs) are widely used for studying the equilibrium dynamics of proteins. The most common approach in ENM analysis is to adopt a uniform force constant or a non-specific distance dependent function to represent the force constant strength. Here we discuss the influence of sequence and structure in determining the effective force constants between residues in ENMs. Using a novel method based on entropy maximization, we optimize the force constants such that they exactly reporduce a subset of experimentally determined pair covariances for a set of proteins. We analyze the optimized force constants in terms of amino acid types, distances, contact order and secondary structure, and we demonstrate that including frustrated interactions in the ENM is essential for accurately reproducing the global modes in the middle of the frequency spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin
2011-11-15
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less
Influence of adhesive rough surface contact on microswitches
NASA Astrophysics Data System (ADS)
Wu, Ling; Rochus, V.; Noels, L.; Golinval, J. C.
2009-12-01
Stiction is a major failure mode in microelectromechanical systems (MEMS). Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis's model is combined with Kim's expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes.
Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints
NASA Astrophysics Data System (ADS)
CHEN, J. J.; YANG, B. D.; MENQ, C. H.
2000-01-01
Many mechanical systems have moving components that are mutually constrained through frictional contacts. When subjected to cyclic excitations, a contact interface may undergo constant changes among sticks, slips and separations, which leads to very complex contact kinematics. In this paper, a 3-D friction contact model is employed to predict the periodic forced response of structures having 3-D frictional constraints. Analytical criteria based on this friction contact model are used to determine the transitions among sticks, slips and separations of the friction contact, and subsequently the constrained force which consists of the induced stick-slip friction force on the contact plane and the contact normal load. The resulting constrained force is often a periodic function and can be considered as a feedback force that influences the response of the constrained structures. By using the Multi-Harmonic Balance Method along with Fast Fourier Transform, the constrained force can be integrated with the receptance of the structures so as to calculate the forced response of the constrained structures. It results in a set of non-linear algebraic equations that can be solved iteratively to yield the relative motion as well as the constrained force at the friction contact. This method is used to predict the periodic response of a frictionally constrained 3-d.o.f. oscillator. The predicted results are compared with those of the direct time integration method so as to validate the proposed method. In addition, the effect of super-harmonic components on the resonant response and jump phenomenon is examined.
Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...
2014-09-25
The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less
Effect of contact time and force on monocyte adhesion to vascular endothelium.
Rinker, K D; Prabhakar, V; Truskey, G A
2001-01-01
In this study we examined whether monocytic cell attachment to vascular endothelium was affected by elevating shear stress at a constant shear rate. Contact time, which is inversely related to the shear rate, was fixed and viscosity elevated with dextran to increase the shear stress (and hence the net force on the cell) independently of shear rate. At a fixed contact time, tethering frequencies increased, rolling velocities decreased, and median arrest durations increased with increasing shear stress. Rolling and short arrests (< 0.2 s) were well fit by a single exponential consistent with adhesion via the formation of a single additional bond. The cell dissociation constant, k(off), increased when the shear stress was elevated at constant shear rate. Firmly adherent cells arresting for at least 0.2 s were well fit by a stochastic model involving dissociation from multiple bonds. Therefore, at a fixed contact time and increasing shear stress, bonds formed more frequently for rolling cells resulting in more short arrests, and more bonds formed for firmly arresting cells resulting in longer arrest durations. Possible mechanisms for this increased adhesion include greater monocyte deformation and/or more frequent penetration of microvilli through steric and charge barriers. PMID:11259286
Biomechanics: no force limit on greyhound sprint speed.
Usherwood, James R; Wilson, Alan M
2005-12-08
Maximum running speed is constrained by the speed at which the limbs can be swung forwards and backwards, and by the force they can withstand while in contact with the ground. Humans sprinting around banked bends change the duration of foot contact to spread the time over which the load is applied, thereby keeping the force on their legs constant. We show here that, on entering a tight bend, greyhounds do not change their foot-contact timings, and so have to withstand a 65% increase in limb forces. This supports the idea that greyhounds power locomotion by torque about the hips, so--just as in cycling humans--the muscles that provide the power are mechanically divorced from the structures that support weight.
Change in knee contact force with simulated change in body weight.
Knarr, Brian A; Higginson, Jill S; Zeni, Joseph A
2016-02-01
The relationship between obesity, weight gain and progression of knee osteoarthritis is well supported, suggesting that excessive joint loading may be a mechanism responsible for cartilage deterioration. Examining the influence of weight gain on joint compressive forces is difficult, as both muscles and ground reaction forces can have a significant impact on the forces experienced during gait. While previous studies have examined the relationship between body weight and knee forces, these studies have used models that were not validated using experimental data. Therefore, the objective of this study was to evaluate the relationship between changes in body weight and changes in knee joint contact forces for an individual's gait pattern using musculoskeletal modeling that is validated against known internal compressive forces. Optimal weighting constants were determined for three subjects to generate valid predictions of knee contact forces (KCFs) using in vivo data collection with instrumented total knee arthroplasty. A total of five simulations per walking trial were generated for each subject, from 80% to 120% body weight in 10% increments, resulting in 50 total simulations. The change in peak KCF with respect to body weight was found to be constant and subject-specific, predominantly determined by the peak force during the baseline condition at 100% body weight. This relationship may be further altered by any change in kinematics or body mass distribution that may occur as a result of a change in body weight or exercise program.
Multicomponent Droplet Evaporation on Chemical Micro-Patterned Surfaces
He, Minghao; Liao, Dong; Qiu, Huihe
2017-01-01
The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface. PMID:28157229
Impedance-controlled ultrasound probe
NASA Astrophysics Data System (ADS)
Gilbertson, Matthew W.; Anthony, Brian W.
2011-03-01
An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.
Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.
Sim, Jai Kyoung; Cho, Young-Ho
2016-05-01
We present a contact force compensated thermal stimulator that can provide a consistent tempera- ture sensation on the human skin independent of the contact force between the thermal stimulator and the skin. Previous passive thermal stimulators were not capable of providing a consistent tem- perature on the human skin even when using identical heat source voltage due to an inconsistency of the heat conduction, which changes due to the force-dependent thermal contact resistance. We propose a force-based feedback method that monitors the contact force and controls the heat source voltage according to this contact force, thus providing consistent temperature on the skin. We composed a heat circuit model equivalent to the skin heat-transfer rate as it is changed by the contact forces; we obtained the optimal voltage condition for the constant skin heat-transfer rate independent of the contact force using a numerical estimation simulation tool. Then, in the experiment, we heated real human skin at the obtained heat source voltage condition, and investigated the skin heat transfer-rate by measuring the skin temperature at various times at different levels of contact force. In the numerical estimation results, the skin heat-transfer rate for the contact forces showed a linear profile in the contact force range of 1-3 N; from this profile we obtained the voltage equation for heat source control. In the experimental study, we adjusted the heat source voltage according to the contact force based on the obtained equation. As a result, without the heat source voltage control for the contact forces, the coefficients of variation (CV) of the skin heat-transfer rate in the contact force range of 1-3 N was found to be 11.9%. On the other hand, with the heat source voltage control for the contact forces, the CV of the skin heat-transfer rate in the contact force range of 1-3 N was found to be barely 2.0%, which indicate an 83.2% improvement in consistency compared to the skin heat-transfer rate without the heat source voltage control. The present technique provides a consistent temperature sensation on the human skin independent of the body movement environment; therefore, it has high potential for use in holistic haptic interfaces that have thermal displays.
Apparent dynamic contact angle of an advancing gas--liquid meniscus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalliadasis, S.; Chang, H.
1994-01-01
The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle [Theta] that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecularmore » forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan [Theta]=7.48 Ca[sup 1/3] for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca[sup 1/3] dependence occurs only at very low Ca, where the intermolecular forces become more important and tan [Theta] diverges slightly from the above asymptotic behavior toward lower values.« less
Matsuda, Hisao; Parwani, Abdul Shokor; Attanasio, Philipp; Huemer, Martin; Wutzler, Alexander; Blaschke, Florian; Haverkamp, Wilhelm; Boldt, Leif-Hendrik
2016-09-01
Catheter tissue contact force (CF) is an important factor for durable lesion formation during radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Since CF varies in the beating heart, atrial rhythm during RFCA may influence CF. A high-density map and RFCA points were obtained in 25 patients undergoing RFCA of AF using a CF-sensing catheter (Tacticath, St. Jude Medical). The operators were blinded to the CF information. Contact type was classified into three categories: constant, variable, and intermittent contact. Average CF and contact type were analyzed according to atrial rhythm (SR vs. AF) and anatomical location. A total of 1364 points (891 points during SR and 473 points during AF) were analyzed. Average CFs showed no significant difference between SR (17.2 ± 11.3 g) and AF (17.2 ± 13.3 g; p = 0.99). The distribution of points with an average CF of ≥20 and <10 g also showed no significant difference. However, the distribution of excessive CF (CF ≥40 g) was significantly higher during AF (7.4 %) in comparison with SR (4.2 %; p < 0.05). At the anterior area of the right inferior pulmonary vein (RIPV), the average CF during AF was significantly higher than during SR (p < 0.05). Constant contact was significantly higher during AF (32.2 %) when compared to SR (9.9 %; p < 0.01). Although the average CF was not different between atrial rhythms, constant contact was more often achievable during AF than it was during SR. However, excessive CF also seems to occur more frequently during AF especially at the anterior part of RIPV.
NASA Astrophysics Data System (ADS)
Yang, Fuqian
2008-04-01
A general solution of the axisymmetric indentation is obtained in the closed form for a semi-infinite, transverse isotropic piezoelectric material by a rigid-conducting indenter of arbitrary-axisymmetric profile. Explicit relationships are derived for dependences of the indentation depth and the indentation-induced charge on indentation force and applied electrical potential. Simple formulas are obtained for contact stiffness and effective piezoelectric constant, which can be used in indentation test and piezoresponse force microscopy to analyze the elastic and piezoelectric responses of piezoelectric materials. Depending on the direction of electric field (the potential difference), the electric field can either increase or suppress indentation deformation. The corresponding results are given for cylindrical, conical, and paraboloidal indenters.
Accounting for elite indoor 200 m sprint results.
Usherwood, James R; Wilson, Alan M
2006-03-22
Times for indoor 200 m sprint races are notably worse than those for outdoor races. In addition, there is a considerable bias against competitors drawn in inside lanes (with smaller bend radii). Centripetal acceleration requirements increase average forces during sprinting around bends. These increased forces can be modulated by changes in duty factor (the proportion of stride the limb is in contact with the ground). If duty factor is increased to keep limb forces constant, and protraction time and distance travelled during stance are unchanging, bend-running speeds are reduced. Here, we use results from the 2004 Olympics and World Indoor Championships to show quantitatively that the decreased performances in indoor competition, and the bias by lane number, are consistent with this 'constant limb force' hypothesis. Even elite athletes appear constrained by limb forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Effect of skin hydration on the dynamics of fingertip gripping contact.
André, T; Lévesque, V; Hayward, V; Lefèvre, P; Thonnard, J-L
2011-11-07
The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.
Effect of skin hydration on the dynamics of fingertip gripping contact
André, T.; Lévesque, V.; Hayward, V.; Lefèvre, P.; Thonnard, J.-L.
2011-01-01
The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction. PMID:21490002
Depth-dependent resistance of granular media to vertical penetration.
Brzinski, T A; Mayor, P; Durian, D J
2013-10-18
We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.
A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
Leonardis, Daniele; Solazzi, Massimiliano; Bortone, Ilaria; Frisoli, Antonio
2017-01-01
A novel wearable haptic device for modulating contact forces at the fingertip is presented. Rendering of forces by skin deformation in three degrees of freedom (DoF), with contact-no contact capabilities, was implemented through rigid parallel kinematics. The novel asymmetrical three revolute-spherical-revolute (3-RSR) configuration allowed compact dimensions with minimum encumbrance of the hand workspace. The device was designed to render constant to low frequency deformation of the fingerpad in three DoF, combining light weight with relatively high output forces. A differential method for solving the non-trivial inverse kinematics is proposed and implemented in real time for controlling the device. The first experimental activity evaluated discrimination of different fingerpad stretch directions in a group of five subjects. The second experiment, enrolling 19 subjects, evaluated cutaneous feedback provided in a virtual pick-and-place manipulation task. Stiffness of the fingerpad plus device was measured and used to calibrate the physics of the virtual environment. The third experiment with 10 subjects evaluated interaction forces in a virtual lift-and-hold task. Although with different performance in the two manipulation experiments, overall results show that participants better controlled interaction forces when the cutaneous feedback was active, with significant differences between the visual and visuo-haptic experimental conditions.
High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu
In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized inmore » a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.« less
High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.
Ren, Juan; Zou, Qingze
2014-07-01
In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.
Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties
NASA Astrophysics Data System (ADS)
Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro
2013-12-01
We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.
Accounting for elite indoor 200 m sprint results
Usherwood, James R; Wilson, Alan M
2005-01-01
Times for indoor 200 m sprint races are notably worse than those for outdoor races. In addition, there is a considerable bias against competitors drawn in inside lanes (with smaller bend radii). Centripetal acceleration requirements increase average forces during sprinting around bends. These increased forces can be modulated by changes in duty factor (the proportion of stride the limb is in contact with the ground). If duty factor is increased to keep limb forces constant, and protraction time and distance travelled during stance are unchanging, bend-running speeds are reduced. Here, we use results from the 2004 Olympics and World Indoor Championships to show quantitatively that the decreased performances in indoor competition, and the bias by lane number, are consistent with this ‘constant limb force’ hypothesis. Even elite athletes appear constrained by limb forces. PMID:17148323
System analysis of force feedback microscopy
NASA Astrophysics Data System (ADS)
Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio
2014-02-01
It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.
The Effect of Temporal Perception on Weight Perception
Kambara, Hiroyuki; Shin, Duk; Kawase, Toshihiro; Yoshimura, Natsue; Akahane, Katsuhito; Sato, Makoto; Koike, Yasuharu
2013-01-01
A successful catch of a falling ball requires an accurate estimation of the timing for when the ball hits the hand. In a previous experiment in which participants performed ball-catching task in virtual reality environment, we accidentally found that the weight of a falling ball was perceived differently when the timing of ball load force to the hand was shifted from the timing expected from visual information. Although it is well known that spatial information of an object, such as size, can easily deceive our perception of its heaviness, the relationship between temporal information and perceived heaviness is still not clear. In this study, we investigated the effect of temporal factors on weight perception. We conducted ball-catching experiments in a virtual environment where the timing of load force exertion was shifted away from the visual contact timing (i.e., time when the ball hit the hand in the display). We found that the ball was perceived heavier when force was applied earlier than visual contact and lighter when force was applied after visual contact. We also conducted additional experiments in which participants were conditioned to one of two constant time offsets prior to testing weight perception. After performing ball-catching trials with 60 ms advanced or delayed load force exertion, participants’ subjective judgment on the simultaneity of visual contact and force exertion changed, reflecting a shift in perception of time offset. In addition, timing of catching motion initiation relative to visual contact changed, reflecting a shift in estimation of force timing. We also found that participants began to perceive the ball as lighter after conditioning to 60 ms advanced offset and heavier after the 60 ms delayed offset. These results suggest that perceived heaviness depends not on the actual time offset between force exertion and visual contact but on the subjectively perceived time offset between them and/or estimation error in force timing. PMID:23450805
Percolating Contact Subnetworks on the Edge of Isostaticity
2011-01-01
pressure, and cyclic loading of photoelastic disks under constant vol- ume. D. M. Walker · A. Tordesillas (B) Department of Mathematics and Statistics ...Complex networks · Spanning trees · Force chains · Force cycles · Isostatic 1 Introduction Ioannis Vardoulakis and his collaborators brought soil ...57, 706–727 (2009) 2. Vardoulakis, I.: Shear-banding and liquefaction in granular mate- rials on the basis of a Cosserat continuum theory. Ingenieur
Influence of the surface chemistry on TiO2 - TiO2 nanocontact forces as measured by an UHV-AFM
NASA Astrophysics Data System (ADS)
Kunze, Christian; Giner, Ignacio; Torun, Boray; Grundmeier, Guido
2014-03-01
Particle-wall contact forces between a TiO2 film coated AFM tip and TiO2(1 1 0) single crystal surfaces were analyzed by means of UHV-AFM. As a reference system an octadecylphosphonic acid monolayer covered TiO2(1 1 0) surface was studied. The defect chemistry of the TiO2 substrate was modified by Ar ion bombardment, water dosing at 3 × 10-6 Pa and an annealing step at 473 K which resulted in a varying density of Ti(III) states. The observed contact forces are correlated to the surface defect density and are discussed in terms of the change in the electronic structure and its influence on the Hamaker constant.
Noninvasive determination of optical lever sensitivity in atomic force microscopy
NASA Astrophysics Data System (ADS)
Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P.
2006-01-01
Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.
Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard
2016-05-03
Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy
NASA Astrophysics Data System (ADS)
Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.
2000-05-01
Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.
Fronczak, Sean G; Dong, Jiannan; Browne, Christopher A; Krenek, Elizabeth C; Franses, Elias I; Beaudoin, Stephen P; Corti, David S
2017-01-24
In order to minimize the effects of surface roughness and deformation, a new method for estimating the Hamaker constant, A, of solids using the approach-to-contact regime of an atomic force microscope (AFM) is presented. First, a previous "jump-into-contact" quasi-static method for determining A from AFM measurements is analyzed and then extended to include various AFM tip-surface force models of interest. Then, to test the efficacy of the "jump-into-contact" method, a dynamic model of the AFM tip motion is developed. For finite AFM cantilever-surface approach speeds, a true "jump" point, or limit of stability, is found not to appear, and the quasi-static model fails to represent the dynamic tip behavior at close tip-surface separations. Hence, a new "quasi-dynamic" method for estimating A is proposed that uses the dynamically well-defined deflection at which the tip and surface first come into contact, d c , instead of the dynamically ill-defined "jump" point. With the new method, an apparent Hamaker constant, A app , is calculated from d c and a corresponding quasi-static-based equation. Since A app depends on the cantilever's approach speed, v c , and the AFM's sampling resolution, δ, a double extrapolation procedure is used to determine A app in the quasi-static (v c → 0) and continuous sampling (δ → 0) limits, thereby recovering the "true" value of A. The accuracy of the new method is validated using simulated AFM data. To enable the experimental implementation of this method, a new dimensionless parameter τ is introduced to guide cantilever selection and the AFM operating conditions. The value of τ quantifies how close a given cantilever is to its quasi-static limit for a chosen cantilever-surface approach speed. For sufficiently small values of τ (i.e., a cantilever that effectively behaves "quasi-statically"), simulated data indicate that A app will be within ∼3% or less of the inputted value of the Hamaker constant. This implies that Hamaker constants can be reliably estimated using a single measurement taken with an appropriately chosen cantilever and a slow, yet practical, approach speed (with no extrapolation required). This result is confirmed by the very good agreement found between the experimental AFM results obtained using this new method and previously reported predictions of A for amorphous silica, polystyrene, and α-Al 2 O 3 substrates obtained using the Lifshitz method.
Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Millqvist-Fureby, Anna; Rutland, Mark W
2017-11-21
Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive effect under the same ambient conditions. The markedly different behavior detected by force measurements clearly shows the sticky and nonsticky propensity of the materials and allows a mechanistic description.
Contact angle hysteresis in a microchannel: statics
NASA Astrophysics Data System (ADS)
Hatipogullari, Metin; Wylock, Christophe; Pradas, Marc; Kalliadasis, Serafim; Colinet, Pierre
2017-11-01
We study contact angle hysteresis by tracking static meniscus configurations upon varying the volume of a liquid inside a chemically heterogeneous microchannel. We first construct a graphical force balance similar to the classical theory of Joanny and de Gennes for this system, though here with a straight contact line (2D channel). Hysteresis is induced by wettability gradients above a finite threshold value. This is also visualized in a phase plot enabling to easily predict stick-slip events of the contact line and the occurrence of hysteresis. Above the threshold and for non-overlapping Gaussian defects, we find good agreement with the classical formulas for the hysteresis amplitude induced by a dilute system of defects. In particular it is found to be proportional to the square of the defect force and to the defect concentration. For a sinusoidal heterogeneity, decreasing the ratio between the heterogeneity wavelength and the microchannel gap size, brings the system from a sub threshold regime, to a stick-slip dominated regime, and finally to a regime with a quasi-constant advancing and receding angle. In the latter, the hysteresis amplitude is found to be proportional to the defect force.
Non-intrusive measurements of frictional forces between micro-spheres and flat surfaces
NASA Astrophysics Data System (ADS)
Lin, Wei-Hsun; Daraio, Chiara; Daraio's Group Team
2014-03-01
We report a novel, optical pump-probe experimental setup to study micro-friction phenomena between micro-particles and a flat surface. We present a case study of stainless steel microspheres, of diameter near 250 μm, in contact with different surfaces of variable roughness. In these experiments, the contact area between the particles and the substrates is only a few nanometers wide. To excite the particles, we deliver an impulse using a pulsed, high-power laser. The reaction force resulting from the surface ablation induced by the laser imparts a controlled initial velocity to the target particle. This initial velocity can be varied between 10-5 to 1 m/s. We investigate the vibrating and rolling motions of the micro-particles by detecting their velocity and displacement with a laser vibrometer and a high-speed microscope camera. We calculate the effective Hamaker constant from the vibrating motion of a particle, and study its relation to the substrate's surface roughness. We analyze the relation between rolling friction and the minimum momentum required to break surface bonding forces. This non-contact and non-intrusive technique could be employed to study a variety of contact and tribology problems at the microscale.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko
2016-02-01
High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.
Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei
2018-02-28
Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.
Ti Ni shape memory alloy film-actuated microstructures for a MEMS probe card
NASA Astrophysics Data System (ADS)
Namazu, Takahiro; Tashiro, Youichi; Inoue, Shozo
2007-01-01
This paper describes the development of a novel silicon (Si) cantilever beam device actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) films. A Ti-Ni SMA film can yield high work output per unit volume, so a Ti-Ni film-actuated Si cantilever beam device is a prospective tool for use as a microelectromechanical system (MEMS) probe card that provides a relatively large contact force between the probe and electrode pad in spite of its minute size. Before fabrication of the device, the thermomechanical deformation behavior of Ti-Ni SMA films with various compositions was investigated in order to determine a sufficient constituent film for a MEMS actuator. As a result, Ti-Ni films having a Ti content of 50.2 to 52.6 atomic% (at%) were found to be usable for operation as a room temperature actuator. We have developed a Ti-Ni film-actuated Si cantilever beam device, which can produce a contact force by the cantilever bending when in contact, and also by the shape memory effect (SME) of the Ti-Ni film arising from Joule heating. The SME of the Ti-Ni film can generate an additional average contact force of 200 µN with application of 500 mW to the film. In addition to physical contact, a dependable electric contact between the Au film-coated probe tip and the Al film electrode was achieved. However, the contact resistance exhibited an average value of 25 Ω, which would have to be reduced for practical use. Reliability tests confirmed the durability of the Ti-Ni film-actuated Si cantilever-beam, in that the contact resistance was constant throughout a large number of physical contacts (>104 times).
Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters
NASA Technical Reports Server (NTRS)
Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise
2011-01-01
A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.
Direct measurement of asperity contact growth in quartz at hydrothermal conditions
Beeler, Nicholas M.; Hickman, Stephen H.
2015-01-01
Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.
The response of dense dry granular material to the shear reversal
NASA Astrophysics Data System (ADS)
Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert
2008-11-01
We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.
An adhesive contact mechanics formulation based on atomistically induced surface traction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Houfu; Ren, Bo; Li, Shaofan, E-mail: shaofan@berkeley.edu
2015-12-01
In this work, we have developed a novel multiscale computational contact formulation based on the generalized Derjuguin approximation for continua that are characterized by atomistically enriched constitutive relations in order to study macroscopic interaction between arbitrarily shaped deformable continua. The proposed adhesive contact formulation makes use of the microscopic interaction forces between individual particles in the interacting bodies. In particular, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is converted into a double-layer surface integral through a mathematically consistent approach that employs the divergence theorem and a special partitioning technique. The proposed contact model is formulatedmore » in the nonlinear continuum mechanics framework and implemented using the standard finite element method. With no large penalty constant, the stiffness matrix of the system will in general be well-conditioned, which is of great significance for quasi-static analysis. Three numerical examples are presented to illustrate the capability of the proposed method. Results indicate that with the same mesh configuration, the finite element computation based on the surface integral approach is faster and more accurate than the volume integral based approach. In addition, the proposed approach is energy preserving even in a very long dynamic simulation.« less
Olivier, L A; Truskey, G A
1993-10-01
Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area. (c) 1993 John Wiley & Sons, Inc.
Contact Geometry and Distribution of Plasma Generated in the Vicinity of Sliding Contact
NASA Astrophysics Data System (ADS)
Nakayama, Keiji
2007-09-01
The effect of the geometry of the smaller sliding partner on plasma (triboplasma) generation has been investigated as a function of the tip radius of a diamond pin, which slides against a single crystal sapphire disk under atmospheric dry air pressure. It was found that the diameter and the total intensity of the circular triboplasma increase parabolically with an increase in the tip radius of the pin under constant normal force and sliding velocity. The plasma is most intense at the crossing point of the plasma ring and the frictional track in the plasma circle. The gap distance at the crossing point is independent of the tip radius. The ring diameter increases with an increase in the tip radius, keeping the gap distance constant and obeying Paschen’s law of gas discharge.
Welberry, T R; Goossens, D J; Edwards, A J; David, W I
2001-01-01
A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in benzil, diphenylethanedione, C(6)H(5)-CO-CO-C(6)H(5). A model involving 13 parameters consisting of 11 intermolecular force constants, a single intramolecular torsional force constant and a local Debye-Waller factor was refined to give an agreement factor, R = [summation operator omega(Delta I)(2)/summation operator omega I(obs)(2)](1/2), of 14.5% for 101,324 data points. The model was purely thermal in nature. The analysis has shown that the diffuse lines, which feature so prominently in the observed diffraction patterns, are due to strong longitudinal displacement correlations. These are transmitted from molecule to molecule via a network of contacts involving hydrogen bonding of an O atom on one molecule and the para H atom of the phenyl ring of a neighbouring molecule. The analysis also allowed the determination of a torsional force constant for rotations about the single bonds in the molecule. This is the first diffuse scattering study in which measurement of such internal molecular torsion forces has been attempted.
Elastic response of binary hard-sphere fluids
NASA Astrophysics Data System (ADS)
Rickman, J. M.; Ou-Yang, H. Daniel
2011-07-01
We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for example, does not. This behavior is shown to be dictated by the angular dependence (in k⃗ space) of derivatives of the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal fluids in laser trapping experiments.
Utilisation of chip thickness models in grinding
NASA Astrophysics Data System (ADS)
Singleton, Roger
Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process rather than the value of chip thickness. Changes in chip thickness at constant material removal rate result in microscale changes in the rate of contact layer removal when compared to changes in process productivity. This is a significant piece of information in relation to specific grinding energy where conventional theory states it is primarily dependent on chip thickness..
Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V
2014-01-01
Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains. Copyright © 2013 Wiley Periodicals, Inc.
Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body
NASA Astrophysics Data System (ADS)
Selivanov, M. F.
2017-11-01
An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.
Method and system of measuring ultrasonic signals in the plane of a moving web
Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher
1996-01-01
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.
Method and system of measuring ultrasonic signals in the plane of a moving web
Hall, M.S.; Jackson, T.G.; Wink, W.A.; Knerr, C.
1996-02-27
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like is disclosed. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefore, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.
Hall, M.S.; Jackson, T.G.; Knerr, C.
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.
Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.
Creep force modelling for rail traction vehicles based on the Fastsim algorithm
NASA Astrophysics Data System (ADS)
Spiryagin, Maksym; Polach, Oldrich; Cole, Colin
2013-11-01
The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.
Fourchet, François; Girard, Olivier; Kelly, Luke; Horobeanu, Cosmin; Millet, Grégoire P
2015-03-01
This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. Within-participants repeated measures. Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Surface Properties of PEMFC Gas Diffusion Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
WoodIII, David L; Rulison, Christopher; Borup, Rodney
2010-01-01
The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less
Stiffness map of the grasping contact areas of the human hand.
Pérez-González, Antonio; Vergara, Margarita; Sancho-Bru, Joaquin L
2013-10-18
The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1N to 6N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2N/mm to 7.7N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping. © 2013 Elsevier Ltd. All rights reserved.
Kutateladze, Andrei G; Mukhina, Olga A
2014-09-05
Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.
Nature of Driving Force for Protein Folding: A Result From Analyzing the Statistical Potential
NASA Astrophysics Data System (ADS)
Li, Hao; Tang, Chao; Wingreen, Ned S.
1997-07-01
In a statistical approach to protein structure analysis, Miyazawa and Jernigan derived a 20×20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the Miyazawa-Jernigan matrix can be accurately reconstructed from its first two principal component vectors as Mij = C0+C1\\(qi+qj\\)+C2qiqj, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2017-10-01
This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.
NASA Astrophysics Data System (ADS)
Stark, Martin; Guckenberger, Reinhard; Stemmer, Andreas; Stark, Robert W.
2005-12-01
Dynamic atomic force microscopy (AFM) offers many opportunities for the characterization and manipulation of matter on the nanometer scale with a high temporal resolution. The analysis of time-dependent forces is basic for a deeper understanding of phenomena such as friction, plastic deformation, and surface wetting. However, the dynamic characteristics of the force sensor used for such investigations are determined by various factors such as material and geometry of the cantilever, detection alignment, and the transfer characteristics of the detector. Thus, for a quantitative investigation of surface properties by dynamic AFM an appropriate system identification procedure is required, characterizing the force sensor beyond the usual parameters spring constant, quality factor, and detection sensitivity. Measurement of the transfer function provides such a characterization that fully accounts for the dynamic properties of the force sensor. Here, we demonstrate the estimation of the transfer function in a bandwidth of 1MHz from experimental data. To this end, we analyze the signal of the vibrations induced by snap-to-contact and snap-off-contact events. For the free cantilever, we determine both a parameter-free estimate [empirical transfer function estimate (ETFE)] and a parametric estimate of the transfer function. For the surface-coupled cantilever the ETFE is obtained. These identification procedures provide an intrinsic calibration as they dispense largely with a priori knowledge about the force sensor.
The behaviour of lubricated EHD contacts subjected to vibrations
NASA Astrophysics Data System (ADS)
Zhang, X.; Glovnea, R. P.
2017-02-01
Machine components containing contacts working in elastohydrodynamic (EHD) conditions are often subjected to vibrations. These may be originated from the mechanism or machine the contact is part of, the surrounding environment and within the contact itself. The influence of vibrations upon the behaviour of elastohydrodynamic films has been studied experimentally in a number of papers, but a comprehensive study of the effect of the parameters of the oscillatory motion upon the film thickness has not been carried out yet. In this study the authors evaluate the effect of the frequency of the oscillatory motion upon the EHD film thickness. Optical interferometry is used to measure lubricant film thickness in a ball-on-flat disc arrangement. A high - speed camera records the interferometric images for later analysis and conversion into film thickness maps. The disc runs at a constant angular velocity while the ball is driven by the traction forces developed in the EHD film. In steady state conditions, this would ensure pure rolling conditions, however in the present investigation the ball is subjected to harmonic vibrations in a direction perpendicular to the plane of the film. The contact under study is lubricated by basic oils and the temperature is kept at a constant value of 60°C. The aim of this paper is to understand how vibrations influence the lubricant film formation.
Current and efficiency optimization under oscillating forces in entropic barriers
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydıner, Ekrem
2016-09-01
The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).
Friction coefficient and effective interference at the implant-bone interface.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2015-09-18
Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
On the debris-level origins of adhesive wear
NASA Astrophysics Data System (ADS)
Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-François
2017-07-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear.
Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François
2017-07-25
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear
Warner, Derek H.; Molinari, Jean-François
2017-01-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes. PMID:28696291
Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution
NASA Astrophysics Data System (ADS)
Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo
2016-05-01
We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00496b
Stress focusing and collapse of a thin film under constant pressure
NASA Astrophysics Data System (ADS)
Hamm, Eugenio; Cabezas, Nicolas
2012-02-01
Thin elastic sheets and shells are prone to focus stress when forced, due to their near inextensibility. Singular structures such as ridges, vertices, and folds arising from wrinkles, are characteristic of the deformation of such systems. Usually the forcing is exerted at the boundaries or at specific points of the surface, in displacement controlled experiments. On the other hand, much of the phenomenology of stress focusing can be found at micro and nanoscales, in physics and biology, making it universal. We will consider the post-buckling regime of a thin elastic sheet that is subjected to a constant normal distributed force. Specifically, we will present experiments made on thin elastoplastic sheets that collapse under atmospheric pressure. For instance, in vacuum-sealing technology, when a flat plastic bag is forced to wrap a solid volume, a series of self-contacts and folds develop. The unfolded bag shows a pattern of scars whose structure is determined by the geometry of the volume and by the exact way it stuck to its surface, by friction. Inspired by this everyday example we study the geometry of folds that result from collapsing a hermetic bag on regular rigid bodies.
Calibration-free portable Young's-modulus tester with isolated langasite oscillator.
Ogi, Hirotsugu; Sakamoto, Yuto; Hirao, Masahiko
2014-09-01
A ballpoint-pen-type portable ultrasonic oscillator is developed for quantitative measurement of Young's modulus on a solid. It consists of an electrodeless rod-shaped langasite oscillator with a tungsten-carbide spherical-shaped tip at the end, permanent magnets for making a constant force at the contact interface, and antennas for exciting and detecting the longitudinal vibration contactlessly. The resonance frequency of the oscillator is changed by contact with the specimen, reflecting Young's modulus of the specimen at the contact area. The langasite oscillator is supported at the nodal points so that its acoustical contact occurs only at the specimen, making a calibration-free measurement realistic. Young's moduli of various specimens were evaluated within 15% error just by touching the specimens with the probe. The error becomes smaller than 10% for lower Young-modulus materials (<∼150 GPa). Copyright © 2014 Elsevier B.V. All rights reserved.
Van Wassenbergh, Sam; Aerts, Peter
2013-01-01
The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards. PMID:23658116
NASA Astrophysics Data System (ADS)
MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
2018-03-01
Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.
NASA Astrophysics Data System (ADS)
Torabinia, Matin; Farzbod, Ali; Moon, Hyejin
2018-04-01
In electrowetting-on-dielectric (EWOD) microfluidics, a motion of a fluid is created by a voltage applied to the fluid/surface interface. Water and aqueous solutions are the most frequently used fluids in EWOD devices. In order for EWOD microfluidics to be a versatile platform for various applications, however, movability of different types of fluids other than aqueous solutions should be understood. An electromechanical model using a simple RC circuit has been used to predict the mechanical force exerted on a liquid droplet upon voltage application. In this present study, two important features missed in previous works are addressed. Energy dissipation by contact line friction is considered in the new model as the form of resistor. The phase angle is taken into account in the analysis of the AC circuit. The new electromechanical model and computation results are validated with experimental measurements of forces on two different liquids. The model is then used to explain influences of contact angle hysteresis, surface tension, conductivity, and dielectric constant of fluids to the mechanical force on a liquid droplet.
Otsuki, Michio; Matsukawa, Hiroshi
2013-01-01
In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778
Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.
Damm, Philipp; Bender, Alwina; Bergmann, Georg
2015-01-01
Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind
2012-01-01
Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531
Resolving DNA-ligand intercalation in the entropic stretching regime
NASA Astrophysics Data System (ADS)
Almaqwashi, Ali A.
Single molecule studies of DNA intercalation are typically conducted by applying stretching forces to obtain force-dependent DNA elongation measurements. The zero-force properties of DNA intercalation are determined by equilibrium and kinetic force-analysis. However, the applied stretching forces that are above the entropic regime (>5 pN) prevent DNA-DNA contact which may eliminate competitive DNA-ligand interactions. In particular, it is noted that cationic mono-intercalators investigated by single molecule force spectroscopy are mostly found to intercalate DNA with single rate, while bulk studies reported additional slower rates. Here, a proposed framework quantifies DNA intercalation by cationic ligands in competition with relatively rapid kinetic DNA-ligand aggregation. At a constant applied force in the entropic stretching regime, the analysis illustrates that DNA intercalation would be measurably optimized only within a narrow range of low ligand concentrations. As DNA intercalators are considered for potential DNA-targeted therapeutics, this analysis provides insights in tuning ligand concertation to maximize therapeutics efficiency.
Nature of Driving Force for Protein Folding-- A Result From Analyzing the Statistical Potential
NASA Astrophysics Data System (ADS)
Li, Hao; Tang, Chao; Wingreen, Ned S.
1998-03-01
In a statistical approach to protein structure analysis, Miyazawa and Jernigan (MJ) derived a 20× 20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the MJ matrix can be accurately reconstructed from its first two principal component vectors as M_ij=C_0+C_1(q_i+q_j)+C2 qi q_j, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.
NASA Astrophysics Data System (ADS)
Barnea, N.; Bazak, B.; Friedman, E.; Gal, A.
2017-12-01
A three-body force acting between the η-meson and two nucleons was overlooked inadvertently in the model description and discussion in the published version of our paper "Onset of η-nuclear binding in a pionless EFT approach" [Phys. Lett. B 771 (2017) 297-302] while present in the actual numerical calculations. The stated conclusion that a stabilizing ηNN contact term was not needed is therefore incorrect. Such a three-body force, associated with a new low energy constant dηNNΛ, must be introduced at leading order to stabilize η-nucleus systems.
Simultaneous prediction of muscle and contact forces in the knee during gait.
Lin, Yi-Chung; Walter, Jonathan P; Banks, Scott A; Pandy, Marcus G; Fregly, Benjamin J
2010-03-22
Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Energy cost and pole forces during Nordic walking under different surface conditions.
Schiffer, Thorsten; Knicker, Axel; Dannöhl, Regine; Strüder, Heiko K
2009-03-01
The purpose of the study was to identify the effect of three different surfaces on energy consumption and the forces acting on the walking poles during ground contact in Nordic walking (NW). Thirteen female NW instructors (age = 26 +/- 4 yr, weight = 58.5 +/- 4.2 kg, height = 168.1 +/- 4.6 cm) volunteered in the study. The subjects walked a distance of 1200 m at a controlled, constant speed of 2.2 m x s(-1) on each of a concrete surface (C), an artificial athletics track (A), and a naturally grown soccer lawn (G). They used NW poles with inbuilt strain gauge force transducers to measure ground reaction forces acting along the long axes of the poles. Oxygen uptake, capillary blood lactate (La), HR, and RPE were measured before and after the tests. Impact forces, maximum forces, force rates during ground contact identified from the registered force time histories, displayed significant differences related to the surface conditions. However, force time integrals did not show surface-related differences. Relative oxygen consumption showed significant differences between NW on C and on G whereas no surface-related differences could be identified between the surface conditions for the parameters La, HR, and RPE. Our data indicate that the impulse that is generated by the poles on the subjects is identical between the varying surfaces. Because there are differences for the oxygen uptake between C and G, the main regulator for the propulsion must be the musculature of the lower extremities. The work of the upper extremities seems to be a luxury effort for Nordic walkers with a proper technique.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
The evolving quality of frictional contact with graphene.
Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju
2016-11-24
Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.
Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.
Bürger, Vincent; Briesen, Heiko
2016-10-05
For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal particle simulations.
Rheology of granular materials composed of crushable particles.
Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang
2018-04-11
We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.
Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.
Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise
2012-02-01
A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-09-01
Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-01-01
Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
Fingertip contact influences human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Lackner, J. R.
1994-01-01
Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.
Quantification of a contact stimulus by diapers
NASA Astrophysics Data System (ADS)
Nomata, Takuya; Okuyama, Takeshi; Teraoka, Hiromi; Murakami, Yasuo; Miyazawa, Kiyoshi; Tanaka, Mami
2010-01-01
This paper describes a development of a sensor system for measurement of a contact stimulus which diapers give to infants. A polyvinyliden fluoride (PVDF) film and a strain gauge are used as the sensor receptors. The PVDF is a kind of piezoelectric material. The sensor consists of a surface contact layer, a PVDF film, a strain gauge and an aluminum plate. First, in order to investigate the sensor performance, the sensor was located on a silicone plate and the upper part of the sensor was rubbed with an acrylic artificial finger. The finger enabled the measurement to carry out at a constant speed and force. Next, the sensor was attached on an infant dummy and the sensor outputs were measured under conditions with and without diapers. By comparison of the output under two different conditions, it was confirmed that there is a clearly difference between the two conditions. It was found that the developed sensor system has the possibility to quantify a contact stimulus which diapers give infants.
Quantification of a contact stimulus by diapers
NASA Astrophysics Data System (ADS)
Nomata, Takuya; Okuyama, Takeshi; Teraoka, Hiromi; Murakami, Yasuo; Miyazawa, Kiyoshi; Tanaka, Mami
2009-12-01
This paper describes a development of a sensor system for measurement of a contact stimulus which diapers give to infants. A polyvinyliden fluoride (PVDF) film and a strain gauge are used as the sensor receptors. The PVDF is a kind of piezoelectric material. The sensor consists of a surface contact layer, a PVDF film, a strain gauge and an aluminum plate. First, in order to investigate the sensor performance, the sensor was located on a silicone plate and the upper part of the sensor was rubbed with an acrylic artificial finger. The finger enabled the measurement to carry out at a constant speed and force. Next, the sensor was attached on an infant dummy and the sensor outputs were measured under conditions with and without diapers. By comparison of the output under two different conditions, it was confirmed that there is a clearly difference between the two conditions. It was found that the developed sensor system has the possibility to quantify a contact stimulus which diapers give infants.
Near-field deformation of a liquid interface by atomic force microscopy.
Mortagne, C; Chireux, V; Ledesma-Alonso, R; Ogier, M; Risso, F; Ondarçuhu, T; Legendre, D; Tordjeman, Ph
2017-07-01
We experiment the interaction between a liquid puddle and a spherical probe by Atomic Force Microscopy (AFM) for a probe radius R ranging from 10 nm to 30 μm. We have developed a new experimental setup by coupling an AFM with a high-speed camera and an inverted optical microscope. Interaction force-distance curves (in contact mode) and frequency shift-distance curves (in frequency modulation mode) are measured for different bulk model liquids for which the probe-liquid Hamaker constant H_{pl} is known. The experimental results, analyzed in the frame of the theoretical model developed in Phys. Rev. Lett. 108, 106104 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.106104 and Phys. Rev. E 85, 061602 (2012)PLEEE81539-375510.1103/PhysRevE.85.061602, allow to determine the "jump-to-contact" critical distance d_{min} below which the liquid jumps and wets the probe. Comparison between theory and experiments shows that the probe-liquid interaction at nanoscale is controlled by the liquid interface deformation. This work shows a very good agreement between the theoretical model and the experiments and paves the way to experimental studies of liquids at the nanoscale.
Near-field deformation of a liquid interface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Mortagne, C.; Chireux, V.; Ledesma-Alonso, R.; Ogier, M.; Risso, F.; Ondarçuhu, T.; Legendre, D.; Tordjeman, Ph.
2017-07-01
We experiment the interaction between a liquid puddle and a spherical probe by Atomic Force Microscopy (AFM) for a probe radius R ranging from 10 nm to 30 μ m . We have developed a new experimental setup by coupling an AFM with a high-speed camera and an inverted optical microscope. Interaction force-distance curves (in contact mode) and frequency shift-distance curves (in frequency modulation mode) are measured for different bulk model liquids for which the probe-liquid Hamaker constant Hp l is known. The experimental results, analyzed in the frame of the theoretical model developed in Phys. Rev. Lett. 108, 106104 (2012), 10.1103/PhysRevLett.108.106104 and Phys. Rev. E 85, 061602 (2012), 10.1103/PhysRevE.85.061602, allow to determine the "jump-to-contact" critical distance dmin below which the liquid jumps and wets the probe. Comparison between theory and experiments shows that the probe-liquid interaction at nanoscale is controlled by the liquid interface deformation. This work shows a very good agreement between the theoretical model and the experiments and paves the way to experimental studies of liquids at the nanoscale.
NASA Astrophysics Data System (ADS)
Fronczak, Sean G.
The Hamaker constant, A, is a quantitative measure of the fundamental attractive van der Waals (vdW) interaction for microscale and nanoscale materials. This parameter captures each material's compositional effects on the vdW force, which is often needed as input for predicting the vdW interactions between particles and surfaces. Experimental attempts to determine A using an atomic force microscope (AFM) are typically hindered by issues inherent to the cantilever-tip-surface contact regime, such as surface roughness and deformation, and contact separation distance. Thus, we developed a new method for estimating Hamaker constants from the non-contact approach regime of an AFM experiment (Fronczak et al., 2017, Langmuir 33, 714-725). This method invokes a quasi-dynamic description of the cantilever tip's approach to contact, in which the inertial effects of the tip motion are accounted for when analyzing the trajectory of the tip's approach towards the substrate. The method was tested experimentally using silica, alumina and polystyrene substrates, and was demonstrated to yield estimates of A for these materials that were in very good agreement with previously published Lifshitz calculations. As with various other approaches to determining A, our new method relies heavily on the accuracy of the geometric model used to predict the interaction between the AFM tip and the substrate. For the initial validation experiments of our new method, we therefore focused on describing the shape of the cantilever tip as closely as possible, utilizing a complex model of a truncated pyramid with a spherical cap. Although this pyramidal geometry can be confirmed and the dimensions estimated via scanning electron microscopy (SEM), even high-resolution SEM images of the tip cannot provide sufficient detail to allow precise enough determination of the tip's geometric parameters. Consequently, we also propose an adaptation of the method, in which these difficult to quantify geometric effects are still fully captured via the convenient description of the tip as an 'effective' perfect sphere. Hence, the geometric complexity of the cantilever tip is no longer explicitly required for the determination of A. First, a tip is 'calibrated', whereby the deflection at first contact between the cantilever tip and a smooth surface of known vdW properties is determined and an effective radius, Reff, of the tip is calculated. The tip's approach to contact toward other similarly smooth surfaces can then be well-described by using only this single geometric parameter. We demonstrate the practicality and accuracy of this updated method by comparing the results with both the original pyramid model and Lifshitz approximations (when available) for flat substrates composed of silica, polystyrene, highly ordered pyrolytic graphite (HOPG), sapphire (alpha-Al3O2), Plexiglas (PMMA), and acrylonitrile butadiene styrene (ABS). Then, the modified quasi-dynamic model was employed to study the strength of the adhesive interaction between TNT and several swab materials which are used as explosive detection devices at security checkpoints. This information is crucial for the development and improvement of next-generation swab detection protocols to further advance this field. Finally, we also include the effects of thermal noise into our quasi-dynamic description of the cantilever motion to better understand how such noise might influence the accuracy of our method. We likewise determine, for the first time, the effects of instrument noise on the accuracy of other approach-to-contact methodologies for determining A.
Gonik, Bernard; Zhang, Ning; Grimm, Michele J
2003-04-01
A computer model was modified to study the impact of maternal endogenous and clinician-applied exogenous delivery loads on the contact force between the anterior fetal shoulder and the maternal symphysis pubis. Varying endogenous and exogenous loads were applied, and the contact force was determined. Experiments also examined the effect of pelvic orientation and the direction of load application on contact force behind the symphysis pubis. Exogenous loading forces (50-100 N) resulted in anterior shoulder contact forces of 107 to 127 N, with delivery accomplished at 100 N of applied load. Higher contact forces (147-272 N) were noted for endogenously applied loads (100-400 N), with delivery occurring at 400 N of maternal force. Pelvic rotation from lithotomy to McRoberts' positioning resulted in reduced contact forces. Downward lateral flexion of the fetal head led to little difference in contact force but required 30% more exogenous load to achieve delivery. Compared with clinician-applied exogenous force, larger maternally derived endogenous forces are needed to clear the impacted anterior fetal shoulder. This is associated with >2 times more contact force by the obstructing symphysis pubis. McRoberts' positioning reduces shoulder-symphysis pubis contact force. Lateral flexion of the fetal head results in the larger forces that are needed for delivery but has little effect on contact force. Model refinements are needed to examine delivery forces and brachial plexus stretching more specifically.
Mixed Cassie-Baxter wetting states on a porous material stabilized by electrowetting
NASA Astrophysics Data System (ADS)
Lambert, Jérôme; Gauchet, Lucien; Crassous, Jérôme
2017-07-01
Electrowetting is used to force imbibition in model porous plates. These porous plates are sintered disordered bronze bead packings that are homogeneously coated with a constant-thickness layer of parylene. Cycles of increasing and decreasing voltage trigger the imbibition of a ionized water sessile drop by changing its contact angle with the porous material from non-wetting to wetting shapes. During a cycle, a drop experiences partial imbibition and a strong hysteresis of its contact angle with the porous plate. Since the imbibition process quickly stabilizes, we adopt an equilibrium description of the wetting properties of the drop on the porous plate. Our model, based on the Cassie-Baxter approach, shows that three different wetting states are experienced by the drop, one of which being made possible only by the modification of the contact angle inside the pores. Our model describes the experimental results very well.
Water evaporation on highly viscoelastic polymer surfaces.
Pu, Gang; Severtson, Steven J
2012-07-03
Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.
Particle interaction and rheological behavior of cement-based materials at micro- and macro-scales
NASA Astrophysics Data System (ADS)
Lomboy, Gilson Rescober
Rheology of cement based materials is controlled by the interactions at the particle level. The present study investigates the particle interactions and rheological properties of cement-based materials in the micro- and macro-scales. The cementitious materials studied are Portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GGBFS) and densified silica fume (SF). At the micro-scale, aside from the forces on particles due to collisions, interactions of particles in a flowing system include the adhesion and friction. Adhesion is due to the attraction between materials and friction depends on the properties of the sliding surfaces. Atomic Force Microscopy (AFM) is used to measure the adhesion force and coefficient of friction. The adhesion force is measured by pull-off force measurements and is used to calculate Hamaker constants. The coefficient of friction is measured by increasing the deflection set-points on AFM probes with sliding particles, thereby increasing normal loads and friction force. AFM probes were commercial Si3N4 tips and cementitious particles attached to the tips of probe cantilevers. SF was not included in the micro-scale tests due to its limiting size when attaching it to the AFM probes. Other materials included in the tests were silica, calcite and mica, which were used for verification of the developed test method for the adhesion study. The AFM experiments were conducted in dry air and fluid environments at pH levels of 7, 8, 9, 11 and 13. The results in dry air indicate that the Hamaker constant of Class F FA can be similar to PC, but Class C FA can have a high Hamaker constant, also when in contact with other cementitious materials. The results in fluid environments showed low Hamaker constants for Class F fly ashes compared to PC and also showed high Hamaker constants for PC and Class C fly ash. The results for the friction test in dry air indicated that the coefficient of friction of PC is lower than fly ashes, which is attributed to the asperities present on the particle surface. At the macro-scale, flow of cementitious materials may be in its dry or wet state, during transport and handling or when it is used in concrete mixtures, respectively. Hence, the behavior of bulk cementitious materials in their dry state and wet form are studied. In the dry state, the compression, recompression and swell indices, and stiffness modulus of plain and blended cementitious materials are determined by confined uniaxial compression. The coefficients of friction of the bulk materials studied are determined by a direct shear test. The results indicate that shape of particles has a great influence on the compression and shear parameters. The indices for PC blends with FA do not change with FA replacement, while it increases with GGBFS replacement. Replacement with GGBFS slightly decreases coefficient of friction, while replacement with FA significantly decreases coefficient of friction. At low SF replacement, coefficient of friction decreases. In wet state, unary, binary, ternary and quaternary mixes with w/b of 0.35, 0.45 and 0.55 were tested for yield stress, viscosity and thixotropy. It is found that fly ash replacement lowers the rheological properties and replacement with GGBFS and SF increases rheological properties. The distinct element method (DEM) was employed to model particle interaction and bulk behavior. The AFM force curve measurement is simulated to validate the adhesion model in the DEM. The contact due to asperities was incorporated by considering the asperities as a percentage of the radius of the contacting particles. The results of the simulation matches the force-curve obtained from actual AFM experiments. The confined uniaxial compression test is simulated to verify the use of DEM to relate micro-scale properties to macros-scale behavior. The bulk stiffness from the physical experiments is matched in the DEM simulation. The particle stiffness and coefficient of friction are found to have a direct relation to bulk stiffness.
Gardinier, Emily S.; Di Stasi, Stephanie; Manal, Kurt; Buchanan, Thomas S.; Snyder-Mackler, Lynn
2015-01-01
Background After anterior cruciate ligament (ACL) injury, contact forces are decreased in the injured knee when compared with the uninjured knee. The persistence of contact force asymmetries after ACL reconstruction may increase the risk of reinjury and may play an important role in the development of knee osteoarthritis in these patients. Functional performance may also be useful in identifying patients who demonstrate potentially harmful joint contact force asymmetries after ACL reconstruction. Hypothesis Knee joint contact force asymmetries would be present during gait after ACL reconstruction, and performance on a specific set of validated return-to-sport (RTS) readiness criteria would discriminate between those who demonstrated contact force asymmetries and those who did not. Study Design Descriptive laboratory study. Methods A total of 29 patients with ACL ruptures participated in gait analysis and RTS readiness testing 6 months after reconstruction. Muscle and joint contact forces were estimated using an electromyography (EMG)–driven musculoskeletal model of the knee. The magnitude of typical limb asymmetry in uninjured controls was used to define limits of meaningful limb asymmetry in patients after ACL reconstruction. The RTS testing included isometric quadriceps strength testing, 4 unilateral hop tests, and 2 self-report questionnaires. Paired t tests were used to assess limb symmetry for peak medial and tibiofemoral contact forces in all patients, and a mixed-design analysis of variance was used to analyze the effect of passing or failing RTS testing on contact force asymmetry. Results Among all patients, neither statistically significant nor meaningful contact force asymmetries were identified. However, patients who failed RTS testing exhibited meaningful contact force asymmetries, with tibiofemoral contact force being significantly lower for the involved knee. Conversely, patients who passed RTS testing exhibited neither significant nor meaningful contact force asymmetries. Conclusion Joint contact force asymmetries during gait are present in some patients 6 months after ACL reconstruction. Patients who demonstrated poor functional performance on RTS readiness testing exhibited significant and meaningful contact force asymmetries. Clinical Relevance When assessing all patients together, variability in the functional status obscured significant and meaningful differences in contact force asymmetry in patients 6 months after ACL reconstruction. These specific RTS readiness criteria appear to differentiate between those who demonstrate joint contact force symmetry after ACL reconstruction and those who do not. PMID:25318940
Capillary spreading of contact line over a sinking sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seong Jin; Fezzaa, Kamel; An, Jim
The contact line dynamics over a sinking solid sphere are investigated in comparison with classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10-5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contactmore » angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (> 0.02). For the cases with a relatively low Ohnesorge number (< 0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere’s sinking speed. Additionally, we observed the linear relation between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by dynamic contact angle.« less
Lee, Ji-Hyun; Yang, Seungman; Park, Jonghyun; Kim, Hee Chan; Kim, Eun-Hee; Jang, Young-Eun; Kim, Jin-Tae; Kim, Hee-Soo
2018-06-19
Respiratory variations in photoplethysmography amplitude enable volume status assessment. However, the contact force between the measurement site and sensor can affect photoplethysmography waveforms. We aimed to evaluate contact force effects on respiratory variations in photoplethysmography waveforms in children under general anesthesia. Children aged 3-5 years were enrolled. After anesthetic induction, mechanical ventilation commenced at a tidal volume of 10 mL/kg. Photoplethysmographic signals were obtained in the supine position from the index finger using a force sensor-integrated clip-type photoplethysmography sensor that increased the contact force from 0-1.4 N for 20 respiratory cycles at each force. The AC amplitude (pulsatile component), DC amplitude (nonpulsatile component), AC/DC ratio, and respiratory variations in photoplethysmography amplitude were calculated. Data from 34 children were analyzed. Seven contact forces at 0.2-N increments were evaluated for each patient. The normalized AC amplitude increased maximally at a contact force of 0.4-0.6 N and decreased with increasing contact force. However, the normalized DC amplitude increased with a contact force exceeding 0.4 N. ΔPOP decreased slightly and increased from the point when the AC amplitude started to decrease as contact force increased. In a 0.2-1.2 N contact force range, significant changes in the normalized AC amplitude, normalized DC amplitude, AC/DC ratio, and respiratory variations in photoplethysmography amplitude were observed. Respiratory variations in photoplethysmography amplitude changed according to variable contact forces; therefore, these measurements may not reflect respiration-induced stroke volume variations. Clinicians should consider contact force bias when interpreting morphological data from photoplethysmography signals. © 2018 John Wiley & Sons Ltd.
Tibiofemoral contact forces during walking, running and sidestepping.
Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G
2016-09-01
We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20
Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking
Damm, Philipp; Bender, Alwina; Bergmann, Georg
2015-01-01
Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805
Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking
Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.
2014-01-01
The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values. PMID:24402438
Muscle synergies may improve optimization prediction of knee contact forces during walking.
Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J
2014-02-01
The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.
Helical wire stress analysis of unbonded flexible riser under irregular response
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Ji, Chunyan
2017-06-01
A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.
Okumura, Yasuo; Johnson, Susan B; Bunch, T Jared; Henz, Benhur D; O'Brien, Christine J; Packer, Douglas L
2008-06-01
While catheter tip/tissue contact has been shown to be an important determinant of ablative lesions in in vitro studies, the impact of contact on the outcomes of mapping and ablation in the intact heart has not been evaluated. Twelve dogs underwent atrial ablation guided by the Senesitrade mark robotic catheter remote control system. After intracardiac ultrasound (ICE) validation of contact force measured by an in-line mechanical sensor, the relationship between contact force and individual lesion formation was established during irrigated-tipped ablation (flow 17 mL/sec) at 15 watts for 30 seconds. Minimal contact by ICE correlated with force of 4.7 +/- 5.8 grams, consistent contact 9.9 +/- 8.6 grams and tissue tenting produced 25.0 +/- 14.0 grams. Conversely, catheter tip/tissue contact by ICE was predicted by contact force. A contact force of 10-20 and > or =20 grams generated full-thickness, larger volume ablative lesions than that created with <10 grams (98 +/- 69 and 89 +/- 70 mm(3) vs 40 +/- 42 mm(3), P < 0.05). Moderate (10 grams) and marked contact (15-20 grams) application produced 1.5 X greater electroanatomic map volumes that were seen with minimal contact (5 grams) (26 +/- 3 cm(3) vs 33 +/- 6, 39 +/- 3 cm(3), P < 0.05). The electroanatomic map/CT merge process was also more distorted when mapping was generated at moderate to marked contact force. This study shows that mapping and ablation using a robotic sheath guidance system are critically dependent on generated force. These findings suggest that ablative lesion size is optimized by the application of 10-20 grams of contact force, although mapping requires lower-force application to avoid image distortions.
NASA Astrophysics Data System (ADS)
Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman
2004-06-01
The plasma membrane (PM) of mammalian outer hair cells (OHCs) generates mechanical forces in response to changes in the transmembrane electrical potential. The resulting change in the cell length is known as electromotility. Salicylate (Sal), the anionic, amphipathic derivative of aspirin induces reversible hearing loss and decreases electromotile response of the OHCs. Sal may change the local curvature and mechanical properties of the PM, eventually resulting in reduced electromotility or it may compete with intracellular monovalent anions, particularly Cl-, which are essential for electromotility. In this work we have used optical tweezers to study the effects of Sal on viscoelastic properties of the OHC PM when separated from the underlying composite structures of the cell wall. In this procedure, an optically trapped microsphere is brought in contact with PM and subsequently pulled away to form a tether. We measured the force exerted on the tether as a function of time during the process of tether growth at different pulling rates. Effective tether viscosity, steady-state tethering force extrapolated to zero pulling rate, and the time constant for tether growth were estimated from the measurements of the instantaneous tethering force. The time constant for the tether growth measured for the OHC basal end decreased 1.65 times after addition of 10 mM Sal, which may result from an interaction between Sal and cholesterol, which is more prevalent in the PM of OHC basal end. The time constants for the tether growth calculated for the OHC lateral wall and control human embryonic kidney cells as well as the other calculated viscoelastic parameters remained the same after Sal perfusion, favoring the hypothesis of competitive inhibition of electromotility by salicylate.
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2017-04-01
Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.
Ueki, Koichiro; Moroi, Akinori; Sotobori, Megumi; Ishihara, Yuri; Marukawa, Kohei; Iguchi, Ran; Kosaka, Akihiko; Ikawa, Hiroumi; Nakazawa, Ryuichi; Higuchi, Masatoshi
2014-10-01
The purpose of this study was to evaluate the relationship between lip closing force, occlusal contact area and occlusal force after orthognathic surgery in skeletal Class III patients. The subjects consisted of 54 patients (28 female and 26 male) diagnosed with mandibular prognathism who underwent sagittal split ramus osteotomy with and without Le Fort I osteotomy. Maximum and minimum lip closing forces, occlusal contact area and occlusal force were measured pre-operatively, 6 months and 1 year post-operative. Maximum and minimum lip closing forces, occlusal contact area and occlusal force increased with time after surgery, however a significant increase was not found in the occlusal contact area in women. In increased ratio (6 months/pre-operative and 1 year/pre-operative), the maximum lip closing force was significantly correlated with the occlusal contact area (P < 0.0001). This study suggested that orthognathic surgery could improve the occlusal force, contact area and lip closing force, and an increase ratio in maximum lip closing force was associated with an increased ratio in occlusal contact area. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning
2009-01-01
During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
NASA Astrophysics Data System (ADS)
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
Gait alterations to effectively reduce hip contact forces.
Wesseling, Mariska; de Groote, Friedl; Meyer, Christophe; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse
2015-07-01
Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R(2) = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R(2) = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J
2018-05-29
Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.
NASA Astrophysics Data System (ADS)
Makedonska, N.; Sparks, D. W.; Aharonov, E.
2012-12-01
Pressure solution (also termed chemical compaction) is considered the most important ductile deformation mechanism operating in the Earth's upper crust. This mechanism is a major player in a variety of geological processes, including evolution of sedimentary basins, hydrocarbon reservoirs, aquifers, earthquake recurrence cycles, and fault healing. Pressure solution in massive rocks often localizes into solution seams or stylolites. Field observations of stylolites often show elastic/brittle interactions in regions between pressure solution features, including and shear fractures, veins and pull-apart features. To understand these interactions, we use a grain-scale model based on the Discrete Element Method that allows granular dissolution at stressed contacts between grains. The new model captures both the slow chemical compaction process and the more abrupt brittle fracturing and sliding between grains. We simulate a sample of rock as a collection of particles, each representing either a grain or a unit of rock, bonded to each other with breakable cement. We apply external stresses to this sample, and calculate elastic and frictional interactions between the grains. Dissolution is modeled by an irreversible penetration of contacting grains into each other at a rate that depends on the contact stress and an adjustable rate constant. Experiments have shown that dissolution rates at grain contacts are greatly enhanced when there is a mineralogical contrast. Therefore, we dissolution rate constant can be increased to account for an amount of impurities (e.g. clay in a quartz or calcite sandstone) that can accumulate on dissolving contacts. This approach allows large compaction and shear strains within the rock, while allowing examination of local grain-scale heterogeneity. For example, we will describe the effect of pressure solution on the distribution of contact forces magnitudes and orientations. Contact forces in elastic granular packings are inherently heteregeneous, but stress-dependent dissolution tends to equalize them. We apply our model to the simulation of stylolite networks, particularly the interaction of stylolite tips. The stress concentrations from these tips are transmitted through the intervening rock, which can cause elastic strain, brittle damage and frictional sliding. Our model shows that grain rearrangement and compaction rate depend on the surface friction coefficient of grains. Simulation results show the development of shear zones between stylolites, and a high porosity process zone at the tips of stylolites. These features, which have been observed in field studies, are modeled and predicted for the first time. This modeling tool holds a promise to provide many new insights regarding the coupling between pressure solution and brittle deformation, i.e. between mechanical and chemical compaction.
Properties of pendular liquid bridges determined on Delaunay's roulettes
NASA Astrophysics Data System (ADS)
Mielniczuk, Boleslaw; Millet, Olivier; Gagneux, Gérard; El Youssoufi, Moulay Said
2017-06-01
This work addresses the study of capillary bridge properties between two grains, with use of recent analytical model, based on solutions of Young-Laplace equation from an inverse problem. A simple explicit criterion allows to classify the profile of capillary bridge as a surface of revolution with constant mean curvature (Delaunay roulette) using its measured geometrical parameters (gorge radius, contact angle, half-filling angle). Necessary data are obtained from experimental tests, realized on liquid bridges between two equal spherical grains. Sequences of images are recorded at several (fixed) volumes of liquid and different separations distances between the spheres (from contact to rupture), in laboratory and in micro-gravity conditions. For each configuration, an exact parametric representation of the meridian is revealed. Mean bridge curvature, internal pressure and intergranular capillary force are also determined.
Analysis of water microdroplet condensation on silicon surfaces
NASA Astrophysics Data System (ADS)
Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team
2016-11-01
We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.
Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn
Hamdani, Syed Talha Ali; Potluri, Prasad; Fernando, Anura
2013-01-01
This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced. PMID:28809358
Deringer, Volker L.; Stoffel, Ralf P.; Wuttig, Matthias
2015-01-01
Antimony selenide (antimonselite, Sb2Se3) is a versatile functional material with emerging applications in solar cells. It also provides an intriguing prototype to study different modes of bonding in solid chalcogenides, all within one crystal structure. In this study, we unravel the complex bonding nature of crystalline Sb2Se3 by using an orbital-based descriptor (the crystal orbital Hamilton population, COHP) and by analysing phonon properties and interatomic force constants. We find particularly interesting behaviour for the medium-range Sb···Se contacts, which still contribute significant stabilisation but are much softer than the “traditional” covalent bonds. These results have implications for the assembly of Sb2Se3 nanostructures, and bond-projected force constants appear as a useful microscopic descriptor for investigating a larger number of chalcogenide functional materials in the future. PMID:29449929
Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.
Gunjan, Madhu Ranjan; Raj, Rishi
2017-07-18
The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among others.
Bond rupture between colloidal particles with a depletion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu
The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measuredmore » force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.« less
Effects of hierarchical structures and insulating liquid media on adhesion
NASA Astrophysics Data System (ADS)
Yang, Weixu; Wang, Xiaoli; Li, Hanqing; Song, Xintao
2017-11-01
Effects of hierarchical structures and insulating liquid media on adhesion are investigated through a numerical adhesive contact model established in this paper, in which hierarchical structures are considered by introducing the height distribution into the surface gap equation, and media are taken into account through the Hamaker constant in Lifshitz-Hamaker approach. Computational methods such as inexact Newton method, bi-conjugate stabilized (Bi-CGSTAB) method and fast Fourier transform (FFT) technique are employed to obtain the adhesive force. It is shown that hierarchical structured surface exhibits excellent anti-adhesive properties compared with flat, micro or nano structured surfaces. Adhesion force is more dependent on the sizes of nanostructures than those of microstructures, and the optimal ranges of nanostructure pitch and maximum height for small adhesion force are presented. Insulating liquid media effectively decrease the adhesive interaction and 1-bromonaphthalene exhibits the smallest adhesion force among the five selected media. In addition, effects of hierarchical structures with optimal sizes on reducing adhesion are more obvious than those of the selected insulating liquid media.
32 CFR 806.29 - Administrative processing of Air Force FOIA requests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section. (c) Contacts with FOIA requesters and non-Air Force submitters of data. (1) Contacts with Air... memoranda documenting requester contacts with Air Force elements regarding a pending FOIA request in the requester's FOIA file. If the requester contacts Air Force elements telephonically about a pending FOIA...
32 CFR 806.29 - Administrative processing of Air Force FOIA requests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section. (c) Contacts with FOIA requesters and non-Air Force submitters of data. (1) Contacts with Air... memoranda documenting requester contacts with Air Force elements regarding a pending FOIA request in the requester's FOIA file. If the requester contacts Air Force elements telephonically about a pending FOIA...
32 CFR 806.29 - Administrative processing of Air Force FOIA requests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. (c) Contacts with FOIA requesters and non-Air Force submitters of data. (1) Contacts with Air... memoranda documenting requester contacts with Air Force elements regarding a pending FOIA request in the requester's FOIA file. If the requester contacts Air Force elements telephonically about a pending FOIA...
Field-Assisted Contact Line Motion in Thin Films.
Ghosh, Udita Uday; DasGupta, Sunando
2018-04-25
The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao
2016-06-01
The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.
NASA Astrophysics Data System (ADS)
Lai, Tianmao; Meng, Yonggang
2017-10-01
The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity.
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G
2013-11-15
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. © 2013 Published by Elsevier Ltd.
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces
Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.
2013-01-01
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941
Surface Stresses and a Force Balance at a Contact Line.
Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V
2018-06-26
Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Xue; Wang, Yusheng; Li, Xide, E-mail: lixide@tsinghua.edu.cn
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects ofmore » the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.« less
NASA Astrophysics Data System (ADS)
Maeda, Yusaku; Terao, Kyohei; Shimokawa, Fusao; Takao, Hidekuni
2016-04-01
In this study, the stable detection principle of a MEMS hardness sensor with “reference plane” structure is theoretically analyzed and demonstrated with experimental results. Hardness measurement independent of contact force instability is realized by the optimum design of the reference plane. The fabricated devices were evaluated, and a “shore A” hardness scale (JIS K 6301 A) was obtained as the reference in the range from A1 to A54 under a stable contact force. The contact force dependence on hardness sensor signals was effectively reduced by 96.6% using our reference plane design. Below 5 N contact force, the maximal signal error of hardness is suppressed to A8. This result corresponds to the detection capability for fat hardness, even when the contact force is unstable. Through experiments, stable detection of human body hardness has been demonstrated without any control of contact force.
Spring-mass behavior during exhaustive run at constant velocity in elite triathletes.
Rabita, Giuseppe; Slawinski, Jean; Girard, Olivier; Bignet, Frank; Hausswirth, Christophe
2011-04-01
The aims of this study were i) to evaluate changes in leg-spring behavior during an exhaustive run in elite triathletes and ii) to determine whether these modifications were related to an increase in the energy cost of running (Cr). Nine elite triathletes ran to exhaustion on an indoor track at a constant velocity corresponding to 95% of the velocity associated with the maximal oxygen uptake (mean ± SD = 5.1 ± 0.3 m·s(-1), time to exhaustion = 10.7 ± 2.6 min). Vertical and horizontal ground reaction forces were measured every lap (200 m) by a 5-m-long force platform system. Cr was measured from pulmonary gas exchange using a breath-by-breath portable gas analyzer. Leg stiffness (-13.1%, P < 0.05) and peak vertical (-9.2%, P < 0.05) and propulsive (-7.5%, P < 0.001) forces decreased significantly with fatigue, whereas vertical stiffness did not change significantly. Leg and vertical stiffness changes were positively related with modifications of aerial time (R(2) = 0.66, P < 0.01 and R(2) = 0.72, P < 0.01, respectively) and negatively with contact time (R(2) = 0.71, P < 0.01 and R(2) = 0.74, P < 0.01, respectively). Alterations of vertical forces were related with the decrease of the angle of velocity vector at toe off (R(2) = 0.73, P < 0.01). When considering mean values of oxygen uptake, no change was observed from 33% to 100% of the time to exhaustion. However, between one-third and two-thirds of the fatiguing run, negative correlations were observed between oxygen consumption and leg stiffness (R(2) = 0.83, P < 0.001) or vertical stiffness (R(2) = 0.50, P < 0.03). During a constant run to exhaustion, the fatigue induces a stiffness adaptation that modifies the stride mechanical parameters and especially decreases the maximal vertical force. This response to fatigue involves greater energy consumption.
Krause, Ulrich; Backhoff, David; Klehs, Sophia; Schneider, Heike E; Paul, Thomas
2016-08-01
Monitoring of catheter contact force during catheter ablation of atrial fibrillation has been shown to increase efficacy and safety. However, almost no data exists on the use of this technology in catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease. The aim of the present study was to evaluate the impact of contact force monitoring during catheter ablation of intraatrial reentrant tachycardia in those patients. Catheter ablation of intraatrial reentrant tachycardia using monitoring of catheter contact force was performed in 28 patients with congenital heart disease (CHD). Thirty-two patients matched according to gender, age, and body weight with congenital heart disease undergoing catheter ablation without contact force monitoring served as control group. Parameters reflecting acute procedural success, long-term efficacy, and safety were compared. Acute procedural success was statistically not different in both groups (contact force 93 % vs. control 84 %, p = 0.3). Likewise the recurrence rate 1 year after ablation as shown by Kaplan-Meier analysis did not differ (contact force 28 % vs. control 37 %, p = 0.63). Major complications were restricted to groin vessel injuries and occurred in 3 out of 60 patients (contact force n = 1; control n = 2). Complications related to excessive catheter contact force were not observed. The present study did not show superiority of catheter contact force monitoring during ablation of intraatrial reentrant tachycardia in patients with CHD in terms of efficacy and safety. Higher contact force compared to pulmonary vein isolation might therefore be required to increase the efficacy of catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease.
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
Elsokkari, Ihab; Sapp, John L; Doucette, Steve; Parkash, Ratika; Gray, Christopher J; Gardner, Martin J; Macintyre, Ciorsti; AbdelWahab, Amir M
2018-06-26
Contact force-sensing technology has become a widely used addition to catheter ablation procedures. Neither the optimal contact force required to achieve adequate lesion formation in the ventricle, nor the impact of left ventricular access route on contact force has been fully clarified. Consecutive patients (n = 24) with ischemic cardiomyopathy who underwent ablation for scar-related ventricular tachycardia were included in the study. All ablations (n = 25) were performed using irrigated contact force-sensing catheters (Smart Touch, Biosense Webster). Effective lesion formation was defined as electrical unexcitability post ablation at sites which were electrically excitable prior to ablation (unipolar pacing at 10 mA, 2 ms pulse width). We explored the contact force which achieved effective lesion formation and the impact of left ventricular access route (retrograde aortic or transseptal) on the contact force achieved in various segments of the left ventricle. Scar zone was defined as bipolar signal amplitude < 0.5 mV. Among 427 ablation points, effective lesion formation was achieved at 201 points (47.1%). Contact force did not predict effective lesion formation in the overall group. However, within the scar zone, mean contact force ≥ 10 g was significantly associated with effective lesion formation [OR 3.21 (1.43, 7.19) P = 0.005]. In the 12-segment model of the left ventricle, the retrograde approach was associated with higher median contact force in the apical anterior segment (31 vs 19 g; P = 0.045) while transseptal approach had higher median force in the basal inferior segment (25 vs 15 g; P = 0.021). In the 4-segment model, the retrograde approach had higher force in the anterior wall (28 vs 16 g; P = 0.004) while the transseptal approach had higher force in the lateral wall (21 vs 18 g; P = 0.032). There was a trend towards higher force in the inferior wall with the transseptal approach, but this was not statistically significant (20 vs 15 g; P = 0.063). In patients with ischemic cardiomyopathy, a mean contact force of 10 g or more within the scar zone had the best correlation with electrical unexcitability post ablation in our study. The retrograde aortic approach was associated with better contact force over the anterior wall while use of a transseptal approach had better contact force over the lateral wall.
Small nanoparticles, surface geometry and contact forces.
Takato, Yoichi; Benson, Michael E; Sen, Surajit
2018-03-01
In this molecular dynamics study, we examine the local surface geometric effects of the normal impact force between two approximately spherical nanoparticles that collide in a vacuum. Three types of surface geometries-(i) crystal facets, (ii) sharp edges, and (iii) amorphous surfaces of small nanoparticles with radii R <10 nm-are considered. The impact forces are compared with their macroscopic counterparts described by nonlinear contact forces based on Hertz contact mechanics. In our simulations, edge and amorphous surface contacts with weak surface energy reveal that the average impact forces are in excellent agreement with the Hertz contact force. On the other hand, facet collisions show a linearly increasing force with increasing compression. Our results suggest that the nearly spherical nanoparticles are likely to enable some nonlinear dynamic phenomena, such as breathers and solitary waves observed in granular materials, both originating from the nonlinear contact force.
Santos-Concejero, J; Tam, N; Coetzee, D R; Oliván, J; Noakes, T D; Tucker, R
2017-03-01
The aim of this study was to determine whether gait cycle characteristics are associated with running economy in elite Kenyan runners. Fifteen elite Kenyan male runners completed two constant-speed running sets on a treadmill (12 km ·h -1 and 20 km ·h -1 ). VO 2 and respiratory exchange ratio values were measured to calculate steady-state oxygen and energy cost of running. Gait cycle characteristics and ground contact forces were measured at each speed. Oxygen cost of running at different velocities was 192.2 ± 14.7 ml· kg -1 · km -1 at 12 km· h -1 and 184.8 ± 9.9 ml· kg -1 · km -1 at 20 km· h -1 , which corresponded to a caloric cost of running of 0.94 ± 0.07 kcal ·kg -1 ·km -1 and 0.93 ± 0.07 kcal· kg -1 · km -1 . We found no significant correlations between oxygen and energy cost of running and biomechanical variables and ground reaction forces at either 12 or 20 km· h -1 . However, ground contact times were ~10.0% shorter (very large effect) than in previously published literature in elite runners at similar speeds, alongside an 8.9% lower oxygen cost (very large effect). These results provide evidence to hypothesise that the short ground contact times may contribute to the exceptional running economy of Kenyan runners.
Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy
NASA Astrophysics Data System (ADS)
Wang, Zhang; Cai, Zhen-bing; Chen, Zhi-qiang; Sun, Yang; Zhu, Min-hao
2017-11-01
The impact tests were conducted on metallic materials with different bulk hardness and Young's moduli. Analysis of the dynamics response during the tribological process showed that the tested materials had similar energy absorption, where the peak contact force increased as the tests continued. Moreover, wear volume decreased with the increase in Young's modulus of metals, except for Cr with a relatively low hardness. Wear rate was gradually reduced to a steady stage with increasing cycles, which was attributed to the decrease in contact stress and work-hardening effect. The main wear mechanism of impact was characterized by delamination, and the specific surface degradation mechanisms were depending on the mechanical properties of materials. The absorbed energy was used to the propagation of micro-cracks in the subsurface instead of plastic deformation, when resistance of friction wear and plastic behavior was improved. Hence, both the hardness and Young's modulus played important roles in the impact wear of metallic materials.
Soft matter dynamics: Accelerated fluid squeeze-out during slip
NASA Astrophysics Data System (ADS)
Hutt, W.; Persson, B. N. J.
2016-03-01
Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.
Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum
2016-02-01
Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.
Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci
DOE Office of Scientific and Technical Information (OSTI.GOV)
DasGupta, S.; Schonberg, J.A.; Kim, I.Y.
1993-05-01
The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamakermore » constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.« less
Regulation of Catch Bonds by Rate of Force Application*
Sarangapani, Krishna K.; Qian, Jin; Chen, Wei; Zarnitsyna, Veronika I.; Mehta, Padmaja; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng
2011-01-01
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules. PMID:21775439
Modeling and estimation of tip contact force for steerable ablation catheters.
Khoshnam, Mahta; Skanes, Allan C; Patel, Rajni V
2015-05-01
The efficacy of catheter-based cardiac ablation procedures can be significantly improved if real-time information is available concerning contact forces between the catheter tip and cardiac tissue. However, the widely used ablation catheters are not equipped for force sensing. This paper proposes a technique for estimating the contact forces without direct force measurements by studying the changes in the shape of the deflectable distal section of a conventional 7-Fr catheter (henceforth called the "deflectable distal shaft," the "deflectable shaft," or the "shaft" of the catheter) in different loading situations. First, the shaft curvature when the tip is moving in free space is studied and based on that, a kinematic model for the deflectable shaft in free space is proposed. In the next step, the shaft shape is analyzed in the case where the tip is in contact with the environment, and it is shown that the curvature of the deflectable shaft provides useful information about the loading status of the catheter and can be used to define an index for determining the range of contact forces exerted by the ablation tip. Experiments with two different steerable ablation catheters show that the defined index can detect the range of applied contact forces correctly in more than 80% of the cases. Based on the proposed technique, a framework for obtaining contact force information by using the shaft curvature at a limited number of points along the deflectable shaft is constructed. The proposed kinematic model and the force estimation technique can be implemented together to describe the catheter's behavior before contact, detect tip/tissue contact, and determine the range of contact forces. This study proves that the flexibility of the catheter's distal shaft provides a means of estimating the force exerted on tissue by the ablation tip.
Importance of tread inertia and damping on the tyre/road contact stiffness
NASA Astrophysics Data System (ADS)
Winroth, J.; Andersson, P. B. U.; Kropp, W.
2014-10-01
Predicting tyre/road interaction processes like roughness excitation, stick-slip, stick-snap, wear and traction requires detailed information about the road surface, the tyre dynamics and the local deformation of the tread at the interface. Aspects of inertia and damping when the tread is locally deformed are often neglected in many existing tyre/road interaction models. The objective of this paper is to study how the dynamic features of the tread affect contact forces and contact stiffness during local deformation. This is done by simulating the detailed contact between an elastic layer and a rough road surface using a previously developed numerical time domain contact model. Road roughness on length scales smaller than the discretisation scale is included by the addition of nonlinear contact springs between each pair of contact elements. The dynamic case, with an elastic layer impulse response extending in time, is compared with the case where the corresponding quasi-static response is used. Results highlight the difficulty of estimating a constant contact stiffness as it increases during the indentation process between the elastic layer and the rough road surface. The stiffness-indentation relation additionally depends on how rapidly the contact develops; a faster process gives a stiffer contact. Material properties like loss factor and density also alter the contact development. This work implies that dynamic properties of the local tread deformation may be of importance when simulating contact details during normal tyre/road interaction conditions. There are however indications that the significant effect of damping could approximately be included as an increased stiffness in a quasi-static tread model.
Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot.
Karimi, Mohammad Taghi; Salami, Firooz; Esrafilian, Amir; Heitzmann, Daniel W W; Alimusaj, Merkur; Putz, Cornelia; Wolf, Sebastian I
2017-10-01
The incidence of knee and hip joint osteoarthritis in subjects with below knee amputation (BK) appears significantly higher compared to unimpaired subjects, especially in the intact side. However, it is controversial if constant higher loads on the sound side are one of the major factors for an increased osteoarthritis (OA) incidence in subjects with BK, beside other risk factors, e.g. with respect to metabolism. The aim wasto investigate joint contact forces (JCF) calculated by a musculoskeletal model in the intact side and to compare it with those of unimpaired subjects and to further elucidate in how far increased knee JCF are associated with increased frontal plane knee moments. A group of seven subjects with BK amputation and a group of ten unimpaired subjects were recruited for this study. Gait data were measured by 3D motion capture and force plates. OpenSim software was applied to calculate JCF. Maximum joint angles, ground reaction forces, and moments as well as time distance parameters were determined and compared between groups showing no significant differences, with some JCF components of knee and hip even being slightly smaller in subjects with BK compared to the reference group. This positive finding may be due to the selected ESAR foot. However, other beneficial factors may also have influenced this positive result such as the general good health status of the subjects or the thorough and proper fitting and alignment of the prosthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Pinning transition in shrinking nanobubbles
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
Surface nanobubbles are unusually long-lived gaseous domains that form on immersed substrates. Although liquid droplets are known to grow or shrink in either an unpinned (constant contact angle) or a pinned (constant footprint radius) mode, surface nanobubbles have only ever been observed in the pinned state. Theory suggests that, provided the nanobubbles are sustained by supersaturated liquid, they are indefinitely stable in the pinned mode, but rapidly dissolve into bulk liquid if not. Yet many basic aspects of the line pinning are not yet clarified, such as its magnitude or the conditions in which it becomes dominant. In this talk we present experiments with total internal fluorescence microscopy in which nanobubbles nucleated with a temperature difference method initially shrink in an unpinned mode, before transitioning to a pinned state. Using a simple energy balance we recover an estimate for the pinning force on each nanobubble.
A Parametric Approach to Numerical Modeling of TKR Contact Forces
Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.
2009-01-01
In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015
Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering
NASA Astrophysics Data System (ADS)
Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.
2016-08-01
The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.
The search for the hydrophobic force law.
Hammer, Malte U; Anderson, Travers H; Chaimovich, Aviel; Shell, M Scott; Israelachvili, Jacob
2010-01-01
After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force-distance relationships are either a combination of different 'fundamental' interactions, or that the hydrophobic force-law, if there is one, is complex--depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D approximately 100-200 angstroms, increasing roughly exponentially down to approximately 10-20 angstroms and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D approximately 2 angstroms. The measured forces in this regime (100-200 angstroms) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100-200 angstroms to thousands of angstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a 'pure' but still not well-understood 'long-range hydrophobic force' dominates the second regime from approximately 150 to approximately 15 angstroms, possibly due to an enhanced Hamaker constant associated with the 'proton-hopping' polarizability of water; while below approximately 10-15 anstroms to contact there is another 'pure short-range hydrophobic force' related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water-hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments.
Diminution of contact angle hysteresis under the influence of an oscillating force.
Manor, Ofer
2014-06-17
We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.
Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2016-11-01
To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.
Chang, Joonho; Freivalds, Andris; Sharkey, Neil A; Kong, Yong-Ku; Mike Kim, H; Sung, Kiseok; Kim, Dae-Min; Jung, Kihyo
2017-11-01
A cadaver study was conducted to investigate the effects of triggering conditions (trigger grip span, contact location, and internal tendon force) on index finger triggering force and the force efficiency of involved tendons. Eight right human cadaveric hands were employed, and a motion simulator was built to secure and control the specimens. Index finger triggering forces were investigated as a function of different internal tendon forces (flexor digitorum profundus + flexor digitorum superficialis = 40, 70, and 100 N), trigger grip spans (40, 50, and 60 mm), and contact locations between the index finger and a trigger. Triggering forces significantly increased when internal tendon forces increased from 40 to 100 N. Also, trigger grip spans and contact locations had significant effects on triggering forces; maximum triggering forces were found at a 50 mm span and the most proximal contact location. The results revealed that only 10-30% of internal tendon forces were converted to their external triggering forces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of role of meniscus and viscous forces during liquid-mediated contacts separation
NASA Astrophysics Data System (ADS)
Dhital, Prabin
Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.
Contact forces during hybrid atrial fibrillation ablation: an in vitro evaluation.
Lozekoot, Pieter W J; de Jong, Monique M J; Gelsomino, Sandro; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; Kumar, N; Nijs, Jan; Czapla, Jens; Kwant, Paul; Bani, Daniele; Gensini, Gian Franco; Pison, Laurent; Crijns, Harry J G M; Maessen, Jos G; La Meir, Mark
2016-03-01
Data on epicardial contact force efficacy in dual epicardial-endocardial atrial fibrillation ablation procedures are lacking. We present an in vitro study on the importance of epicardial and endocardial contact forces during this procedure. The in vitro setup consists of two separate chambers, mimicking the endocardial and epicardial sides of the heart. A circuit, including a pump and a heat exchanger, circulates porcine blood through the endocardial chamber. A septum, with a cut out, allows the placement of a magnetically fixed tissue holder, securing porcine atrial tissue, in the middle of both chambers. Two trocars provide access to the epicardium and endocardium. Force transducers mounted on both catheter holders allow real-time contact force monitoring, while a railing system allows controlled contact force adjustment. We histologically assessed different combinations of epi-endocardial radiofrequency ablation contact forces using porcine atria, evaluating the ablation's diameters, area, and volume. An epicardial ablation with forces of 100 or 300 g, followed by an endocardial ablation with a force of 20 g did not achieve transmurality. Increasing endocardial forces to 30 and 40 g combined with an epicardial force ranging from 100 to 300 and 500 g led to transmurality with significant increases in lesion's diameters, area, and volumes. Increased endocardial contact forces led to larger ablation lesions regardless of standard epicardial pressure forces. In order to gain transmurality in a model of a combined epicardial-endocardial procedure, a minimal endocardial force of 30 g combined with an epicardial force of 100 g is necessary.
Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.
Silverman, Anne K; Neptune, Richard R
2014-08-22
Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dynamics simulations. We predicted that the intact knee contact forces would be higher than those of the residual leg and non-amputees. In the axial and mediolateral directions, the intact and non-amputee legs had greater peak tibio-femoral contact forces and impulses relative to the residual leg. The peak axial contact force was greater in the intact leg relative to the non-amputee leg, but the stance phase impulse was greater in the non-amputee leg. The vasti and hamstrings muscles in early stance and gastrocnemius in late stance were the largest contributors to the joint contact forces in the non-amputee and intact legs. Through dynamic coupling, the soleus and gluteus medius also had large contributions, even though they do not span the knee joint. In the residual leg, the prosthesis had large contributions to the joint forces, similar to the soleus in the intact and non-amputee legs. These results identify the muscles that contribute to knee joint contact forces during transtibial amputee walking and suggest that the peak knee contact forces may be more important than the knee contact impulses in explaining the high prevalence of intact leg osteoarthritis. Copyright © 2014 Elsevier Ltd. All rights reserved.
The role of haptic cues from rough and slippery surfaces in human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Lackner, J. R.
1995-01-01
Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.
Saliba, Christopher M; Brandon, Scott C E; Deluzio, Kevin J
2017-05-24
Musculoskeletal models are increasingly used to estimate medial and lateral knee contact forces, which are difficult to measure in vivo. The sensitivity of contact force predictions to modeling parameters is important to the interpretation and implication of results generated by the model. The purpose of this study was to quantify the sensitivity of knee contact force predictions to simultaneous errors in frontal plane knee alignment and contact locations under different dynamic conditions. We scaled a generic musculoskeletal model for N=23 subjects' stature and radiographic knee alignment, then perturbed frontal plane alignment and mediolateral contact locations within experimentally-possible ranges of 10° to -10° and 10 to -10mm, respectively. The sensitivity of first peak, second peak, and mean medial and lateral knee contact forces to knee adduction angle and contact locations was modeled using linear regression. Medial loads increased, and lateral loads decreased, by between 3% and 6% bodyweight for each degree of varus perturbation. Shifting the medial contact point medially increased medial loads and decreased lateral loads by between 1% and 4% bodyweight per millimeter. This study demonstrates that realistic measurement errors of 5mm (contact distance) or 5° (frontal plane alignment) could result in a combined 50% BW error in subject specific contact force estimates. We also show that model sensitivity varies between subjects as a result of differences in gait dynamics. These results demonstrate that predicted knee joint contact forces should be considered as a range of possible values determined by model uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan
2014-10-01
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian
2017-09-01
The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.
Contact force and mechanical loss of multistage cable under tension and bending
NASA Astrophysics Data System (ADS)
Ru, Yanyun; Yong, Huadong; Zhou, Youhe
2016-10-01
A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.
Characterising fabric, force distributions and porosity evolution in sheared granular media
NASA Astrophysics Data System (ADS)
Mair, Karen; Abe, Steffen; Jettestuen, Espen
2014-05-01
Active faults, landslides, subglacial tills and poorly or unconsolidated sands essentially contain accumulations of granular debris that evolve under load. Both the macroscopic motions and the bulk fluid flow characteristics that result are determined by the particular grain scale processes operating in this deformed or transformed granular material. A relevant question is how the local behavior at the individual granular contacts actually sums up, and in particular how the load bearing skeleton (an important expression of connected load) and spatial distribution of pore space (and hence fluid pathways) are linked. Here we investigate the spatial distribution of porosity with granular rearrangements (specifically contact force network characteristics) produced in 3D discrete element models of granular layers under shear. We use percolation measures to identify, characterize, compare and track the evolution of strongly connected contact force networks. We show that specific topological measures used in describing the networks, such as number of contacts and coordination number, are sensitive to grain size distribution of the material as well as loading conditions. In addition we probe the 3D spatial distribution of porosity as a function of increasing strain. Two cases will be considered. The first, a non-fracture regime where configurational changes occur during shear but grain size distribution remains constant. This would be expected for a soil or granular material under relatively low normal loading. Secondly we consider a fragmentation regime where the grain size distributions of the granular material evolve with accumulated strain. This mirrors the scenario for faults or basal shear zones of slides under higher normal stress where comminution is typically a mark of increasing maturity and plays a major role in the poro-perm evolution of the system. We will present the correlated and anti-correlated features appearing in our simulations as well as discussing the triggers and relative persistence of fluid pathway creation versus destruction mechanisms. We will also demonstrate how the individual grain interactions are manifested in the macroscopic sliding behavior we observe.
Glenohumeral contact force during flat and topspin tennis forehand drives.
Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle
2017-03-01
The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.
Design and testing of an innovative measurement device for tyre-road contact forces
NASA Astrophysics Data System (ADS)
Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.
2011-08-01
The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal/lateral accelerations times the vehicle mass. A good agreement has been found during all the performed manoeuvres.
Willing, Ryan; Lapner, Michael; King, Graham J W; Johnson, James A
2014-11-01
Distal humeral hemiarthroplasty alters cartilage contact mechanics, which may predispose to osteoarthritis. Current prostheses do not replicate the native anatomy, and therefore contribute to these changes. We hypothesized that prostheses reverse-engineered from the native bone shape would provide similar contact patterns as the native articulation. Reverse-engineered hemiarthroplasty prostheses were manufactured for five cadaveric elbows based on CT images of the distal humerus. Passive flexion trials with constant muscle forces were performed with the native articulation intact while bone motions were recorded using a motion tracking system. Motion trials were then repeated after the distal humerus was replaced with a corresponding reverse-engineered prosthesis. Contact areas and patterns were reconstructed using computer models created from CT scan images combined with the motion tracker data. The total contact areas, as well as the contact area within smaller sub-regions of the ulna and radius, were analyzed for changes resulting from hemiarthroplasty using repeated-measures ANOVAs. Contact area at the ulna and radius decreased on average 42% (SD 19%, P=.008) and 41% (SD 42%, P=.096), respectively. Contact area decreases were not uniform throughout the different sub-regions, suggesting that contact patterns were also altered. Reverse-engineered prostheses did not reproduce the same contact pattern as the native joints, possibly because the thickness of the distal humerus cartilage layer was neglected when generating the prosthesis shapes or as a consequence of the increased stiffness of the metallic implants. Alternative design strategies and materials for hemiarthroplasty should be considered in future work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lerner, Zachary F; DeMers, Matthew S; Delp, Scott L; Browning, Raymond C
2015-02-26
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lerner, Zachary F.; DeMers, Matthew S.; Delp, Scott L.; Browning, Raymond C.
2015-01-01
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined via radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. PMID:25595425
The Frictional Force with Respect to the Actual Contact Surface
NASA Technical Reports Server (NTRS)
Holm, Ragnar
1944-01-01
Hardy's statement that the frictional force is largely adhesion, and to a lesser extent, deformation energy is proved by a simple experiment. The actual contact surface of sliding contacts and hence the friction per unit of contact surface was determined in several cases. It was found for contacts in normal atmosphere to be about one-third t-one-half as high as the macroscopic tearing strength of the softest contact link, while contacts annealed in vacuum and then tested, disclosed frictional forces which are greater than the macroscopic strength.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
Wang, Lianxin; Lin, Lin; Feng, Yong; Fernandes, Tiago Lazzaretti; Asnis, Peter; Hosseini, Ali; Li, Guoan
2015-12-01
Clinical outcome studies showed a high incidence of knee osteoarthritis after anterior cruciate ligament reconstruction. Abnormal joint kinematics and loading conditions were assumed as risking factors. However, little is known on cartilage contact forces after the surgery. A validated computational model was used to simulate anatomic and transtibial single-bundle anterior cruciate ligament reconstructions. Two graft fixation angles (0° and 30°) were simulated for each reconstruction. Biomechanics of the knee was investigated in intact, anterior cruciate ligament deficient and reconstructed conditions when the knee was subjected to 134 N anterior load and 400 N quadriceps load at 0°, 30°, 60° and 90° of flexion. The tibial translation and rotation, graft forces, medial and lateral contact forces were calculated. When the graft was fixed at 0°, the anatomic reconstruction resulted in slightly larger lateral contact force at 0° compared to the intact knee while the transtibial technique led to higher contact force at both 0° and 30° under the muscle load. When graft was fixed at 30°, the anatomic reconstruction overstrained the knee at 0° with larger contact forces, while the transtibial technique resulted in slightly larger contact forces at 30°. This study suggests that neither the anatomic nor the transtibial reconstruction can consistently restore normal knee biomechanics at different flexion angles. The anatomic reconstruction may better restore anteroposterior stability and contact force with the graft fixed at 0°. The transtibial technique may better restore knee anteroposterior stability and articular contact force with the graft fixed at 30° of flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
NASA Astrophysics Data System (ADS)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.; Corley, Richard A.; Ansong, Charles; Laskin, Julia
2018-02-01
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 μm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue height were found to be dependent on the tissue type and were in the range of 0-5 μm for lung tissue and 0-3 μm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.
Ikeda, Atsushi; Nakagawa, Hiroshi; Lambert, Hendrik; Shah, Dipen C; Fonck, Edouard; Yulzari, Aude; Sharma, Tushar; Pitha, Jan V; Lazzara, Ralph; Jackman, Warren M
2014-12-01
Electrode-tissue contact force (CF) is believed to be a major factor in radiofrequency lesion size. The purpose of this study was to determine, in the beating canine heart, the relationship between CF and radiofrequency lesion size and the accuracy of predicting CF and lesion size by measuring electrogram amplitude, impedance, and electrode temperature. Eight dogs were studied closed chest. Using a 7F catheter with a 3.5 mm irrigated electrode and CF sensor (TactiCath, St. Jude Medical), radiofrequency applications were delivered to 3 separate sites in the right ventricle (30 W, 60 seconds, 17 mL/min irrigation) and 3 sites in the left ventricle (40 W, 60 seconds, 30 mL/min irrigation) at (1) low CF (median 8 g); (2) moderate CF (median 21 g); and (3) high CF (median 60 g). Dogs were euthanized and lesion size was measured. At constant radiofrequency and time, lesion size increased significantly with increasing CF (P<0.01). The incidence of a steam pop increased with both increasing CF and higher power. Peak electrode temperature correlated poorly with lesion size. The decrease in impedance during the radiofrequency application correlated well with lesion size for lesions in the left ventricle but less well for lesions in the right ventricle. There was a poor relationship between CF and the amplitude of the bipolar or unipolar ventricular electrogram, unipolar injury current, and impedance. Radiofrequencylesion size and the incidence of steam pop increase strikingly with increasing CF. Electrogram parameters and initial impedance are poor predictors of CF for radiofrequency ablation. © 2014 American Heart Association, Inc.
A comprehensive model of the railway wheelset-track interaction in curves
NASA Astrophysics Data System (ADS)
Martínez-Casas, José; Di Gialleonardo, Egidio; Bruni, Stefano; Baeza, Luis
2014-09-01
Train-track interaction has been extensively studied in the last 40 years at least, leading to modelling approaches that can deal satisfactorily with many dynamic problems arising at the wheel/rail interface. However, the available models are usually not considering specifically the running dynamics of the vehicle in a curve, whereas a number of train-track interaction phenomena are specific to curve negotiation. The aim of this paper is to define a model for a flexible wheelset running on a flexible curved track. The main novelty of this work is to combine a trajectory coordinate set with Eulerian modal coordinates; the former permits to consider curved tracks, and the latter models the small relative displacements between the trajectory frame and the solid. In order to reduce the computational complexity of the problem, one single flexible wheelset is considered instead of one complete bogie, and suitable forces are prescribed at the primary suspension seats so that the mean values of the creepages and contact forces are consistent with the low frequency curving dynamics of the complete vehicle. The wheelset model is coupled to a cyclic track model having constant curvature by means of a wheel/rail contact model which accounts for the actual geometry of the contacting profiles and for the nonlinear relationship between creepages and creep forces. The proposed model can be used to analyse a variety of dynamic problems for railway vehicles, including rail corrugation and wheel polygonalisation, squeal noise, numerical estimation of the wheelset service loads. In this paper, simulation results are presented for some selected running conditions to exemplify the application of the model to the study of realistic train-track interaction cases and to point out the importance of curve negotiation effects specifically addressed in the work.
Piercing the water surface with a blade: Singularities of the contact line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimov, Mars M.; Kornev, Konstantin G.
An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contactmore » line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.« less
From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces
Kanduč, Matej; Netz, Roland R.
2015-01-01
Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526
Optimizing atomic force microscopy for characterization of diamond-protein interfaces
NASA Astrophysics Data System (ADS)
Rezek, Bohuslav; Ukraintsev, Egor; Kromka, Alexander
2011-12-01
Atomic force microscopy (AFM) in contact mode and tapping mode is employed for high resolution studies of soft organic molecules (fetal bovine serum proteins) on hard inorganic diamond substrates in solution and air. Various effects in morphology and phase measurements related to the cantilever spring constant, amplitude of tip oscillations, surface approach, tip shape and condition are demonstrated and discussed based on the proposed schematic models. We show that both diamond and proteins can be mechanically modified by Si AFM cantilever. We propose how to choose suitable cantilever type, optimize scanning parameters, recognize and minimize various artifacts, and obtain reliable AFM data both in solution and in air to reveal microscopic characteristics of protein-diamond interfaces. We also suggest that monocrystalline diamond is well defined substrate that can be applicable for fundamental studies of molecules on surfaces in general.
Ball to separator contact forces in angular contact ball bearings under thrust and radial loads
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1977-01-01
Experimental data is reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.
Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control
NASA Astrophysics Data System (ADS)
Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.
2018-01-01
In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.
Interaction of subway LIM vehicle with ballasted track in polygonal wheel wear development
NASA Astrophysics Data System (ADS)
Li, Ling; Xiao, Xin-Biao; Jin, Xue-Song
2011-04-01
This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen-Hedrick-Elkins' model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.
Bourier, Felix; Hessling, Gabriele; Ammar-Busch, Sonia; Kottmaier, Marc; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Semmler, Verena; Lennerz, Carsten; Schneider, Christine; Kolb, Christof; Deisenhofer, Isabel; Reents, Tilko
2016-03-01
Contact-force (CF) sensing catheters are increasingly used in clinical electrophysiological practice due to their efficacy and safety profile. As data about the accuracy of this technology are scarce, we sought to quantify accuracy based on in vitro experiments. A custom-made force sensor was constructed that allowed exact force reference measurements registered via a flexible membrane. A Smarttouch Surround Flow (ST SF) ablation catheter (Biosense Webster, Diamond Bar, CA, USA) was brought in contact with the membrane of the force sensor in order to compare the ST SF force measurements to force sensor reference measurements. ST SF force sensing technology is based on deflection registration between the distal and proximal catheter tip. The experiment was repeated for n = 10 ST SF catheters, which showed no significant difference in accuracy levels. A series of measurements (n = 1200) was carried out for different angles of force acting to the catheter tip (0°/perpendicular contact, 30°, 60°, 90°/parallel contact). The mean absolute differences between reference and ST SF measurements were 1.7 ± 1.8 g (0°), 1.6 ± 1.2 g (30°), 1.4 ± 1.3 g (60°), and 6.6 ± 5.9 g (90°). Measurement accuracy was significantly higher in non-parallel contact when compared with parallel contact (P < 0.01). Catheter force measurements using the ST SF catheters show a high level of accuracy regarding differences to reference measurements and reproducibility. The reduced accuracy in measurements of 90° acting forces (parallel contact) might be clinically important when creating, for example, linear lesions. © 2015 Wiley Periodicals, Inc.
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Contact resistance evolution of highly cycled, lightly loaded micro-contacts
NASA Astrophysics Data System (ADS)
Stilson, Christopher; Coutu, Ronald
2014-03-01
Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.
Intra-Personal and Inter-Personal Kinetic Synergies During Jumping.
Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L
2015-12-22
We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway.
Intra-Personal and Inter-Personal Kinetic Synergies During Jumping
Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L.
2015-01-01
We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway. PMID:26839608
Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M
2016-04-30
The evolution of microstructure during powder compaction process was investigated using a discrete particle modeling, which accounts for particle size distribution and material properties, such as plasticity, elasticity, and inter-particle bonding. The material properties were calibrated based on powder compaction experiments and validated based on tensile strength test experiments for lactose monohydrate and microcrystalline cellulose, which are commonly used excipient in pharmaceutical industry. The probability distribution function and the orientation of contact forces were used to study the evolution of the microstructure during the application of compaction pressure, unloading, and ejection of the compact from the die. The probability distribution function reveals that the compression contact forces increase as the compaction force increases (or the relative density increases), while the maximum value of the tensile contact forces remains the same. During unloading of the compaction pressure, the distribution approaches a normal distribution with a mean value of zero. As the contact forces evolve, the anisotropy of the powder bed also changes. Particularly, during loading, the compression contact forces are aligned along the direction of the compaction pressure, whereas the tensile contact forces are oriented perpendicular to direction of the compaction pressure. After ejection, the contact forces become isotropic. Copyright © 2016 Elsevier B.V. All rights reserved.
Tyre induced vibrations of the car-trailer system
NASA Astrophysics Data System (ADS)
Beregi, S.; Takács, D.; Stépán, G.
2016-02-01
The lateral and yaw dynamics of the car-trailer combination are analysed by means of a single track model. The equations of motion are derived rigorously by means of the Appell-Gibbs equations for constant longitudinal velocity of the vehicle. The tyres are described with the help of the so-called delayed tyre model, which is based on a brush model with pure rolling contact. The lateral forces and aligning torques of the tyre/road interaction are calculated via the instantaneous lateral deformations in the contact patches. The linear stability analysis of the rectilinear motion is performed via the analytically determined characteristic function of the system. Stability charts are constructed with respect to the vehicle longitudinal velocity and the payload position on the trailer. Self-excited lateral vibrations are detected with different vibration modes at low and at high longitudinal speeds of the vehicle. The effects of the tyre parameters are also investigated.
An original approach to elastic constants determination using a self-developed EMAT system
NASA Astrophysics Data System (ADS)
Jenot, Frédéric; Rivart, Frédéric; Camus, Liévin
2018-04-01
Electromagnetic Acoustic Transducers (EMATs) allow non-contact ultrasonic measurements in order to characterize structures for a wide range of applications. Considering non-ferromagnetic metal materials, excitation of elastic waves is due to Lorentz forces that result from an applied magnetic field and induced eddy currents in a near surface region of the sample. EMAT's design is based on a magnet structure associated with a coil leading to multiple configurations, which are able to excite bulk and guided acoustic waves. In this work, we first present a self-developed EMAT system composed of multiple emission and reception channels. In a second part, we propose an original method in order to determine the elastic constants of an isotropic material. To achieve this goal, Rayleigh and shear waves are used and the advantages of this method are clearly highlighted. The results obtained are then compared with conventional measurements achieved with piezoelectric transducers.
Effect of time derivative of contact area on dynamic friction
NASA Astrophysics Data System (ADS)
Arakawa, Kazuo
2014-06-01
This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.
Improving the contact resistance at low force using gold coated carbon nanotube surfaces
NASA Astrophysics Data System (ADS)
McBride, J. W.; Yunus, E. M.; Spearing, S. M.
2010-04-01
Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.
Ball to separator contact forces in angular contact ball bearings under thrust and radial loads
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1978-01-01
Experimental data are reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12,000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.
Changes in in vivo knee contact forces through gait modification.
Kinney, Allison L; Besier, Thor F; Silder, Amy; Delp, Scott L; D'Lima, Darryl D; Fregly, Benjamin J
2013-03-01
Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non-invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force-measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0-100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal-Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis. Copyright © 2012 Orthopaedic Research Society.
Relationship between left atrium catheter contact force and pacing threshold.
Barrio-López, Teresa; Ortiz, Mercedes; Castellanos, Eduardo; Lázaro, Carla; Salas, Jefferson; Madero, Sergio; Almendral, Jesús
2017-08-01
The purpose of this study is to analyze the relationship between contact force (CF) and pacing threshold in left atrium (LA). Six to ten LA sites were studied in 28 consecutive patients with atrial fibrillation undergoing pulmonary vein isolation. Median CF, bipolar and unipolar electrogram voltage, impedance, and bipolar and unipolar thresholds for consistent constant capture and for consistent intermittent capture were measured at each site. Pacing threshold measurements were performed at 188 LA sites. Both unipolar and bipolar pacing thresholds correlated significantly with median CF; however, unipolar pacing threshold correlated better (unipolar: Pearson R -0.45; p < 0.001; Spearman Rho -0.62; p < 0.001, bipolar: Pearson R -0.39; p < 0.001; Spearman Rho -0.52; p < 0.001). Consistent constant capture threshold had better correlation with median CF than consistent intermittent capture threshold for both unipolar and bipolar pacing (Pearson R -0.45; p < 0.001 and Spearman Rho -0.62; p < 0.001 vs. Pearson R -0.35; p < 0.001; Spearman Rho -0.52; p < 0.001). The best pacing threshold cutoff point to detect a good CF (>10 g) was 3.25 mA for unipolar pacing with 69% specificity and 73% sensitivity. Both increased to 80% specificity and 74% sensitivity for sites with normal bipolar voltage and a pacing threshold cutoff value of 2.85 mA. Pacing thresholds correlate with CF in human not previously ablated LA. Since the combination of a normal bipolar voltage and a unipolar pacing threshold <2.85 mA provide reasonable parameters of validity, pacing threshold could be of interest as a surrogate for CF in LA.
The search for the hydrophobic force law
Hammer, Malte U.; Anderson, Travers H.; Chaimovich, Aviel; Scott Shell, M.
2010-01-01
After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force–distance relationships are either a combination of different ‘fundamental’ interactions, or that the hydrophobic force-law, if there is one, is complex – depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D ≈ 100–200 Å, increasing roughly exponentially down to ~ 10–20 Å and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D ≈ 2 Å. The measured forces in this regime (100–200 Å) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100–200 Å to thousands of ångstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a ‘pure’ but still not well-understood ‘long-range hydrophobic force’ dominates the second regime from ~ 150 to ~ 15 Å, possibly due to an enhanced Hamaker constant associated with the ‘proton-hopping’ polarizability of water; while below ~ 10–15 Å to contact there is another ‘pure short-range hydrophobic force’ related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water–hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments. PMID:21043428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Suresh, E-mail: ajay-phy@rediffmail.com; Tiwari, R. K.; Gupta, D. C.
In this paper, we present the expressions relating the inter atomic force constants like as bond-stretching force constant (α in N/m) and bond-bending force constant (β in N/m) for the binary (zinc blende structure) and ternary (chalcopyrite structure) semiconductors with the product of ionic charges (PIC) and crystal ionicity (f{sub i}). Interatomic force constants of these compounds exhibit a linear relationship; when plot a graph between Interatomic force constants and the nearest neighbor distance d (Å) with crystal ionicity (f{sub i}), but fall on different straight lines according to the product of ionic charges of these compounds. A fairly goodmore » agreement has been found between the observed and calculated values of the α and β for binary and ternary tetrahedral semiconductors.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... CONTACT: Mail Delivery service through Recovering Warrior Task Force, Hoffman Building II, 200 Stovall St... Review of Non- Medical Case Management. 9:30-9:45 a.m. Break. 9:45-10:45 a.m. Task Force Recommendation... Task Force through the contact information in FOR FURTHER INFORMATION CONTACT, and this individual will...
Contact force with magnetic-guided catheter ablation.
Bessière, Francis; Zikry, Christopher; Rivard, Lena; Dyrda, Katia; Khairy, Paul
2018-05-01
Achieving adequate catheter tip-tissue contact is essential for delivering robust radiofrequency (RF) ablation lesions. We measured the contact force generated by a remote magnetic-guided catheter navigation system. A plexiglass model with an integrated scale was fashioned to mimic transvenous and retrograde access to sites in the right atrium and right and left ventricles. An 8 Fr RF ablation catheter was steered by remote magnetic guidance at fields of 0.08 and 0.10 T, with and without a long sheath positioned at the entrance of the chamber. Ten contact force readings were taken at each setting, with the scale recalibrated prior to each measurement. Generalized estimating equations were used to compare contact force measurements while adjusting for the non-independent data structure. A total of 240 contact force measurements were taken. Without a long sheath, contact forces with magnetic fields of 0.10 T (n = 60) and 0.08 T (n = 60) were similar (6.1 ± 1.4 g vs. 6.0 ± 1.3 g, P = 0.089). Contact forces were not significantly different with simulated transvenous (n = 80) and retrograde aortic (n = 40) approaches (6.2 ± 1.4 g vs. 5.7 ± 1.2 g, P = 0.132). The contact force increased substantially with a long sheath (P < 0.001) and was significantly higher with 0.10 T (n = 60) vs. 0.08 T (n = 60) fields (20.4 ± 0.6 g vs. 18.0 ± 0.5 g, P < 0.001). Magnetic fields of 0.08 and 0.10 T provide stable catheter contact forces, as reflected by the small variability between measurements. The average contact force is approximately 6 g without a sheath and increases to 20 g with a long sheath positioned at the entrance of the chamber of interest.
NASA Astrophysics Data System (ADS)
Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue
2017-12-01
Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.
Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk
2016-04-01
The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.
Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.
2016-01-01
Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. PMID:26802013
Lee, Jae Won; Cho, Hye Jin; Chun, Jinsung; Kim, Kyeong Nam; Kim, Seongsu; Ahn, Chang Won; Kim, Ill Won; Kim, Ju-Young; Kim, Sang-Woo; Yang, Changduk; Baik, Jeong Min
2017-01-01
A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)–grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF–based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study. PMID:28560339
Dense flow around a sphere moving into a cloud of grains
NASA Astrophysics Data System (ADS)
Gondret, Philippe; Faure, Sylvain; Lefebvre-Lepot, Aline; Seguin, Antoine
2017-06-01
A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10-2 and 10-1. The influence of sidewalls is then investigated on the flow and the forces.
Riveline, D; Zamir, E; Balaban, N Q; Schwarz, U S; Ishizaki, T; Narumiya, S; Kam, Z; Geiger, B; Bershadsky, A D
2001-06-11
The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.
Friction and lubrication of pleural tissues.
D'Angelo, Edgardo; Loring, Stephen H; Gioia, Magda E; Pecchiari, Matteo; Moscheni, Claudia
2004-08-20
The frictional behaviour of rabbit's visceral pleura sliding against parietal pleura was assessed in vitro while oscillating at physiological velocities and amplitudes under physiological normal forces. For sliding velocities up to 3 cm s(-1) and normal compressive loads up to 12 cm H2O, the average value of the coefficient of kinetic friction (mu) was constant at 0.019 +/- 0.002 (S.E.) with pleural liquid as lubricant. With Ringer-bicarbonate solution, mu was still constant, but significantly increased (Deltamu = 0.008 +/- 0.001; P < 0.001). Under these conditions, no damage of the sliding pleural surfaces was found on light and electron microscopy. Additional measurements, performed also on peritoneum, showed that changes in nominal contact area or strain of the mesothelia, temperature in the range 19-39 degrees C, and prolonged sliding did not affect mu. Gentle application of filter paper increased mu approximately 10-fold and irreversibly, suggesting alteration of the mesothelia. With packed the red blood cells (RBC) between the sliding mesothelia, mu increased appreciably but reversibly on removal of RBC suspension, whilst no ruptures of RBC occurred. In conclusion, the results indicate a low value of sliding friction in pleural tissues, partly related to the characteristics of the pleural liquid, and show that friction is independent of velocity, normal load, and nominal contact area, consistent with boundary lubrication.
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
NASA Astrophysics Data System (ADS)
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
Varadarajan, Kartik M; Moynihan, Angela L; D'Lima, Darryl; Colwell, Clifford W; Li, Guoan
2008-07-19
Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.
Learning to push and learning to move: the adaptive control of contact forces
Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.
2015-01-01
To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions. PMID:26594163
Generalized formulation of the interactions between soft spheres
NASA Astrophysics Data System (ADS)
Alonso-Marroquín, F.; McNamara, S.
2014-10-01
The goal of this paper is to identify the most general formulation that consistently links the different degrees of freedom in a contact between spherical soft particles. These contact laws have two parts: a set of "generalized contact velocities" that characterize the relative motion of the two particles, and a set of "generalized contact forces" that characterize the interparticle forces. One well known constraint on contact models is that the contact velocities must be objective. This requirement fixes the number of linearly independent contact velocities. We also present a previously unnoticed (in this context) constraint, namely, that the velocities and forces must be related in such a way that the stiffness matrix is symmetric. This constraint also places restrictions on the coupling between the contact forces. Within our generalized contact model, we discuss the expression for rolling velocity that need to be used in the calculation of rolling resistance, and the risk or producing perpetual mobile when other expressions of rolling velocity are using instead.
Men pressured and forced into sexual experience.
Struckman-Johnson, C; Struckman-Johnson, D
1994-02-01
A predominantly heterosexual sample of 204 college men were asked to report incidents of pressured or forced sexual touch or intercourse since age 16. About 34% indicated they had received coercive sexual contact: 24% from women, 4% from men, and 6% from both sexes. Contact involved only sexual touching for 12% and intercourse for 22%. Sexual contact was pressured in 88% of the 81 reported incidents by tactics of persuasion, intoxication, threat of love withdrawal, and bribery. In 12% of the incidents, sexual contact was forced through physical restraint, physical intimidation, threat of harm, or harm. Contact was initiated by an acquaintance or intimate in 77% of incidents. The negative emotional impact of male contact was rated significantly higher than the impact of female contact. Men with and without coercion experience did not differ, however, for scale scores on sexual esteem, depression, and preoccupation. Interviews with 10 subjects revealed complex reactions to coercive male and female contact, including doubts about one's sexuality, resentment of unexpected or forceful contact, and fear of telling others about the event.
Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.
2016-01-01
Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105
Haptic cues for orientation and postural control in sighted and blind individuals
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.
1996-01-01
Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (< 2 N of applied force) while holding the cane in a vertical or slanted orientation; and (4,5) force contact (as much force as desired) in the vertical and slanted orientations. Touch contact of a cane at force levels below those necessary to provide significant physical stabilization was as effective as force contact in reducing postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.
Micromechanics of Ultrafine Particle Adhesion—Contact Models
NASA Astrophysics Data System (ADS)
Tomas, Jürgen
2009-06-01
Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.
Intraarticular arthrofibrosis of the knee alters patellofemoral contact biomechanics.
Mikula, Jacob D; Slette, Erik L; Dahl, Kimi D; Montgomery, Scott R; Dornan, Grant J; O'Brien, Luke; Turnbull, Travis Lee; Hackett, Thomas R
2017-12-19
Arthrofibrosis in the suprapatellar pouch and anterior interval can develop after knee injury or surgery, resulting in anterior knee pain. These adhesions have not been biomechanically characterized. The biomechanical effects of adhesions in the suprapatellar pouch and anterior interval during simulated quadriceps muscle contraction from 0 to 90° of knee flexion were assessed. Adhesions of the suprapatellar pouch and anterior interval were hypothesized to alter the patellofemoral contact biomechanics and increase the patellofemoral contact force compared to no adhesions. Across all flexion angles, suprapatellar adhesions increased the patellofemoral contact force compared to no adhesions by a mean of 80 N. Similarly, anterior interval adhesions increased the contact force by a mean of 36 N. Combined suprapatellar and anterior interval adhesions increased the mean patellofemoral contact force by 120 N. Suprapatellar adhesions resulted in a proximally translated patella from 0 to 60°, and anterior interval adhesions resulted in a distally translated patella at all flexion angles other than 15° (p < 0.05). The most important finding in this study was that patellofemoral contact forces were significantly increased by simulated adhesions in the suprapatellar pouch and anterior interval. Anterior knee pain and osteoarthritis may result from an increase in patellofemoral contact force due to patellar and quadriceps tendon adhesions. For these patients, arthroscopic lysis of adhesions may be beneficial.
Contact control for advanced applications of light weight arms
NASA Technical Reports Server (NTRS)
Book, Wayne J.; Kwon, Dong-Soo
1991-01-01
Many applications of robotic and teleoperated manipulator arms require operation in contact and non-contact regimes. This paper deals with both regimes and the transition between them with special attention given to problems of flexibility in the links and drives. This is referred to as contact control. Inverse dynamics is used to plan the tip motion of the flexible link so that the free motion can stop very near the contact surface without collision due to overshoot. Contact must occur at a very low speed since the high frequency impact forces are too sudden to be affected by any feedback generated torques applied to a joint at the other end of the link. The effect of approach velocity and surface properties are discussed. Force tracking is implemented by commands to the deflection states of the link and the contact force. This enables a natural transition between tip position and tip force control that is not possible when the arm is treated as rigid. The effect of feedback gain, force trajectory, and desired final force are of particular interest and are studied. Experimental results are presented on a one link arm and the system performance in the overall contact task is analyzed. Extension to multi-link cases with potential applications are discussed.
Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.
Real time microcontroller implementation of an adaptive myoelectric filter.
Bagwell, P J; Chappell, P H
1995-03-01
This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
NASA Astrophysics Data System (ADS)
Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.
2012-04-01
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Gao, J; Chou, L W; Auerbach, A
1993-01-01
A combined quantum mechanical and molecular mechanical Monte Carlo simulation method was used to determine the free energy of binding between tetramethylammonium ion (TMA+) and benzene in water. The computed free energy as a function of distance (the potential of mean force) has two minima that represent contact and solvent-separated complexes. These species are separated by a broad barrier of about 3 kJ/mol. The results are in good accord with experimental data and suggest that TMA+ binds to benzene more favorably than to chloride ion, with an association constant of about 0.8 M-1. Images FIGURE 2 PMID:8369448
Rivas-Lalaleo, David; Muñoz-Romero, Sergio; Huerta, Mónica; Erazo-Rodas, Mayra; Sánchez-Muñoz, Juan José; Rojo-Álvarez, José Luis; García-Alberola, Arcadi
2018-05-02
The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends. These findings pave the way towards a subsystem which can be included in current intracardiac navigation systems assisted by force contact sensors, and it can provide the clinician with an estimate of the reliability on the tissue-catheter contact in the point-by-point EGM acquisition procedure.
Muñoz-Romero, Sergio; Erazo-Rodas, Mayra; Sánchez-Muñoz, Juan José; García-Alberola, Arcadi
2018-01-01
The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends. These findings pave the way towards a subsystem which can be included in current intracardiac navigation systems assisted by force contact sensors, and it can provide the clinician with an estimate of the reliability on the tissue-catheter contact in the point-by-point EGM acquisition procedure. PMID:29724033
Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
Hast, Michael W; Piazza, Stephen J
2013-02-01
Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.
Controlling direct contact force for wet adhesion with different wedged film stabilities
NASA Astrophysics Data System (ADS)
Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei
2018-04-01
In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.
Contact geometry and mechanics predict friction forces during tactile surface exploration.
Janko, Marco; Wiertlewski, Michael; Visell, Yon
2018-03-20
When we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as "tactile blind spots". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries ("quadrupedal" arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking.
Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury
2018-01-01
Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during walking. PMID:29563883
Multi-range force sensors utilizing shape memory alloys
Varma, Venugopal K.
2003-04-15
The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.
An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.
Gilbertson, Matthew W; Anthony, Brian W
2013-01-01
An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.
Computing an upper bound on contact stress with surrogate duality
NASA Astrophysics Data System (ADS)
Xuan, Zhaocheng; Papadopoulos, Panayiotis
2016-07-01
We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.
NASA Astrophysics Data System (ADS)
Torstensson, P. T.; Nielsen, J. C. O.; Baeza, L.
2011-10-01
Vertical dynamic train-track interaction at high vehicle speeds is investigated in a frequency range from about 20 Hz to 2.5 kHz. The inertial effects due to wheel rotation are accounted for in the vehicle model by implementing a structural dynamics model of a rotating wheelset. Calculated wheel-rail contact forces using the flexible, rotating wheelset model are compared with contact forces based on rigid, non-rotating models. For a validation of the train-track interaction model, calculated contact forces are compared with contact forces measured using an instrumented wheelset. When the system is excited at a frequency where two different wheelset mode shapes, due to the wheel rotation, have coinciding resonance frequencies, significant differences are found in the contact forces calculated with the rotating and non-rotating wheelset models. Further, the use of a flexible, rotating wheelset model is recommended for load cases leading to large magnitude contact force components in the high-frequency range (above 1.5 kHz). In particular, the influence of the radial wheel eigenmodes with two or three nodal diameters is significant.
Nessler, Jeff A; Moustafa-Bayoumi, Moustafa; Soto, Dalziel; Duhon, Jessica; Schmitt, Ryan
2011-12-01
Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal's hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.
NASA Astrophysics Data System (ADS)
Mink, J.; Gal, M.; Goggin, P. L.; Spencer, J. L.
1986-03-01
Skeletal modes of [M(C 2H 4) 3] (where M=Ni(O) or Pt(O)), and [Pt(C 2H 4Cl 3][NBu 4] have been measured and assigned. A new model for the normal coordinate treament of π-complexes has been adopted to calculate metal—ligand force constants. The Pt-ehtylene stretching force constants were 1.66, and 2.54 Ncm -1, and the Pt-ehtylene tilting force constants were 2.04, and 2.84 Ncm -1 for [Pt(C 2H 4) 3], and [Pt(C 2H 4)Cl 3] -1 respectively. These force constants suggest that the π-bonding dominates for tris(ethylene)platinum but that σ- and π-bonding are of almost equal importance for the Zeise's salt analogue. The CC valence force constants of chemisorbed ehtylene suggest that C is rehybridised nearly to sp 3 on Ni(lll) and Pt(lll) surfaces but not on Pd(lll). The surface-ehtylene stretching force constants indicate that the bond strengths are in the order Pt>Ni>>Pd.
Watanabe, T; Oouchi, S; Yamaguchi, T; Shimojo, M; Shimada, S
2006-01-01
A system with an optical 6-axis force sensor was developed to measure contact force during braille reading. In using this system, we encountered two problems. One is a variability of output values depending on the contact point. This was solved by using two transformation techniques. The other is that subjects read braille in a different manner from the usual. We compared two manners of braille reading, one-handed vs two-handed, and found a small reduction in reading speed. Using this system, we collected data from four braille readers and quantitatively showed more minute contact force trajectories than those in earlier studies.
Friction laws at the nanoscale.
Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela
2009-02-26
Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.
Kingston, David C; Acker, Stacey M
2018-01-23
In high knee flexion, contact between the posterior thigh and calf is expected to decrease forces on tibiofemoral contact surfaces, therefore, thigh-calf contact needs to be thoroughly characterized to model its effect. This study measured knee angles and intersegmental contact parameters in fifty-eight young healthy participants for six common high flexion postures using motion tracking and a pressure sensor attached to the right thigh. Additionally, we introduced and assessed the reliability of a method for reducing noise in pressure sensor output. Five repetitions of two squatting, two kneeling, and two unilateral kneeling movements were completed. Interactions of posture by sex occurred for thigh-calf and heel-gluteal center of force, and thigh-calf contact area. Center of force in thigh-calf regions was farther from the knee joint center in females, compared to males, during unilateral kneeling (82 and 67 mm respectively) with an inverted relationship in the heel-gluteal region (331 and 345 mm respectively), although caution is advised when generalizing these findings from a young, relatively fit sample to a population level. Contact area was larger in females when compared to males (mean of 155.61 and 137.33 cm 2 across postures). A posture main effect was observed in contact force and sex main effects were present in onset and max angle. Males had earlier onset (121.0°) and lower max angle (147.4°) with onset and max angles having a range between movements of 8° and 3° respectively. There was a substantial total force difference of 139 N between the largest and smallest activity means. Force parameters measured in this study suggest that knee joint contact models need to incorporate activity-specific parameters when estimating loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boyer, Elizabeth R; Derrick, Timothy R
2018-03-01
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.
Choi, Y J; Lim, H; Chung, C J; Park, K H; Kim, K H
2014-06-01
This study was performed to examine the longitudinal changes in bite force and occlusal contact area after mandibular setback surgery via intraoral vertical ramus osteotomy (IVRO). Patients with mandibular prognathism who underwent IVRO (surgical group: 39 men and 39 women) were compared with subjects with class I skeletal and dental relationships (control group; 32 men and 35 women). The surgical group was divided into two subgroups: 1-jaw surgery (n = 30) and 2-jaw surgery (n = 48). Bite force and contact area were measured in maximum intercuspation with the Dental Prescale System before treatment, within 1 month before surgery, and at 1, 3, 6, 9, 12, and 24 months postsurgery. A linear mixed model was used to investigate the time-dependent changes and associated factors. Bite force and contact area decreased during presurgical orthodontic treatment, were minimal at 1 month postsurgery, and increased gradually thereafter. The 1-jaw and 2-jaw subgroups showed no significant differences in bite force. The time-dependent changes in bite force were significantly different according to the contact area (P < 0.05). The results of this study suggest that bite force and occlusal contact area gradually increase throughout the postsurgical evaluation period. Increasing the occlusal contact area may be essential for improving bite force after surgery. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Integrated dynamic and static tactile sensor: focus on static force sensing
NASA Astrophysics Data System (ADS)
Wettels, Nicholas; Pletner, Baruch
2012-04-01
Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.
2017-01-01
The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na+, K+, Ca2+, and Mg2+, wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery. PMID:28332396
Haagh, M E J; Siretanu, I; Duits, M H G; Mugele, F
2017-04-11
The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na + , K + , Ca 2+ , and Mg 2+ , wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery.
Contact sensing from force measurements
NASA Technical Reports Server (NTRS)
Bicchi, Antonio; Salisbury, J. K.; Brock, David L.
1993-01-01
This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournadre, Grégoire de, E-mail: gregoire.de-tournadre@univ-reims.fr; Reisdorffer, Frédéric; Simonetti, Olivier
A scanning surface potential measurement technique suited for thin-film devices operating under high voltages is reported. A commercial atomic force microscope has been customized to enable a feedback-controlled and secure surface potential measurement based on phase-shift detection under ambient conditions. Measurements of the local potential profile along the channel of bottom-gate organic thin-film transistors (TFTs) are shown to be useful to disentangle the contributions from the channel and contacts to the device performance. Intrinsic contact current-voltage characteristics have been measured on bottom-gate, top-contact (staggered) TFTs based on the small-molecule semiconductor dinaphtho[2,3-b:2′,3-f]thieno[3,2-b]thiophene (DNTT) and on bottom-gate, bottom-contact (coplanar) TFTs based onmore » the semiconducting polymer polytriarylamine (PTAA). Injection has been found to be linear in the staggered DNTT TFTs and nonlinear in the coplanar PTAA TFTs. In both types of TFT, the injection efficiency has been found to improve with increasing gate bias in the accumulation regime. Contact resistances as low as 130 Ω cm have been measured in the DNTT TFTs. A method that eliminates the influence of bias-stress-induced threshold-voltage shifts when measuring the local charge-carrier mobility in the channel is also introduced, and intrinsic channel mobilities of 1.5 cm{sup 2} V{sup −1} s{sup −1} and 1.1 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1} have been determined for DNTT and PTAA. In both semiconductors, the mobility has been found to be constant with respect to the gate bias. Despite its simplicity, the Kelvin probe force microscopy method reported here provides robust and accurate surface potential measurements on thin-film devices under operation and thus paves the way towards more extensive studies of particular interest in emerging fields of solid-state electronics.« less
Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D
2017-03-01
Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots
Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.
2013-01-01
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496
Focal Contacts as Mechanosensors
Riveline, Daniel; Zamir, Eli; Balaban, Nathalie Q.; Schwarz, Ulrich S.; Ishizaki, Toshimasa; Narumiya, Shuh; Kam, Zvi; Geiger, Benjamin; Bershadsky, Alexander D.
2001-01-01
The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force. PMID:11402062
Prediction of static friction coefficient in rough contacts based on the junction growth theory
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt
2017-01-01
Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.
Qu, Wenwen; Busscher, Henk J; Hooymans, Johanna M M; van der Mei, Henny C
2011-06-15
Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis on these adhesion forces to calculate bacterial transmission probabilities from lens case to corneas with a contact lens as an intermediate. Also a new surface thermodynamic parameter was introduced, the interfacial free energy of transmission, which in essence compares the interfacial free energies of bacterial adhesion, calculated from measured contact angles with liquids on the donating and receiving surfaces in the transmission process. Bacterial adhesion forces were generally strongest among all eight strains for the lens case (-6.5 to -12.0 nN) and corneas (-3.5 to -11.5 nN), while contact lenses (-0.6 to -13.1 nN) exerted slightly smaller adhesion forces. Consequently, bacterial transmission from lens case to contact lens yielded a smaller contribution in the final transmission than from contact lens to cornea. Bacterial transmission probabilities as derived from force analyses were higher when the interfacial free energies of transmission were more negative, which is in line with surface thermodynamic principles. Therewith this parameter could provide useful in analyzing other bacterial transmission phenomena between donating and receiving surfaces as well. Copyright © 2011 Elsevier Inc. All rights reserved.
Precise measurements of droplet-droplet contact forces in quasi-2D emulsions
NASA Astrophysics Data System (ADS)
Lowensohn, Janna; Orellana, Carlos; Weeks, Eric
2015-03-01
We use microscopy to visualize a quasi-2D oil-in-water emulsion confined between two parallel slides. We then use the droplet shapes to infer the forces they exert on each other. To calibrate our force law, we set up an emulsion in a tilted sample chamber so that the droplets feel a known buoyant force. By correlating radius of the droplet and length of contacts with the buoyant forces, we validate our empirical force law. We improve upon prior work in our lab by using a high-resolution camera to image each droplet multiple times, thus providing sub-pixel resolution and reducing the noise. Our new technique identifies contact forces with only a 1% uncertainty, five times better than prior work. We demonstrate the utility of our technique by examining the normal modes of the droplet contact network in our samples.
NASA Astrophysics Data System (ADS)
Cioată, V. G.; Kiss, I.; Alexa, V.; Raţiu, S. A.; Racov, M.
2018-01-01
In the machining process, the workpieces are installed in machining fixtures in order to establish a strictly determined position with the cutting tool or its trajectory. During the cutting process, the weight of the workpiece, the forces and moments of inertia, cutting forces and moments, clamping forces, the heat released during the cutting process determine the contact forces between the locators and the workpiece. The magnitude of these forces is important because too large value can destroy the surface of the workpiece, and a too small value can cause the workpiece to slip on the locators or even the loss of the contact with the workpiece. Both situations must be avoided. The paper presents a study, realized with CAE software, regarding the influence of the cutting temperature on the magnitude of the contact forces in a machining fixture for the milling a rectangular workpiece.
NASA Technical Reports Server (NTRS)
Patzek, T. W.; Scriven, L. E.
1982-01-01
The Young-Laplace equation is solved for three-dimensional menisci between crossed cylinders, with either the contact line fixed or the contact angle prescribed, by means of the Galerkin/finite element method. Shapes are computed, and with them the practically important quantities: drop volume, wetted area, capillary pressure force, surface tension force, and the total force exerted by the drop on each cylinder. The results show that total capillary force between cylinders increases with decreasing contact angle, i.e. with better wetting. Capillary force is also increases with decreasing drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder decreases with decreasing drop volume, which raises the question of the optimum drop volume to strive for, when permanent bonding is sought from solidified liquid. For then the strength of the bond is likely to depend upon the area of contact, which is the wetted area when the bonding agent was introduced in liquid form.
Dynamics of contact line depinning during droplet evaporation based on thermodynamics.
Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan
2015-02-17
For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 µm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue heightmore » were found to be dependent on the tissue type and were in the range of 0-5 µm for lung tissue and 0-3 µm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.« less
White, Olivier
2015-01-01
In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters–gain and offset–of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery. PMID:25717293
On the properties of a bundle of flexible actin filaments in an optical trap.
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-28
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs (H)=NfkBTln(ρ1/ρ1c)/d, independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝〈L〉(O.T.) (2) and the single filament buckling force ∝〈L〉(O.T.) (-2).
Jamming of granular ice mélange in tidewater glacial fjords
NASA Astrophysics Data System (ADS)
Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.
2016-12-01
In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea ice. For glaciers with large calving rates, this "mélange" of ice can be jam-packed, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the ice mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular ice mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of ice mélange. A polydisperse collection of particles is packed into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.
Characterization of the interaction between AFM tips and surface nanobubbles.
Walczyk, Wiktoria; Schönherr, Holger
2014-06-24
While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.
Dynamics of a pre-lens tear film after a blink: Model, evolution, and rupture
NASA Astrophysics Data System (ADS)
Usha, R.; Anjalaiah, Sanyasiraju, Y. V. S. S.
2013-11-01
A mathematical model is developed to investigate the dynamics and rupture of a pre-lens tear film on a contact lens. The contact lens is modeled as a saturated porous medium of constant, finite thickness and is described by the Darcy-Brinkman equations with stress-jump condition at the interface. The model incorporates the influence of capillarity, gravitational drainage, contact lens properties such as the permeability, the porosity, and the thickness of the contact lens on the evolution and rupture of a pre-lens tear film, when the eyelid has opened after a blink. Two models are derived for the evolution of a pre-lens tear film thickness using lubrication theory and are solved numerically; the first uses shear-free surface condition and the second, the tangentially immobile free surface condition. The results reveal that life span of a pre-lens tear film is longer on a thinner contact lens for all values of permeability and porosity parameter considered. An increase in permeability of contact lens, porosity or stress-jump parameter increases the rate of thinning of the film and advances the rupture time. The viscous-viscous interaction between the porous contact lens and the pre-lens tear film increases the resistance offered by the frictional forces to the rate of thinning of pre-lens tear film. This slows down the thinning process and hence delays the rupture of the film as compared to that predicted by the models of Nong and Anderson [SIAM. J. Appl. Math. 70, 2771-2795 (2010)] derived in the framework of Darcy model.
Coupling of fingertip somatosensory information to head and body sway
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Schoner, G.; Dijkstra, T.; Ribeiro, P.; Lackner, J. R.
1997-01-01
Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.
Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter
2012-01-01
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963
LaMothe, Jeremy; Baxter, Josh R; Gilbert, Susannah; Murphy, Conor I; Karnovsky, Sydney C; Drakos, Mark C
2017-06-01
Syndesmotic injuries can be associated with poor patient outcomes and posttraumatic ankle arthritis, particularly in the case of malreduction. However, ankle joint contact mechanics following a syndesmotic injury and reduction remains poorly understood. The purpose of this study was to characterize the effects of a syndesmotic injury and reduction techniques on ankle joint contact mechanics in a biomechanical model. Ten cadaveric whole lower leg specimens with undisturbed proximal tibiofibular joints were prepared and tested in this study. Contact area, contact force, and peak contact pressure were measured in the ankle joint during simulated standing in the intact, injured, and 3 reduction conditions: screw fixation with a clamp, screw fixation without a clamp (thumb technique), and a suture-button construct. Differences in these ankle contact parameters were detected between conditions using repeated-measures analysis of variance. Syndesmotic disruption decreased tibial plafond contact area and force. Syndesmotic reduction did not restore ankle loading mechanics to values measured in the intact condition. Reduction with the thumb technique was able to restore significantly more joint contact area and force than the reduction clamp or suture-button construct. Syndesmotic disruption decreased joint contact area and force. Although the thumb technique performed significantly better than the reduction clamp and suture-button construct, syndesmotic reduction did not restore contact mechanics to intact levels. Decreased contact area and force with disruption imply that other structures are likely receiving more loads (eg, medial and lateral gutters), which may have clinical implications such as the development of posttraumatic arthritis.
Du, Yue; Clark, Jane E; Whitall, Jill
2017-05-01
Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.
Shear forces in the contact patch of a braked-racing tyre
NASA Astrophysics Data System (ADS)
Gruber, Patrick; Sharp, Robin S.
2012-12-01
This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.
Measurement of separator contact forces in ball bearings using a derotation prism
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1978-01-01
A derotation prism was used to produce a stationary image of balls deflecting a portion of the separator. Ball to cage contact forces in a 110 mm bearing at speeds to 12,000 rpm were found to be 25 N (five lb) maximum. Inner race land contact force was found to vary up to 20 N (four lb).
NASA Technical Reports Server (NTRS)
Metzger, Philip T.
2006-01-01
Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.
Evaluation of the electrical contact area in contact-mode scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried
The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transportmore » phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.« less
Experimental study of tyre/road contact forces in rolling conditions for noise prediction
NASA Astrophysics Data System (ADS)
Cesbron, Julien; Anfosso-Lédée, Fabienne; Duhamel, Denis; Ping Yin, Hai; Le Houédec, Donatien
2009-02-01
This paper deals with the experimental study of dynamical tyre/road contact for noise prediction. In situ measurements of contact forces and close proximity noise levels were carried out for a slick tyre rolling on six different road surfaces between 30 and 50 km/h. Additional texture profiles of the tested surfaces were taken on the wheel track. Normal contact stresses were measured at a sampling frequency of 10752 Hz using a line of pressure sensitive cells placed both along and perpendicular to the rolling direction. The contact areas obtained during rolling were smaller than in static conditions. This is mainly explained by the dynamical properties of tyre compounds, like the viscoelastic behaviour of the rubber. Additionally the root-mean-square of the resultant contact forces at various speeds was in the same order for a given road surface, while their spectra were quite different. This is certainly due to a spectral influence of bending waves propagating in the tyre during rolling, especially when the wavelength is small in comparison with the size of the contact patch. Finally, the levels of contact forces and close proximity noise measured at 30 km/h were correlated. Additional correlations with texture levels were performed. The results show that the macro-texture generates contact forces linearly around 800 Hz and consequently noise levels between 500 and 1000 Hz via the vibrations transmitted to the tyre.
Physician-applied contact pressure and table force response during unilateral thoracic manipulation.
Kirstukas, S J; Backman, J A
1999-06-01
To measure the applied loading to human subjects during the reinforced unilateral thoracic manipulation. Biomechanical descriptive study. The National College of Chiropractic Clinical Biomechanical Laboratory in Lombard, Illinois. Seven men, ages 24 to 47, with no positive responses regarding muscle relaxants or thoracic spinal fractures, surgeries, or pain. We measured the contact pressure distribution at the physician-subject contact region and extracted three biomechanical parameters. From the measured time-dependent support force magnitudes, we extracted five additional biomechanical parameters. In the application of the reinforced unilateral manipulative treatment, the physician establishes contact and applies a near-static preload force of 250 to 350 N. The dynamic portion of the typical thrust is preceded by a 22% decrease in force magnitude, and the peak thrust magnitude is linearly related to the preload force magnitude. We estimate that the peak contact pressure beneath the chiropractor's pisiform can exceed 1000 kPa, with the highest pressures transmitted over areas as small as 3.6 cm2, depending on manipulative style. This work represents the first attempt at performing simultaneous measurements of the physician-applied loading and table force response and measuring the contact pressure distribution at the physician-patient contact region during chiropractic manipulation. This type of work will lead to a better understanding of the relationship between the dynamic physician-applied normal forces and the resulting load response at the table and gives us additional outcome parameters to quantify manipulative technique.
The effect of elastic modulus on ablation catheter contact area.
Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R
2015-02-21
Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.
Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation.
Farris, Stefano; Introzzi, Laura; Biagioni, Paolo; Holz, Torsten; Schiraldi, Alberto; Piergiovanni, Luciano
2011-06-21
The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Bernabe, Y.; Evans, J.
2012-12-01
In a previous work we investigated stress transfer in a pair of grain contacts undergoing pressure solution (PS) creep, showed that stress transfer resulted in a significant decrease in overall strain rate, and concluded that PS creep rates of a randomly packed granular aggregate should be affected by packing evolution and the formation of new contacts during creep. To test these conclusions further, we are numerically simulating the "elastic" hydrostatic compression of a random pack of spheres, using a numerical method similar to that of Cundall and Strack [1979]. We assumed that the spheres were frictionless (i.e., spheres in contact only interacted through normal forces) and that the contact forces obeyed the non-linear Digby [1981] model. In order to determine the PS creep compression of the sphere pack subjected to a constant confining pressure pc, we calculated the thicknesses of the dissolved layers at each individual grain contact during a small time increment and, from these, the overall deformation of the sphere pack. We used an analytical expression discussed in our previous paper and originating from Lehner and Leroy [2004]. During these simulations, we also computed the mean coordination number of the grain contact z, the effective bulk modulus K of the sphere pack and others parameters characterizing the topological and mechanical properties of the sphere assembly. Our results show strong non-linear increase of z and K with pc during "elastic" compression and, with time, during PS creep. The packing rearrangements associated with PS creep produce complex time dependence of the overall deformation ɛ(t). We observed a regular transition from ɛ∝t^3/4 at early times (i.e., less than 0.1 years) and ɛ∝t^1/3 at late times (i.e., more than 1000 years). Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotech., 29, 47-65. Digby, P.J. (1981), The effective elastic moduli of porous rocks, J. Appl. Mech., 48, 803-808. Lehner, F.K., and Y. Leroy (2004), Sandstone compaction by intergranular pressure solution, In Mech. Fluid Saturated Rocks (eds. Y. Guéguen and M. Boutéca), Elsevier.
The Role Of Contact Force In Atrial Fibrillation Ablation.
Nakagawa, Hiroshi; Jackman, Warren M
2014-01-01
During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These studies confirm that CF is a major determinant of RF lesion size and future systems combining CF, RF power and application time may provide real-time assessment of lesion formation.
Influence of altered gait patterns on the hip joint contact forces.
Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J
2014-01-01
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.
Bufton, Marcia J; Marklin, Richard W; Nagurka, Mark L; Simoneau, Guy G
2006-08-15
This study aimed to compare and analyse rubber-dome desktop, spring-column desktop and notebook keyboards in terms of key stiffness and fingertip typing force. The spring-column keyboard resulted in the highest mean peak contact force (0.86N), followed by the rubber dome desktop (0.68N) and the notebook (0.59N). All these differences were statistically significant. Likewise, the spring-column keyboard registered the highest fingertip typing force and the notebook keyboard the lowest. A comparison of forces showed the notebook (rubber dome) keyboard had the highest fingertip-to-peak contact force ratio (overstrike force), and the spring-column generated the least excess force (as a ratio of peak contact force). The results of this study could aid in optimizing computer key design that could possibly reduce subject discomfort and fatigue.
Surface temperatures and glassy state investigations in tribology
NASA Technical Reports Server (NTRS)
Bair, S.; Winer, W. O.
1980-01-01
Measurements were made of the limiting shear stress for two naphthenic oils of differing molecular weight and three blends of the lower molecular weight oil and polymers of differing molecular weight. All reached the same limiting shear stress for the same temperature and pressure; although the polymer solutions reduced the limiting shear stress by about fifteen percent. A falling body viscometer was constructed to operate to 230 C and to 0.6 GPa and another was constructed to extend the pressure range to 1.1 GPa. A concentrated contact simulator was developed which allows recording of the traction force while the slide-roll ratio is continuously varied and the rolling speed is maintained essentially constant. Measurement of lubricant minimum film thickness of elliptical EHD contacts of various aspect ratios were made by optical interferometry. The experimental data were thirty percent greater than that predicted by the Hamrock and Dowson model. Preliminary development of the application of a scanning infrared radiation system to a tribological system was completed.
Investigation of energy dissipation due to contact angle hysteresis in capillary effect
NASA Astrophysics Data System (ADS)
Athukorallage, Bhagya; Iyer, Ram
2016-06-01
Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. Three effects contribute to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during one cycle of capillary action, when the liquid volume inside a capillary tube first increases and subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus. It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We describe the numerical solution of these equations and present results from computations for the case of a capillary tube with 1 mm diameter.
Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique
2016-09-01
Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of friction in coulombian damper
NASA Astrophysics Data System (ADS)
Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.
2017-02-01
The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.
Hoss, Darby J.; Knepper, Robert; Hotchkiss, Peter J.; ...
2016-03-23
In this study, cohesive Hamaker constants of solid materials are measured via optical and dielectric properties (i.e., Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. To date, however, a comparison across these measurement techniques for common energetic materials has not been reported. This has been due to the inability of the community to produce samples of energetic materials that are readily compatible with contact angle measurements. Here we overcome this limitation by using physical vapor deposition to produce thin films of five common energetic materials, and the contact angle measurement approach is applied to estimate the cohesive Hamakermore » constants and surface energy components of the materials. The cohesive Hamaker constants range from 85 zJ to 135 zJ across the different films. When these Hamaker constants are compared to prior work using Lifshitz theory and nonpolar probe IGC, the relative magnitudes can be ordered as follows: contact angle > Lifshitz > IGC. Furthermore, the dispersive surface energy components estimated here are in good agreement with those estimated by IGC. Due to these results, researchers and technologists will now have access to a comprehensive database of adhesion constants which describe the behavior of these energetic materials over a range of settings.« less
The influence of rail surface irregularities on contact forces and local stresses
NASA Astrophysics Data System (ADS)
Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik
2015-01-01
The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.
Post-procedural evaluation of catheter contact force characteristics
NASA Astrophysics Data System (ADS)
Koch, Martin; Brost, Alexander; Kiraly, Atilla; Strobel, Norbert; Hornegger, Joachim
2012-03-01
Minimally invasive catheter ablation of electric foci, performed in electrophysiology labs, is an attractive treatment option for atrial fibrillation (AF) - in particular if drug therapy is no longer effective or tolerated. There are different strategies to eliminate the electric foci inducing the arrhythmia. Independent of the particular strategy, it is essential to place transmural lesions. The impact of catheter contact force on the generated lesion quality has been investigated recently, and first results are promising. There are different approaches to measure catheter-tissue contact. Besides traditional haptic feedback, there are new technologies either relying on catheter tip-to-tissue contact force or on local impedance measurements at the tip of the catheter. In this paper, we present a novel tool for post-procedural ablation point evaluation and visualization of contact force characteristics. Our method is based on localizing ablation points set during AF ablation procedures. The 3-D point positions are stored together with lesion specific catheter contact force (CF) values recorded during the ablation. The force records are mapped to the spatial 3-D positions, where the energy has been applied. The tracked positions of the ablation points can be further used to generate a 3-D mesh model of the left atrium (LA). Since our approach facilitates visualization of different force characteristics for post-procedural evaluation and verification, it has the potential to improve outcome by highlighting areas where lesion quality may be less than desired.
Liu, Na; Yu, Ruifeng
2018-06-01
This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.
Badie, Fateme; Katouzian, Hamid Reza; Rostami, Mostafa
2018-06-18
The varus knee has been defined as a Hip-Knee-Ankle alignment of less than 180 degrees. Varus knee alignment increases the load on the medial knee and also the risk of osteoarthritis. High tibial osteotomy has been designed to modify the malalignment of varus knee. The aim of this study was to investigate the osteotomy effects on knee adduction moment (KAM) and contact forces using a musculoskeletal and subject-specific knee model. A patient with varus knee and no symptoms of any other disease or disability participated in this study. The geometry of the multibody knee model has been modified using MR images. The solutions of its finite element model have been used to determine the parameters of the multibody model. The motion data, ground reaction force and kinetic data have been applied to run the subject-specific musculoskeletal model during the stance phase of gait. After osteotomy, the adduction moment decreased, where the maximum values are comparable to other studies. The pattern of KAM did not witness any significant changes. The total and medial contact forces reduced considerably after surgery, but the lateral contact force did not significantly change. The changes in total and medial contact forces and lack of change in lateral contact force could be explained by modification of the gait pattern after surgery.
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
NASA Astrophysics Data System (ADS)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-01
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-21
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
Oscillations of a sessile droplet in open air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.
2013-11-15
The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less
2004-01-01
to contact Sandra Veazey at (850) 595-8300 for additional information on asbestos issues. The Florida Department of Transportation (FDOT) supports...The notification form for the Department can be found at the following web address:. The Air Force is advised to contact Sandra Veazey at (850) 595
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT
2016-01-01
Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194
Loading of the Medial Meniscus in the ACL deficient knee: a Multibody Computational Study
Razu, Swithin
2017-01-01
The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100 N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5 Nm external tibial torque was applied about the long axis of the tibia. Combining a 100 N anterior tibial force and a 5 Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. PMID:28089224
Decreased knee adduction moment does not guarantee decreased medial contact force during gait.
Walter, Jonathan P; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J
2010-10-01
Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force-measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a "medial thrust" gait involving knee medialization during stance phase and a "walking pole" gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32-33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15-47%) corresponded to reductions in the second peak and impulse of the medial contact force (12-42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior-inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R(2) = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348-1354, 2010.
Loading of the medial meniscus in the ACL deficient knee: A multibody computational study.
Guess, Trent M; Razu, Swithin
2017-03-01
The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5Nm external tibial torque was applied about the long axis of the tibia. Combining a 100N anterior tibial force and a 5Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
The Comfortable Roller Coaster--on the Shape of Tracks with a Constant Normal Force
ERIC Educational Resources Information Center
Nordmark, Arne B.; Essen, Hanno
2010-01-01
A particle that moves along a smooth track in a vertical plane is influenced by two forces: gravity and normal force. The force experienced by roller coaster riders is the normal force, so a natural question to ask is, what shape of the track gives a normal force of constant magnitude? Here we solve this problem. It turns out that the solution is…
Patterns of the Rotor-over-Stator Rolling under Change in the Damping Components
NASA Astrophysics Data System (ADS)
Shatokhin, V. F.
2018-03-01
As experimental studies show, the rubbing of the rotor against the structure usually excites harmonics of different frequencies. In high-frequency regions, the power of the vibration signal appears to be considerable. The rotor—supports—stator system is in an unstable equilibrium state during the contact interaction between the rotor and the stator. The forces exerted on the rotor facilitate the excitation of the asynchronous rolling and its damping. The forces have been determined that facilitate the excitation of the progressive and retrograde rotor precession. The consideration of these forces in the algorithm for modeling the rotor-over-stator rolling development allows investigation of the impact of the components of the above forces on the behavior of the rotor system. The initial excitation—disturbance of the normal operation—of the rotor and subsequent unsteady oscillations of it result from sudden imbalance in the second span. The results of numerical modeling of the rubbing in the second span and the rotor-over-stator rolling upon change in the damping components of secondary (gyroscopic) components b ij ( i ≠ j) of the damping matrix are presented for the rotor on three bearing-supports considering the synergetic effect of the forces of various types exerted on the rotor. It is shown that change in one of the parameters of the excitation forces leads to ambiguity of the pattern (manifestation form) of the asynchronous rotor-over-stator rolling and proves the existence of more than one states towards which the rotor—supports—stator system tends. In addition to the rolling with a constant rotor—stator contact, oscillations of the rotor develop in the direction perpendicular to the common trajectory of the precession motion of the rotor's center with transition to the vibro-impact motion mode. The oscillations of the rotor tend towards the symmetry center of the system (the stator bore center). The reason is the components of the stiffness and damping forces that act in the direction transverse to the rotor's motion trajectory. Recommendations are given for eliminating dangerous consequences of the development of the asynchronous rolling fraught with great financial losses.
A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.
Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang
2011-07-01
A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.
A Study of the Use of Contact Loading to Simulate Low Velocity Impact
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.
1997-01-01
Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in specimens subjected to the corresponding quasi-static contact loading. The impacted specimens may have a greater tendency to develop fiber fracture, but, at present, a quantitative assessment of fiber fracture is not available. In addressing whether or not contact force is an adequate metric for describing the severity of an impact event, the results of this study suggest that it is not. In cases where the quasi-static load level and the maximum contact force during impact were comparable, the quasi-statically loaded specimens consistently developed larger damage zones. It should be noted, however, that using quasi-static damage data to forecast the behavior of impacted material may give conservative estimates of the residual strength of impacted composites.
Phonons in random alloys: The itinerant coherent-potential approximation
NASA Astrophysics Data System (ADS)
Ghosh, Subhradip; Leath, P. L.; Cohen, Morrel H.
2002-12-01
We present the itinerant coherent-potential approximation (ICPA), an analytic, translationally invariant, and tractable form of augmented-space-based multiple-scattering theory18 in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni55Pd45 and Ni50Pt50 alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation (CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.
The effects of rigid motions on elastic network model force constants
Lezon, Timothy R.
2012-01-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model’s single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here we investigate the differences between calculated values of force constants _t to data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. PMID:22228562
NASA Astrophysics Data System (ADS)
Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.
1996-12-01
A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.
NASA Astrophysics Data System (ADS)
Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio
2018-01-01
This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.
Contact force history and dynamic response due to the impact of a soft projectile
NASA Technical Reports Server (NTRS)
Grady, J. E.
1988-01-01
A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.
Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.
Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger
2015-12-01
In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).
Farhoudi, Hamidreza; Fallahnezhad, Khosro; Oskouei, Reza H; Taylor, Mark
2017-11-01
This paper investigates the mechanical response of a modular head-neck interface of hip joint implants under realistic loads of level walking. The realistic loads of the walking activity consist of three dimensional gait forces and the associated frictional moments. These forces and moments were extracted for a 32mm metal-on-metal bearing couple. A previously reported geometry of a modular CoCr/CoCr head-neck interface with a proximal contact was used for this investigation. An explicit finite element analysis was performed to investigate the interface mechanical responses. To study the level of contribution and also the effect of superposition of the load components, three different scenarios of loading were studied: gait forces only, frictional moments only, and combined gait forces and frictional moments. Stress field, micro-motions, shear stresses and fretting work at the contacting nodes of the interface were analysed. Gait forces only were found to significantly influence the mechanical environment of the head-neck interface by temporarily extending the contacting area (8.43% of initially non-contacting surface nodes temporarily came into contact), and therefore changing the stress field and resultant micro-motions during the gait cycle. The frictional moments only did not cause considerable changes in the mechanical response of the interface (only 0.27% of the non-contacting surface nodes temporarily came into contact). However, when superposed with the gait forces, the mechanical response of the interface, particularly micro-motions and fretting work, changed compared to the forces only case. The normal contact stresses and micro-motions obtained from this realistic load-controlled study were typically in the range of 0-275MPa and 0-38µm, respectively. These ranges were found comparable to previous experimental displacement-controlled pin/cylinder-on-disk fretting corrosion studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Tabor parameter on hysteresis losses during adhesive contact
NASA Astrophysics Data System (ADS)
Ciavarella, M.; Greenwood, J. A.; Barber, J. R.
2017-01-01
The Tabor parameter μ is conventionally assumed to determine the range of applicability of the classical 'JKR' solution for adhesive elastic contact of a sphere and a plane, with the variation of the contact area and approach with load, and in particular the maximum tensile force (the pull-off force) being well predicted for μ > 5 . Here we show that the hysteretic energy loss during a contact separation cycle is significantly overestimated by the JKR theory, even at quite large values of μ. This stems from the absence of long-range tensile forces in the JKR theory, which implies that jump into contact is delayed until the separation α = 0 . We develop an approximate solution based on the use of Wu's solution with van der Waals interactions for jump-in, and the JKR theory for jump out of contact, and show that for μ > 5 , the predicted hysteresis loss is then close to that found by direct numerical solutions using the Lennard-Jones force law. We also show how the same method can be adapted to allow for contact between bodies with finite support stiffness.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.
Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses
Witt, Florian; Gührs, Julian; Morlock, Michael M.; Bishop, Nicholas E.
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface. PMID:26280914
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J
2012-02-01
Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.
NASA Astrophysics Data System (ADS)
Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao
2018-04-01
This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.
NASA Astrophysics Data System (ADS)
Li, Qiang; Argatov, Ivan; Popov, Valentin L.
2018-04-01
A recent paper by Popov, Pohrt and Li (PPL) in Friction investigated adhesive contacts of flat indenters in unusual shapes using numerical, analytical and experimental methods. Based on that paper, we analyze some special cases for which analytical solutions are known. As in the PPL paper, we consider adhesive contact in the Johnson-Kendall-Roberts approximation. Depending on the energy balance, different upper and lower estimates are obtained in terms of certain integral characteristics of the contact area. The special cases of an elliptical punch as well as a system of two circular punches are considered. Theoretical estimations for the first critical force (force at which the detachment process begins) are confirmed by numerical simulations using the adhesive boundary element method. It is shown that simpler approximations for the pull-off force, based both on the Holm radius of contact and the contact area, substantially overestimate the maximum adhesive force.
2004-11-10
found at the following web address: <http://dep.state.fl.us/air/forms/asbestos.htm#asbestos>. The Air Force is advised to contact Sandra Veazey at...advised to contact Sandra Veazey at (850) 595·8300 for additional information on asbestos issues. http://tlhora6.dep.state.fl.us/clearinghouse/agency
Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.
Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M
2017-11-01
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.
Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B
2016-03-01
This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kawakami, M; Smith, D A
2008-12-10
We have developed a new force ramp modification of the atomic force microscope (AFM) which can control multiple unfolding events of a multi-modular protein using software-based digital force feedback control. With this feedback the force loading rate can be kept constant regardless the length of soft elastic linkage or number of unfolded polypeptide domains. An unfolding event is detected as a sudden drop in force, immediately after which the feedback control reduces the applied force to a low value of a few pN by lowering the force set point. Hence the remaining folded domains can relax and the subsequent force ramp is applied to relaxed protein domains identically in each case. We have applied this technique to determine the kinetic parameters x(u), which is the distance between the native state and transition state, and α(0), which is the unfolding rate constant at zero force, for the mechanical unfolding of a pentamer of I27 domains of titin. In each force ramp the unfolding probability depends on the number of folded domains remaining in the system and we had to take account of this effect in the analysis of unfolding force data. We obtained values of x(u) and α(0) to be 0.28 nm and 1.02 × 10(-3) s(-1), which are in good agreement with those obtained from conventional constant velocity experiments. This method reveals unfolding data at low forces that are not seen in constant velocity experiments and corrects for the change in stiffness that occurs with most mechanical systems throughout the unfolding process to allow constant force ramp experiments to be carried out. In addition, a mechanically weak structure was detected, which formed from the fully extended polypeptide chain during a force quench. This indicates that the new technique will allow studies of the folding kinetics of previously hidden, mechanically weak species.
A methodology to model physical contact between structural components in NASTRAN
NASA Technical Reports Server (NTRS)
Prabhu, Annappa A.
1993-01-01
Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.
Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces
Grewal, H. S.; Nam Kim, Hong; Cho, Il-Joo; Yoon, Eui-Sung
2015-01-01
We investigate the role of viscous forces on the wetting of hydrophobic, semi-hydrophobic, and hydrophilic textured surfaces as second-order effects. We show that during the initial contact, the transition from inertia- to viscous-dominant regime occurs regardless of their surface topography and chemistry. Furthermore, we demonstrate the effect of viscosity on the apparent contact angle under quasi-static conditions by modulating the ratio of a water/glycerol mixture and show the effect of viscosity, especially on the semi-hydrophobic and hydrophobic textured substrates. The reason why the viscous force does not affect the apparent contact angle of the hydrophilic surface is explained based on the relationship between the disjoining pressure and surface chemistry. We further propose a wetting model that can predict the apparent contact angle of a liquid drop on a textured substrate by incorporating a viscous force component in the force balance equation. This model can predict apparent contact angles on semi-hydrophobic and hydrophobic textured surfaces exhibiting Wenzel state more accurately than the Wenzel model, indicating the importance of viscous forces in determining the apparent contact angle. The modified model can be applied for estimating the wetting properties of arbitrary engineered surfaces. PMID:26390958
The development of contact force construction in the dynamic-contact task of cycling [corrected].
Brown, Nicholas A T; Jensen, Jody L
2003-01-01
Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.
Spontaneous Spreading of a Droplet: The Role of Solid Continuity and Advancing Contact Angle.
Jiang, Youhua; Sun, Yujin; Drelich, Jaroslaw W; Choi, Chang-Hwan
2018-05-01
Spontaneous spreading of a droplet on a solid surface is poorly understood from a macroscopic level down to a molecular level. Here, we investigate the effect of surface topography and wettability on spontaneous spreading of a water droplet. Spreading force is measured for a suspended droplet that minimizes interference of kinetic energy in the spontaneous spreading during its contact with solid surfaces of discontinuous (pillar) and continuous (pore) patterns with various shapes and dimensions. Results show that a droplet cannot spread spontaneously on pillared surfaces regardless of their shapes or dimensions because of the solid discontinuity. On the contrary, a droplet on pored surfaces can undergo spontaneous spreading whose force increases with a decrease in the advancing contact angle. Theoretical models based on both the system free energy and capillary force along the contact line validate the direct and universal dependency of the spontaneous spreading force on the advancing contact angle.
Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.
Asay, David B; Kim, Seong H
2007-11-20
The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.
Tunneling mechanism and contact mechanics of colloidal nanoparticle assemblies.
Biaye, Moussa; Zbydniewska, Ewa; Mélin, Thierry; Deresmes, Dominique; Copie, Guillaume; Cleri, Fabrizio; Sangeetha, Neralagatta; Decorde, Nicolas; Viallet, Benoit; Grisolia, Jérémie; Ressier, Laurence; Diesinger, Heinrich
2016-11-25
Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current-force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current-voltage behavior is force-dependent. Secondly, current-force spectroscopy in the ohmic range below the transition voltage is performed. The current-force behavior of the AFM probe in contact with a nanoparticle multilayer is associated with the spread of force and current within the nanoparticle lattice and at the level of adjacent particles by detailed contact mechanics treatment. The result is twofold: concerning the architecture of sensors, this work is a sample case of contact electromechanics at scales ranging from the device scale down to the individual ligand molecule. Regarding transport across the molecule, the vacuum tunneling mechanism is favored over the conduction by coherent molecular states, which is a decision-making aid for the choice of ligand in applications.
Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1972-01-01
Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.
Lerner, Zachary F; Gadomski, Benjamin C; Ipson, Allison K; Haussler, Kevin K; Puttlitz, Christian M; Browning, Raymond C
2015-08-01
Sheep are a predominant animal model used to study a variety of orthopedic conditions. Understanding and controlling the in-vivo loading environment in the sheep hind limb is often necessary for investigations relating to bone and joint mechanics. The purpose of this study was to develop a musculoskeletal model of an adult sheep hind limb and investigate the effects of treadmill walking speed on muscle and joint contact forces. We constructed the skeletal geometry of the model from computed topography images. Dual-energy x-ray absorptiometry was utilized to establish the inertial properties of each model segment. Detailed dissection and tendon excursion experiments established the requisite muscle lines of actions. We used OpenSim and experimentally-collected marker trajectories and ground reaction forces to quantify muscle and joint contact forces during treadmill walking at 0.25 m• s(-1) and 0.75 m• s(-1) . Peak compressive and anterior-posterior tibiofemoral contact forces were 20% (0.38 BW, p = 0.008) and 37% (0.17 BW, p = 0.040) larger, respectively, at the moderate gait speed relative to the slower speed. Medial-lateral tibiofemoral contact forces were not significantly different. Adjusting treadmill speed appears to be a viable method to modulate compressive and anterior-posterior tibiofemoral contact forces in the sheep hind limb. The musculoskeletal model is freely-available at www.SimTK.org. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Peng, Yinghu; Zhang, Zhifeng; Gao, Yongchang; Chen, Zhenxian; Xin, Hua; Zhang, Qida; Fan, Xunjian; Jin, Zhongmin
2018-02-01
Ground reaction forces and moments (GRFs and GRMs) measured from force plates in a gait laboratory are usually used as the input conditions to predict the knee joint forces and moments via musculoskeletal (MSK) multibody dynamics (MBD) model. However, the measurements of the GRFs and GRMs data rely on force plates and sometimes are limited by the difficulty in some patient's gait patterns (e.g. treadmill gait). In addition, the force plate calibration error may influence the prediction accuracy of the MSK model. In this study, a prediction method of the GRFs and GRMs based on elastic contact element was integrated into a subject-specific MSK MBD modelling framework of total knee arthroplasty (TKA), and the GRFs and GRMs and knee contact forces (KCFs) during walking were predicted simultaneously with reasonable accuracy. The ground reaction forces and moments were predicted with an average root mean square errors (RMSEs) of 0.021 body weight (BW), 0.014 BW and 0.089 BW in the antero-posterior, medio-lateral and vertical directions and 0.005 BW•body height (BH), 0.011 BW•BH, 0.004 BW•BH in the sagittal, frontal and transverse planes, respectively. Meanwhile, the medial, lateral and total tibiofemoral (TF) contact forces were predicted by the developed MSK model with RMSEs of 0.025-0.032 BW, 0.018-0.022 BW, and 0.089-0.132 BW, respectively. The accuracy of the predicted medial TF contact force was improved by 12% using the present method. The proposed method can extend the application of the MSK model of TKA and is valuable for understanding the in vivo knee biomechanics and tribological conditions without the force plate data. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger
2016-11-01
All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and gas influx due to gas oversaturation in the aqueous medium.
Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergincan, O., E-mail: orcunergincan@gmail.com; Palasantzas, G.; Kooi, B. J.
2014-02-15
The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.
Kang, K-T.; Koh, Y-G.; Jung, M.; Nam, J-H.; Son, J.; Lee, Y.H.
2017-01-01
Objectives The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. Methods A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered. Results Comparison of predicted passive flexion, posterior drawer kinematics and muscle activation with experimental measurements showed good agreement. Forces of the posterolateral corner structure, and TF and PF contact forces increased with PCL deficiency under gait- and squat-loading conditions. The rate of increase in PF contact force was the greatest during the squat-loading condition. The TF contact forces increased on both medial and lateral compartments during gait-loading conditions. However, during the squat-loading condition, the medial TF contact force tended to increase, while the lateral TF contact forces decreased. The posterolateral corner structure, which showed the greatest increase in force with deficiency of PCL under both gait- and squat-loading conditions, was the popliteus tendon (PT). Conclusion PCL deficiency is a factor affecting the variability of force on the PT in dynamic-loading conditions, and it could lead to degeneration of the PF joint. Cite this article: K-T. Kang, Y-G. Koh, M. Jung, J-H. Nam, J. Son, Y.H. Lee, S-J. Kim, S-H. Kim. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: A computational knee model. Bone Joint Res 2017;6:31–42. DOI: 10.1302/2046-3758.61.BJR-2016-0184.R1. PMID:28077395
Kamo, Mifuyu
2002-03-01
To elucidate the strategy of the activity of motor units (MUs) to maintain a constant-force isometric contraction, I examined the behavior of MUs in knee extensor muscles [(vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF)] during a sustained contraction at 5% of maximal voluntary contraction for 5 min. In all cases, the spike interval exhibited an elongating trend, and two discharge patterns were observed, continuous discharge and decruitment. In continuous-discharge MUs, the trend slope was steep immediately after the onset of constant force (steep phase), and then became gentle (gentle phase). Decruitments were observed frequently during each phase, and additional MU recruitment was observed throughout the contraction. The mean value of recruitment threshold force did not differ among the extensors. The mean spike interval at the onset of constant-force isometric contractions was shorter in RF than in VL. However, there were no differences in the duration and extent of the elongating trend, decruitment time and recruitment time among the extensors. The electromyogram of the antagonist biceps femoris muscle revealed no compensatory change for extensor activity. These results indicated that at a low force level, the strategy employed by the central nervous system to maintain constant force appears to involve cooperation among elongating trends in the spike interval, decruitment following elongation, and additional MU recruitment in synergistic muscles.
Walking patterns and hip contact forces in patients with hip dysplasia.
Skalshøi, Ole; Iversen, Christian Hauskov; Nielsen, Dennis Brandborg; Jacobsen, Julie; Mechlenburg, Inger; Søballe, Kjeld; Sørensen, Henrik
2015-10-01
Several studies have investigated walking characteristics in hip dysplasia patients, but so far none have described all hip rotational degrees of freedom during the whole gait cycle. This descriptive study reports 3D joint angles and torques, and furthermore extends previous studies with muscle and joint contact forces in 32 hip dysplasia patients and 32 matching controls. 3D motion capture data from walking and standing trials were analysed. Hip, knee, ankle and pelvis angles were calculated with inverse kinematics for both standing and walking trials. Hip, knee and ankle torques were calculated with inverse dynamics, while hip muscle and joint contact forces were calculated with static optimisation for the walking trials. No differences were found between the two groups while standing. While walking, patients showed decreased hip extension, increased ankle pronation and increased hip abduction and external rotation torques. Furthermore, hip muscle forces were generally lower and shifted to more posteriorly situated muscles, while the hip joint contact force was lower and directed more superiorly. During walking, patients showed lower and more superiorly directed hip joint contact force, which might alleviate pain from an antero-superiorly degenerated joint. Copyright © 2015 Elsevier B.V. All rights reserved.
Vorticity dipoles and a theoretical model of a finite force at the moving contact line singularity
NASA Astrophysics Data System (ADS)
Zhang, Peter; Devoria, Adam; Mohseni, Kamran
2017-11-01
In the well known works of Moffatt (1964) and Huh & Scriven (1971), an infinite force was reported at the moving contact line (MCL) and attributed to a non-integrable stress along the fluid-solid boundary. In our recent investigation of the boundary driven wedge, a model of the MCL, we find that the classical solution theoretically predicts a finite force at the contact line if the forces applied by the two boundaries that make up the corner are taken into consideration. Mathematically, this force can be obtained by the complex contour integral of the holomorphic vorticity-pressure function given by G = μω + ip . Alternatively, this force can also be found using a carefully defined real integral that incorporates the two boundaries. Motivated by this discovery, we have found that the rate of change in circulation, viscous energy dissipation, and viscous energy flux is also finite per unit contact line length. The analysis presented demonstrates that despite a singular stress and a relatively simple geometry, the no-slip semi-infinite wedge is capable of capturing some physical quantities of interest. Furthermore, this result provides a foundation for other challenging topics such as dynamic contact angle.
MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement
Sheng, Jun; Desai, Jaydev P.
2016-01-01
Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation. PMID:28190945
Transmission of vibration through glove materials: effects of contact force.
Md Rezali, Khairil Anas; Griffin, Michael J
2018-04-26
This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5-300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force. Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.
The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.
Worthington, Peter; King, Mark; Ranson, Craig
2013-01-01
High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; ...
2017-02-21
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A
2011-04-27
A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object's rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object's boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects' reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.
Oliver, W.C.; Blau, P.J.
1994-11-01
A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.
Oliver, Warren C.; Blau, Peter J.
1994-01-01
A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Hu, Yan
2016-11-01
The hardware-in-the-loop (HIL) contact simulation for flying objects in space is challenging due to the divergence caused by the time delay. In this study, a divergence compensation approach is proposed for the stiffness-varying discrete contact. The dynamic response delay of the motion simulator and the force measurement delay are considered. For the force measurement delay, a phase lead based force compensation approach is used. For the dynamic response delay of the motion simulator, a response error based force compensation approach is used, where the compensation force is obtained from the real-time identified contact stiffness and real-time measured position response error. The dynamic response model of the motion simulator is not required. The simulations and experiments show that the simulation divergence can be compensated effectively and satisfactorily by using the proposed approach.
Gender differences in patellofemoral load during the epee fencing lunge.
Sinclair, J; Bottoms, L
2015-01-01
Clinical analyses have shown that injuries and pain linked specifically to fencing training/competition were prevalent in 92.8% of fencers. Patellofemoral pain is the most common chronic injury in athletic populations and females are considered to be more susceptible to this pathology. This study aimed to examine gender differences in patellofemoral contact forces during the fencing lunge. Patellofemoral contact forces were obtained from eight male and eight female club level epee fencers using an eight-camera 3D motion capture system and force platform data as they completed simulated lunges. Independent t-tests were performed on the data to determine whether gender differences in patellofemoral contact forces were present. The results show that females were associated with significantly greater patellofemoral contact force parameters in comparison with males. This suggests that female fencers may be at greater risk from patellofemoral pathology as a function of fencing training/competition.
Practical Considerations for Using Constant Force Springs in Space-Based Mechanisms
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Fisher, Charles D.; Gallon, John C.
2013-01-01
Mechanical springs are a common element in mechanism from all walks of life; cars, watches, appliances, and many others. These springs generally exhibit a linear relationship between force and deflection. In small mechanisms, deflections are small so the variation in spring force between one position and another are generally small and do not influence the design or functionality of the device. However, as the spacecraft industry drives towards larger, deployable satellites, the distances a spring or springs must function over can become considerable so much so that the structural integrity of the device may be impacted. As such, an increasingly common mechanism element is the constant force spring- one that provides a constant force regardless of deflection. These elements are commonly in the conceptual design phase to deal with system-level large deflections, but in the detailed design or integration test phase they can pose significant implementation issues. This article addresses some of the detailed issues in order for these constant force springs to be properly designed into space systems.
Saxby, David John; Bryant, Adam L; Van Ginckel, Ans; Wang, Yuanyuan; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2018-06-07
External loading of osteoarthritic and healthy knees correlates with current and future osteochondral tissue state. These relationships have not been examined following anterior cruciate ligament reconstruction. We hypothesised greater magnitude tibiofemoral contact forces were related to increased prevalence of osteochondral pathologies, and these relationships were exacerbated by concomitant meniscal injury. This was a cross-sectional study of 100 individuals (29.7 ± 6.5 years, 78.1 ± 14.4 kg) examined 2-3 years following hamstring tendon anterior cruciate ligament reconstruction. Thirty-eight participants had concurrent meniscal pathology (30.6 ± 6.6 years, 83.3 ± 14.3 kg), which included treated and untreated meniscal injury, and 62 participants (29.8 ± 6.4 years, 74.9 ± 13.3 kg) were free of meniscal pathology. Magnetic resonance imaging of reconstructed knees was used to assess prevalence of tibiofemoral osteochondral pathologies (i.e., cartilage defects and bone marrow lesions). A calibrated electromyogram-driven neuromusculoskeletal model was used to predict medial and lateral tibiofemoral compartment contact forces from gait analysis data. Relationships between contact forces and osteochondral pathology prevalence were assessed using logistic regression models. In patients with reconstructed knees free from meniscal pathology, greater medial contact forces were related to reduced prevalence of medial cartilage defects (odds ratio (OR) = 0.7, Wald χ 2 (2) = 7.9, 95% confidence interval (CI) = 0.50-95, p = 0.02) and medial bone marrow lesions (OR = 0.8, Wald χ 2 (2) = 4.2, 95% CI = 0.7-0.99, p = 0.04). No significant relationships were found in lateral compartments. In reconstructed knees with concurrent meniscal pathology, no relationships were found between contact forces and osteochondral pathologies. In patients with reconstructed knees free from meniscal pathology, increased contact forces were associated with fewer cartilage defects and bone marrow lesions in medial, but not, lateral tibiofemoral compartments. No significant relationships were found between contact forces and osteochondral pathologies in reconstructed knees with meniscal pathology for any tibiofemoral compartment. Future studies should focus on determining longitudinal effects of contact forces and changes in osteochondral pathologies. IV.
Drop-Off Detection with the Long Cane: Effects of Different Cane Techniques on Performance
ERIC Educational Resources Information Center
Kim, Dae Shik; Emerson, Robert Wall; Curtis, Amy
2009-01-01
This study compared the drop-off detection performance with the two-point touch and constant contact cane techniques using a repeated-measures design with a convenience sample of 15 cane users with visual impairments. The constant contact technique was superior to the two-point touch technique in the drop-off detection rate and the 50% detection…
Granular mechanics of normally consolidated fine soils
NASA Astrophysics Data System (ADS)
Yanqui, Calixtro
2017-06-01
In this paper, duality is demonstrated to be one of the inherent properties of granular packings, by mapping the stress-strain curve into the diagram that relates the pore ratio and the localization of the contact point. In this way, it is demonstrated that critical state is not related to the maximum void ratio, but to a unique value related to two different angles of packing, one limiting the domain of the dense state, and other limiting the domain of the loose state. As a consequence, packings can be dilative or contractive, as mutually exclusive states, except by the critical state point, where equations for both granular packings are equally valid. Further analysis shows that stresses, in a dilative packing, are transmitted by chains of contact forces, and, in a contractive packing, by shear forces. So that, stresses, for the first case, depend on the initial void ratio, and, for the second case, are independent. As it is known, normally consolidated and lightly overconsolidated fine soils are in loose state, and, hence, their strength is constant, because it does not depend on their initial void ratio; except at the critical state, for which, the consolidated-drained angle of friction is related to the plasticity index or the liquid limit. In this fashion, experimental results reported by several authors around the world are confronted with the theory, showing a good agreement.
Cervical facet force analysis after disc replacement versus fusion.
Patel, Vikas V; Wuthrich, Zachary R; McGilvray, Kirk C; Lafleur, Matthew C; Lindley, Emily M; Sun, Derrick; Puttlitz, Christian M
2017-05-01
Cervical total disc replacement was developed to preserve motion and reduce adjacent-level degeneration relative to fusion, yet concerns remain that total disc replacement will lead to altered facet joint loading and long-term facet joint arthrosis. This study is intended to evaluate changes in facet contact force, pressure and surface area at the treated and superior adjacent levels before and after discectomy, disc replacement, and fusion. Ten fresh-frozen human cadaveric cervical spines were potted from C2 to C7 with pressure sensors placed into the facet joints of C3-C4 and C4-C5 via slits in the facet capsules. Moments were applied to the specimens to produce axial rotation, lateral bending and extension. Facet contact force and pressure were measured at both levels for intact, discectomy at C4-C5, disc replacement with ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5, and anterior discectomy and fusion with Cervical Spine Locking Plate (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5. Facet contact area was calculated from the force and pressure measurements. An analysis of variance was used to determine significant differences with P-values <0.05 indicating significance. Facet contact force was elevated at the treated level under extension following both discectomy and disc replacement, while facet contact pressure and area were relatively unchanged. Facet contact force and area were decreased at the treated level following fusion for all three loading conditions. Total disc replacement preserved facet contact force for all scenarios except extension at the treated level, highlighting the importance of the anterior disco-ligamentous complex. This could promote treated-level facet joint disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less
Jamming criticality revealed by removing localized buckling excitations.
Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, Francesco
2015-03-27
Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.
Meniscus formation in a capillary and the role of contact line friction.
Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G
2014-01-28
We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.
Bilateral contact ground reaction forces and contact times during plyometric drop jumping.
Ball, Nick B; Stock, Christopher G; Scurr, Joanna C
2010-10-01
Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.
Marouane, H; Shirazi-Adl, A; Adouni, M
2016-01-25
Evaluation of contact forces-centers of the tibiofemoral joint in gait has crucial biomechanical and pathological consequences. It involves however difficulties and limitations in in vitro cadaver and in vivo imaging studies. The goal is to estimate total contact forces (CF) and location of contact centers (CC) on the medial and lateral plateaus using results computed by a validated finite element model simulating the stance phase of gait for normal as well as osteoarthritis, varus-valgus and posterior tibial slope altered subjects. Using foregoing contact results, six methods commonly used in the literature are also applied to estimate and compare locations of CC at 6 periods of stance phase (0%, 5%, 25%, 50%, 75% and 100%). TF joint contact forces are greater on the lateral plateau very early in stance and on the medial plateau thereafter during 25-100% stance periods. Large excursions in the location of CC (>17mm), especially on the medial plateau in the mediolateral direction, are computed. Various reported models estimate quite different CCs with much greater variations (~15mm) in the mediolateral direction on both plateaus. Compared to our accurately computed CCs taken as the gold standard, the centroid of contact area algorithm yielded least differences (except in the mediolateral direction on the medial plateau at ~5mm) whereas the contact point and weighted center of proximity algorithms resulted overall in greatest differences. Large movements in the location of CC should be considered when attempting to estimate TF compartmental contact forces in gait. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walter, Jonathan P; Pandy, Marcus G
2017-10-01
The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
NASA Astrophysics Data System (ADS)
Krause, Marina; te Riet, Joost; Wolf, Katarina
2013-12-01
The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
Zeighami, A; Aissaoui, R; Dumas, R
2018-03-01
Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral contact forces from the musculoskeletal (MSK) models. The objective of the present study was to develop a method to incorporate the subject-specific CP trajectories into the MSK model. Ten healthy subjects performed 45 s treadmill gait trials. The subject-specific CP trajectories were constructed on the tibia and femur as a function of extension-flexion using low-dose bi-plane X-ray images during a quasi-static squat. At each extension-flexion position, the tibia and femur CPs were superimposed in the three directions on the medial side, and in the anterior-posterior and proximal-distal directions on the lateral side to form the five kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints directly yielded the medial/lateral contact forces. The results from the personalized CP trajectory model were compared against the linear CP trajectory and sphere-on-plane CP trajectory models which were adapted from the commonly used MSK models. Changing the CP trajectory had a remarkable impact on the knee kinematics and changed the medial and lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction and magnitude of the medial/lateral contact force were highly variable among the subjects and the medial-lateral shift of the CPs alone could not determine the increase/decrease pattern of the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories derived from a variety of joint models and those experimentally measured from the 3D imaging techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
The effects of rigid motions on elastic network model force constants.
Lezon, Timothy R
2012-04-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Toro, Eleuterio F.
2012-10-01
Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.
Contact force structure and force chains in 3D sheared granular systems
NASA Astrophysics Data System (ADS)
Mair, Karen; Jettestuen, Espen; Abe, Steffen
2010-05-01
Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
Transient adhesion in a non-fully detached contact.
Liu, Zheyu; Lu, Hongyu; Zheng, Yelong; Tao, Dashuai; Meng, Yonggang; Tian, Yu
2018-04-18
Continuous approaching and detaching displacement usually occurs in an adhesion test. Here, we found a transient adhesion force at the end of a non-fully detached contact. This force occurred when the nominal detaching displacement was less than the traditional quasi-static theory predicted zero force point. The transient adhesion force was ascribed to interfacial adhesion hysteresis, which was caused by the cracking process of the contact and the deformation competition between the sphere and supporting spring. Results indicated that the testing of adhesion can be significantly affected by different combinations of stiffnesses of the contact objects and the supporting spring cantilever. This combination should be carefully designed in an adhesion test. All these results enabled increased understanding of the nature of adhesion and can guide the design of adhesive actuators.
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Molecular origin of contact line stick-slip motion during droplet evaporation
Wang, FengChao; Wu, HengAn
2015-01-01
Understanding and controlling the motion of the contact line is of critical importance for surface science studies as well as many industrial engineering applications. In this work, we elucidate the molecular origin of contact line stick-slip motion during the evaporation of liquid droplets on flexible nano-pillared surfaces using molecular dynamics simulations. We demonstrate that the evaporation-induced stick-slip motion of the contact line is a consequence of competition between pinning and depinning forces. Furthermore, the tangential force exerted by the pillared substrate on the contact line was observed to have a sawtooth-like oscillation. Our analysis also establishes that variations in the pinning force are accomplished through the self-adaptation of solid-liquid intermolecular distances, especially for liquid molecules sitting directly on top of the solid pillar. Consistent with our theoretical analysis, molecular dynamics simulations also show that the maximum pinning force is quantitatively related to both solid-liquid adhesion strength and liquid-vapor surface tension. These observations provide a fundamental understanding of contact line stick-slip motion on pillared substrates and also give insight into the microscopic interpretations of contact angle hysteresis, wetting transitions and dynamic spreading. PMID:26628084
The role of impact forces and foot pronation: a new paradigm.
Nigg, B M
2001-01-01
This article discusses the possible association between impact forces and foot pronation and the development of running-related injuries, and proposes a new paradigm for impact forces and foot pronation. The article is based on a critical analysis of the literature on heel-toe running addressing kinematics, kinetics, resultant joint movements and forces, muscle activity, subject and material characteristics, epidemiology, and biologic reactions. However, this paper is not a review of the literature but rather an attempt to replace the established concepts of impact forces and movement control with a new paradigm that would allow explaining some of the current contradictions in this topic of research. The analysis included all papers published on this topic over the last 25 years. For the last few years, it concentrated on papers expressing critical concerns on the established concepts of impact and movement control. An attempt was made to find indications in the various publications to support or reject the current concept of impact forces and movement control. Furthermore, the results of the available studies were searched for indications expanding the current understanding of impact forces and movement control in running. Data were synthesized revealing contradictions in the experimental results and the established concepts. Based on the contradictions in the existing research publications, a new paradigm was proposed. Theoretical, experimental, and epidemiological evidence on impact forces showed that one cannot conclude that impact forces are important factors in the development of chronic and/or acute running-related injuries. A new paradigm for impact forces during running proposes that impact forces are input signals that produce muscle tuning shortly before the next contact with the ground to minimize soft tissue vibration and/or reduce joint and tendon loading. Muscle tuning might affect fatigue, comfort, work, and performance. Experimental evidence suggests that the concept of "aligning the skeleton" with shoes, inserts, and orthotics should be reconsidered. They produce only small, not systematic. and subject-specific changes of foot and leg movement. A new paradigm for movement control for the lower extremities proposes that forces acting on the foot during the stance phase act as an input signal producing a muscle reaction. The cost function used in this adaptation process is to maintain a preferred joint movement path for a given movement task. If an intervention counteracts the preferred movement path, muscle activity must be increased. An optimal shoe, insert, or orthotic reduces muscle activity. Thus, shoes, inserts, and orthotics affect general muscle activity and, therefore, fatigue, comfort, work, and performance. The two proposed paradigms suggest that the locomotor system use a similar strategy for "impact" and "movement control." In both cases the locomotor system keeps the general kinematic and kinetic situations similar for a given task. The proposed muscle tuning reaction to impact loading affects the muscle activation before ground contact. The proposed muscle adaptation to provide a constant joint movement pattern affects the muscle activation during ground contact. However, further experimental and theoretical studies are needed to support or reject the proposed paradigms.
Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P
2017-01-27
This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m -1 . To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.
NASA Astrophysics Data System (ADS)
Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.
2017-01-01
This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.
Track dynamic behavior at rail welds at high speed
NASA Astrophysics Data System (ADS)
Xiao, Guangwen; Xiao, Xinbiao; Guo, Jun; Wen, Zefeng; Jin, Xuesong
2010-06-01
As a vehicle passing through a track with different weld irregularities, the dynamic performance of track components is investigated in detail by using a coupled vehicle-track model. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom, and a Timoshenko beam is used to model the rails which are discretely supported by sleepers. In the track model, the sleepers are modeled as rigid bodies accounting for their vertical, lateral and rolling motions and assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the study of the coupled vehicle and track dynamics, the Hertizian contact theory and the theory proposed by Shen-Hedrick-Elkins are, respectively, used to calculate normal and creep forces between the wheel and the rails. In the calculation of the normal forces, the coefficient of the normal contact stiffness is determined by transient contact condition of the wheel and rail surface. In the calculation of the creepages, the lateral, roll-over motions of the rail and the fact that the relative velocity between the wheel and rail in their common normal direction is equal to zero are simultaneously taken into account. The motion equations of the vehicle and track are solved by means of an explicit integration method, in which the rail weld irregularities are modeled as local track vertical deviations described by some ideal cosine functions. The effects of the train speed, the axle load, the wavelength and depth of the irregularities, and the weld center position in a sleeper span on the wheel-rail impact loading are analyzed. The numerical results obtained are greatly useful in the tolerance design of welded rail profile irregularity caused by hand-grinding after rail welding and track maintenances.
Code of Federal Regulations, 2013 CFR
2013-01-01
... control over an aircraft, by force or violence or threat of force or violence, or by any other form of... piracy. Contact means a person not on the covered flight or an entity that should be contacted in case of an aviation disaster. The contact need not have any particular relationship to a passenger. Covered...
Code of Federal Regulations, 2011 CFR
2011-01-01
... control over an aircraft, by force or violence or threat of force or violence, or by any other form of... piracy. Contact means a person not on the covered flight or an entity that should be contacted in case of an aviation disaster. The contact need not have any particular relationship to a passenger. Covered...
Code of Federal Regulations, 2012 CFR
2012-01-01
... control over an aircraft, by force or violence or threat of force or violence, or by any other form of... piracy. Contact means a person not on the covered flight or an entity that should be contacted in case of an aviation disaster. The contact need not have any particular relationship to a passenger. Covered...
Code of Federal Regulations, 2010 CFR
2010-01-01
... control over an aircraft, by force or violence or threat of force or violence, or by any other form of... piracy. Contact means a person not on the covered flight or an entity that should be contacted in case of an aviation disaster. The contact need not have any particular relationship to a passenger. Covered...
Code of Federal Regulations, 2014 CFR
2014-01-01
... control over an aircraft, by force or violence or threat of force or violence, or by any other form of... piracy. Contact means a person not on the covered flight or an entity that should be contacted in case of an aviation disaster. The contact need not have any particular relationship to a passenger. Covered...
NASA Astrophysics Data System (ADS)
Sokoloff, J. B.
2014-09-01
One role of a lubricant is to prevent wear of two surfaces in contact, which is likely to be the result of adhesive forces that cause a pair of asperities belonging to two surfaces in contact to stick together. Such adhesive sticking of asperities can occur both for sliding surfaces and for surfaces which are pressed together and then pulled apart. The latter situation, for example, is important for contact lenses, as prevention of sticking reduces possible damage to the cornea as the lenses are inserted and removed from the eye. Contact lenses are made from both neutral and polyelectrolyte hydrogels. It is demonstrated here that sticking of neutral hydrogels can be prevented by repulsive forces between asperities in contact, resulting from polymers attached to the gel surface but not linked with each other. For polyelectrolyte hydrogels, it is shown that osmotic pressure due to counterions, held at the interface between asperities in contact by the electrostatic attraction between the ions and the fixed charges in the gel, can provide a sufficiently strong repulsive force to prevent adhesive sticking of small-length-scale asperities.
Patello-femoral and tibio-femoral contact forces during kicking type of activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engin, A.E.; Tumer, S.T.
1996-12-31
In this paper patello-femoral and tibia-femoral contact forces during kicking type of activity is presented by means of a dynamic model of the knee joint which includes tibio-femoral and patello-femoral articulations, and the major ligaments of the joint. The model shows that the patella can be subjected to very large transient patello-femoral contact forces during a strenuous lower limb activity such as kicking even under conditions of small knee-flexion angles.
NASA Astrophysics Data System (ADS)
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing
2018-02-01
The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.
Introduction to Pulmonary Fibrosis
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
On the properties of a bundle of flexible actin filaments in an optical trap
NASA Astrophysics Data System (ADS)
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-01
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs H = N f k B T ln ( ρ 1 / ρ 1 c) / d , independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝ (" separators=" < L >O . T .) 2 and the single filament buckling force ∝ (" separators=" < L >O . T .) - 2 .
Direct measurements of the interactions between clathrate hydrate particles and water droplets.
Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A
2015-08-14
Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.
Manning, William A; Ghosh, Kanishka; Blain, Alasdair; Longstaff, Lee; Deehan, David John
2017-06-01
Accurate soft tissue balance must be achieved to improve functional outcome after total knee arthroplasty (TKA). Sensor-integrated tibial trials have been introduced that allow real-time measurement of tibiofemoral kinematics during TKA. This study examined the interplay between tibiofemoral force and laxity, under defined intraoperative conditions, so as to quantify the kinematic behaviour of the CR femoral single-radius knee. TKA was undertaken in eight loaded cadaveric specimens. Computer navigation in combination with sensor data defined laxity and tibiofemoral contact force, respectively, during manual laxity testing. Fixed-effect linear modelling allowed quantification of the effect for flexion angle, direction of movement and TKA implantation upon the knee. An inverse relationship between laxity and contact force was demonstrated. With flexion, laxity increased as contact force decreased under manual stress. Change in laxity was significant beyond 30° for coronal plane laxity and beyond 60° for rotatory laxity (p < 0.01). Rotational stress in mid-flexion demonstrated the greatest mismatch in inter-compartmental forces. Contact point position over the tibial sensor demonstrated paradoxical roll-forward with knee flexion. Traditional balancing techniques may not reliably equate to uniform laxity or contact forces across the tibiofemoral joint through a range of flexion and argue for the role of per-operative sensor use to aid final balancing of the knee.
Graphene nanoribbons on gold: understanding superlubricity and edge effects
NASA Astrophysics Data System (ADS)
Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.
2017-12-01
We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.
Experimental study and FEM simulation of the simple shear test of cylindrical rods
NASA Astrophysics Data System (ADS)
Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.
Effect of reduced gravity on the preferred walk-run transition speed
NASA Technical Reports Server (NTRS)
Kram, R.; Domingo, A.; Ferris, D. P.
1997-01-01
We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.
Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K
2012-06-15
A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.
NASA Astrophysics Data System (ADS)
Martin-Olmos, Cristina; Stieg, Adam Z.; Gimzewski, James K.
2012-06-01
A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.
The Elegance of Disordered Granular Packings: A Validation of Edwards' Hypothesis
NASA Technical Reports Server (NTRS)
Metzger, Philip T.; Donahue, Carly M.
2004-01-01
We have found a way to analyze Edwards' density of states for static granular packings in the special case of round, rigid, frictionless grains assuming constant coordination number. It obtains the most entropic density of single grain states, which predicts several observables including the distribution of contact forces. We compare these results against empirical data obtained in dynamic simulations of granular packings. The agreement between theory and the empirics is quite good, helping validate the use of statistical mechanics methods in granular physics. The differences between theory and empirics are mainly due to the variable coordination number, and when the empirical data are sorted by that number we obtain several insights that suggest an underlying elegance in the density of states
Settlement statistics of a granular layer composed of polyhedral particles
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Saussine, Gilles; Breul, Pierre; Radjai, Farhang
2013-06-01
We use 3D contact dynamics simulations to investigate the mechanical equilibrium and settlement of a granular material composed of irregular polyhedral particles confined between two horizontal frictional planes. We show that, as a consequence of mobilized wall-particle friction force at the top and bottom boundaries, the transient deformation induced by a constant vertical load increment is controlled by the aspect ratio (thickness over width) of the packing as well as the stress ratio. The transient deformation declines considerably for increasingly smaller aspect ratios and grows with the stress ratio. From the simulation data for a large number of independent configurations, we find that sample-to-sample fluctuations of the deformation have a broad distribution and they scale with the average deformation.
Pairwise-additive hydrophobic effect for alkanes in water
Wu, Jianzhong; Prausnitz, John M.
2008-01-01
Pairwise additivity of the hydrophobic effect is indicated by reliable experimental Henry's constants for a large number of linear and branched low-molecular-weight alkanes in water. Pairwise additivity suggests that the hydrophobic effect is primarily a local phenomenon and that the hydrophobic interaction may be represented by a semiempirical force field. By representing the hydrophobic potential between two methane molecules as a linear function of the overlap volume of the hydration layers, we find that the contact value of the hydrophobic potential (−0.72 kcal/mol) is smaller than that from quantum mechanics simulations (−2.8 kcal/mol) but is close to that from classical molecular dynamics (−0.5∼−0.9 kcal/mol). PMID:18599448
Tactual discrimination of softness.
Srinivasan, M A; LaMotte, R H
1995-01-01
1. We investigated the ability of humans to tactually discriminate the softness of objects, using novel elastic objects with deformable and rigid surfaces. For objects with deformable surfaces, we cast transparent rubber specimens with variable compliances. For objects with rigid surfaces ("spring cells") we fabricated telescoping hollow cylinders with the inner cylinder supported by several springs. To measure the human discriminability and to isolate the associated information-processing mechanisms, we performed psychophysical experiments under three conditions: 1) active touch with the normal finger, where both tactile and kinesthetic information was available to the subject: 2) active touch with local cutaneous anesthesia, so that only kinesthetic information was available; and 3) passive touch, where a computer-controlled mechanical stimulator brought down the compliant specimens onto the passive fingerpad of the subject, who therefore had only tactile information. 2. We first characterized the mechanical behavior of the human fingerpad and the test objects by determining the relationship between the depth and force of indentation during constant-velocity indentations by a rigid probe. The fingerpad exhibited a pronounced nonlinear behavior in the indentation depth versus force trace such that compliance, as indicated by the local slope of the trace, decreased with increases in indentation depth. The traces for all the rubber specimens were approximately linear, indicating a constant but distinct value of compliance for each specimen. The fingerpad was more compliant than each of the rubber specimens. 3. All the human subjects showed excellent softness discriminability in ranking the rubber specimens by active touch, and the subjective perception of softness correlated one-to-one with the objectively measured compliance. The ability of subjects to discriminate the compliance of spring cells was consistently poorer compared with that of the rubber specimens. 4. For pairwise discrimination of a selected set of rubber specimens, kinesthetic information alone was insufficient. However, tactile information alone was sufficient, even when the velocities and forces of specimen application were randomized. In contrast, for discriminating pairs of spring cells, tactile information alone was insufficient, and both tactile and kinesthetic information were found to be necessary. 5. The differences in the sufficiency of tactile information for the discrimination of the two types of objects can be explained by the mechanics of contact of the fingerpad and its effect on tactile information. For objects with deformable surfaces, the spatial pressure distribution within the contact region depends on both the force applied and the specimen compliance.(ABSTRACT TRUNCATED AT 250 WORDS)
Acute Respiratory Distress Syndrome (ARDS)
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
Measuring tactile cues at the fingerpad for object compliances harder and softer than the skin
Hauser, Steven C.; Gerling, Gregory J.
2016-01-01
Distinguishing an object’s compliance, into percepts of “softness” and “hardness,” is crucial to our ability to grasp and manipulate it. Biomechanical cues at the skin’s surface such as contact area and force rate have been thought to help encode compliance. However, no one has directly measured contact area with compliant materials, and few studies have considered compliances softer than the fingerpad. Herein, we developed a novel method to precisely measure the area in contact between compliant stimuli and the fingerpad, at given levels of force and displacement. To determine the method’s robustness, we conducted psychophysical and biomechanical experiments with human subjects. The results indicate that cues including contact area at stimulus peak force of 3 Newtons, force rate over stimulus movement and at peak force, displacement and/or time to reach peak force may help in discriminating compliances while the directional spread of contact area is less important. Between softer and harder compliances, some cues were slightly more evident, though not yet definitively. Based upon the method’s utility, the next step is to conduct broader experiments to distill the mixture of cues that encode compliance. The importance of such work lies in building haptic displays, for example, to render virtual tissues. PMID:27331072
Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D
2014-08-01
Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.
2017-07-01
This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.
Saxby, David John; Bryant, Adam L; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Bennell, Kim L; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M; Vertullo, Christopher J; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2017-08-01
Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Cross-sectional study; Level of evidence, 3. Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0.62, P = .000; lateral: R 2 = 0.19, β = 0.46, P = .03) and medial thicknesses ( R 2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes ( R 2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes ( R 2 = 0.41, β = 0.64, P = .001) and thicknesses ( R 2 = 0.20, β = 0.46, P = .04). At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
Saxby, David John; Bryant, Adam L.; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M.; Bennell, Kim L.; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M.; Vertullo, Christopher J.; Feller, Julian A.; Whitehead, Tim; Gallie, Price; Lloyd, David G.
2017-01-01
Background: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0.62, P = .000; lateral: R 2 = 0.19, β = 0.46, P = .03) and medial thicknesses (R 2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R 2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R 2 = 0.41, β = 0.64, P = .001) and thicknesses (R 2 = 0.20, β = 0.46, P = .04). Conclusion: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance. PMID:28894756
New formulation of the discrete element method
NASA Astrophysics Data System (ADS)
Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon
2018-01-01
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
Reliable and accurate extraction of Hamaker constants from surface force measurements.
Miklavcic, S J
2018-08-15
A simple and accurate closed-form expression for the Hamaker constant that best represents experimental surface force data is presented. Numerical comparisons are made with the current standard least squares approach, which falsely assumes error-free separation measurements, and a nonlinear version assuming independent measurements of force and separation are subject to error. The comparisons demonstrate that not only is the proposed formula easily implemented it is also considerably more accurate. This option is appropriate for any value of Hamaker constant, high or low, and certainly for any interacting system exhibiting an inverse square distance dependent van der Waals force. Copyright © 2018 Elsevier Inc. All rights reserved.
A soft-contact model for computing safety margins in human prehension.
Singh, Tarkeshwar; Ambike, Satyajit
2017-10-01
The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.
Deformation of an Elastic Substrate Due to a Resting Sessile Droplet
NASA Astrophysics Data System (ADS)
Bardall, Aaron; Daniels, Karen; Shearer, Michael
2017-11-01
On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates which deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal force. This talk will present a model for the static deformation of the substrate that includes a non-zero tangential contact line force as well as general interfacial energy conditions governing the angle of a two-dimensional droplet. We discuss extensions of this model to non-symmetric droplets and their effect on the static configuration of the droplet/substrate system. NSF #DMS-1517291.
Influence of wheel-rail contact modelling on vehicle dynamic simulation
NASA Astrophysics Data System (ADS)
Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf
2015-08-01
This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.
Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance
NASA Astrophysics Data System (ADS)
Balabajew, Marco; van Engers, Christian D.; Perkin, Susan
2017-12-01
The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.
Internal structure of inertial granular flows.
Azéma, Emilien; Radjaï, Farhang
2014-02-21
We analyze inertial granular flows and show that, for all values of the inertial number I, the effective friction coefficient μ arises from three different parameters pertaining to the contact network and force transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive 3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains declines as a result of the destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond I≃0.1 the force chains break into clusters immersed in a background "soup" of floating particles. We show that this transition coincides with the divergence of the size of fluidized zones characterized from the local environments of floating particles and a slower increase of μ with I.
Internal Structure of Inertial Granular Flows
NASA Astrophysics Data System (ADS)
Azéma, Emilien; Radjaï, Farhang
2014-02-01
We analyze inertial granular flows and show that, for all values of the inertial number I, the effective friction coefficient μ arises from three different parameters pertaining to the contact network and force transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive 3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains declines as a result of the destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond I≃0.1 the force chains break into clusters immersed in a background "soup" of floating particles. We show that this transition coincides with the divergence of the size of fluidized zones characterized from the local environments of floating particles and a slower increase of μ with I.
From tunneling to point contact: Correlation between forces and current
NASA Astrophysics Data System (ADS)
Sun, Yan; Mortensen, Henrik; Schär, Sacha; Lucier, Anne-Sophie; Miyahara, Yoichi; Grütter, Peter; Hofer, Werner
2005-05-01
We used a combined ultrahigh vacuum scanning tunneling and atomic force microscope (STM/AFM) to study W tip-Au(111) sample interactions in the regimes from weak coupling to strong interaction and simultaneously measure current changes from picoamperes to microamperes. Close correlation between conductance and interaction forces in a STM configuration was observed. In particular, the electrical and mechanical points of contact are determined based on the observed barrier collapse and adhesive bond formation, respectively. These points of contact, as defined by force and current measurements, coincide within measurement error. Ab initio calculations of the current as a function of distance in the tunneling regime is in quantitative agreement with experimental results. The obtained results are discussed in the context of dissipation in noncontact AFM as well as electrical contact formation in molecular electronics.
Solid lubrication design methodology
NASA Technical Reports Server (NTRS)
Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.
1984-01-01
A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.
Buchan, Lawrence L; Zhang, Honglin; Konan, Sujith; Heaslip, Ingrid; Ratzlaff, Charles R; Wilson, David R
2016-02-01
Open MRI in functional positions has potential to directly and non-invasively assess cam femoroacetabular impingement (FAI). Our objective was to investigate whether open MRI can depict intrusion of the cam deformity into the intra-articular joint space, and whether intrusion is associated with elevated acetabular contact force. Cadaver hips (9 cam; 3 controls) were positioned in an anterior impingement posture and imaged using open MRI with multi-planar reformatting. The β-angle (describing clearance between the femoral neck and acetabulum) was measured around the entire circumference of the femoral neck. We defined a binary "MRI cam-intrusion sign" (positive if β < 0°). We then instrumented each hip with a piezoresistive sensor and conducted six repeated positioning trials, measuring acetabular contact force (F). We defined a binary "contact-force sign" (positive if F > 20N). Cam hips were more likely than controls to have both a positive MRI cam-intrusion sign (p = 0.0182, Fisher's exact test) and positive contact-force sign (p = 0.0083), which represents direct experimental evidence for cam intrusion. There was also a relationship between the MRI cam-intrusion sign and contact-force sign (p = 0.033), representing a link between imaging and mechanics. Our findings indicate that open MRI has significant potential for in vivo investigation of the cam FAI mechanism. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Marsh, Eric R.; Couey, Jeremiah A.; Knapp, Byron R.; Vallance, R. R.
2005-05-01
Aerostatic spindles are used in precision grinding applications requiring high stiffness and very low error motions (5 to 25 nm). Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring. These challenges are met by incorporating non-contact displacement sensors into an aerostatic spindle that are calibrated to measure grinding forces from rotor motion. Four experiments compare this force-sensing approach to acoustic emission (AE) in detecting workpiece contact, process monitoring with small depths of cut, detecting workpiece defects, and evaluating abrasive wheel wear/loading. Results indicate that force measurements are preferable to acoustic emission in precision grinding since the force sensor offers improved contact sensitivity, higher resolution, and is capable of detecting events occurring within a single revolution of the grinding wheel.
Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Nakahara, Hiroyuki; Iwamoto, Yukihide
2015-08-01
We used a musculoskeletal model validated with in vivo data to evaluate the effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. The maximum quadriceps force and patellofemoral contact force decreased with increasing posterior slope. Anterior sliding of the tibial component and anterior impingement of the anterior aspect of the tibial post were observed with tibial posterior slopes of at least 5° and 10°, respectively. Increased tibial posterior slope contributes to improved exercise efficiency during knee extension, however excessive tibial posterior slope should be avoided to prevent knee instability. Based on our computer simulation we recommend tibial posterior slopes of less than 5° in posterior-stabilized total knee arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.
Contact forces between a particle and a wet wall at both quasi-static and dynamic state
NASA Astrophysics Data System (ADS)
Zhang, Huang; Chen, Sheng; Li, Shuiqing
2017-06-01
The contact regime of particle-wall is investigated by the atomic force microscope (AFM) and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH). Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
NASA Astrophysics Data System (ADS)
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
NASA Astrophysics Data System (ADS)
van Eijck, L.; Merzel, F.; Rols, S.; Ollivier, J.; Forsyth, V. T.; Johnson, M. R.
2011-08-01
Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.
Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.
Jay, Ollie; Havenith, George
2004-03-01
This study investigates the effect of blood flow upon the short-term (<180 s) skin contact cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (P<0.001). However, no effect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.
Constant-Pressure Hydraulic Pump
NASA Technical Reports Server (NTRS)
Galloway, C. W.
1982-01-01
Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.
Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J
2007-06-01
The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p < 0.001 in all cases). For medial to total force ratio, R(2) was 0.69 for all trials together and between 0.54 and 0.90 for each trial separately (p < 0.001 in all cases). When only the stance phase was analyzed, R(2) values were slightly lower. These results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra
NASA Astrophysics Data System (ADS)
Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego
2017-03-01
In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.
NASA Astrophysics Data System (ADS)
Ruiz-Cabello, F. Javier Montes; Maroni, Plinio; Borkovec, Michal
2013-06-01
Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.
Montes Ruiz-Cabello, F Javier; Maroni, Plinio; Borkovec, Michal
2013-06-21
Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G
2016-02-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.
Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.
2016-01-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446
NASA Technical Reports Server (NTRS)
Payne, L. L.
1982-01-01
The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.
Guan, Yanpeng; Wang, Enzhi; Liu, Xiaoli; Wang, Sijing; Luan, Hebing
2017-08-03
We have attempted a multiscale and quantified characterization method of the contact in three-dimensional granular material made of spherical particles, particularly in cemented granular material. Particle contact is defined as a type of surface contact with voids in its surroundings, rather than a point contact. Macro contact is a particle contact set satisfying the restrictive condition of a two-dimensional manifold with a boundary. On the basis of graph theory, two dual geometrical systems are abstracted from the granular pack. The face and the face set, which satisfies the two-dimensional manifold with a boundary in the solid cell system, are extracted to characterize the particle contact and the macro contact, respectively. This characterization method is utilized to improve the post-processing in DEM (Discrete Element Method) from a micro perspective to describe the macro effect of the cemented granular material made of spherical particles. Since the crack has the same shape as its corresponding contact, this method is adopted to characterize the crack and realize its visualization. The integral failure route of the sample can be determined by a graph theory algorithm. The contact force is assigned to the weight value of the face characterizing the particle contact. Since the force vectors can be added, the macro contact force can be solved by adding the weight of its corresponding faces.
Contact law and impact responses of laminated composites
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yang, S. H.
1980-01-01
Static identation tests were performed to determine the law of contact between a steel ball and glass/epoxy and graphite/epoxy laminated composites. For both composites the power law with an index of 1.5 was found to be adequate for the loading curve. Substantial permanent deformations were noted after the unloading. A high order beam finite element was used to compute the dynamic contact force and response of the laminated composite subjected to the impact of an elastic sphere. This program can be used with either the classical Hertzian contact law or the measured contact law. A simple method is introduced for estimating the contact force and contact duration in elastic impacts.
Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres
NASA Technical Reports Server (NTRS)
Dominik, C.; Tielens, A. G. G. M.
1995-01-01
For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.
Contribution of tibiofemoral joint contact to net loads at the knee in gait.
Walter, Jonathan P; Korkmaz, Nuray; Fregly, Benjamin J; Pandy, Marcus G
2015-07-01
Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee-contact kinematics and loads should be included in lower-limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower-limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A novel test rig to investigate under-platform damper dynamics
NASA Astrophysics Data System (ADS)
Botto, Daniele; Umer, Muhammad
2018-02-01
In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the damper. The contact forces on the blade are computed by post processing the measured forces and assuming the static equilibrium of the damper. The damper kinematics is rebuilt by using the relative displacement, measured with a differential laser, between the damper and the blade under-platform. This article describes the main concepts behind this new approach and explains the design and working of this novel test rig. Moreover, the influence of the damper contact forces on the dynamic behavior of the blade is discussed in the result section.
Thiagalingam, Aravinda; D'Avila, Andre; Foley, Lori; Guerrero, J Luis; Lambert, Hendrik; Leo, Giovanni; Ruskin, Jeremy N; Reddy, Vivek Y
2010-07-01
Ablation electrode-tissue contact has been shown to be an important determinant of lesion size and safety during nonirrigated ablation but little data are available during irrigated ablation. We aimed to determine the importance of contact force during irrigated-tip ablation. Freshly excised hearts from 11 male pigs were perfused and superfused using fresh, heparinized, oxygenated swine blood in an ex vivo model. One-minute ablations were placed using one of 3 different power control strategies (impedance control-15 Omega target impedance drop, and 20 W or 30 W fixed power) and 3 different contact forces (2 g, 20 g, and 60 g) to give a grid of 9 ablation groups. The force sensing catheter (Tacticath, Endosense SA) was irrigated at 17 mL/min for all of the ablations. Of a total 101 ablations, no thrombus formation was noted but popping was seen in 17 lesions. The lesion depth and incidence of pops was 5.0 +/- 1.3 mm /0%, 5.0 +/- 1.6 mm /10% and 6.7 +/- 2.5 mm /45% for the 15 Omega, 20 W, and 30 W groups (P < 0.01), respectively, and 4.4 +/- 1.8 mm /3%, 5.8 +/- 1.6 mm /17% and 6.6 +/- 2.0 mm /37% for the 2 g, 20 g, and 60 g groups, respectively (P < 0.01). The impedance drop in the first 5 seconds was significantly correlated to catheter contact force: 9.7 +/- 9.9 Omega, 22.3 +/- 11.0 Omega, and 41.7 +/- 22.1 Omega, respectively, for the 2 g, 20 g, and 60 g groups (Pearson's r = 0.65, P < 0.01). Catheter contact force has an important impact on both ablation lesion size and the incidence of pops.
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking
Lerner, Zachary F.; Browning, Raymond C.
2016-01-01
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.
Lerner, Zachary F; Browning, Raymond C
2016-06-14
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.
Podraza, Jeffery T; White, Scott C
2010-08-01
Investigating landing kinetics and neuromuscular control strategies during rapid deceleration movements is a prerequisite to understanding the non-contact mechanism of ACL injury. The purpose of this study was to quantify the effect of knee flexion angle on ground reaction forces, net knee joint moments, muscle co-contraction and lower extremity muscles during an impact-like, deceleration task. Ground reaction forces and knee joint moments were determined from video and force plate records of 10 healthy male subjects performing rapid deceleration single leg landings from a 10.5 cm height with different degrees of knee flexion at landing. Muscle co-contraction was based on muscle moments calculated from an EMG-to-moment processing model. Ground reaction forces and co-contraction indices decreased while knee extensor moments increased significantly with increased degrees of knee flexion at landing (all p<0.005). Higher ground reaction forces when landing in an extended knee position suggests they are a contributing factor in non-contact ACL injuries. Increased knee extensor moments and less co-contraction with flexed knee landings suggest that quadriceps overload may not be the primary cause of non-contact ACL injuries. The results bring into question the counterbalancing role of the hamstrings during dynamic movements. The soleus may be a valuable synergist stabilizing the tibia against anterior translation at landing. Movement strategies that lessen the propagation of reaction forces up the kinetic chain may help prevent non-contact ACL injuries. The relative interaction of all involved thigh and lower leg muscles, not just the quadriceps and hamstrings should be considered when interpreting non-contact ACL injury mechanisms. Copyright 2010 Elsevier B.V. All rights reserved.
Joint contact loading in forefoot and rearfoot strike patterns during running.
Rooney, Brandon D; Derrick, Timothy R
2013-09-03
Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.
78 FR 61851 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-04
... Comments: 1600 sf.; secured area; visitor's pass and gov't sponsor required; contact Air Force for more...'t sponsor required; contact Air Force for more info. Florida WBPA (9901/72441/99300) 9901 E. Pine..., Reporters Building, 300 7th Street SW., Room 300, Washington, DC 20024, (202) 720-8873; Air Force: Mr...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
.... Military and Host Nation Maritime Security Forces' Exercise Fidelity and Effectiveness, and To Improve... after contact. FOR FURTHER INFORMATION CONTACT: AFRICOM J9--Outreach Directorate, +49 711-729-3260 LtCol... Series Exercises in order to familiarize U.S. forces and Host Nation Maritime forces with public and...
Vacuum-Assisted, Constant-Force Exercise Device
NASA Technical Reports Server (NTRS)
Hansen, Christopher P.; Jensen, Scott
2006-01-01
The vacuum-assisted, constant-force exercise device (VAC-FED) has been proposed to fill a need for a safe, reliable exercise machine that would provide constant loads that could range from 20 to 250 lb (0.09 to 1.12 kN) with strokes that could range from 6 to 36 in. (0.15 to 0.91 m). The VAC-FED was originally intended to enable astronauts in microgravity to simulate the lifting of free weights, but it could just as well be used on Earth for simulated weight lifting and other constant-force exercises. Because the VAC-FED would utilize atmospheric/vacuum differential pressure instead of weights to generate force, it could weigh considerably less than either a set of free weights or a typical conventional exercise machine based on weights. Also, the use of atmospheric/ vacuum differential pressure to generate force would render the VAC-FED inherently safer, relative to free weights and to conventional exercise machines that utilize springs to generate forces. The overall function of the VAC-FED would be to generate a constant tensile force in an output cable, which would be attached to a bar, handle, or other exercise interface. The primary force generator in the VAC-FED would be a piston in a cylinder. The piston would separate a volume vented to atmosphere at one end of the cylinder from an evacuated volume at the other end of the cylinder (see figure). Hence, neglecting friction at the piston seals, the force generated would be nearly constant equal to the area of the piston multiplied by the atmospheric/vacuum differential pressure. In the vented volume in the cylinder, a direct-force cable would be looped around a pulley on the piston, doubling the stroke and halving the tension. One end of the direct-force cable would be anchored to a cylinder cap; the other end of the direct-force cable would be wrapped around a variable-ratio pulley that would couple tension to the output cable. As its name suggests, the variable-ratio pulley would contain a mechanism that could be used to vary the ratio between the tension in the direct-force cable and the tension in the output cable. This mechanism could contain gears, pulleys, and/or levers, for example.
Wear of sharp aggregates in a rotating drum
NASA Astrophysics Data System (ADS)
Deiros Quintanilla, Ivan; Combe, Gaël; Emeriault, Fabrice; Toni, Jean-Benoît; Voivret, Charles; Ferellec, Jean François
2017-06-01
Aggregates constituting ballast layer wear due to the continuous passage of trains and during the necessary maintenance operations of the track. In order to develop efficient solutions for ballasted tracks design and maintenance, a proper knowledge of the degradation laws of ballast grains is needed. In tribology, the amount of wear due to friction when two surfaces are in contact is classically predicted by Archard's equation. However, due to the continuous evolution of grain angularity and roughness, at the macro-scale wear coefficient cannot be assumed to remain constant, but will depend on the state of degradation of the grain surface. In order to adjust the model to this particular case, the Micro-Deval Attrition test is used. The rotating drum is stopped at intermediate stages and the amount of generated fine particles is measured. Thus the curve of mass loss along time is built. These results are then linked to Archard's model using the values of contact forces and relative displacements extracted from discrete element simulations. Finally, a morphology analysis is performed tracking shape and roughness parameters at different stages of degradation using X-ray tomography and a laser profilometer.
Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface.
Xia, Tian; Luo, Wenhao; Hu, Fan; Qiu, Wu; Zhang, Zhisen; Lin, Youhui; Liu, Xiang Yang
2017-07-05
On the basis of their superior optical performance, photonic crystals (PCs) have been investigated as excellent candidates for widespread applications including sensors, displays, separation processes, and catalysis. However, fabrication of structurally controllable large-area PC assemblies with no defects is still a tough task. Herein, we develop an effective strategy for preparing centimeter-scale crack-free photonic crystal films by the combined effects of soft assembly and superhydrophobic nanopin surfaces. Owing to its large contact angle and low-adhesive force on the superhydrophobic substrate, the colloidal suspension exhibits a continuous retraction of the three-phase (gas-liquid-solid) contact line (TCL) in the process of solvent (water molecules) evaporation. The constantly receding TCL can bring the colloidal spheres closer to each other, which could timely close the gaps due to the loss of water molecules. As a result, close-packed and well-ordered assembly structures can be easily obtained. We expect that this work may pave the way to utilize novel superhydrophobic materials for designing and developing high-quality PCs and to apply PCs in different fields.
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G
2018-04-18
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.
Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.
Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen
2005-06-21
The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
A general framework for solving the dynamic load distribution when two manipulators hold a rigid object is proposed. The underspecified problem of solving for the contact forces and torques based on the object`s equations of motion is transformed into a well specified problem. This is accomplished by augmenting the object`s equations of motion with additional equations which relate a new vector variable quantifying the internal contact force and torque degrees of freedom (DOF) as a linear function of the contact forces and torques. The resulting augmented system yields a well specified solution for the contact forces and torques in whichmore » they are separated into their motion inducing and internal components. A particular solution is suggested which enables the designer to conveniently specify what portion of the payload`s mass each manipulator is to bear. It is also shown that the results of the previous work are just a special case of the general load distribution framework described here.« less
NASA Astrophysics Data System (ADS)
Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.
2003-09-01
A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.
Ligands of low electronegativity in the vsepr model: molecular pseudohalides
NASA Astrophysics Data System (ADS)
Glidewell, Christopher; Holden, H. Diane
Equilibrium structures and force constants at linearity, for the skeletal bending mode δ(RNX) have been calculated in the MNDO approximation for 67 isocyanates, isothio-cyanates and azides, RNXY (XY = CO, CS or N 2) and the corresponding structures and force constants, δ(RCN), for 12 fulminates RCNO. Fulminates all have linear skeletons, but for RNXY the molecular skeleton is linear at atom X only if it is linear at N also ; otherwise the skeleton RNXY has a trans planar structure. Bending force constants are large and negative for all azides studied, negative for methyl and substituted methyl isocyanates and isothiocyanates and very small and positive for silyl and substituted silyl isothiocyanates: for silyl and substituted silyl isocyanales, the force constant is small and positive when the R group has effective C2v symmetry, but small and negative when the R group has only effective Cs symmetry.
Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues.
Zimmermann, Juliane; Camley, Brian A; Rappel, Wouter-Jan; Levine, Herbert
2016-03-08
Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell-cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin-Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell-cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge.
Prins, A H; Kaptein, B L; Banks, S A; Stoel, B C; Nelissen, R G H H; Valstar, E R
2014-05-07
Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22mm±±0.36mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by -0.20mm±±0.29mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be determined reliably by single plane fluoroscopy analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Digital force-feedback for protein unfolding experiments using atomic force microscopy
NASA Astrophysics Data System (ADS)
Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.
2007-01-01
Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.
Hu, Sijia; Koh, Carolyn A
2017-10-24
The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH 4 /C 2 H 6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH 4 /C 2 H 6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m -1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m -1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time on the particle-particle cohesive force based on the capillary liquid bridge model. A model adapted from the capillary liquid bridge equation has been used to predict the particle-particle cohesive force as a function of contact time, showing close agreement with the experimental data. By comparing the cohesive forces results from gas hydrates for both gas and liquid bulk phases, the surface free energy of a hydrate particle was calculated and found to dominate the changes in the interaction forces with different continuous bulk phases.
Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A.
2011-01-01
A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support to the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one’s tactile perception of the environment mechanics? In a simple estimation process human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object’s rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object’s boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects’ reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on its past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand. PMID:21525300
Theory of equilibria of elastic 2-braids with interstrand interaction
NASA Astrophysics Data System (ADS)
Starostin, E. L.; van der Heijden, G. H. M.
2014-03-01
Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.
Physical and reliability issues in MEMS microrelays with gold contacts
NASA Astrophysics Data System (ADS)
Lafontan, Xavier; Pressecq, Francis; Perez, Guy; Dufaza, Christian; Karam, Jean Michel
2001-10-01
This paper presents the work we have done on micro-relays with gold micro-contacts in MUMPs. Firstly, the theoretical physical principles of MEMS micro-relay are described. This study is divided in two parts: the micro-contact and the micro-actuator. The micro-contact part deals with resistance of constriction, contact area, adhesion, arcing and wear. Whereas the micro-actuator part describes general principles, contact force, restoring force and actuator reliability. Then, in a second part, an innovative electrostatic relay design in MUMPs is presented. The concept, the implementation and the final realization are discussed. Then, in the third part, characterization results are reported. This part particularly focuses on the micro-contact study. Conduction mode, contact area, mechanical and thermal deformation, and adhesion energies are presented.
A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.
Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P
2015-01-01
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.
Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.
Federle, Walter; Baumgartner, Werner; Hölldobler, Bert
2004-01-01
Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Potential of mean force between two hydrophobic solutes in water.
Southall, Noel T; Dill, Ken A
2002-12-10
We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. Copyright 2002 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2018-03-01
To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.
Experimental and simulation studies of hard contact in force reflecting teleoperation
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Anderson, Robert
1988-01-01
Experiments and simulations of a single-axis force-reflecting teleoperation system have been conducted to investigate the problem of contacting a hard environment and maintaining a controlled force in teleoperation in which position is fed forward from the hand controller (master) to the manipulator (slave), and force is fed back to the human operator through motors in the master. The simulations, using an electrical circuit model, reproduce the behavior of the real system, including effects of human operator biomechanics. It is shown that human operator properties, which vary as a result of different types of grasp of the handle, affect the stability of the system in the hard-contact task. The effect of a heavier grasp on the handle is equivalent to increased hand-controller velocity damping in terms of the systems stability in the contact task, but control system damping sufficient to guarantee stable contact results in perceptible sluggishness of the control handle's response in free motion. These results suggest that human operator biomechanics must be taken into account to guarantee stable and ergonomic performance of advanced teleoperators.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements
NASA Astrophysics Data System (ADS)
Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
Venettacci, Simone
2017-01-01
In this paper, the heat transfer performances of aluminum metal foams, placed on horizontal plane surface, was evaluated in forced convection conditions. Three different types of contacts between the sample and the heated base plate have been investigated: simple contact, brazed contact and grease paste contact. First, in order to perform the study, an ad hoc experimental set-up was built. Second, the value of thermal contact resistance was estimated. The results show that both the use of a conductive paste and the brazing contact, realized by means of a copper electro-deposition, allows a great reduction of the global thermal resistance, increasing de facto the global heat transfer coefficient of almost 80%, compared to the simple contact case. Finally, it was shown that, while the contribution of thermal resistance is negligible for the cases of brazed and grease paste contact, it is significantly high for the case of simple contact. PMID:28783052
Dynamic wetting and spreading and the role of topography.
McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J
2009-11-18
The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v(e), to the dynamic and equilibrium contact angles θ and θ(e) through [Formula: see text]. When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is presented. We review existing data for the spreading of small droplets of polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial droplet spreads with an approximately constant volume and the edge speed-dynamic contact angle relationship follows a power law [Formula: see text]. As the surface texture becomes stronger the exponent goes from p = 3 towards p = 1 in agreement with a Wenzel roughness driven spreading and a roughness modified Hoffman-de Gennes power law. Finally, we suggest that when a droplet spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium contact angle in an exponential manner with a time constant dependent on roughness.
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs.
Mazloomi Moqaddam, Ali; Derome, Dominique; Carmeliet, Jan
2018-05-15
The contact line dynamics of evaporating droplets deposited on a set of parallel microribs is analyzed with the use of a recently developed entropic lattice Boltzmann model for two-phase flow. Upon deposition, part of the droplet penetrates into the space between ribs because of capillary action, whereas the remaining liquid of the droplet remains pinned on top of the microribs. In the first stage, evaporation continues until the droplet undergoes a series of pinning-depinning events, showing alternatively the constant contact radius and constant contact angle modes. While the droplet is pinned, evaporation results in a contact angle reduction, whereas the contact radius remains constant. At a critical contact angle, the contact line depins, the contact radius reduces, and the droplet rearranges to a larger apparent contact angle. This pinning-depinning behavior goes on until the liquid above the microribs is evaporated. By computing the Gibbs free energy taking into account the interfacial energy, pressure terms, and viscous dissipation due to drop internal flow, we found that the mechanism that causes the unpinning of the contact line results from an excess in Gibbs free energy. The spacing distance and the rib height play an important role in controlling the pinning-depinning cycling, the critical contact angle, and the excess Gibbs free energy. However, we found that neither the critical contact angle nor the maximum excess Gibbs free energy depends on the rib width. We show that the different terms, that is, pressure term, viscous dissipation, and interfacial energy, contributing to the excess Gibbs free energy, can be varied differently by varying different geometrical properties of the microribs. It is demonstrated that, by varying the spacing distance between the ribs, the energy barrier is controlled by the interfacial energy while the contribution of the viscous dissipation is dominant if either rib height or width is changed. Main finding of this is study is that, for microrib patterned surfaces, the energy barrier required for the contact line to depin can be enlarged by increasing the spacing or the rib height, which can be important for practical applications.
Force microscopy experiments with ultrasensitive cantilevers.
Rast, S; Gysin, U; Ruff, P; Gerber, Ch; Meyer, E; Lee, D W
2006-04-14
Force microscopy experiments with the pendulum geometry are performed with attonewton sensitivity (Rugar et al 2004 Nature 43 329). Single-crystalline cantilevers with sub-millinewton spring constants were annealed under ultrahigh-vacuum conditions. It is found that annealing with temperatures below 500 °C can improve the quality factor by an order of magnitude. The high force sensitivity of these ultrasoft cantilevers is used to characterize small magnetic and superconductive particles, which are mounted on the end of the cantilever. Their magnetic properties are analysed in magnetic fields as a function of temperature. The transition of a superconducting sample mounted on a cantilever is measured by the detection of frequency shifts. An increase of dissipation is observed below the critical temperature. The magnetic moment of ferromagnetic particles is determined by real time frequency detection with a phase-locked loop (PLL) as a function of the magnetic field. The dissipation between the probing tip and the sample is another important ingredient for ultrasensitive force measurements. It is found that dissipation increases at separations of 30 nm. The origins of this type of dissipation are poorly understood. However, it is predicted theoretically that adsorbates can increase this dissipation channel (Volokitin and Persson 2005 Phys. Rev. Lett. 94 086104). First experiments are performed under ultrahigh vacuum to investigate this type of dissipation. Long-range dissipation is closely related to long-range forces. The distance dependence of the contact potential is found to be an important aspect.
Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin
2017-08-22
The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.
The role of long-range forces in the formation of thin liquid films on metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyory, J.R.; Muller, R.H.
1987-06-01
White-light multiple beam interference is used to study the drainage of aqueous electrolytes from vertically optically smooth platinum and gold plates. Bulk liquid is in contact with the bottom of the metal plate. For short times following the lowering of the bulk liquid level, the change in the film profile agrees with that expected from viscous drainage. However, at long times, the film profile deviates from that expected and eventually becomes independent of time at a thickness between 0.08 and 0.25 micrometers. These profiles are best represented by a function dependent on the inverse cube root of height. The thicknessmore » of the equilibrium film profiles with increasing electrolyte concentration. A model based on long range van der Waals interactions resulting in a repulsive force between the interfaces of the film is shown to predict the correct profile shape, and for dilute electrolytes, the correct film thickness. This model also predicts increasing film thickness for increasing electrolyte concentration. The strength of this interaction is characterized by the Hamaker constant which can be calculated from the dielectric functions evaluated at imaginary frequencies of the film and substrate. For metals, this function is generated from spectral absorption data, limiting behavior for low and high frequencies, and by use of the Kramers-Kronig transformation. Hamaker constants calculated from the dielectric functions generated in this manner agree well with those derived from film profiles for dilute electrolytes.« less
A comparison of force control algorithms for robots in contact with flexible environments
NASA Technical Reports Server (NTRS)
Wilfinger, Lee S.
1992-01-01
In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.
Calculation of muscle loading and joint contact forces during the rock step in Irish dance.
Shippen, James M; May, Barbara
2010-01-01
A biomechanical model for the analysis of dancers and their movements is described. The model consisted of 31 segments, 35 joints, and 539 muscles, and was animated using movement data obtained from a three-dimensional optical tracking system that recorded the motion of dancers. The model was used to calculate forces within the muscles and contact forces at the joints of the dancers in this study. Ground reaction forces were measured using force plates mounted in a sprung floor. The analysis procedure is generic and can be applied to any dance form. As an exemplar of the application process an Irish dance step, the rock, was analyzed. The maximum ground reaction force found was 4.5 times the dancer's body weight. The muscles connected to the Achilles tendon experienced a maximum force comparable to their maximal isometric strength. The contact force at the ankle joint was 14 times body weight, of which the majority of the force was due to muscle contraction. It is suggested that as the rock step produces high forces, and therefore the potential to cause injury, its use should be carefully monitored.
NASA Astrophysics Data System (ADS)
Lucas, Barry Neal
Indentation Creep. Using depth-sensing indentation techniques at both room and elevated temperatures, the dependency of the indentation hardness on the variables of indentation strain rate and temperature, and the existence of a steady state behavior in an indentation creep test with a Berkovich indenter were investigated. The indentation creep response of five materials, Pb-65 at% In (at RT), high purity indium (from RT to 75sp°C), high purity aluminum (from RT to 250sp°C), an amorphous alumina film (at RT), and sapphire (at RT), was measured. It was shown that the indentation strain rate, defined as h/h, could be held constant during an experiment using a Berkovich indenter by controlling the loading rate such that the loading rate divided by the load, P/P, remained constant. The temperature dependence of indentation creep in indium and aluminum was found to be the same as that for uniaxial creep. By performing P/P change experiments, it was shown that a steady state path independent hardness could be reached in an indentation test with a Berkovich indenter. Viscoelasticity. Using a frequency specific dynamic indentation technique, a method to measure the linear viscoelastic properties of polymers was determined. The polymer tested was poly-cis 1,4-isoprene. By imposing a small harmonic force excitation on the specimen during the indentation process and measuring the displacement response at the same frequency, the complex modulus, G*, of the polymer was determined. The portion of the displacement signal "in phase" with the excitation represents the elastic response of the contact and is related to the stiffness, S, of the contact and to the storage modulus, Gsp', of the material. The "out of phase" portion of the displacement signal represents the damping, Comega where omega = 2 pi f, of the contact, and thus the loss modulus, Gsp{''}, of the material. It was shown that both the storage, S, and loss, Comega components of the response scale as the respective component of the complex modulus multiplied by the square root of the contact area.
Tyre-road contact using a particle-envelope surface model
NASA Astrophysics Data System (ADS)
Pinnington, Roger J.
2013-12-01
Determination of the contact forces is the central problem in all aspects of road-tyre interaction: i.e. noise, energy loss and friction. A procedure to find the contact forces under a rolling tyre is presented in four stages. First, the contact stiffness of a uniform peak array from indentations in the rubber tread, and also tyre carcass deflection, is described by some new simplified expressions. Second, a routine divides a single surface profile into equal search intervals, in which the highest peaks are identified. These are used to obtain the parameters for the interval, i.e. the mean envelope and the mean interval. The process is repeated at geometrically decreasing search intervals until the level of the data resolution, thereby describing the profile by a set of envelopes. The ‘strip profile’ ultimately used to describe the surface, is obtained by selecting the highest points across the profiles of one stone's width. The third stage is to combine the strip profile envelopes with the contact stiffness expressions, yielding the nonlinear stiffness-displacement, and force-displacement relationships for the chosen road-tyre combination. Finally the contact pressure distribution from a steady-state rolling tyre model is applied to the strip profile, via the force-displacement relationship, giving the local tyre displacements on the road texture. This displacement pattern is shown to be proportional to the time and space varying contact pressure, which then is incorporated into a wave equation for rolling contact.
Development of a coordinate measuring machine (CMM) touch probe using a multi-axis force sensor
NASA Astrophysics Data System (ADS)
Park, Jae-jun; Kwon, Kihwan; Cho, Nahmgyoo
2006-09-01
Traditional touch trigger probes are widely used on most commercial coordinate measuring machines (CMMs). However, the CMMs with these probes have a systematic error due to the shape of the probe tip and elastic deformation of the stylus resulting from contact pressure with the specimen. In this paper, a new touch probe with a three degrees-of-freedom force sensor is proposed. From relationships between an obtained contact force vector and the geometric shape of the probe, it is possible to calculate the coordinates of the exact probe-specimen contact points. An empirical model of the probe is applied to calculate the coordinates of the contact points and the amount of pretravel. With the proposed probing system, the measuring error induced by the indeterminateness of the probe-specimen contact point and the pretravel can be estimated and compensated for successfully.
Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.
Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens H; Zambrano, Harvey A
2016-11-30
Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.
Non-contact AFM measurement of the Hamaker constants of solids: Calibrating cantilever geometries.
Fronczak, Sean G; Browne, Christopher A; Krenek, Elizabeth C; Beaudoin, Stephen P; Corti, David S
2018-05-01
Surface effects arising from roughness and deformation can negatively affect the results of AFM contact experiments. Using the non-contact portion of an AFM deflection curve is therefore desirable for estimating the Hamaker constant, A, of a solid material. A previously validated non-contact quasi-dynamic method for estimating A is revisited, in which the cantilever tip is now always represented by an "effective sphere". In addition to simplifying this previous method, accurate estimates of A can still be obtained even though precise knowledge of the nanoscale geometric features of the cantilever tip are no longer required. The tip's "effective" radius of curvature, R eff , is determined from a "calibration" step, in which the tip's deflection at first contact with the surface is measured for a substrate with a known Hamaker constant. After R eff is known for a given tip, estimates of A for other surfaces of interest are then determined. An experimental study was conducted to validate the new method and the obtained results are in good agreement with predictions from the Lifshitz approximation, when available. Since R eff accounts for all geometric uncertainties of the tip through a single fitted parameter, no visual fitting of the tip shape was required. Copyright © 2018 Elsevier Inc. All rights reserved.
The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
Mohammadi, Mahshid; Sharp, Kendra V
2015-03-01
This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was deionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.
NASA Astrophysics Data System (ADS)
Amini, Amirhossein; Homsy, G. M.
2017-04-01
Experiments on evaporating droplets on structured surfaces have shown that the contact line does not move with constant speed, but rather in a steplike "stick-slip" fashion. As a first step in understanding such behavior, we study the evaporation of a two-dimensional volatile liquid droplet on a nonplanar heated solid substrate with a moving contact line and fixed contact angle. The model for the flat case is adapted to include curved substrates, numerical solutions are achieved for various periodic and quasiperiodic substrate profiles, and the dynamics of the contact line and the apparent contact angle are studied. In contrast with our results for a flat substrate, for which the contact line recedes in a nearly constant speed, we observe that the contact line speed and position show significant time variation and that the contact line moves in an approximate steplike fashion on relatively steep substrates. For the simplest case of a periodic substrate, we find that the apparent contact angle is periodic in time. For doubly periodic substrates, we find that the apparent contact angle is periodic and that the problem exhibits a phase-locking behavior. For multimode quasiperiodic substrates, we find the contact line behavior to be temporally complex and not only limited to a stick-slip motion. In all cases, we find that the overall evaporation is increased relative to the flat substrate.
Grahn, A.R.
1993-05-11
A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.
Grahn, Allen R.
1993-01-01
A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.
Roy, Rajarshi; Desai, Jaydev P.
2016-01-01
This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130
Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R
2008-02-01
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.
Three degree-of-freedom force feedback control for robotic mating of umbilical lines
NASA Technical Reports Server (NTRS)
Fullmer, R. Rees
1988-01-01
The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.
Compartmentalized storage tank for electrochemical cell system
NASA Technical Reports Server (NTRS)
Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)
2010-01-01
A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.
Vibrational properties of TaW alloy using modified embedded atom method potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh
2016-05-06
Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.
Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces
NASA Astrophysics Data System (ADS)
Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi
2013-04-01
Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.
Students’ understanding of forces: Force diagrams on horizontal and inclined plane
NASA Astrophysics Data System (ADS)
Sirait, J.; Hamdani; Mursyid, S.
2018-03-01
This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.
Liu, Yan; Gao, Yanfei
2015-01-01
Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001–1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. ‘stiff-adhere and compliant-release’, (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and releasable adhesives. PMID:25392403
Ding, Ziyun; Nolte, Daniel; Kit Tsang, Chui; Cleather, Daniel J; Kedgley, Angela E; Bull, Anthony M J
2016-02-01
Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the "Grand Challenge Competition to Predict in vivo Knee Loads" provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for "smooth" and "bouncy" gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.
Sleep, John; Irving, Malcolm; Burton, Kevin
2005-03-15
The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.
Shoulder model validation and joint contact forces during wheelchair activities.
Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan
2010-09-17
Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.
Modenese, Luca; Montefiori, Erica; Wang, Anqi; Wesarg, Stefan; Viceconti, Marco; Mazzà, Claudia
2018-05-17
The generation of subject-specific musculoskeletal models of the lower limb has become a feasible task thanks to improvements in medical imaging technology and musculoskeletal modelling software. Nevertheless, clinical use of these models in paediatric applications is still limited for what concerns the estimation of muscle and joint contact forces. Aiming to improve the current state of the art, a methodology to generate highly personalized subject-specific musculoskeletal models of the lower limb based on magnetic resonance imaging (MRI) scans was codified as a step-by-step procedure and applied to data from eight juvenile individuals. The generated musculoskeletal models were used to simulate 107 gait trials using stereophotogrammetric and force platform data as input. To ensure completeness of the modelling procedure, muscles' architecture needs to be estimated. Four methods to estimate muscles' maximum isometric force and two methods to estimate musculotendon parameters (optimal fiber length and tendon slack length) were assessed and compared, in order to quantify their influence on the models' output. Reported results represent the first comprehensive subject-specific model-based characterization of juvenile gait biomechanics, including profiles of joint kinematics and kinetics, muscle forces and joint contact forces. Our findings suggest that, when musculotendon parameters were linearly scaled from a reference model and the muscle force-length-velocity relationship was accounted for in the simulations, realistic knee contact forces could be estimated and these forces were not sensitive the method used to compute muscle maximum isometric force. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.