Sample records for constant cross section

  1. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.

    2012-07-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less

  2. Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.

    PubMed

    Bednarik, Michal; Cervenka, Milan

    2014-03-01

    This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.

  3. Vibrational and rotational excitation effects of the N(2D) + D2(X1Σg +) → ND(X3Σ+) + D(2S) reaction

    NASA Astrophysics Data System (ADS)

    Zhu, Ziliang; Wang, Haijie; Wang, Xiquan; Shi, Yanying

    2018-05-01

    The effects of the rovibrational excitation of reactants in the N(2D) + D2(X1Σg+) → ND(X3Σ+) + D(2S) reaction are calculated in a collision energy range from the threshold to 1.0 eV using the time-dependent wave packet approach and a second-order split operator. The reaction probability, integral cross-section, differential cross-section and rate constant of the title reaction are calculated. The integral cross-section and rate constant of the initial states v = 0, j = 0, 1, are in good agreement with experimental data available in the literature. The rotational excitation of the D2 molecule has little effect on reaction probability, integral cross-section and the rate constant, but it increased the sideways and forward scattering signals. The vibrational excitation of the D2 molecule reduced the threshold and broke up the forward-backward symmetry of the differential cross-section; it also increased the forward scattering signals. This may be because the vibrational excitation of the D2 molecule reduced the lifetime of the intermediate complex.

  4. Torsion of a Cosserat elastic bar with square cross section: theory and experiment

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Lakes, R. S.

    2018-04-01

    An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.

  5. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire.

    PubMed

    Garrec, Pascal; Tavernier, Bruno; Jordan, Laurence

    2005-08-01

    The choice of the most suitable orthodontic wire for each stage of treatment requires estimation of the forces generated. In theory, the selection of wire sequences should initially utilize a lower flexural rigidity; thus clinicians use smaller round cross-sectional dimension wires to generate lighter forces during the preliminary alignment stage. This assessment is true for conventional alloys, but not necessarily for superelastic nickel titanium (NiTi). In this case, the flexural rigidity dependence on cross-sectional dimension differs from the linear elasticity prediction because of the martensitic transformation process. It decreases with increasing deflection and this phenomenon is accentuated in the unloading process. This behaviour should lead us to consider differently the biomechanical approach to orthodontic treatment. The present study compared bending in 10 archwires made from NiTi orthodontics alloy of two cross-sectional dimensions. The results were based on microstructural and mechanical investigations. With conventional alloys, the flexural rigidity was constant for each wire and increased largely with the cross-sectional dimension for the same strain. With NiTi alloys, the flexural rigidity is not constant and the influence of size was not as important as it should be. This result can be explained by the non-constant elastic modulus during the martensite transformation process. Thus, in some cases, treatment can begin with full-size (rectangular) wires that nearly fill the bracket slot with a force application deemed to be physiologically desirable for tooth movement and compatible with patient comfort.

  6. Transverse vibrations of wood-based products : equations and considerations

    Treesearch

    Joseph F. Murphy

    2011-01-01

    Four equations are presented to determine bending stiffness using transverse vibration. These equations are used for constant cross-section products, panels, rectangular cross-section products, and logs with and without taper. Practical considerations for their use are discussed and concluding remarks are included.

  7. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  8. Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at and first determination of the strong coupling constant in the TeV range

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Heine, K.; Höing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Dellacasa, G.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y.-J.; Lourenço, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rojo, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Gonzalez Suarez, R.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-10-01

    A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, , of the two leading jets in the event. The data sample was collected during 2011 at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 fb-1. The strong coupling constant at the scale of the Z boson mass is determined to be α S ( M Z)=0.1148±0.0014 (exp.)±0.0018 (PDF)±0.0050(theory), by comparing the ratio in the range to the predictions of perturbative QCD at next-to-leading order. This is the first determination of α S ( M Z) from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant. No deviation from the expected behaviour is observed.

  9. Turbine airfoil having outboard and inboard sections

    DOEpatents

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  10. Comparison of Measured and Calculated Stresses in Built-up Beams

    NASA Technical Reports Server (NTRS)

    Levin, L Ross; Nelson, David H

    1946-01-01

    Web stresses and flange stresses were measured in three built-up beams: one of constant depth with flanges of constant cross-section, one linearly tapered in depth with flanges of constant cross section, and one linearly tapered in depth with tapered flanges. The measured stresses were compared with the calculated stresses obtained by the methods outlined in order to determine the degree of accuracy that may be expected from the stress analysis formulas. These comparisons indicated that the average measured stresses for all points in the central section of the beams did not exceed the average calculated stresses by more than 5 percent. It also indicated that the difference between average measured flange stresses and average calculated flange stresses on the net area and a fully effective web did not exceed 6.1 percent.

  11. Interatomic potential at small internuclear distances. A simple formula for the screening constant

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2017-09-01

    A simple formula for estimating the screening constant has been proposed. This formula fits well experimental data on the interaction potentials. Quantitative description of the experiment for the effect of electronic screening on the nuclear synthesis reaction cross-section for the D+-D system has been obtained. A conclusion has been made that the differences between the measured cross-sections and their theoretically predicted values, which take place in more complicated cases nuclear synthesis reactions, are not caused by uncertainties in the knowledge of potentials.

  12. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Júnior, W L Aldá; Alves, G A; Brito, L; Correa Martins Junior, M; Martins, T Dos Reis; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Bagaturia, I; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Heister, A; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garcia, J Garay; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Horton, D; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Novgorodova, O; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Silvestris, L; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Ventura, S; Zotto, P; Zucchetta, A; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Da Cruz E Silva, C Beir Ao; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Isildak, B; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Negrete, M Olmedo; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Klein, D; Lebourgeois, M; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Cheng, T; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N; Collaboration, Authorinst The Cms

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5[Formula: see text]collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant [Formula: see text] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of [Formula: see text].

  13. Temperature Stabilization of the NIFFTE Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Hicks, Caleb

    2017-09-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a collaboration measuring nuclear fission cross sections for use in advanced nuclear reactors. A neutron beam incident on targets of Uranium-235, Uranium-238, and Plutonium-239 is used to measure the neutron induced fission cross sections for these isotopes. A Time Projection Chamber (TPC) is used to record these reactions. Significant heat is generated by the readout cards mounted on the TPC, which are cooled by fans. One proposed measurement of the experiment is to compare the cross sections of the target to a proton target of gaseous hydrogen. A constant temperature inside the TPC's pressure vessel is desirable to maintain a constant number of hydrogen target atoms. In addition, a constant temperature minimizes the strain and wrinkles on an amplifying mesh inside the TPC. This poster describes the successful work to develop, build, and install a fan controller using a Raspberry Pi, an Arduino, and a custom circuit board to implement an algorithm called Proportional-Integral-Derivative control. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  14. Integrated system for production of neutronics and photonics calculational constants. Program SIGMA1 (Version 77-1): Doppler broaden evaluated cross sections in the Evaluated Nuclear Data File/Version B (ENDF/B) format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, D.E.

    1977-01-12

    A code, SIGMA1, has been designed to Doppler broaden evaluated cross sections in the ENDF/B format. The code can only be applied to tabulated data that vary linearly in energy and cross section between tabulated points. This report describes the methods used in the code and serves as a user's guide to the code.

  15. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2013-04-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.

  16. Brachytherapy dosimetry of 125I and 103Pd sources using an updated cross section library for the MCNP Monte Carlo transport code.

    PubMed

    Bohm, Tim D; DeLuca, Paul M; DeWerd, Larry A

    2003-04-01

    Permanent implantation of low energy (20-40 keV) photon emitting radioactive seeds to treat prostate cancer is an important treatment option for patients. In order to produce accurate implant brachytherapy treatment plans, the dosimetry of a single source must be well characterized. Monte Carlo based transport calculations can be used for source characterization, but must have up to date cross section libraries to produce accurate dosimetry results. This work benchmarks the MCNP code and its photon cross section library for low energy photon brachytherapy applications. In particular, we calculate the emitted photon spectrum, air kerma, depth dose in water, and radial dose function for both 125I and 103Pd based seeds and compare to other published results. Our results show that MCNP's cross section library differs from recent data primarily in the photoelectric cross section for low energies and low atomic number materials. In water, differences as large as 10% in the photoelectric cross section and 6% in the total cross section occur at 125I and 103Pd photon energies. This leads to differences in the dose rate constant of 3% and 5%, and differences as large as 18% and 20% in the radial dose function for the 125I and 103Pd based seeds, respectively. Using a partially updated photon library, calculations of the dose rate constant and radial dose function agree with other published results. Further, the use of the updated photon library allows us to verify air kerma and depth dose in water calculations performed using MCNP's perturbation feature to simulate updated cross sections. We conclude that in order to most effectively use MCNP for low energy photon brachytherapy applications, we must update its cross section library. Following this update, the MCNP code system will be a very effective tool for low energy photon brachytherapy dosimetry applications.

  17. Quantum dynamics of the C(1D)+HD and C(1D)+n-D2 reactions on the ã 1A' and b 1A" surfaces.

    PubMed

    Defazio, Paolo; Gamallo, Pablo; González, Miguel; Akpinar, Sinan; Bussery-Honvault, Béatrice; Honvault, Pascal; Petrongolo, Carlo

    2010-03-14

    We present the Born-Oppenheimer, quantum dynamics of the reactions C((1)D)+HD and C((1)D)+n-D(2) on the uncoupled potential energy surfaces ã (1)A' and b (1)A", considering the Coriolis interactions and the nuclear-spin statistics. Using the real wavepacket method, we obtain initial-state-resolved probabilities, cross sections, isotopic branching ratios, and rate constants. Similarly to the C+n-H(2) reaction, the probabilities present many ã (1)A' or few b (1)A" sharp resonances, and the cross sections are very large at small collision energies and decrease at higher energies. At any initial condition, the C+HD reaction gives preferentially the CD+H products. Thermal cross sections, isotopic branching ratios, and rate constant k vary slightly with temperature and agree very well with the experimental values. At 300 K, we obtain for the various products k(CH+H)=(2.45+/-0.08) x 10(-10), k(CD+H)=(1.19+/-0.04) x 10(-10), k(CH+D)=(0.71+/-0.02) x 10(-10), k(CD+D)=(1.59+/-0.05) x 10(-10) cm(3) s(-1), and k(CD+H)/k(CH+D)=1.68+/-0.01. The b (1)A" contribution to cross sections and rate constants is always large, up to a maximum value of 62% for a rotationally resolved C+D(2) rate constant. The upper b (1)A" state is thus quite important in the C((1)D) collision with H(2) and its deuterated isotopes, as the agreement between theory and experiment shows.

  18. Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects

    NASA Astrophysics Data System (ADS)

    Olsen, Martin; Gradin, Per; Lindefelt, Ulf; Olin, Håkan

    2010-02-01

    Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an impact on the spring “constant” which oscillates slightly with the bending of the wire. In this way we obtain an amplitude-dependent resonance frequency of the oscillations that should be detectable.

  19. Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE PAGES

    Khachatryan, Vardan

    2015-05-01

    This article presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5fb –1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD atmore » next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant αS is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of α S(M Z) = 0.1171 ± 0.0013(exp) +0.0073 –0.0047(theo).« less

  20. Integrated system for production of neutronics and photonics calculational constants. Volume 17, Part B, Rev. 1. Program SIGMA 1 (Version 78-1): Doppler broadened evaluated cross sections in the evaluated nuclear data file/Version B (ENDF/B) format. [For CDC-7600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, D.E.

    1978-07-04

    The code SIGMA1 Doppler broadens evaluated cross sections in the ENDF/B format. The code can be applied only to data that vary as a linear function of energy and cross section between tabulated points. This report describes the methods used in the code and serves as a user's guide to the code. 6 figures, 2 tables.

  1. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  2. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  3. New fit of thermal neutron constants (TNC) for 233,235U, 239,241Pu and 252Cf(sf): Microscopic vs. maxwellian data

    NASA Astrophysics Data System (ADS)

    Pronyaev, Vladimir G.; Capote, Roberto; Trkov, Andrej; Noguere, Gilles; Wallner, Anton

    2017-09-01

    An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC) evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf) are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986) was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data) and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data). Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.

  4. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guberman, Steven L., E-mail: slg@sci.org

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less

  5. Flexural-torsional vibration of simply supported open cross-section steel beams under moving loads

    NASA Astrophysics Data System (ADS)

    Michaltsos, G. T.; Sarantithou, E.; Sophianopoulos, D. S.

    2005-02-01

    SummaryThe present work deals with linearized modal analysis of the combined flexural-torsional vibration of simply supported steel beams with open monosymmetric cross-sections, acted upon by a load of constant magnitude, traversing its span eccentrically with constant velocity. After thoroughly investigating the free vibrations of the structure, which simulates a commonly used highway bridge, its forced motions under the aforementioned loading type are investigated. Utilizing the capabilities of symbolic computations within modern mathematical software, the effect of the most significant geometrical and cross-sectional beam properties on the free vibration characteristics of the beam are established and presented in tabular and graphical form. Moreover, adopting realistic values of the simplified vehicle model adopted, the effects of eccentricity, load magnitude and corresponding velocity are assessed and interesting conclusions for structural design purposes are drawn. The proposed methodology may serve as a starting point for further in-depth study of the whole scientific subject, in which sophisticated vehicle models, energy dissipation and more complicated bridge models may be used.

  6. Elliptical storm cell modeling of digital radar data

    NASA Technical Reports Server (NTRS)

    Altman, F. J.

    1972-01-01

    A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.

  7. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  8. On proton excitation of forbidden lines in positive ions

    NASA Astrophysics Data System (ADS)

    Burgess, Alan; Tully, John A.

    2005-08-01

    The semi-classical impact parameter approximations used by Bahcall and Wolf and by Bely and Faucher, for proton excitation of electric quadrupole transitions in positive ions, both fail at high energies, giving cross sections which do not fall off correctly as constant/E. This is in contrast with the pioneering example of Seaton for Fe+13 and of Reid and Schwarz for S+3, both of whom achieve the correct functional form, but do not ensure the correct constant of proportionality. By combining the Born and semi-classical approximations one can obtain cross sections which have the full correct behaviour as E → ∞, and hence, rate coefficients which have the correct high temperature behaviour (~C/T1/2 with the correct value of C). We provide a computer program for calculating these. An error in Faucher's derivation of the Born formula is also discussed.

  9. Application of a boundary element method to the study of dynamical torsion of beams

    NASA Technical Reports Server (NTRS)

    Czekajski, C.; Laroze, S.; Gay, D.

    1982-01-01

    During dynamic torsion of beam elements, consideration of nonuniform warping effects involves a more general technical formulation then that of Saint-Venant. Nonclassical torsion constants appear in addition to the well known torsional rigidity. The adaptation of the boundary integral element method to the calculation of these constants for general section shapes is described. The suitability of the formulation is investigated with some examples of thick as well as thin walled cross sections.

  10. Generalization of the optical theorem for an arbitrary multipole in the presence of a transparent half-space

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2017-07-01

    The optical theorem is generalized to the case of excitation of a local inhomogeneity introduced in a transparent substrate by a multipole of arbitrary order. It is shown that, to calculate the generalized extinction cross section, it is sufficient to calculate the derivatives of the scattered field at a single point by adding a constant and a definite integral. Apart from general scientific interest, the proposed generalization makes it possible to calculate the absorption cross section by subtracting the scattering cross section from the extinction cross section. The latter fact is important, because the scattered field in the far zone contains no Sommerfeld integrals. In addition, the proposed generalization allows one to test computer modules for the case where a lossless inhomogeneity is considered.

  11. Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Archana, E-mail: anju.archana@gmail.com; Murugesan, Dr V., E-mail: murugesh@serc.iisc.in

    The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.

  12. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    NASA Astrophysics Data System (ADS)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.

  13. Inelastic scattering of electrons at real metal surfaces

    NASA Astrophysics Data System (ADS)

    Ding, Z.-J.

    1997-04-01

    A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.

  14. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  15. The extinction properties of forest components

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Blanchard, A. J.; Nance, C. E.

    1988-01-01

    The effect of each forest component on the extinction of electromagnetic waves is investigated by modeling the branches with finite cylinders, deciduous leaves with elliptic disks, and coniferous leaves with needles. The inner field is estimated by the field inside an infinitely long cylinder of similar properties for the branches, and by the Shifrin approximation for the leaves. For each forest component analytic expressions were derived for the extinction cross section via the forward scattering theorem and for ohmic and scattered losses. For branches, the variation of the extinction cross section obtained via the forward scattering theorem is illustrated numerically as a function of the branch radius and the imaginery part of its dielectric constant. It is compared with the measurements from a single branch. For the leaves, the forward scattering theorem gives value for the extinction cross section equal to the ohmic cross section.

  16. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method

    NASA Astrophysics Data System (ADS)

    Devan, J.; Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Minerva Collaboration

    2016-12-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2-50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν ) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.

  17. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low- ν flux method

    DOE PAGES

    Devan, J.

    2016-12-20

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2–50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first timemore » it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. Lastly, the cross section measurements presented are the most precise measurements to date below 5 GeV.« less

  18. Surface pressure data on a series of analytic forebodies at Mach numbers from 1.70 to 4.50 and combined angles of attack and sideslip. [Langley Unitary Plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Howell, D. T.; Collins, I. K.; Hayes, C.

    1979-01-01

    Tabulated surface pressure data for a series of four forebodies which have analytically defined cross sections and which are based on a parabolic arc profile having a 20 deg half angle at the nose are presented without analysis. The first forebody has a circular cross section, and the second has a cross section which is an ellipse with an axis ratio of 2/1. The third has a cross section defined by a lobed analytic curve. The fourth forebody has cross sections which develop smoothly from circular at the pointed nose through the lobed analytic curve and back to circular at the aft end. The data generally cover angles of attack from -5 deg to 20 deg at angles of sideslip from 0 deg to 5 deg for Mach numbers of 1.70, 2.50, 3.95, and 4.50 at a constant Reynolds number.

  19. Macrosegregation in Al-7Si alloy caused by abrupt cross-section change during directional solidification

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-09-01

    Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.

  20. Behavior of very high energy hadronic cross-sections

    NASA Astrophysics Data System (ADS)

    Stodolsky, L.

    2017-10-01

    Analysis of the data for proton and antiproton scattering leads to a simple picture for very high energy hadronic cross-sections. There is, asymptotically, a simple “black disc” with a smooth “edge”. The radius of the “disc” is expanding logarithmically with energy, while the “edge” is constant. These conclusions follow from extensive fits to accelerator and cosmic ray data, combined with the observation that a certain combination of elastic and total cross-sections allows extraction of the “edge”. An interesting feature of the results is that the “edge” is rather large compared to the “disc”. This explains the slow approach to “asymptopia” where the “disc” finally dominates.

  1. General consequences of the violated Feynman scaling

    NASA Technical Reports Server (NTRS)

    Kamberov, G.; Popova, L.

    1985-01-01

    The problem of scaling of the hadronic production cross sections represents an outstanding question in high energy physics especially for interpretation of cosmic ray data. A comprehensive analysis of the accelerator data leads to the conclusion of the existence of breaked Feynman scaling. It was proposed that the Lorentz invariant inclusive cross sections for secondaries of a given type approaches constant in respect to a breaked scaling variable x sub s. Thus, the differential cross sections measured in accelerator energy can be extrapolated to higher cosmic ray energies. This assumption leads to some important consequences. The distribution of secondary multiplicity that follows from the violated Feynman scaling using a similar method of Koba et al is discussed.

  2. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  3. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. This program was last updated in 1991. SUN and SunOS are registered trademarks of Sun Microsystems, Inc.

  4. Kinetics and photochemistry Golden, D. M.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Golden, R. F.; Howard, C. J.; Kurylo, M. J.; Margitan, J. J.; Molina, M. J.; Ravishankara, A. R.; Watson, R. T.; Hampson, R. F.

    1985-01-01

    The data for chemical kinetics rate constants and photochemical cross sections taken from a compilation prepared in early 1985, entitled Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, is presented.

  5. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  6. 7Li(p,n)7Be and 12C(p,n)12N reactions at 200, 300, and 400 MeV

    NASA Astrophysics Data System (ADS)

    Watson, J. W.; Pourang, R.; Abegg, R.; Alford, W. P.; Celler, A.; El-Kateb, S.; Frekers, D.; Häusser, O.; Helmer, R.; Henderson, R.; Hicks, K.; Jackson, K. P.; Jeppesen, R. G.; Miller, C. A.; Vetterli, M.; Yen, S.; Zafiratos, C. D.

    1989-07-01

    At 200, 300, and 400 MeV bombarding energies, we measured cross section angular distributions for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction and 0° cross sections for the 12C(p,n)12N(g.s.) reaction. Systematics of these reactions are presented. The center-of-mass cross section for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction, when plotted as a function of momentum transfer, is nearly independent of energy. The laboratory cross section for this reaction at 0° in the energy range from 60 to 400 MeV is also independent of energy, having a constant value, to within experimental errors, of 35.5 mb/sr with an estimated uncertainty of +/-1.5 mb/sr.

  7. A Semiempirical Formula for Single-Electron-Capture Cross Sections of Multiply Charged Ions Colliding with H, H2 and He

    NASA Astrophysics Data System (ADS)

    Nakai, Yohta; Shirai, Toshizo; Tabata, Tatsuo; Ito, Rinsuke

    1989-01-01

    A universal analytic formula is given for the total cross sections of single-electron capture by multiply-charged ions colliding with H, H2 or He. Values of constants in the formula have been determined by least-squares fit to experimental data collected from the literature. The formula is applicable to ions of almost all atomic species with charge q greater than 4 (for the H and H2 targets) or 5 (for the He target) in the energy region from about 1 to 107 eV amu-1. The root-mean-square deviation of the data from the formula is 29%. The formula shows that the cross sections are proportional to q1.07 at low energies and to q2.86 at high energies. Other trends of the cross sections that can be derived from the formula are also discussed.

  8. Measurement of the triple-differential dijet cross section in proton-proton collisions at √{s}=8 {TeV} and constraints on parton distribution functions

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Zeid, S. Abu; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Teles, P. Rebello; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; Figueiredo, D. Matos; Herrera, C. Mora; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; De Araujo, F. Torres Da Silva; Pereira, A. Vilela; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Abad, D. Romero; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Hernández, C. F. González; Alvarez, J. D. Ruiz; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Jarrin, E. Carrera; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Bihan, A.-C. Le; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Antunes De Oliveira, A. Carvalho; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Cifuentes, J. A. Brochero; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-De; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Ibarguen, H. A. Salazar; Estrada, C. Uribe; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Iglesias, L. Lloret; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Polikarpov, S.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Maestre, J. Alcaraz; Luna, M. Barrio; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; De Martino, E. Navarro; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Menendez, J. Fernandez; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Cruz, S. Sanchez; Andrés, I. Suárez; Vischia, P.; Garcia, J. M. Vizan; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Virto, A. Lopez; Marco, J.; Rivero, C. Martinez; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Della Porta, G. Zevi; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Sevilla, M. Franco; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; De Sá, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Gonzalez, I. D. Sandoval; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Kravchenko, I.; Rodrigues, A. Malta; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-11-01

    A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 {TeV} using 19.7 {fb}^ {-1} of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is α _S(M_ {Z}) = 0.1199 ± {0.0015} (exp) _{-0.0020}^{+0.0031} (theo), where M_ {Z} is the mass of the Z boson.

  9. The Production of FRW Universe and Decay to Particles in Multiverse

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj

    2017-09-01

    In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.

  10. In-medium effects via nuclear stopping in asymmetric colliding nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Mandeep

    2016-05-06

    The nuclear stopping is studied using isospin-dependent quantum molecular dynamics (IQMD) model in asymmetric colliding nuclei by varying mass asymmetry. The calculations have been done at incident energies varying between 50 and 400 MeV/nucleon for different impact parameters. We investigate the relative role of constant scaled and density-dependent scaled cross-sections. Our study reveals that nuclear stopping depends on the mass asymmetry, incident energy and impact parameter, however, it is independent of the way of scaling the cross-section.

  11. Conversion of energy in cross-sectional divergences under different conditions of inflow

    NASA Technical Reports Server (NTRS)

    Peters, H

    1934-01-01

    This investigation treats the conversion of energy in conically divergent channels with constant opening ratio and half included angle of from 2.6 to 90 degrees, the velocity distribution in the entrance section being varied from rectangular distribution to fully developed turbulence by changing the length of the approach. The energy conversion is not completed in the exit section of the diffuser; complete conversion requires a discharge length which depends upon the included angle and the velocity distribution in the entrance section. Lastly, a spiral fan was mounted in the extreme length and the effect of the spiral flow on the energy conversion in the cross-sectional divergence explored.

  12. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R.M.

    1991-12-03

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.

  13. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R. Michael

    1991-01-01

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.

  14. Surface pressure data on a series of conical forebodies at Mach numbers from 1.70 to 4.50 and combined angles of attack and sideslip

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Collins, I. K.; Howell, D. T.; Hayes, C.

    1979-01-01

    Tabulated surface pressure data for a series of forebodies which have analytically defined cross sections and are based on a 20 degs half-angle cone are presented without analysis. Five of the cross sections were ellipses having axis ratios of 3/1, 2/1, 1/1, 1/2, and 1/3. The sixth cross section was defined by a curve having a single lobe. The data generally cover angles of attack from -5 degs to 20 degs at angles of sideslip from 0 degs to 5 degs for Mach numbers of 1.70, 2.50, 3.95, and 4.50 at a constant Reynolds number.

  15. Computational study of duct and pipe flows using the method of pseudocompressibility

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  16. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  17. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1993-01-01

    An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.

  18. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.

    PubMed

    Verbree, J; Bronzwaer, Agt; van Buchem, M A; Daemen, Mjap; van Lieshout, J J; van Osch, Mjp

    2017-08-01

    Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO 2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.

  19. Ultra-wideband Radar for Building Interior Imaging

    DTIC Science & Technology

    2008-12-01

    same cross range resolution as a monostatic configuration with an equal number of transmitters and receivers (Ressler et al., 2007). In terms of...By this procedure we ensure a constant cross range resolution across the entire image. 2.2. Measurements setup The one story abandoned barrack...identify its geometry and materials. Two-by-four wooden studs (3.8 cm x 8.9 cm cross -section dimensions) are used for most exterior and interior walls

  20. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  1. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOEpatents

    Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.

    1997-03-04

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  2. Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at [Formula: see text][Formula: see text].

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Júnior, W L Aldá; Alves, G A; Brito, L; Correa Martins Junior, M; Martins, T Dos Reis; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Heister, A; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garcia, J Garay; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Horton, D; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Novgorodova, O; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Biasotto, M; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Montecassiano, F; Pazzini, J; Pozzobon, N; Ronchese, P; Tosi, M; Vanini, S; Ventura, S; Zucchetta, A; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Da Cruz E Silva, C Beir Ao; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Isildak, B; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Albayrak, E A; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Yetkin, T; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Krohn, M; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Cheng, T; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N

    The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0[Formula: see text]. The measurement covers a phase space up to 2[Formula: see text] in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass [Formula: see text] is determined to be [Formula: see text], which is in agreement with the world average.

  3. Inclusive jet cross section and strong coupling constant measurements at CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerci, Salim, E-mail: Salim.Cerci@cern.ch

    2016-03-25

    The probes which are abundantly produced in high energetic proton-proton (pp) collisions at the LHC are called jets. Events with jets can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. The inclusive jet cross section in pp collision is the fundamental quantity which can be measured and predicted within the framework of perturbative QCD (pQCD). The strong coupling constant α{sub S} which can be determined empirically in the limit of massless quarks, is the single parameter in QCD. The jet measurements can also be used to determine strong coupling constant α{sub S} and parton density functions (PDFs).more » The recent jet measurements which are performed with the data collected by the CMS detector at different center-of-mass energies and down to very low transverse momentum p{sub T} are presented. The measurements are compared to Monte Carlo predictions and perturbative calculations up to next-to-next-to leading order. Finally, the precision jet measurements give further insight into the QCD dynamics.« less

  4. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section.

    PubMed

    Duan, Qiangling; Xiao, Huahua; Gao, Wei; Gong, Liang; Sun, Jinhua

    2016-12-15

    An experimental investigation of spontaneous ignition and flame propagation at high-pressure hydrogen release via cylindrical tubes with varying cross-section is presented. Tubes with different transverse cross-sections are considered in the experiments: (1) local contraction, (2) local enlargement, (3) abrupt contraction, and (4) abrupt enlargement. The results show that the presence of the varying cross-section geometries can significantly promote the occurrence of spontaneous ignition. Compared to the tube with constant cross-section, the minimum pressure release needed for spontaneous ignition for the varying cross-sections tubes is considerably lower. Moreover, the initial ignition location is closer to the disk in the presence of varying cross-section geometries in comparison with straight channel. As the flame emerges from the outlet of the tube, the velocity of the flame front in the vicinity of the nozzle increases sharply. Then, a deflagration develops across the mixing zone of hydrogen/air mixture. The maximum deflagration overpressure increases linearly with the release pressure. Subsequently, a hydrogen jet flame is produced and evolves different shapes at different release stages. A fireball is formed after the jet flame spouts in the open air. Later, the fireball develops into a jet flame which shifts upward and continues to burn in the vertical direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Premixer assembly for mixing air and fuel for combustion

    DOEpatents

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul

    2016-12-13

    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  6. The mean observed meteorological structure and circulation of the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Theon, J. S.; Smith, W. S.; Casey, J. F.; Kirkwood, B. R.

    1972-01-01

    Meteorological soundings of the upper stratosphere and mesosphere, conducted with in situ rocket techniques during all seasons of the year from several sites, ranging in latitude from 8 deg S to 71 deg N, are analyzed. The resulting data are compiled into mean monthly and seasonal profiles of temperature, pressure, density, and wind for each site and are presented in graphical and tabular form. Analyses of these mean values produced time cross sections, quasi-meridional cross sections, and constant level maps which are included.

  7. Water quality of the tidal Potomac River and Estuary; hydrologic data report supplement, 1979 through 1981 water years

    USGS Publications Warehouse

    Coupe, R.H.; Webb, W.E.

    1984-01-01

    This report is a companion report to the U.S. Geological Survey 1979, 1980, and 1981 Hydrologic Data Reports of the tidal Potomac River and Estuary. It contains values of biochemical oxygen demand and specific rate constants, incident light and light attenuation measurements; numbers of phytoplankton, fecal coliform and fecal streptococci, cross-sectional averages from field measurements of dissolved oxygen, pH, specific conductance , and temperature data; and cross-sectional averages of chlorophyll data. Sewage treatment plant loads are also included. (USGS)

  8. An instrument for monitoring stump oedema and shrinkage in amputees.

    PubMed

    Fernie, G R; Holliday, P J; Lobb, R J

    1978-08-01

    A new system for measuring the cross-sectional area profiles of amputation stumps and whole limbs has been designed at the Amputee Research Centre. The instrument consists of a cylindrical tank supported on an elevator. The tank is raised to the height of the amputation stump and filled with water. A graph of the cross-sectional area profile of the amputation stump is generated by a mini-computer as the elevator descends. The cross-sectional area (A) is calculated from the expression: formula: (see text) where Hw = height of water in the tank He = height of the elevator Ac = a constant, related to the size of the measuring tank. This paper describes the instrument, which may find application in many other areas where there is a need to study shape.

  9. Measurement of the triple-differential dijet cross section in proton-proton collisions at $$\\sqrt{s}=8\\,\\text {TeV} $$ and constraints on parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8more » $$\\,\\text {TeV}$$ using 19.7 $$\\,\\text {fb}^\\text {-1}$$ of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is $$\\alpha _S(M_\\text {Z}) = 0.1199\\,\\pm {0.0015}\\,(\\mathrm {exp})\\, _{-0.0020}^{+0.0031}\\,(\\mathrm {theo})$$ , where $$M_\\text {Z}$$ is the mass of the Z boson.« less

  10. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  11. Absorption spectrum and absorption cross sections of the 2ν1 band of HO2 between 20 and 760 Torr air in the range 6636 and 6639 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Emmanuel; Liu, Lu; Schoemaecker, Coralie; Fittschen, Christa

    2018-05-01

    The absorption spectrum of HO2 radicals has been measured in the range 6636-6639 cm-1 at several pressures between 20 and 760 Torr of air. Absolute absorption cross sections of the strongest line at around 6638.2 cm-1 have been determined from kinetic measurements, taking advantage of the well known rate constant of the self-reaction. Peak absorption cross sections of 22.6, 19.5, 14.4, 7.88, 5.12 and 3.23 × 10-20 cm2 were obtained at 20, 50, 100, 200, 400 and 760 Torr, respectively. By fitting these data, an empirical expression has been obtained for the absorption cross section of HO2 in the range 20-760 Torr air: σ6638.2cm-1 = 1.18 × 10-20 + (2.64 × 10-19 × (1-exp (-63.1/p (Torr))) cm2.

  12. Measurement of the triple-differential dijet cross section in proton-proton collisions at $$\\sqrt{s}=8\\,\\text {TeV} $$ and constraints on parton distribution functions

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-11-07

    Here, a measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8more » $$\\,\\text {TeV}$$ using 19.7 $$\\,\\text {fb}^\\text {-1}$$ of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is $$\\alpha _S(M_\\text {Z}) = 0.1199\\,\\pm {0.0015}\\,(\\mathrm {exp})\\, _{-0.0020}^{+0.0031}\\,(\\mathrm {theo})$$ , where $$M_\\text {Z}$$ is the mass of the Z boson.« less

  13. Chemical kinetics and photochemical data for use in stratospheric modeling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Margitan, J. J.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1985-01-01

    Rate constants and photochemical cross sections are presented. The primary application of the data is for modeling of the stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  14. Evaluation of the Neutron Data Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.

    With the need for improving existing nuclear data evaluations, (e.g., ENDF/B-VIII.0 and JEFF-3.3 releases) the first step was to evaluate the standards for use in such a library. This new standards evaluation made use of improved experimental data and some developments in the methodology of analysis and evaluation. In addition to the work on the traditional standards, this work produced the extension of some energy ranges and includes new reactions that are called reference cross sections. Since the effort extends beyond the traditional standards, it is called the neutron data standards evaluation. This international effort has produced new evaluations ofmore » the following cross section standards: the H(n,n), 6Li(n,t), 10B(n,α), 10B(n,α 1γ), natC(n,n), Au(n,γ), 235U(n,f) and 238U(n,f). Also in the evaluation process the 238U(n,γ) and 239Pu(n,f) cross sections that are not standards were evaluated. Evaluations were also obtained for data that are not traditional standards: the Maxwellian spectrum averaged cross section for the Au(n,γ) cross section at 30 keV; reference cross sections for prompt γ-ray production in fast neutron-induced reactions; reference cross sections for very high energy fission cross sections; the 252Cf spontaneous fission neutron spectrum and the 235U prompt fission neutron spectrum induced by thermal incident neutrons; and the thermal neutron constants. The data and covariance matrices of the uncertainties were obtained directly from the evaluation procedure.« less

  15. Evaluation of the Neutron Data Standards

    DOE PAGES

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; ...

    2018-02-01

    With the need for improving existing nuclear data evaluations, (e.g., ENDF/B-VIII.0 and JEFF-3.3 releases) the first step was to evaluate the standards for use in such a library. This new standards evaluation made use of improved experimental data and some developments in the methodology of analysis and evaluation. In addition to the work on the traditional standards, this work produced the extension of some energy ranges and includes new reactions that are called reference cross sections. Since the effort extends beyond the traditional standards, it is called the neutron data standards evaluation. This international effort has produced new evaluations ofmore » the following cross section standards: the H(n,n), 6Li(n,t), 10B(n,α), 10B(n,α 1γ), natC(n,n), Au(n,γ), 235U(n,f) and 238U(n,f). Also in the evaluation process the 238U(n,γ) and 239Pu(n,f) cross sections that are not standards were evaluated. Evaluations were also obtained for data that are not traditional standards: the Maxwellian spectrum averaged cross section for the Au(n,γ) cross section at 30 keV; reference cross sections for prompt γ-ray production in fast neutron-induced reactions; reference cross sections for very high energy fission cross sections; the 252Cf spontaneous fission neutron spectrum and the 235U prompt fission neutron spectrum induced by thermal incident neutrons; and the thermal neutron constants. The data and covariance matrices of the uncertainties were obtained directly from the evaluation procedure.« less

  16. Evaluation of the Neutron Data Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; Hale, G. M.; Chen, Z.-P.; Duran, I.; Hambsch, F.-J.; Kunieda, S.; Mannhart, W.; Marcinkevicius, B.; Nelson, R. O.; Neudecker, D.; Noguere, G.; Paris, M.; Simakov, S. P.; Schillebeeckx, P.; Smith, D. L.; Tao, X.; Trkov, A.; Wallner, A.; Wang, W.

    2018-02-01

    With the need for improving existing nuclear data evaluations, (e.g., ENDF/B-VIII.0 and JEFF-3.3 releases) the first step was to evaluate the standards for use in such a library. This new standards evaluation made use of improved experimental data and some developments in the methodology of analysis and evaluation. In addition to the work on the traditional standards, this work produced the extension of some energy ranges and includes new reactions that are called reference cross sections. Since the effort extends beyond the traditional standards, it is called the neutron data standards evaluation. This international effort has produced new evaluations of the following cross section standards: the H(n,n), 6Li(n,t), 10B(n,α), 10B(n,α1 γ), natC(n,n), Au(n,γ), 235U(n,f) and 238U(n,f). Also in the evaluation process the 238U(n,γ) and 239Pu(n,f) cross sections that are not standards were evaluated. Evaluations were also obtained for data that are not traditional standards: the Maxwellian spectrum averaged cross section for the Au(n,γ) cross section at 30 keV; reference cross sections for prompt γ-ray production in fast neutron-induced reactions; reference cross sections for very high energy fission cross sections; the 252Cf spontaneous fission neutron spectrum and the 235U prompt fission neutron spectrum induced by thermal incident neutrons; and the thermal neutron constants. The data and covariance matrices of the uncertainties were obtained directly from the evaluation procedure.

  17. Direct Determinations of the πNN Coupling Constants

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.

    1998-11-01

    A novel extrapolation method has been used to deduce directly the charged πN N coupling constant from backward np differential scattering cross sections. The extracted value, g2c = 14.52(0.26) is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g2c about 13.97(30).

  18. Fiber gasket and method of making same

    DOEpatents

    Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.

    2003-01-01

    A gasket (1) is made by repetitively spirally winding a fiber (3) back on itself in a closed path. The gasket (1) so made has a multi-layer spiral winding (1) formed in a loop (5). The fiber (3) can be wound at a constant wrap rate to form a gasket with a uniform cross-section around the loop. Alternatively, the wrap rate can be varied, increased to increase cross-sectional bulk, and decreased to reduce cross-section bulk around the loop (5). Also, the spiral winding (7) can be applied over a core (13) of either strands of the fiber (3) or a dissimilar material providing a desired property such as resiliency, stiffness or others. For high temperature applications, a ceramic fiber (3) can be used. The gasket (1) can have any of various geometric configurations with or without a core (13).

  19. Dynamics of Longitudinal Impact in the Variable Cross-Section Rods

    NASA Astrophysics Data System (ADS)

    Stepanov, R.; Romenskyi, D.; Tsarenko, S.

    2018-03-01

    Dynamics of longitudinal impact in rods of variable cross-section is considered. Rods of various configurations are used as elements of power pulse systems. There is no single method to the construction of a mathematical model of longitudinal impact on rods. The creation of a general method for constructing a mathematical model of longitudinal impact for rods of variable cross-section is the goal of the article. An elastic rod is considered with a cross-sectional area varying in powers of law from the longitudinal coordinate. The solution of the wave equation is obtained using the Fourier method. Special functions are introduced on the basis of recurrence relations for Bessel functions for solving boundary value problems. The expression for the square of the norm is obtained taking into account the orthogonality property of the eigen functions with weight. For example, the impact of an inelastic mass along the wide end of a conical rod is considered. The expressions for the displacements, forces and stresses of the rod sections are obtained for the cases of sudden velocity communication and the application of force. The proposed mathematical model makes it possible to carry out investigations of the stress-strain state in rods of variable and constant cross-section for various conditions of dynamic effects.

  20. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  1. Determination of the strong coupling constant \\varvec{α _s (m_Z)} in next-to-next-to-leading order QCD using H1 jet cross section measurements

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Belousov, A.; Bertone, V.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Cvach, J.; Currie, J.; Dainton, J. B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Gehrmann, T.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Huss, A.; Jacquet, M.; Janssen, X.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Niehues, J.; Nowak, G.; Olsson, J. E.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Rabbertz, K.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sutton, M. R.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2017-11-01

    The strong coupling constant α _s is determined from inclusive jet and dijet cross sections in neutral-current deep-inelastic ep scattering (DIS) measured at HERA by the H1 collaboration using next-to-next-to-leading order (NNLO) QCD predictions. The dependence of the NNLO predictions and of the resulting value of α _s (m_Z) at the Z-boson mass m_Z are studied as a function of the choice of the renormalisation and factorisation scales. Using inclusive jet and dijet data together, the strong coupling constant is determined to be α _s (m_Z) =0.1157 (20)_exp (29)_th. Complementary, α _s (m_Z) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value α _s (m_Z) =0.1142 (28)_tot obtained is consistent with the determination from jet data alone. The impact of the jet data on the PDFs is studied. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with expectations.

  2. Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $$\\sqrt{s} = 7$$ $$\\,\\text {TeV}$$

    DOE PAGES

    Khachatryan, Vardan

    2015-06-26

    The inclusive jet cross section for proton–proton collisions at a centre-of-mass energy of 7TeVwas measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0fb -1. The measurement covers a phase space up to 2TeV in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantummore » chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass M Z is determined to be α S(M Z)=0.1185±0.0019(exp) +0.0060 -0.0037(theo), which is in agreement with the world average.« less

  3. Water quality of the tidal Potomac River and Estuary: Hydrologic Data Reports supplement, 1979 through 1981 water years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coupe, R.H. Jr.; Webb, W.E.

    1984-01-01

    This report is a companion report to the US Geological Survey 1979, 1980, and 1981 Hydrologic Data Reports of the tidal Potomac River and Estuary. The information included in this report contains values of biochemical oxygen demand and specific-rate constants, incident-light and light-attenuation measurements; numbers of phytoplankton, fecal coliform and fecal streptococci; cross-sectional averages from field measurements of dissolved oxygen, pH, specific conductance, and temperature data; and cross-sectional averages of chlorophyll data. Sewage-treatment plant loads are also included. 29 refs., 4 figs., 3 tabs.

  4. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  5. Understanding the kinetics of the ClO dimer cycle

    NASA Astrophysics Data System (ADS)

    von Hobe, M.; Salawitch, R. J.; Canty, T.; Keller-Rudek, H.; Moortgat, G. K.; Grooß, J.-U.; Müller, R.; Stroh, F.

    2006-08-01

    Among the major factors controlling ozone loss in the polar winter is the kinetics of the ClO dimer catalytic cycle. The most important issues are the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate. All these issues have been addressed in a large number of laboratory, field and theoretical studies, but large discrepancies between individual results exist and a self-consistent set of parameters compatible with field observations of ClO and Cl2O2 has not been identified. Here, we use thermodynamic calculations and unimolecular rate theory to constrain the ClO/Cl2O2 equilibrium constant and the rate constants for Cl2O2 formation and dissociation. This information is used together with available atmospheric data to examine Cl2O2 photolysis rates based on different Cl2O2 absorption cross sections. Good overall consistency is achieved using a ClO/Cl2O2 equilibrium constant recently suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on averaged absorption cross sections that are roughly intermediate between the JPL 2002 assessment and a laboratory study by Burkholder et al. (1990).

  6. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: bibliography of experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.

    1976-07-04

    The bibliographic citations in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has three arrangements: alphabetically by author, alphabetically by publication, and numerically by reference number.

  7. Tetramethylammonium for in vivo marking of the cross-sectional area of the scala media in the guinea pig cochlea.

    PubMed

    Salt, A N; DeMott, J

    1992-01-01

    A physiologic technique was developed to measure endolymphatic cross-sectional area in vivo using tetramethylammonium (TMA) as a volume marker. The technique was evaluated in guinea pigs as an animal model. In the method, the cochlea was exposed surgically and TMA was injected into endolymph of the second turn at a constant rate by iontophoresis. The concentration of TMA was monitored during and after the injection using ion-selective electrodes. Cross-section estimates derived from the TMA concentration measurements were compared in normal animals and animals in which endolymphatic hydrops had been induced by ablation of the endolymphatic duct and sac 8 weeks earlier. The method demonstrated a mean increase in cross-sectional area of 258% in the hydropic group. Individually measured area values were compared with action potential threshold shifts and the magnitude of the endocochlear potential (EP). Hydropic animals typically showed an increase in threshold to 2 kHz stimuli and a decrease in EP. However, the degree of threshold shift or EP decrease did not correlate well with the degree of hydrops present.

  8. Cavity-enhanced measurements of hydrogen peroxide absorption cross sections from 353 to 410 nm.

    PubMed

    Kahan, Tara F; Washenfelder, Rebecca A; Vaida, Veronica; Brown, Steven S

    2012-06-21

    We report near-ultraviolet and visible absorption cross sections of hydrogen peroxide (H(2)O(2)) using incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS), a recently developed, high-sensitivity technique. The measurements reported here span the range of 353-410 nm and extend published electronic absorption cross sections by 60 nm to absorption cross sections below 1 × 10(-23) cm(2) molecule(-1). We have calculated photolysis rate constants for H(2)O(2) in the lower troposphere at a range of solar zenith angles by combining the new measurements with previously reported data at wavelengths shorter than 350 nm. We predict that photolysis at wavelengths longer than those included in the current JPL recommendation may account for up to 28% of the total hydroxyl radical (OH) production from H(2)O(2) photolysis under some conditions. Loss of H(2)O(2) via photolysis may be of the same order of magnitude as reaction with OH and dry deposition in the lower atmosphere; these processes have very different impacts on HO(x) loss and regeneration.

  9. Chemical kinetic and photochemical data for use in stratospheric modelling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Stief, L. J.; Kaufman, F.; Golden, D. M.; Hampton, R. F.; Kurylo, M. J.; Margitan, J. J.; Molina, M. J.; Watson, R. T.

    1979-01-01

    An evaluated set of rate constants and photochemical cross sections were compiled for use in modelling stratospheric processes. The data are primarily relevant to the ozone layer, and its possible perturbation by anthropogenic activities. The evaluation is current to, approximately, January, 1979.

  10. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 6

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1983-01-01

    Evaluated sets of rate constants and photochemical cross sections are presented. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  11. Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 5

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1982-01-01

    Sets of rate constants and photochemical cross sections compiled which were evaluated. The primary application of the data is in the modeling of stratospheric processes on the ozone layer and its possible perturbation by anthropogenic and natural phenomena are emphasized.

  12. Root elongation against a constant force: experiment with a computerized feedback-controlled device

    NASA Technical Reports Server (NTRS)

    Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.

    2001-01-01

    Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.

  13. Determination of the top-quark pole mass and strong coupling constant from the t t-bar production cross section in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-08-21

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass,more » $$m_t^{pole}$$, or the strong coupling constant, $$\\alpha_S$$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$$^{+3.0}_{-2.8}$$ GeV is obtained when constraining $$\\alpha_S$$ at the scale of the Z boson mass, $$m_Z$$, to the current world average. Alternatively, by constraining $$m_t^{pole}$$ to the latest average from direct mass measurements, a value of $$\\alpha_S(m_Z)$$ = 0.1151$$^{+0.0028}_{-0.0027}$$ is extracted. This is the first determination of $$\\alpha_S$$ using events from top-quark production.« less

  14. Longitudinal and cross-sectional analyses of visual field progression in participants of the Ocular Hypertension Treatment Study.

    PubMed

    Artes, Paul H; Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2010-12-01

    To assess agreement between longitudinal and cross-sectional analyses for determining visual field progression in data from the Ocular Hypertension Treatment Study. Visual field data from 3088 eyes of 1570 participants (median follow-up, 7 years) were analyzed. Longitudinal analyses were performed using change probability with total and pattern deviation, and cross-sectional analyses were performed using the glaucoma hemifield test, corrected pattern standard deviation, and mean deviation. The rates of mean deviation and general height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, agreement on absence of progression ranged from 97.0% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than analyses of total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal changes. Despite considerable overall agreement, 40% to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension.

  15. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  16. A Measurement of $$t\\bar{t}$$Production Cross Section in $$p\\bar{p}$$ Collisions at $$\\sqrt{s}$$ = 1.8 TeV Using Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harpreet

    We present the results of a new measurement of themore » $$t\\bar{t}$$ production cross section using eμ channel in pp collisions at $$\\sqrt{s}$$= 1.8 TeV. This study corresponds to an integrated luminosity of 108.3 ± 5.7 $$pb^{-1}$$ acquired by the D0 detector during the Fermilab Tevatron Collider Run I (1992-1996). By using neural network techniques instead of the conventional analysis methods, we show that the signal acceptance can be increased by 10% (for $$m_t$$ = 172 GeV /$c^2$ ) while the background remains constant. Four eμ events are observed in data with an estimated background of 0.22 ± 0.14 corresponding to a $$t\\bar{t}$$ production cross section of 9.75 ± 5.53 pb.« less

  17. A measurement of t$$\\bar{t}$$ production cross section in p$$\\bar{p}$$ collisions at √s = 1.8 TeV using neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harpreet

    The authors present the results of a new measurement of the tmore » $$\\bar{t}$$ production cross section using eμ channel in p$$\\bar{p}$$ collisions at √s = 1.8 TeV. This study corresponds to an integrated luminosity of 108.3 ± 5.7 pb -1 acquired by the D0 detector during the Fermilab Tevatron Collider Run 1 (1992--1996). By using neural network techniques instead of the conventional analysis methods, the authors show that the signal acceptance can be increased by 10% (for m t = 172 GeV/c 2) while the background remains constant. Four eμ events are observed in data with an estimated background of 0.22 ± 0.14 corresponding to a t$$\\bar{t}$$ production cross section of 9.75 ± 5.53 pb.« less

  18. Predissociation linewidths of the (3,0)-(11,0) Schumann-Runge absorption bands of (O-18)2 and O-16O-18 in the wavelength region 180-196 nm

    NASA Technical Reports Server (NTRS)

    Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.

    1990-01-01

    The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.

  19. Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment.

    PubMed

    Krause, Maya; Blum, Jürgen

    2004-07-09

    In a second microgravity experiment on the formation of dust agglomerates by Brownian motion-induced collisions we find that the agglomerates have fractal dimensions as low as 1.4. Because of much better data, we are now able to derive the diffusion constant of the agglomerates as a function of mass, to show that a power law with an exponent of 1.7 describes the temporal evolution of the mean agglomerate mass very well and to prove that the collision cross section is proportional to the geometrical cross section. In addition to that we derived the universal mass-distribution function of the agglomerates.

  20. Calculated stopping powers of low-energy electrons in some materials of interest in radiation protection.

    PubMed

    Akande, W

    1993-03-01

    Stopping powers of low-energy (< 10 keV) electrons in aluminum, copper, cesium, barium, lead, lithium, and uranium were calculated using an analytic method. The interaction of the electrons with the materials were characterized in terms of three cross sections for total ionization and total scattering. Experimental cross section data were collated, where available, for the materials. The expressions were then fitted to the data to obtain the values of the relevant constants in the expressions. This enabled the basic equation of stopping powers of electrons to be evaluated for the materials. Comparison of the results obtained with those of other workers was affected.

  1. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  2. A model analysis of halogen kinetics: the ClOOCl catalytic cycle revisited

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Salawitch, R. J.; Wilmouth, D. M.

    2016-12-01

    We revisit prior analyses of simultaneous in situ observations of [ClO] and [ClOOCl] obtained in the Arctic polar vortex to evaluate recommended updates that govern the kinetics of the ClOOCl catalytic cycle. Available laboratory measurements of the ClOOCl absorption cross sections, the ClO+ClO reaction rate constant, and the ClO/ClOOCl equilibrium constant are considered, along with compendium evaluations of these kinetic parameters. We show that the latest recommendations for the kinetics that govern the partitioning of ClO and ClOOCl put forth by the JPL panel in Spring 2016 (JPL 15-10) are in good agreement with atmospheric observations of [ClO] and [ClOOCl]. Hence, we suggest that studies of polar ozone loss adopt these most recent recommendations. The latest JPL recommendation for the equilibrium constant suggests that ClOOCl is less stable than previously assumed, resulting in a shift in the termination temperature of polar ozone loss due to the ClOOCl catalytic cycle. Remaining uncertainties in our knowledge of the kinetics that govern the partitioning of ClO and ClOOCl within the activated vortex, and hence the efficiency of O3 loss by the ClO+ClO cycle, will be best addressed by future laboratory determinations of the absolute cross section of ClOOCl as well as measurements designed to reduce the uncertainty in the rate constant of the ClO+ClO reaction at cold temperatures characteristic of the polar, lower stratosphere.

  3. Optimization of Passive Coherent Receiver System Placement

    DTIC Science & Technology

    2013-09-01

    spheroid object with a constant radar cross section (RCS). Additionally, the receiver and transmitters are assumed to be notional isotropic antennae...software- defined radio for equatorial plasma instability studies,” Radio Science, vol. 48, pp. 1–11. Aug. 2013. [2] P. C. Zhang and B. Y. Li, “Passive

  4. Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $$ \\sqrt{s}=8 $$ TeV and cross section ratios to 2.76 and 7 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-03-29

    We presented a measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum p T and the absolute jet rapidity abs(y). Data from LHC proton-proton collisions at √s = 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns, have been collected with the CMS detector. Jets are reconstructed using the anti-k T clustering algorithm with a size parameter of 0.7 in a phase space region covering jet p T from 74 GeV up to 2.5 TeV and jet absolute rapidity up to abs(y) = 3.0. The low-p T jet range between 21 and 74 GeV is also studied up to abs(y) = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 inverse picobarns. Furthermore, the measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is α S(M Z) = 0.1164more » $$+0.0060\\atop{-0.0043}$$, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Finally, improved constraints on PDFs based on the inclusive jet cross section measurement are presented.« less

  5. Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $$ \\sqrt{s}=8 $$ TeV and cross section ratios to 2.76 and 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    We presented a measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum p T and the absolute jet rapidity abs(y). Data from LHC proton-proton collisions at √s = 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns, have been collected with the CMS detector. Jets are reconstructed using the anti-k T clustering algorithm with a size parameter of 0.7 in a phase space region covering jet p T from 74 GeV up to 2.5 TeV and jet absolute rapidity up to abs(y) = 3.0. The low-p T jet range between 21 and 74 GeV is also studied up to abs(y) = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 inverse picobarns. Furthermore, the measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is α S(M Z) = 0.1164more » $$+0.0060\\atop{-0.0043}$$, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Finally, improved constraints on PDFs based on the inclusive jet cross section measurement are presented.« less

  6. Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at √{s}=8 TeV and cross section ratios to 2.76 and 7 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elkafrawy, T.; Ellithi Kamel, A.; Mahrous, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Kuprash, O.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Parida, B.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Biasotto, M.; Boletti, A.; Carvalho Antunes De Oliveira, A.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Fantinel, S.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Kim, D.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chistov, R.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Mesropian, C.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Krutelyov, V.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-03-01

    A measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum p T and the absolute jet rapidity | y| is presented. Data from LHC proton-proton collisions at √{s}=8 TeV, corresponding to an integrated luminosity of 19.7 fb-1, have been collected with the CMS detector. Jets are reconstructed using the anti- k T clustering algorithm with a size parameter of 0.7 in a phase space region covering jet p T from 74 GeV up to 2.5 TeV and jet absolute rapidity up to | y| = 3.0. The low- p T jet range between 21 and 74 GeV is also studied up to | y| = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 pb-1. The measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is α S( M Z) = 0.1164 - 0.0043 + 0.0060 , where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Improved constraints on PDFs based on the inclusive jet cross section measurement are presented. [Figure not available: see fulltext.

  7. Problem of the slotted wing : a communication from the Aerodynamic Institute of the Aachen Technical High School

    NASA Technical Reports Server (NTRS)

    Klemperer, W

    1922-01-01

    It is to be expected that the advantageous properties, hitherto discovered in many slotted wing sections, depend very largely on the contour of the slot and the structural details of the wing. It is therefore of interest, aside from measurements on wings of constant cross-section along the span, to measure also wing models in which the structural details have already been given practical consideration.

  8. Indirect study of 12C(α,γ)16O reaction

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Roussel, P.; Pellegriti, M. G.; Audouin, L.; Beaumel, D.; Bouda, A.; Descouvemont, P.; Fortier, S.; Gaudefroy, L.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.

    2016-01-01

    The radiative capture reaction 12C(α,γ)16O plays an important role in helium burning in massive stars and their subsequent evolution [1]. However, despite various experimental studies, the cross section of this reaction at stellar energies remains highly uncertain. The extrapolation down to stellar energy (Ecm˜300 keV) of the measured cross sections at higher energies is made difficult by the overlap of various contributions of which some are badly known such as that of the 2+ (Ex=6.92 MeV) and 1- (Ex=7.12 MeV) sub-threshold states of 16O. Hence, to further investigate the contribution of these two-subthreshold resonances to the 12C(α,γ)16O cross section, a new determination of their a-reduced widths and so their a- spectroscopic-factors was performed using 12C(7Li,t)16O transfer reaction measurements at two incident energies and a detailed DWBA analysis of the data [2]. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a- reduced widths as well as the assymptotic normalization constants (ANC) for the 2+ and 1- subthreshold states. Finally, the results obtained from the R-matrix calculations of the 12C(α,γ)16O cross section using our obtained a-reduced widths for the two sub-threshold resonances are presented and discussed.

  9. Determination of Diffusion Parameters of Mean Moderation by Means of a Pulsed Neutron Source. I. Dowtherm A at 20 C; DETERMINAZIONE DEI PARAMETRI DI DIFFUSIONE DEI MEZZI MODERANTI CONIL METODO DELLA SORGENTE DI NEUTRONI PULSATA. I.DOWTHERM A (TEMPERATURE 20 C)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demanins, F.; Rado, V.; Vinci, F.

    1963-04-01

    The macroscopic absorption cross section, diffusion constant, diffusion cooling constant, transport mean free patu, extrapolated distance, diffusion length, and mean life for thermal neutrons were determined for Dowtherm A at 20 deg C, using a pulsed neutron source. The experimental assembly and data analysis method are described, and the results are compared with other determinations. (auth)

  10. Muon pair production at 52 GeV le radical s le 57 GeV using the AMY Detector at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacala, A.M.

    1989-01-01

    The reaction e{sup +}e{sup {minus}} {yields} {mu}{sup +}{mu}{sup {minus}} has been observed by the AMY Detector at 52 GeV {le} {radical}s {le} 57 GeV at the TRISTAN storage ring in Tsukuba, Japan. With an integrated luminosity of 18.6 pb{sup {minus}1}, this presents a new test of the standard model of the electroweak interactions in this previously unexplored energy region. The forward-backward charge asymmetry and the cross-section calculated at the various energies show agreement with the standard model predictions. The products of the vector and the axial-vector coupling constants of the electron and muon extracted from these measurements are also consistentmore » with theory. The data were combined at the average energy of {radical}s = 55.2 GeV. The measured asymmetry and cross-section are -34.4 {+-} 7.7% and 29.7 {+-} 2.1 pb respectively. This is in agreement with the standard model prediction of -28.3% for the asymmetry and 29.5 pb for the cross-section. The product of the axial couplings, g{sup e}{sub A}g{sup {mu}}{sub A} = 0.29 {+-} 0.07, and the product of the vector couplings, g{sup e}{sub V}g{sup {mu}}{sub V} = 0.01 {+-} 0.06, agree with the standard model predictions of 0.25 and .002 for these respective constants.« less

  11. Tracking for underweight, overweight and obesity from childhood to adolescence: a 5-year follow-up study in urban Indonesian children.

    PubMed

    Julia, M; van Weissenbruch, M M; Prawirohartono, E P; Surjono, A; Delemarre-van de Waal, H A

    2008-01-01

    To assess tracking of body mass index (BMI) of urban Indonesian children from childhood to adolescence and to compare the prevalence of underweight, overweight and obesity in 6- to 8-year-old children from two surveys: years 1999 and 2004. A longitudinal study assessing BMI tracking of 308 urban children followed from age 6-8 to 11-13 years and two cross-sectional surveys comparing the prevalence of underweight, overweight and obesity in 6- to 8-year-old children: year 1999 (n = 1,524) and 2004 (n = 510). Childhood BMI determined 52.3% variation of later BMI. After 5.1 (0.6) years the prevalence of overweight and obesity increased from 4.2 and 1.9% in childhood to 8.8 and 3.2% in adolescence. The prevalence of underweight decreased from 27.3 to 18.8%. All obese children remained obese, 84.6% overweight children stayed overweight, 56.0% underweight children remained underweight. In cross-sectional comparison the prevalence of overweight and obesity raised from 5.3 to 8.6% and from 2.7 to 3.7%, respectively. The prevalence of underweight remained constant. The prevalence of overweight and obesity increases as children grow into adolescence. Overweight or obese children are more likely to remain overweight or obese. Cross-sectional comparison shows, while the prevalence of underweight stays constant, the prevalence of overweight and obesity increases. (c) 2008 S. Karger AG, Basel

  12. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments

    USGS Publications Warehouse

    Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.

    1990-01-01

    The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and  is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.x

  13. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  14. Fibromyalgia Syndrome Symptoms and Effects: A Cross-Sectional Study.

    ERIC Educational Resources Information Center

    Prince, Alice; Bernard, Amy L.; Edsall, Patricia A.

    2000-01-01

    Surveyed fibromyalgia syndrome support group members about characteristics of the disease and how it affected their lives. Respondents had symptoms for many years before being diagnosed. Symptoms varied tremendously on a daily and yearly basis, so disease management was in a constant state of flux. Most symptoms significantly impacted quality of…

  15. Laboratory measurements. [chemical and photochemical data relative to stratospheric modeling

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A compilation of chemical and photochemical data that are relevant to stratospheric modeling is presented. There are three broad categories of data: (1) rate constants for chemical reactions, including temperature and pressure dependencies along with product distributions; (2) absorption cross sections, photodissociation quantum yield, and photolysis; (3) heterogeneous chemical processes.

  16. Chemical kinetic and photochemical data for use in stratospheric modeling evaluation number 4: NASA panel for data evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Evaluated sets of rate constants and photochemical cross sections compiled by the Panel are presented. The primary application of the data is in the modelling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  17. Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions

    NASA Astrophysics Data System (ADS)

    Gaikwad, Dhammajyot Kundlik; Pawar, Pravina P.; Selvam, T. Palani

    2017-09-01

    The mass attenuation coefficients (μ/ρ) for some enzymes, proteins, amino acids and fatty acids were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies, by performing transmission experiments using 57Co, 133Ba, 137Cs, 60Co and 22Na sources collimated to produce 0.52 cm diameter beams. A NaI (Tl) scintillation detector with energy resolution 8.2% at 663 keV was used for detection. The experimental values of (μ/ρ) were then used to determine the atomic cross section (σa), electronic cross section (σe), effective atomic number (Zeff) and electron density (Neff). It was observed that (μ/ρ), σa and σe decrease initially and then tends to be almost constant at higher energies. Values of Zeff and Neff were observed roughly constant with energy. The deviations in experimental results of radiological parameters were believed to be affected by physical and chemical environments. Experimental results of radiological parameters were observed in good agreement with WinXCom values.

  18. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: sobolevs@inr.ru

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in themore » present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.« less

  19. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    NASA Technical Reports Server (NTRS)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  20. Laboratory tank studies of a single species of phytoplankton using a remote sensing fluorosensor

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.; Jarrett, O., Jr.; Farmer, F. H.

    1981-01-01

    Phytoplankton were grown in the laboratory for the purpose of testing a remote fluorosensor. The fluorosensor uses a unique four-wavelength dye laser system to excite phytoplankton bearing chlorophyll and to measure the chlorophyll fluorescence generated by this excitation. Six different species were tested, one at a time, and each was grown two to four times. Fluorescence measured by the fluorosensor provides good quantitative measurement of chlorophyll concentrations for all species tested while the cultures were in log phase growth. Fluorescene cross section ratios obtained in the single species tank tests support the hypothesis that the shape of the fluorescence cross section curve remains constant with the species (differences in fluorescence cross section ratios are a basis for determining composition of phytoplankton according to color group when a multiwavelength source of excitation is used. Linear relationships exist between extracted chlorophyll concentration and fluorescence measured by the remote fluorosensor during the log phase growth of phytoplankton cultures tested.

  1. In-situ observation of the growth of individual silicon wires in the zinc reduction reaction of SiCl4

    NASA Astrophysics Data System (ADS)

    Inasawa, Susumu

    2015-02-01

    We conducted in-situ monitoring of the formation of silicon wires in the zinc reduction reaction of SiCl4 at 950 °C. Tip growth with a constant growth rate was observed. Some wires showed a sudden change in the growth direction during their growth. We also observed both the lateral faces and cross sections of formed wires using a scanning electron microscope. Although wires with smooth lateral faces had a smooth hexagonal cross section, those with rough lateral faces had a polygonal cross section with a radial pattern. The transition of lateral faces from smooth to rough was found even in a single wire. Because the diameter of the rough part became larger than that of the smooth part, we consider that the wire diameter is a key factor for the lateral faces. Our study revealed that both dynamic and static observations are still necessary to further understand the VLS growth of wires and nanowires.

  2. Investigation of heavy-ion fusion with deformed surface diffuseness: Actinide and lanthanide targets

    NASA Astrophysics Data System (ADS)

    Alavi, S. A.; Dehghani, V.

    2017-05-01

    By using a deformed Broglia-Winther nuclear interaction potential in the framework of the WKB method, the near- and above-barrier heavy-ion-fusion cross sections of 16O with some lanthanides and actinides have been calculated. The effect of deformed surface diffuseness on the nuclear interaction potential, the effective interaction potential at distinct angle, barrier position, barrier height, cross section at each angles, and fusion cross sections of 16O+147Sm,150Nd,154Sm , and 166Er and 16O+232Th,238U,237Np , and 248Cm have been studied. The differences between the results obtained by using deformed surface diffuseness and those obtained by using constant surface diffuseness were noticeable. Good agreement between experimental data and theoretical calculation with deformed surface diffuseness were observed for 16O+147Sm,154Sm,166Er,238U,237Np , and 248Cm reactions. It has been observed that deformed surface diffuseness plays a significant role in heavy-ion-fusion studies.

  3. Gravitational lensing frequencies - Galaxy cross-sections and selection effects

    NASA Technical Reports Server (NTRS)

    Fukugita, Masataka; Turner, Edwin L.

    1991-01-01

    Four issues - (1) the best currently available data on the galaxy velocity-dispersion distribution, (2) the effects of finite core radii potential ellipticity on lensing cross sections, (3) the predicted distribution of lens image separations compared to observational angular resolutions, and (4) the preferential inclusion of lens systems in flux limited samples - are considered in order to facilitate more realistic predictions of multiple image galaxy-quasar lensing frequencies. It is found that (1) the SIS lensing parameter F equals 0.047 +/-0.019 with almost 90 percent contributed by E and S0 galaxies, (2) observed E and S0 core radii are remarkably small, yielding a factor of less than about 2 reduction in total lensing cross sections, (3) 50 percent of galaxy-quasar lenses have image separations greater than about 1.3 arcsec, and (4) amplification bias factors are large and must be carefully taken into account. It is concluded that flat universe models excessively dominated by the cosmological constant are not favored by the small observed galaxy-quasar lensing rate.

  4. Charged black lens in de Sitter space

    NASA Astrophysics Data System (ADS)

    Tomizawa, Shinya

    2018-02-01

    We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory with a positive cosmological constant. It is shown that the solution obtained here describes the formation of a black hole with the spatial cross section of a sphere from that of the lens space of L (n ,1 ) in five-dimensional de Sitter space.

  5. Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 11

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1994-01-01

    This is the eleventh in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  6. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation No. 12

    NASA Technical Reports Server (NTRS)

    DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1997-01-01

    This is the twelfth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.

  7. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  8. Thermal neutron macroscopic absorption cross section measurement (theory, experiment and results) for small environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czubek, J.A.; Drozdowicz, K.; Gabanska, B.

    Czubek`s method of measurement of the thermal neutron macroscopic absorption cross section of small samples has been developed at the Henryk Niewodniczanski Institute of Nuclear Physics in Krakow, Poland. Theoretical principles of the method have been elaborated in the one-velocity diffusion approach in which the thermal neutron parameters used have been averaged over a modified Maxwellian. In consecutive measurements the investigated sample is enveloped in shells of a known moderator of varying thickness and irradiated with a pulsed beam of fast neutrons. The neutrons are slowed-down in the system and a die-away rate of escaping thermal neutrons is measured. Themore » decay constant vs. thickness of the moderator creates the experimental curve. The absorption cross section of the unknown sample is found from the intersection of this curve with the theoretical one. The theoretical curve is calculated for the case when the dynamic material buckling of the inner sample is zero. The method does not use any reference absorption standard and is independent of the transport cross section of the measured sample. The volume of the sample is form of fluid or crushed material is about 170 cm{sup 3}. The standard deviation for the measured mass absorption cross section of rock samples is in the range of 4 divided by 20% of the measured value and for brines is of the order of 0.5%.« less

  9. Measurements of 32SO2, 33SO2, 34SO2 and 36SO2 high-resolution cross-sections and isotope effects by SO2 self-shielding

    NASA Astrophysics Data System (ADS)

    Endo, Y.; Ogawa, M.; Danielache, S. O.; Ueno, Y.

    2017-12-01

    Archean sulfur mass-independent fractionation (S-MIF) is a unique proxy within the geological and geochemical records for studying the composition of the Archean atmosphere. S-MIF signatures are defined as Δ33S = δ33S - 0.515×δ34S and Δ36S = δ36S - 1.90×δ34S. Archean S-MIF is characterized as Δ36S/Δ33S = -1. Recent SO2 photochemical experiments under specific reducing conditions reproduced the Archean trend for the first time [1]. Self-shielding of SO2 photolysis and intersystem crossing in excited SO2 are probably key mechanisms for explaining Archean S-MIF. Self-shielding is originated from UV spectra changed by upper SO2 own absorption. Because 32S accounts for about 95% of all sulfur isotopes, the photolysis rate constant of only 32SO2 is lower than other isotopologue. Thus, SO2 photolysis in the bottom of the atmosphere undergoes mass-independent fractionation. Fractionation factors by SO2 photolysis reaction can be calculated by absorption cross-sections of 32SO2, 33SO2, 34SO2 and 36SO2 and respective quantum yields. Quantitative estimations self-shielding fractionation factors requires high-spectral resolution cross-sections, but they have not been reported yet. Here we report measurements of high-resolution cross-sections (1cm-1) and fractionation factors by SO2 photolysis including self-shielding. Moreover, because the absorption wavelength varies with each isotopologue, photolysis rate constants of all isotopologues (32S16O2, 32S16O18O, etc) should be different. Then self-shielding may affect the ratio of isotopologues such as clumped-isotopes. We calculated preliminary calculation clumped isotope enrichment in residual species by self-shielding. Reference: [1] Endo, Y., Ueno, Y., Aoyama, S., & Danielache, S. O. (2016). Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere. EPSL, 453, 9-22.

  10. Chemical kinetics and photochemical data for use in stratospheric modeling evaluation Number 8

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Molina, M. J.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.

    1987-01-01

    This is the eighth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory, Documentation Section, 111-116B, California Institute of Technology, Pasadena, California, 91109.

  11. Automated Aerial Refueling Position Estimation Using a Scanning LiDAR

    DTIC Science & Technology

    2012-03-22

    mask is for the Ibeo LUX 8L. The lines of constant elevation curve as described in Section 3.4.1.3. . . . . . . . . . . . . . . 27 ix Figure Page 3.8...in the correct direction as the red axis arrow however it must be orthogonal to the blue axis arrow. Thus a series of cross products are used to...Finally Chapter V concludes the thesis with an overview of the results of both the algorithms used for the relative position solution. This section

  12. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  13. New method for evaluation of bendability based on three-point-bending and the evolution of the cross-section moment

    NASA Astrophysics Data System (ADS)

    Troive, L.

    2017-09-01

    Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.

  14. Measurement of the ratios of neutral-current to charged current cross sections of neutrino and antineutrino interactions in Ne

    NASA Astrophysics Data System (ADS)

    Bosetti, P. C.; Fritze, P.; Grässler, H.; Hasert, F. J.; Schulte, R.; Schultze, K.; Geich-Gimbel, C.; Nellen, B.; Pech, R.; Wünsch, B.; Grant, A.; Hulth, P. O.; Klein, H.; Morrison, D. R. O.; Pape, L.; Wachsmuth, H.; Vayaki, A.; Barnham, K. W. J.; Beuselinck, R.; Clayton, E. F.; Miller, D. B.; Mobayyen, M. M.; Petrides, A.; Albajar, C.; Myatt, G.; Saitta, B.; Wells, J.; Bolognese, T.; Vignaud, D.; Aachen-Bonn-CERN-Democritos-Imperial College, London-Oxford-Saclay Collaboration

    1983-05-01

    The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2θw = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants uL2 and L2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.

  15. LHC constraints on color octet scalars

    NASA Astrophysics Data System (ADS)

    Hayreter, Alper; Valencia, German

    2017-08-01

    We extract constraints on the parameter space of the Manohar and Wise model by comparing the cross sections for dijet, top-pair, dijet-pair, t t ¯t t ¯ and b b ¯b b ¯ productions at the LHC with the strongest available experimental limits from ATLAS or CMS at 8 or 13 TeV. Overall we find mass limits around 1 TeV in the most sensitive regions of parameter space, and lower elsewhere. This is at odds with generic limits for color octet scalars often quoted in the literature where much larger production cross sections are assumed. The constraints that can be placed on coupling constants are typically weaker than those from existing theoretical considerations, with the exception of the parameter ηD.

  16. FIBER AND INTEGRATED OPTICS. OPTOELECTRONICS: Method for calculation of the parameters of guided waves in anisotropic dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Goncharenko, I. A.

    1989-07-01

    The method of shift formulas is applied to anisotropic dielectric waveguides capable of conserving a given state of polarization of the transmitted signal. Equations are derived for calculation of the propagation constants and of the dispersion of the fundamental modes in waveguides with an anisotropic permittivity and a noncircular shape of the transverse cross section. Distributions of electric and magnetic fields of these modes are obtained in a transverse cross section of the waveguide. It is shown that under the influence of the anisotropy of the dielectric an energy spot describing the distribution of the mode field becomes of an ellipse with its axes oriented along the coordinates coinciding with the principal axes of the permittivity tensor.

  17. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  18. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less

  19. Hydraulic geometry of river cross sections; theory of minimum variance

    USGS Publications Warehouse

    Williams, Garnett P.

    1978-01-01

    This study deals with the rates at which mean velocity, mean depth, and water-surface width increase with water discharge at a cross section on an alluvial stream. Such relations often follow power laws, the exponents in which are called hydraulic exponents. The Langbein (1964) minimum-variance theory is examined in regard to its validity and its ability to predict observed hydraulic exponents. The variables used with the theory were velocity, depth, width, bed shear stress, friction factor, slope (energy gradient), and stream power. Slope is often constant, in which case only velocity, depth, width, shear and friction factor need be considered. The theory was tested against a wide range of field data from various geographic areas of the United States. The original theory was intended to produce only the average hydraulic exponents for a group of cross sections in a similar type of geologic or hydraulic environment. The theory does predict these average exponents with a reasonable degree of accuracy. An attempt to forecast the exponents at any selected cross section was moderately successful. Empirical equations are more accurate than the minimum variance, Gauckler-Manning, or Chezy methods. Predictions of the exponent of width are most reliable, the exponent of depth fair, and the exponent of mean velocity poor. (Woodard-USGS)

  20. An atlas of objectively analyzed atmospheric cross sections, 1973-1980

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Gaines, S. E.; Hipskind, R. S.

    1985-01-01

    Atmospheric variability over time scales greater than one month is conceptually simplified and readily recognized from vertical cross-sections of zonal-monthly mean data. The reduction to two dimensions, latitude and height, explicitly eliminates all zonal waves but implicity retains their effects on the thermal-pressure fields and the dynamically related zonal wind fields. This atlas contains 96 examples, spanning all latitudes in both the northern and southern hemispheres and two decades in pressure, from 1000 to 10 mb. Four analyses, representing each month from January 1973 through December 1980, depicts the potential virtual temperature, the observed zonal wind velocity, the virtual temperature and the geostrophic zonal wind velocity. Each variable is contoured at a close interval to facilitate visual estimates of stability and vorticity via their gradients. The analyses are generated and contoured by objective computer methods from just one data source: in situ measurements from the conventional rawin-radiosonde system. Although the analyses are independently made at constant pressure levels (the mandatory levels) the cross-sections are drawn with geopotential height as the ordinate. With this ordinate one can observe the seasonal expansion and contraction of the earth's atmosphere, especially that of the polar stratosphere. Also, the quasi-biannual cycle can be identified and studied directly from successive cross-sections.

  1. Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Saidi, Mohammad Hassan; Moosavi, Ali; Sadeghi, Arman

    2017-12-01

    Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any arbitrary cross section, nine nanogeometries including polygonal, trapezoidal, double-trapezoidal, rectangular, elliptical, semi-elliptical, isosceles triangular, rhombic, and isotropically etched profiles are selected for presentation. For the special case of an elliptic cross section, full analytical solutions are also obtained utilizing the Mathieu functions. We show that the geometrical configuration plays a key role in determination of the ionic conductance, surface charge density, electrical potential and velocity fields, and proton enhancement. In this respect, the net electric charge and convective ionic conductance are higher for channels of larger perimeter to area ratio, whereas the opposite is true for the average surface charge density and mean velocity; the geometry impact on the two latest ones, however, vanishes if the background salt concentration is high enough. Moreover, we demonstrate that considering a constant surface potential equal to the average charge-regulated potential provides sufficiently accurate results for smooth geometries such as an ellipse at medium-high aspect ratios but leads to significant errors for geometries having narrow corners such as a triangle.

  2. Users Guide for Fire Image Analysis System - Version 5.0: A Tool for Measuring Fire Behavior Characteristics

    Treesearch

    Carl W. Adkins

    1995-01-01

    The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.

  3. Successfully Mapping the U-Tank to an Electric Circuit

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2010-01-01

    Water-flow analogies are helpful in understanding electricity. For example, in the Lodge model, the constant DC voltage source (a battery) is represented by a U-tank with two water columns of the same cross-sectional area connected by a horizontal duct in which a pump is installed. The pump maintains the difference of the levels of the two water…

  4. Determination of transverse elastic constants of wood using a cylindrically orthotropic model

    Treesearch

    John C. Hermanson

    2003-01-01

    The arrangement of anatomical elements in the cross section of a tree can be characterized, at least to a first approximation, with a cylindrical coordinate system. It seems reasonable that the physical properties of wood in the transverse plane, therefore, would exhibit behaviour that is associated with this anatomical alignment. Most of the transverse properties of...

  5. The energy balance in coronal holes and average quiet-sun regions

    NASA Technical Reports Server (NTRS)

    Raymond, J. C.; Doyle, J. G.

    1981-01-01

    Emission measure curves are presented for average coronal hole and quiet-sun spectra taken during the Skylab mission by Vernazza and Reeves (1978), and the curves are used to discuss the energy balance in each region. Close-coupling calculations are used for the Be sequence, assuming a 10 level ion; for B sequence ions mainly distorted wave calculations in an 11 level ion are used, but close-coupling cross sections are used for some ions; for C and Mg sequence ions, distorted wave calculations are used with 15 and 10 level ions, respectively, and close-coupling results are used for Li-like ions with two levels. Results are presented and include the following: the coronal hole spectrum shows a smaller slope in the emission measure distribution, consistent with the expected outflow effects. It is concluded that the simple constant pressure models of static coronal loops of constant cross section are basically able to match the observed emission measure distribution of the average quiet sun between 1,000,000 and 10,000,000 K. However, the cell center and network distributions are respectively steeper and shallower than predicted by the detailed cooling curve.

  6. Attenuation of thermal neutrons by an imperfect single crystal

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  7. Constraints on the photolysis and the equilibrium constant of ClO-dimer from airborne and balloon-borne measurements of chlorine compounds

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Canty, T. P.; Salawitch, R. J.; Khosravi, M.; Urban, J.; Toon, G. C.; Kuellmann, H.; Notholt, J.

    2011-12-01

    Significant differences exist between different laboratory measurements of the photolysis cross-sections of ClO-dimer, and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. This leads to uncertainties in the calculations of stratospheric ozone loss in the winter polar regions. One way to constrain the plausibility of these parameters is the measurement of ClO across the terminator in the activated polar vortex. Here we analyze measurements of ClO taken by the airborne submillimeter radiometer ASUR in the Arctic winter of 1999/2000. We use measured ClO at low solar zenith angles (SZA) to estimate the total active chlorine (ClOx). We estimate total available inorganic chlorine (Cly) using ASUR measurements of N2O in January 2000 and a N2O-Cly correlation established by a balloon measurement of the MarkIV interferometer in December 1999. We compare the ClOx estimates based on different photolysis rates of ClO-Dimer. Our results show that cross-sections leading to fast photolysis rates like the ones by Burkholder et al. [1990] or Papanastasiou et al. [2009] give ClOx mixing ratios that overlap with our estimated range of available Cly. Slower photolysis rates like the ones by von Hobe et al. [2009] and Pope et al. [2007] lead to ClOx values that are significantly higher than the available Cly. We use the calculated ClOx from low SZA to estimate the ClO in darkness with different equilibrium constants, and compare it with ASUR ClO measurements before sunrise (SZA > 95). We find that calculations with equilibrium constants published in the JPL evaluation of the last few years all give good agreement with observed ClO mixing ratios. The equilibrium constant estimated by von Hobe et al. [2005] yields ClO values that are higher than the ones observed.

  8. Effects of reactant rotational excitation on H + O2--> OH + O reaction rate constant: quantum wave packet, quasi-classical trajectory and phase space theory calculations.

    PubMed

    Lin, Shi Ying; Guo, Hua; Lendvay, György; Xie, Daiqian

    2009-06-21

    We examine the impact of initial rotational excitation on the reactivity of the H + O(2)--> OH + O reaction. Accurate Chebyshev wave packet calculations have been carried out for the upsilon(i) = 0, j(i) = 9 initial state of O(2) and the J = 50 partial wave. In addition, we present Gaussian-weighted quasi-classical trajectory and phase space theory calculations of the integral cross section and thermal rate constant for the title reaction. These theoretical results suggest that the initial rotational excitation significantly enhances reactivity with an amount comparable to the effect of initial vibrational state excitation. The inclusion of internally excited reactants is shown to improve the agreement with experimental rate constant.

  9. Polydisperse particle-driven gravity currents in non-rectangular cross section channels

    NASA Astrophysics Data System (ADS)

    Zemach, T.

    2018-01-01

    We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.

  10. High-energy pp and pp-bar forward elastic scattering and total cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, M.M.; Cahn, R.N.

    1985-04-01

    The present status of elastic pp and pp-bar scattering in the high-energy domain is reviewed, with emphasis on the forward and near-forward regions. The experimental techniques for measuring sigma/sub tot/, rho, and B are discussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere. The impact-parameter representation is exploited to give simple didactic demonstrations of important rigorous theorems based on analyticity, and to illuminate the significance of the slope parameter B and the curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of ''asymptopia'' is given. A critique ofmore » dispersion relations is presented. Simple analytic functions are used to fit simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp-bar, obtained from experimental data for sigma/sub tot/ and rho. It is found that a good fit can be obtained using only five parameters (with a cross section rising as ln/sup 2/s), over the energy range 5 < ..sqrt..s < 62 GeV. The possibilities that (a) the cross section rises only as lns, (b) the cross section rises only locally as ln/sup 2/s, and eventually goes to a constant value, and (c) the cross-section difference between pp and pp-bar does not vanish as s..-->..infinity are examined critically. The nuclear slope parameters B are also fitted in a model-independent fashion. Examination of the fits reveals a new regularity of the pp-bar and the pp systems.« less

  11. Longitudinal and Cross-Sectional Analyses of Visual Field Progression in Participants of the Ocular Hypertension Treatment Study (OHTS)

    PubMed Central

    Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2014-01-01

    Purpose Visual field progression can be determined by evaluating the visual field by serial examinations (longitudinal analysis), or by a change in classification derived from comparison to age-matched normal data in single examinations (cross-sectional analysis). We determined the agreement between these two approaches in data from the Ocular Hypertension Treatment Study (OHTS). Methods Visual field data from 3088 eyes of 1570 OHTS participants (median follow-up 7 yrs, 15 tests with static automated perimetry) were analysed. Longitudinal analyses were performed with change probability with total and pattern deviation, and cross-sectional analysis with Glaucoma Hemifield Test, Corrected Pattern Standard Deviation, and Mean Deviation. The rates of Mean Deviation and General Height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Results The agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, the agreement on absence of progression ranged from 97% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal change. Conclusions Despite considerable overall agreement, between 40 to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension. PMID:21149774

  12. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  13. Method for producing through extrusion an anisotropic magnet with high energy product

    DOEpatents

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  14. Shape optimization of the modular press body

    NASA Astrophysics Data System (ADS)

    Pabiszczak, Stanisław

    2016-12-01

    A paper contains an optimization algorithm of cross-sectional dimensions of a modular press body for the minimum mass criterion. Parameters of the wall thickness and the angle of their inclination relative to the base of section are assumed as the decision variables. The overall dimensions are treated as a constant. The optimal values of parameters were calculated using numerical method of the tool Solver in the program Microsoft Excel. The results of the optimization procedure helped reduce body weight by 27% while maintaining the required rigidity of the body.

  15. Omnidirectional antenna having constant phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Matthew

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less

  16. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  17. Modeling spanwise nonuniformity in the cross-sectional analysis of composite beams

    NASA Astrophysics Data System (ADS)

    Ho, Jimmy Cheng-Chung

    Spanwise nonuniformity effects are modeled in the cross-sectional analysis of beam theory. This modeling adheres to an established numerical framework on cross-sectional analysis of uniform beams with arbitrary cross-sections. This framework is based on two concepts: decomposition of the rotation tensor and the variational-asymptotic method. Allowance of arbitrary materials and geometries in the cross-section is from discretization of the warping field by finite elements. By this approach, dimensional reduction from three-dimensional elasticity is performed rigorously and the sectional strain energy is derived to be asymptotically-correct. Elastic stiffness matrices are derived for inputs into the global beam analysis. Recovery relations for the displacement, stress, and strain fields are also derived with care to be consistent with the energy. Spanwise nonuniformity effects appear in the form of pointwise and sectionwise derivatives, which are approximated by finite differences. The formulation also accounts for the effects of spanwise variations in initial twist and/or curvature. A linearly tapered isotropic strip is analyzed to demonstrate spanwise nonuniformity effects on the cross-sectional analysis. The analysis is performed analytically by the variational-asymptotic method. Results from beam theory are validated against solutions from plane stress elasticity. These results demonstrate that spanwise nonuniformity effects become significant as the rate at which the cross-sections vary increases. The modeling of transverse shear modes of deformation is accomplished by transforming the strain energy into generalized Timoshenko form. Approximations in this transformation procedure from previous works, when applied to uniform beams, are identified. The approximations are not used in the present work so as to retain more accuracy. Comparison of present results with those previously published shows that these approximations sometimes change the results measurably and thus are inappropriate. Static and dynamic results, from the global beam analysis, are calculated to show the differences between using stiffness constants from previous works and the present work. As a form of validation of the transformation procedure, calculations from the global beam analysis of initially twisted isotropic beams from using curvilinear coordinate axes featuring twist are shown to be equivalent to calculations using Cartesian coordinates.

  18. Measurement of elastic pp scattering at $$\\sqrt{\\hbox {s}} = \\hbox {8}$$ TeV in the Coulomb–nuclear interference region: Determination of the ρ-parameter and the total cross-section

    DOE PAGES

    Antchev, G.; Aspell, P.; Atanassov, I.; ...

    2016-11-30

    Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less

  19. Study of $$WW\\gamma $$ and $$WZ\\gamma $$ production in $pp$ collisions at $$\\sqrt{s} = {8} \\,{\\text {TeV}}$$ and search for anomalous quartic gauge couplings with the ATLAS experiment

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-09-25

    Our paper presents a study of WWγ and WZγ triboson production using events from proton–proton collisions at a centre-of-mass energy of √s=8TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb - 1 . The WWγ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos (e). Upper limits on the production cross-section of the e final state and the WWγ and WZγ final states containing an electron or a muon, two jets, a photon, and a neutrino (eνjjγ or μνjjγ) are also derived.more » The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. Our results are then interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which WWγ and WZγ production are sensitive.« less

  20. Quantum dynamics of the reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) from cold to hyperthermal energies: time-dependent wavepacket study and comparison with time-independent calculations.

    PubMed

    Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo

    2014-08-21

    We present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al. ( Chem. Phys. Lett. 2009, 469, 26). We consider the HeH(+) molecule in the ground vibrational–rotational state and obtain initial-state-resolved reaction probabilities and the ground-state cross section σ0 and rate constant k0 by propagating time-dependent, coupled-channel, real wavepackets (RWPs) and performing a flux analysis. Three different wavepackets are propagated to describe the wide range of energies explored, from cold (0.0001 meV) to hyperthermal (1000 meV) collision energies, and in a temperature range from 0.01 to 2000 K. We compare our time-dependent results with the time-independent ones by D. De Fazio and S. Bovino et al., where De Fazio carried out benchmark coupled-channel calculations whereas Bovino et al. employed the negative imaginary potential and the centrifugal-sudden approximations. The RWP cross section is in good agreement with that by De Fazio, except at the lowest collision energies below ∼0.01 meV, where the former is larger than the latter. However, neither the RWP and De Fazio results possess the huge resonance in probability and cross section at 0.01 meV, found by Bovino et al., who also obtained a too low σ0 at high energies. Therefore, the RWP and De Fazio rate constants compare quite well, whereas that by Bovino et al. is in general lower.

  1. Fourier Transform Ultraviolet Spectroscopy of the A Pi-2(3/2) Direct Current X Pi-2(3/2) Transition of BrO

    NASA Technical Reports Server (NTRS)

    Wilmouth, David M.; Hanisco, Thomas F.; Donahue, Neil M.; Anderson, James G.

    1999-01-01

    The first spectra of the A (2)Pi(sub 3/2) from X (2)Pi(sub 3/2) electronic transition of BrO using Fourier transform ultraviolet spectroscopy are obtained. Broadband vibrational spectra acquired at 298 +/- 2 K and 228 +/- 5 K, as well as high-resolution rotational spectra of the A from X 7,0 and 12,0 vibrational bands are presented. Wavenumber positions for the spectra are obtained with high accuracy, and cross section assignments are made, incorporating the existing literature. With 35 cm(exp -1) (0.40 nm) resolution the absolute cross section at the peak of the 7,0 band is determined to be (1.58 +/- 0.12) x 10(exp -17) sq cm/molecule at 298 +/- 2 K and (1.97 +/- 0.15) x 10(exp -17) sq cm/molecule at 228 +/- 5 K. BrO dissociation energies are determined with a graphical Birge-Sponer technique, using Le Roy-Bernstein theory to place an upper limit on the extrapolation. From the ground-state dissociation energy, D(sub o)" = 231.0 +/- 1.7 kJ/mol, the heat of formation of BrO(g) is calculated, del(sub f)H(0 K) = 133.7 +/- 1.7 kJ/mol and del(sub f)H(298.15 K) = 126.2 +/- 1.7 kJ/mol. Cross sections for the high-resolution 7,0 and 12,0 rotational peaks are the first to be reported. The band structures are modeled, and improved band origins, rotational constants, centrifugal distortion constants, and linewidths are determined. In particular, J-dependent linewidths and lifetimes are observed for the both the 7,0 and 12,0 bands.

  2. Nonrelativistic grey S n -transport radiative-shock solutions

    DOE PAGES

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-06-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that thismore » monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.« less

  3. Nonrelativistic grey S n -transport radiative-shock solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that thismore » monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.« less

  4. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  5. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  6. Chemical kinetics and photochemical data for use in stratospheric modeling

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.

    1992-01-01

    As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.

  7. Estimation of Moisture Content of Forest Canopy and Floor from SAR Data Part II: Trunk-Ground Double-Bounce Case

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Saatchi, S.

    1996-01-01

    Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.

  8. Comparative Evaluation of Stress Distribution in Experimentally Designed Nickel-titanium Rotary Files with Varying Cross Sections: A Finite Element Analysis.

    PubMed

    Basheer Ahamed, Shadir Bughari; Vanajassun, Purushothaman Pranav; Rajkumar, Kothandaraman; Mahalaxmi, Sekar

    2018-04-01

    Single cross-sectional nickel-titanium (NiTi) rotary instruments during continuous rotations are subjected to constant and variable stresses depending on the canal anatomy. This study was intended to create 2 new experimental, theoretic single-file designs with combinations of triple U (TU), triangle (TR), and convex triangle (CT) cross sections and to compare their bending stresses in simulated root canals with a single cross-sectional instrument using finite element analysis. A 3-dimensional model of the simulated root canal with 45° curvature and NiTi files with 5 cross-sectional designs were created using Pro/ENGINEER Wildfire 4.0 software (PTC Inc, Needham, MA) and ANSYS software (version 17; ANSYS, Inc, Canonsburg, PA) for finite element analysis. The NiTi files of 3 groups had single cross-sectional shapes of CT, TR, and TU designs, and 2 experimental groups had a CT, TR, and TU (CTU) design and a TU, TR, and CT (UTC) design. The file was rotated in simulated root canals to analyze the bending stress, and the von Mises stress value for every file was recorded in MPa. Statistical analysis was performed using the Kruskal-Wallis test and the Bonferroni-adjusted Mann-Whitney test for multiple pair-wise comparison with a P value <.05 (95 %). The maximum bending stress of the rotary file was observed in the apical third of the CT design, whereas comparatively less stress was recorded in the CTU design. The TU and TR designs showed a similar stress pattern at the curvature, whereas the UTC design showed greater stress in the apical and middle thirds of the file in curved canals. All the file designs showed a statistically significant difference. The CTU designed instruments showed the least bending stress on a 45° angulated simulated root canal when compared with all the other tested designs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.

  10. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  11. Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-06-01

    We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.

  12. A new model of arterial hemodynamics.

    PubMed

    Branzan, M; Sundri, G

    1983-01-01

    The determination of arterial blood flow parameters on the basis of ultrasound investigation requires a new hydrodynamic model of arterial circulation. Unlike previous research (Womersley, Bergel) considering the arterial pressure of its gradients to be known, the present model uses blood flow velocity and arterial radius magnitude easily obtained by ultrasound (Doppler effect). Processing these data requires the thorough analysis of rheological characteristics of blood flow and of arterial wall behaviour (elastic deformability). It has been assumed that: a) blood is a homogeneous and isotropic fluid; b) the artery has a cylindrical symmetry of a circular cross-section at any time moment; c) the pressure in the artery cross-section is constant. Because arterial dynamics has an undulatory character the Fourier analysis of the modified Navier-Stokes equations has been used. Finally, a simplified relation for blood pressure determination has been obtained.

  13. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  14. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-07

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

  15. Heat transfer enhancement and entropy generation analysis of Al2O3-water nanofluid in an alternating oval cross-section tube using two-phase mixture model under turbulent flow

    NASA Astrophysics Data System (ADS)

    Najafi Khaboshan, Hasan; Nazif, Hamid Reza

    2018-04-01

    Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.

  16. Development of a general method for obtaining the geometry of microfluidic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razavi, Mohammad Sayed, E-mail: m.sayedrazavi@gmail.com; Salimpour, M. R.; Shirani, Ebrahim

    2014-01-15

    In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flowmore » in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (A{sub i+1}/A{sub i}) and lengths (L{sub i+1}/L{sub i}) are obtained as A{sub i+1}/A{sub i} = 2{sup −2/3} and L{sub i+1}/L{sub i} = 2{sup −1/3}, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results.« less

  17. Cable equation for general geometry

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.

    2017-02-01

    The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  18. Experimental aerodynamics characteristics for bodies of elliptic cross section at angles of attack from 0 deg to 58 deg and Mach numbers from 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Nelson, E. R.

    1975-01-01

    An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.

  19. Associations of various perceived-stress situations with depressive symptoms in ≥50-year old Taiwanese men and women: Results from the Taiwan Longitudinal Study on Aging.

    PubMed

    Tsai, Hsin-Jen; Chang, Fu-Kuei

    2016-01-01

    This study was aimed to evaluate the cross-sectional and longitudinal associations between various perceived-stress and depressive symptoms in old Taiwanese men and women aged 50 years and over. Data were derived from the Taiwan Longitudinal Study on Aging. Stress for health, finance, and family members' related issues were all cross-sectionally associated with concurrent depressive symptoms for men and women (all P<0.05). Increased/constant-high health stress was positively associated with subsequent depressive symptoms in both genders (all P<0.05). Constantly high job stress and increased stress over family members' problems were associated with higher likelihood of subsequent depressive symptoms in men (P<0.05). Constantly high/increased financial stress and relationship strain with family members were positively associated with subsequent depressive symptoms in women (all P<0.05). The results suggest that stress for health, job, finance, and family members-related issues are unequally associated with depressive symptoms among Taiwanese men and women aged 50 years and over. Changes of health stress even reduced are significantly associated with subsequent depressive symptoms. Long-term job stress and increased stress over family members' problems increase occurrences of men's depressive symptoms, while increased/long-term financial stress and relationship-strain with family members increase occurrences of women's depressive symptoms. Long-term high health stress has more impacts on men's depressive symptoms than women's, while long-term high relationship strain with family members has more impacts on women's depressive symptoms than men's. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Computer program /P1-GAS/ calculates the P-0 and P-1 transfer matrices for neutron moderation in a monatomic gas

    NASA Technical Reports Server (NTRS)

    Collier, G.; Gibson, G.

    1968-01-01

    FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.

  1. Validation of DRAGON4/DONJON4 simulation methodology for a typical MNSR by calculating reactivity feedback coefficient and neutron flux

    NASA Astrophysics Data System (ADS)

    Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman

    2018-06-01

    The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.

  2. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Mitov, Alexander

    2012-12-01

    This is a second paper in our ongoing calculation of the next-to-next-to-leading order (NNLO) QCD correction to the total inclusive top-pair production cross-section at hadron colliders. In this paper we calculate the reaction qoverline{q}to toverline{t}+qoverline{q} which was not considered in our previous work on qoverline{q}to toverline{t}+X [1] due to its phenomenologically negligible size. We also calculate all remaining fermion-pair-initiated partonic channels q{q^' }} , q{{overline{q}}^' }} and qq that contribute to top-pair production starting from NNLO. The contributions of these reactions to the total cross-section for top-pair production at the Tevatron and LHC are small, at the permil level. The most interesting feature of these reactions is their characteristic logarithmic rise in the high energy limit. We compute the constant term in the leading power behavior in this limit, and achieve precision that is an order of magnitude better than the precision of a recent theoretical prediction for this constant. All four partonic reactions computed in this paper are included in our numerical program Top++. The calculation of the NNLO corrections to the two remaining partonic reactions, qgto toverline{t}+X and ggto toverline{t}+X , is ongoing.

  3. Longitudinal aerodynamic performance of a series of power-law and minimum wave drag bodies at Mach 6 and several Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1974-01-01

    Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.

  4. Measurements of event properties and multi-differential jet cross sections and impact of CMS measurements on Proton Structure and QCD parameters

    NASA Astrophysics Data System (ADS)

    Kaur, Anterpreet

    2018-01-01

    We present results on the measurements of characteristics of events with jets including jet-charge, investigations of shapes and jet mass distributions. The measurements are compared to theoretical predictions including those matched to parton shower and hadronization. Multi-differential jet cross sections are also presented over a wide range in transverse momenta from inclusive jets to multi-jet final states. These measurements have an impact on the determination of the strong coupling constant as well as on parton distribution functions (PDFs) and are helpful in the treatment of heavy flavours in QCD analyses. We also show angular correlations in multi-jet events at highest center-of-mass energies and compare the measurements to theoretical predictions including higher order parton radiation and coherence effects. Measurements of cross sections of jet and top-quark pair production are in particular sensitive to the gluon distribution in the proton, while the electroweak boson production - inclusive or associated with charm or beauty quarks - gives insight into the flavour separation of the proton sea and to the treatment of heavy quarks in PDF-related studies.

  5. Unconventional bearing capacity analysis and optimization of multicell box girders.

    PubMed

    Tepic, Jovan; Doroslovacki, Rade; Djelosevic, Mirko

    2014-01-01

    This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.

  6. Development of ENDF/B-IV multigroup neutron cross-section libraries for the LEOPARD and LASER codes. Technical report on Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenquin, U.P.; Stewart, K.B.; Heeb, C.M.

    1975-07-01

    The principal aim of this neutron cross-section research is to provide the utility industry with a 'standard nuclear data base' that will perform satisfactorily when used for analysis of thermal power reactor systems. EPRI is coordinating its activities with those of the Cross Section Evaluation Working Group (CSEWG), responsible for the development of the Evaluated Nuclear Data File-B (ENDF/B) library, in order to improve the performance of the ENDF/B library in thermal reactors and other applications of interest to the utility industry. Battelle-Northwest (BNW) was commissioned to process the ENDF/B Version-4 data files into a group-constant form for use inmore » the LASER and LEOPARD neutronics codes. Performance information on the library should provide the necessary feedback for improving the next version of the library, and a consistent data base is expected to be useful in intercomparing the versions of the LASER and LEOPARD codes presently being used by different utility groups. This report describes the BNW multi-group libraries and the procedures followed in their preparation and testing. (GRA)« less

  7. S-wave refraction survey of alluvial aggregate

    USGS Publications Warehouse

    Ellefsen, Karl J.; Tuttle, Gary J.; Williams, Jackie M.; Lucius, Jeffrey E.

    2005-01-01

    An S-wave refraction survey was conducted in the Yampa River valley near Steamboat Springs, Colo., to determine how well this method could map alluvium, a major source of construction aggregate. At the field site, about 1 m of soil overlaid 8 m of alluvium that, in turn, overlaid sedimentary bedrock. The traveltimes of the direct and refracted S-waves were used to construct velocity cross sections whose various regions were directly related to the soil, alluvium, and bed-rock. The cross sections were constrained to match geologic logs that were developed from drill-hole data. This constraint minimized the ambiguity in estimates of the thickness and the velocity of the alluvium, an ambiguity that is inherent to the S-wave refraction method. In the cross sections, the estimated S-wave velocity of the alluvium changed in the horizontal direction, and these changes were attributed to changes in composition of the alluvium. The estimated S-wave velocity of the alluvium was practically constant in the vertical direc-tion, indicating that the fine layering observed in the geologic logs could not be detected. The S-wave refraction survey, in conjunction with independent information such as geologic logs, was found to be suitable for mapping the thickness of the alluvium.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraiz, Joaquin Lopez

    Experimental coincidence cross section and transverse-longitudinal asymmetry ATL have been obtained for the quasielastic (e,e'p) reaction in 16O, 12C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p miss < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A TL asymmetrymore » have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A TL measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A TL, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.« less

  9. Less-simplified models of dark matter for direct detection and the LHC

    NASA Astrophysics Data System (ADS)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  10. Nomadic concepts in the history of biology.

    PubMed

    Surman, Jan; Stráner, Katalin; Haslinger, Peter

    2014-12-01

    The history of scientific concepts has firmly settled among the instruments of historical inquiry. In our section we approach concepts from the perspective of nomadic concepts (Isabelle Stengers). Instead of following the evolution of concepts within one disciplinary network, we see them as subject to constant reification and change while crossing and turning across disciplines and non-scientific domains. This introduction argues that understanding modern biology is not possible without taking into account the constant transfers and translations that affected concepts. We argue that this approach does not only engage with nomadism between disciplines and non-scientific domains, but reflects on and involves the metaphoric value of concepts as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Equilibrium muscle cross-bridge behavior. Theoretical considerations.

    PubMed Central

    Schoenberg, M

    1985-01-01

    We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539

  12. FAST TRACK COMMUNICATION: Evaluation of the In concentration of an InxGa1-xSb alloy layer in cross-sectional HRTEM images of III-V semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Quan, Maohua; Guo, Fengyun; Li, Meicheng; Zhao, Liancheng

    2010-08-01

    Atomic-scale positional resolved lattice spacing measurement is used to study the In concentration of the alloy layer in InAs/InxGa1-xSb superlattices by the molecular beam epitaxy techniques. The unstrained lattice distance d along three directions, [0 0 1], [1 1 0] and [1 1 1], was measured and the average lattice constant was calculated. The experimental lattice constants of InAs layers are almost equal to the theoretical ones. We have found that the average lattice constant of In0.25Ga0.75Sb alloy layers is in good agreement with previously reported Vegard's values, being slightly larger. The results indicate that the In concentration of x = 0.18 has a larger deviation compared with the designed values.

  13. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  14. Rheology of U-Shaped Granular Particles

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Franklin, Scott

    We study the response of cylindrical samples of U-shaped granular particles (staples) to extensional loads. Samples elongate in discrete bursts (events) corresponding to particles rearranging and re-entangling. Previous research on samples of constant cross-sectional area found a Weibullian weakest-link theory could explain the distribution of yield points. We now vary the cross-sectional area, and find that the maximum yield pressure (force/area) is a function of particle number density and independent of area. The probability distribution function of important event characteristics -- the stress increase before an event and stress released during an event -- both fall of inversely with magnitude, reminiscent of avalanche dynamics. Fourier transforms of the fluctuating force (or stress) scales inversely with frequency, suggesting dry friction plays a role in the rearrangements. Finally, there is some evidence that dynamics are sensitive to the stiffness of the tensile testing machine, although an explanation for this behavior is unknown.

  15. Resonance treatment using pin-based pointwise energy slowing-down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less

  16. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  17. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  18. Diphoton production in association with two bottom jets

    NASA Astrophysics Data System (ADS)

    Fäh, Daniel; Greiner, Nicolas

    2017-11-01

    We study the production of a photon pair in association with two bottom jets at the LHC. This process constitutes an important background to double Higgs production with the subsequent decay of the two Higgs bosons into a pair of photons and b-quarks respectively. We calculate this process at next-to-leading order accuracy in QCD and find that QCD corrections lead to a substantial increase of the production cross section due to new channels opening up at next-to-leading order and their inclusion is therefore inevitable for a reliable prediction. Furthermore, the approximation of massless b-quarks is scrutinized by calculating the process with both massless and massive b-quarks. We find that the massive bottom quark leads to a substantial reduction of the cross section where the biggest effect is, however, due to the use of a four-flavor PDF set and the corresponding smaller values for the strong coupling constant.

  19. Two-body loss rates for reactive collisions of cold atoms

    NASA Astrophysics Data System (ADS)

    Cop, C.; Walser, R.

    2018-01-01

    We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.

  20. Statistical properties of Pu 243 , and Pu 242 ( n , γ ) cross section calculation

    DOE PAGES

    Laplace, T. A.; Zeiser, F.; Guttormsen, M.; ...

    2016-01-29

    The level density and γ-ray strength function (γSF) of 243Pu have been measured in the quasicontinuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The γSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of ω SR = 2.42(5) MeV and a total strength of B SR = 10.1(15) μ 2 N, which is in excellent agreementmore » with sum-rule estimates. Lastly, the measured level density and γSF were used to calculate the 242Pu(n,γ) cross section in a neutron energy range for which there were previously no measured data.« less

  1. Quantum Scattering Study of Ro-Vibrational Excitations in N+N(sub 2) Collisions under Re-entry Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Huo, Winifred M.

    2004-01-01

    A three-dimensional time-dependent quantum dynamics approach using a recently developed ab initio potential energy surface is applied to study ro-vibrational excitation in N+N2 exchange scattering for collision energies in the range 2.1- 3.2 eV. State-to-state integral exchange cross sections are examined to determine the distribution of excited rotational states of N(sub 2). The results demonstrate that highly-excited rotational states are produced by exchange scattering and furthermore, that the maximum value of (Delta)j increases rapidly with increasing collision energies. Integral exchange cross sections and exchange rate constants for excitation to the lower (upsilon = 0-3) vibrational energy levels are presented as a function of the collision energy. Excited-vibrational-state distributions for temperatures at 2,000 K and 10,000 K are included.

  2. Accurate quantum wave packet calculations for the F + HCl → Cl + HF reaction on the ground 1(2)A' potential energy surface.

    PubMed

    Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H

    2012-03-14

    We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.

  3. Smoking selectivity among Mexican immigrants to the United States using binational data, 1999-2012.

    PubMed

    Fleischer, Nancy L; Ro, Annie; Bostean, Georgiana

    2017-04-01

    Mexican immigrants have lower smoking rates than US-born Mexicans, which some scholars attribute to health selection-that individuals who migrate are healthier and have better health behaviors than their non-migrant counterparts. Few studies have examined smoking selectivity using binational data and none have assessed whether selectivity remains constant over time. This study combined binational data from the US and Mexico to examine: 1) the extent to which recent Mexican immigrants (<10years) in the US are selected with regard to cigarette smoking compared to non-migrants in Mexico, and 2) whether smoking selectivity varied between 2000 and 2012-a period of declining tobacco use in Mexico and the US. We combined repeated cross-sectional US data (n=10.901) on adult (ages 20-64) Mexican immigrants and US-born Mexicans from the 1999/2000 and 2011/2012 National Health Interview Survey, and repeated cross-sectional Mexican data on non-migrants (n=67.188) from the 2000 Encuesta Nacional de Salud and 2012 Encuesta Nacional de Salud y Nutrición. Multinomial logistic regressions, stratified by gender, predicted smoking status (current, former, never) by migration status. At both time points, we found lower overall smoking prevalence among recent US immigrants compared to non-migrants for both genders. Moreover, from the regression analyses, smoking selectivity remained constant between 2000 and 2012 among men, but increased among women. These findings suggest that Mexican immigrants are indeed selected on smoking compared to their non-migrating counterparts, but that selectivity is subject to smoking conditions in the sending countries and may not remain constant over time. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Validation of Long Bone Mechanical Properties from Densitometry

    NASA Technical Reports Server (NTRS)

    Whalen, R.; Katz, B.; Cleek, T.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    The objective of this study was to assess whether cross-sectional areal properties, calculated from densitometry, correlate to the true flexural properties. Right and left male embalmed tibiae were used in the study. Prior to scanning, the proximal end of each tibia was potted in a fixture with registration pins, flushed thoroughly with water under pressure to remove trapped air, and then placed in a constant thickness water bath attached to a precision indexer. Two sets of three scans of the entire tibia were taken with an Hologic QDR 1000/W densitometer at rotations of 0, 45, and 90 degrees about the tibia long axis. An aluminum step phantom and a bone step phantom, machined from bovine cortical bone, were also in the bath and scanned separately. Pixel attenuation data from the two sets of scans were averaged to reduce noise. Pixel data from the high energy beam were then converted to equivalent thicknesses using calibration equations. Cross-sectional areal properties (centroid, principal area moments and principal angle) along the length were computed from the three registered scans using methods developed in our laboratory. Flexural rigidities. Four strain gages were bonded around the circumference of each of 5 cross-sections encompassing the entire diaphysis. A known transverse load was then applied to the distal end and the bone was rotated 360 degrees in eight increments of 45 degrees each. Strains from the eight orientations were analyzed along with the known applied bending moments at each section to compute section centroids, curvatures, principal flexural rigidities and principal angle. Reference axes between the two methods were maintained within +/- 0.5 degrees using an electronic inclinometer. Principal angles (flexural - areal) differed by -2.0 +/- 4.0 degrees, and 1.0 +/- 2.5 degrees for the right and left tibia, respectively. Section principal flexural rigidities were highly correlated to principal areal moments (right: r(sup 2)= 0.997; left: r(sup 2)= 0.978) indicating a nearly constant effective flexural modulus. Right and left tibia exhibited a very high degree of symmetry when comparing either flexural or areal properties. To our knowledge this is the first study to validate the use of densitometry (DXA) to predict three dimensional structural properties of long bones. Our initial results support the conclusion that bone mineral and its distribution are the primary determinants of flexural modulus and rigidity.

  5. O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment.

    PubMed

    Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H

    2009-12-14

    We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

  6. Chemical changes and carbon isotope variations in a cross-section of a large Miocene gymnospermous log

    USGS Publications Warehouse

    Bates, A.L.; Spiker, E. C.

    1992-01-01

    The cross-sectional radius of a 3-m (diam.) brown coal gymnospermous log of Miocene age, previously analyzed for carbohydrate and lignin methoxyl content by solid-state 13C nuclear magnetic resonance spectroscopy, was examined using stable carbon isotopic ratios in order to determine if the isotopic composition could be related to chemical changes or to radial position. This study found a possible relationship between ??13C-values and radial position; however, these changes cannot be linked to carbohydrate content and are probably attributable to changing growth conditions during the lifetime of the tree. An apparent linear relationship between the changes in carbohydrate content after sodium para-periodate treatment and corresponding changes in the ??13C-values indicates constant isotopic fractionation between lignin and carbohydrates along the cross-sectional radius. This result indicates that diagenesis has not produced any significant change in the lignin-carbohydrate carbon isotopic fractionation or, alternatively, that diagenesis has erased any fractionation pattern that once existed. A sample of fresh wood from another gymnospermous species was analyzed by the same methods and found to have lignin-carbohydrate carbon isotopic fractionation significantly different from that of the Miocene log section samples, suggesting that differences may be species-related or that the complex mixture of carbohydrates in the fresh wood was isotopically different from that of the degraded wood, and the whole Miocene log was uniformly altered. ?? 1992.

  7. Nuclear electromagnetic charge and current operators in Chiral EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  8. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18

    NASA Technical Reports Server (NTRS)

    Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.

    2015-01-01

    This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/

  9. A new approach to flow through a region bounded by two ellipses of the same ellipticity

    NASA Astrophysics Data System (ADS)

    Lal, K.; Chorlton, F.

    1981-05-01

    A new approach is presented to calculate steady flow of a laminar viscous incompressible fluid through a channel whose cross section is bounded by two ellipses with the same ellipticity. The Milne-Thomas approach avoids the stream function and is similar to the Rayleigh-Ritz approximation process of the calculus of variations in its first satisfying boundary conditions and then adjusting constants or multiplying functions to fit the differential equation.

  10. Diffusion and saponification inside porous cellulose triacetate fibers.

    PubMed

    Braun, Jennifer L; Kadla, John F

    2005-01-01

    Cellulose triacetate (CTA) fibers were partially hydrolyzed in 0.054 N solutions of NaOH/H(2)O and NaOMe/MeOH. The surface concentration of acetyl groups was determined using ATR-FTIR. Total acetyl content was determined by the alkaline hydrolysis method. Fiber cross-sections were stained with Congo red in order to examine the interface between reacted and unreacted material; these data were used to estimate the rate constant k and effective diffusivity D(B) for each reagent during the early stages of reaction by means of a volume-based unreacted core model. For NaOH/H(2)O, k = 0.37 L mol(-1) min(-1) and D(B) = 6.2 x 10(-7) cm(2)/sec; for NaOMe/MeOH, k = 4.0 L mol(-1) min(-1) and D(B) = 5.7 x 10(-6) cm(2)/sec. The NaOMe/MeOH reaction has a larger rate constant due to solvent effects and the greater nucleophilicity of MeO(-) as compared to OH(-); the reaction has a larger effective diffusivity because CTA swells more in MeOH than it does in water. Similarities between calculated concentration profiles for each case indicate that the relatively diffuse interface seen in fibers from the NaOMe/MeOH reaction results from factors not considered in the model; shrinkage of stained fiber cross-sections suggests that increased disruption of intermolecular forces may be the cause.

  11. Defect of the well-known (classical) expression for the ionization rate in gas-discharge plasma and its modification

    NASA Astrophysics Data System (ADS)

    Litvinov, I. I.

    2015-11-01

    A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α i of neutral atoms and ions, derived by linearization of the ionization cross section σ i (ɛ) as a function of the electron energy near the threshold I and containing the characteristic factor ( I + 2 kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ i (ɛ), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α i (˜4 kT/I) already at moderate values of the temperature ( kT/I ˜ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.

  12. Estimation of dioxin and furan elimination rates with a pharmacokinetic model.

    PubMed

    Van der Molen, G W; Kooijman, B A; Wittsiepe, J; Schrey, P; Flesch-Janys, D; Slob, W

    2000-01-01

    Quantitative description of the pharmacokinetics of dioxins and furans in humans can be of great help for the assessment of health risks posed by these compounds. To that the elimination rates of sixteen 2,3,7,8-chlorinated dibenzodioxins and dibenzofurans are estimated from both a longitudinal and a cross-sectional data set using the model of Van der Molen et al. [Van der Molen G.W., Kooijman S.A.L.M., and Slob W. A generic toxicokinetic model for persistent lipophilic compounds in humans: an application to TCDD. Fundam Appl Toxicol 1996: 31: 83-94]. In this model the elimination rate is given by the (constant) specific elimination rate multiplied with the ratio between the lipid weight of the liver and total body lipid weight. Body composition, body weight and intake are assumed to depend on age. The elimination rate is, therefore, not constant. For 49-year-old males, the elimination rate estimates range between 0.03 per year for 1,2,3,6,7,8-hexaCDF to 1.0 per year for octaCDF. The elimination rates of the most toxic congeners, 2,3,7,8-tetraCDD, 1,2,3,7,8-pentaCDD, and 2,3,4,7,8-pentaCDF, were estimated at 0.09, 0.06, and 0.07, respectively, based on the cross-sectional data, and 0.11, 0.09, and 0.09 based on the longitudinal data. The elimination rates of dioxins decrease with age between 0.0011 per year for 1,2,3,6,7,8-hexaCDD and 0.0035 per year for 1,2,3,4,6,7,8-heptaCDD. For furans the average decrease is 0.0033 per year. The elimination rates were estimated both from a longitudinal and a cross-sectional data set, and agreed quite well with each other, after taking account of historical changes in average intake levels.

  13. Dynamics of gas phase Ne{sup *} + NH{sub 3} and Ne{sup *} + ND{sub 3} Penning ionisation at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankunas, Justin; Bertsche, Benjamin; Osterwalder, Andreas, E-mail: andreas.osterwalder@epfl.ch

    2014-06-28

    Two isotopic chemical reactions, Ne{sup *} + NH{sub 3}, and Ne{sup *} + ND{sub 3}, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely, Ne{sup *} + NH{sub 3} → Ne + NH{sub 3}{sup +} + e{sup −}, and Ne{sup *} + NH{sub 3} → Ne + NH{sub 2}{sup +}+ H + e{sup −}, by detecting the NH{sub 3}{sup +} and NH{sub 2}{sup +} product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, E{sub coll},more » in the range 8 μeV < E{sub coll} < 20 meV. The measured rate constant exhibits a curvature in a log(k)-log(E{sub coll}) plot from which it is concluded that the Langevin capture model does not properly describe the Ne{sup *} + NH{sub 3} reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels, Γ=([NH{sub 2}{sup +}])/([NH{sub 2}{sup +}]+[NH{sub 3}{sup +}]) , is relatively constant, Γ ≈ 0.3, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalized in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the Ne{sup *} + NH{sub 3} and Ne{sup *} + ND{sub 3} reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.« less

  14. Geometric effects on electrocapillarity in nanochannels with an overlapped electric double layer.

    PubMed

    Lee, Jung A; Kang, In Seok

    2016-10-01

    Unsteady filling of electrolyte solution inside a nanochannel by the electrocapillarity effect is studied. The filling rate is predicted as a function of the bulk concentration of the electrolyte, the surface potential (or surface charge density), and the cross sectional shape of the channel. For a nanochannel, the average outward normal stress exerted on the cross section of a channel (P[over ¯]_{zz}^{}) can be regarded as a measure of electrocapillarity and it is the driving force of the flow. This electrocapillarity measure is first analyzed by using the solution of the Poisson-Boltzmann equation. From the analysis, it is found that the results for many different cross sectional shapes can be unified with good accuracy if the hydraulic radius is adopted as the characteristic length scale of the problem. Especially in the case of constant surface potential, for both limits of κh→0 and κh→∞, it can be shown theoretically that the electrocapillarity is independent of the cross sectional shape if the hydraulic radius is the same. In order to analyze the geometric effects more systematically, we consider the regular N-polygons with the same hydraulic radius and the rectangles of different aspect ratios. Washburn's approach is then adopted to predict the filling rate of electrolyte solution inside a nanochannel. It is found that the average filling velocity decreases as N increases in the case of regular N-polygons with the same hydraulic radius. This is because the regular N-polygons of the same hydraulic radius share the same inscribing circle.

  15. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-06

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  16. Measurement of low-$$p_T$$ $D^+$ meson production cross-section at CDF II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchese, L.

    In this paper I report on a measurement of the low- p T D + -meson production cross-section in proton-antiproton collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the CDF experiment at the Tevatron collider during Run II. The measurement is performed in a yet unexplored low transverse momentum range, down to 1.5 GeV/ c . The actual QCD theory cannot predict the behavior of the strong interactions in the low transferred-four-momentum region because in these kinematic conditions the strong coupling constant is of the order of the unity. Thus, a perturbative expansion is notmore » useful. At present, several phenomenological models have been proposed, but they are able to describe only a few aspects of the observed physical quantities and not the full complexity. Experimental results in these conditions are then crucial to test new QCD models. The measurement of the differential cross section at low p T plays an important role in this context allowing refinement of current knowledge. While these results lie within the band of theoretical uncertainty, differences in shape suggest that theoretical predictions can benefit from further refinement taking account of them.« less

  17. Temperature Dependence of the Collisional Removal of O2(A(sup 3)Sigma(sup +)(sub u), upsilon=9 ) with O2 and N2

    NASA Technical Reports Server (NTRS)

    Hwang, Eunsook S.; Copeland, Richard A.

    1997-01-01

    The temperature dependence of the collisional removal of O2 molecules in the upsilon = 9 level of the A(sup 3)Sigma(sup +)(sub u) electronic state has been studied for the colliders O2 and N2, over the temperature range 150 to 300 K. In a cooled flow cell, the output of a pulsed dye laser excites the O2 to the upsilon = 9 level of the A(sup 3)Sigma(sup +)(sub u) state, and the output of a time-delayed second laser monitors the temporal evolution of this level via a resonance-enhanced ionization. We find the u thermally averaged removal cross section for O2 collisions is constant (approx. 10 A(sup 2)) between room temperature and 200 K, then increases rapidly with decreasing temperature, doubling by 150 K. In contrast, the N2 cross section at 225 K is approx. 8% smaller and gradually increases to a value at 150 K that is approx. 60% larger than the room temperature value. The difference between the temperature dependence of the O2 and N2 collision cross section implies that the removal by oxygen becomes more important at the lower temperatures found in the mesosphere, but removal by N2 still dominates.

  18. Comparison of the effect of soft-core potentials and Coulombic potentials on bremsstrahlung during laser matter interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward

    2018-04-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.

  19. Measurement of low-$$p_T$$ $D^+$ meson production cross-section at CDF II

    DOE PAGES

    Marchese, L.

    2017-03-17

    In this paper I report on a measurement of the low- p T D + -meson production cross-section in proton-antiproton collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the CDF experiment at the Tevatron collider during Run II. The measurement is performed in a yet unexplored low transverse momentum range, down to 1.5 GeV/ c . The actual QCD theory cannot predict the behavior of the strong interactions in the low transferred-four-momentum region because in these kinematic conditions the strong coupling constant is of the order of the unity. Thus, a perturbative expansion is notmore » useful. At present, several phenomenological models have been proposed, but they are able to describe only a few aspects of the observed physical quantities and not the full complexity. Experimental results in these conditions are then crucial to test new QCD models. The measurement of the differential cross section at low p T plays an important role in this context allowing refinement of current knowledge. While these results lie within the band of theoretical uncertainty, differences in shape suggest that theoretical predictions can benefit from further refinement taking account of them.« less

  20. Mechanically stable, high-aspect-ratio, multifilar, wound, ribbon-type conductor and method for manufacturing same

    DOEpatents

    Cottingham, J.G.

    1982-03-15

    A mechanically stable, wound, multifilar, ribbon-type conductor is described having a cross-sectional aspect ratio which may be greater than 12:1, comprising a plurality of conductive strands wound to form a flattened helix containing a plastic strip into which the strands have been pressed so as to form a bond between the strip and the strands. The bond mechanically stabilizes the conductor under tension, preventing it from collapsing into a tubular configuration. In preferred embodiments the plastic strip may be polytetrafluoroethylene, and the conductive strands may be formed from a superconductive material. Conductors in accordance with the present invention may be manufactured by winding a plurality of conductive strands around a hollow mandrel; the cross-section of a hollow mandrel; the cross-section of the mandrel continuously varying from substnatially circular to a high aspect ratio elipse while maintaining a constant circumference. The wound conductive strands are drawn from the mandrel as a multifilar helix while simultaneously a plastic strip is fed through the hollow mandrel so that it is contained within the helix as it is withdrawn from the mandrel. The helical conductor is then compressed into a ribbon-like form and the strands are bonded to the plastic strip by a combination of heat and pressure.

  1. Mechanically stable, high aspect ratio, multifilar, wound, ribbon-type conductor and method for manufacturing same

    DOEpatents

    Cottingham, James G.

    1987-01-01

    A mechanically stable, wound, multifilar, ribbon-type conductor having a cross-sectional aspect ratio which may be greater than 12:1, comprising a plurality of conductive strands wound to form a flattened helix containing a plastic strip into which the strands have been pressed so as to form a bond between the strip and the strands. The bond mechanically stabilizes the conductor under tension, preventing it from collapsing into a tubular configuration. In preferred embodiments the plastic strip may be polytetrafluoroethylene, and the conductive strands may be formed from a superconductive material. Conductors in accordance with the present invention may be manufactured by winding a plurality of conductive strands around a hollow mandrel; the cross-section of a hollow mandrel; the cross-section of the mandrel continuously varying from substantially circular to a high aspect ratio elipse while maintaining a constant circumference. The wound conductive strands are drawn from the mandrel as a multifilar helix while simultaneously a plastic strip is fed through the hollow mandrel so that it is contained within the helix as it is withdrawn from the mandrel. The helical conductor is then compressed into a ribbon-like form and the strands are bonded to the plastic strip by a combination of heat and pressure.

  2. Mechanically stable, high aspect ratio, multifilar, wound, ribbon-type conductor and method for manufacturing same

    DOEpatents

    Cottingham, James G.

    1987-11-03

    A mechanically stable, wound, multifilar, ribbon-type conductor having a cross-sectional aspect ratio which may be greater than 12:1, comprising a plurality of conductive strands wound to form a flattened helix containing a plastic strip into which the strands have been pressed so as to form a bond between the strip and the strands. The bond mechanically stabilizes the conductor under tension, preventing it from collapsing into a tubular configuration. In preferred embodiments the plastic strip may be polytetrafluoroethylene, and the conductive strands may be formed from a superconductive material. Conductors in accordance with the present invention may be manufactured by winding a plurality of conductive strands around a hollow mandrel; the cross-section of a hollow mandrel; the cross-section of the mandrel continuously varying from substantially circular to a high aspect ratio elipse while maintaining a constant circumference. The wound conductive strands are drawn from the mandrel as a multifilar helix while simultaneously a plastic strip is fed through the hollow mandrel so that it is contained within the helix as it is withdrawn from the mandrel. The helical conductor is then compressed into a ribbon-like form and the strands are bonded to the plastic strip by a combination of heat and pressure.

  3. Nuclear-spin optical rotation in xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savukov, Igor Mykhaylovich

    We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less

  4. Nuclear-spin optical rotation in xenon

    DOE PAGES

    Savukov, Igor Mykhaylovich

    2015-10-29

    We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less

  5. Fusion and quasifission studies for the 40Ca+186W,192Os reactions

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Wakhle, A.

    2017-09-01

    Background: All elements above atomic number 113 have been synthesized using hot fusion reactions with calcium beams on statically deformed actinide target nuclei. Quasifission and fusion-fission are the two major mechanisms responsible for the very low production cross sections of superheavy elements. Purpose: To achieve a quantitative measurement of capture and quasifission characteristics as a function of beam energy in reactions forming heavy compound systems using calcium beams as projectiles. Methods: Fission fragment mass-angle distributions were measured for the two reactions 40Ca+186W and 40C+192Os, populating 226Pu and 232Cm compound nuclei, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass ratio distributions, angular distributions, and total fission cross sections were obtained from the experimental data. Simulations to match the features of the experimental mass-angle distributions were performed using a classical phenomenological approach. Results: Both 40Ca+186W and 40C+192Os reactions show strong mass-angle correlations at all energies measured. A maximum fusion probability of 60 -70 % is estimated for the two reactions in the energy range of the present study. Coupled-channels calculations assuming standard Woods-Saxon potential parameters overpredict the capture cross sections. Large nuclear potential diffuseness parameters ˜1.5 fm are required to fit the total capture cross sections. The presence of a weak mass-asymmetric quasifission component attributed to the higher angular momentum events can be reproduced with a shorter average sticking time but longer mass-equilibration time constant. Conclusions: The deduced above-barrier capture cross sections suggest that the dissipative processes are already occurring outside the capture barrier. The mass-angle correlations indicate that a compact shape is not achieved for deformation aligned collisions with lower capture barriers. The average sticking time of fast quasifission events is 10-20 s.

  6. The self-adjusting file (SAF). Part 1: respecting the root canal anatomy--a new concept of endodontic files and its implementation.

    PubMed

    Metzger, Zvi; Teperovich, Ehud; Zary, Raviv; Cohen, Raphaela; Hof, Rafael

    2010-04-01

    To introduce a new concept, the self-adjusting file (SAF), and discuss its unique features compared with current rotary nickel-titanium file systems. The SAF file is hollow and designed as a thin cylindrical nickel-titanium lattice that adapts to the cross-section of the root canal. A single file is used throughout the procedure. It is inserted into a path initially prepared by a # 20 K-file and operated with a transline- (in-and-out) vibration. The resulting circumferential pressure allows the file's abrasive surface to gradually remove a thin uniform hard-tissue layer from the entire root canal surface, resulting in a canal with a similar cross-section but of larger dimensions. This holds also for canals with an oval or flat cross-section, which will be enlarged to a flat or oval cross-section of larger dimensions. The straightening of curved canals is also reduced because of the high pliability of the file and the absence of a rigid metal core. Thus, the original shape of the root canal is respected both longitudinally and in cross-section. The hollow SAF file is operated with a constant flow of irrigant that enters the full length of the canal and that is activated by the vibration and is replaced continuously throughout the procedure. This results in effective cleaning even at the cul de sac apical part of the canal. The SAF has high mechanical endurance; file separation does not occur; and mechanical failure, if it occurs, is limited to small tears in the latticework. The SAF represents a new step forward in endodontic file development that may overcome many of the shortcomings of current rotary nickel-titanium file systems. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Fourier Domain Iterative Approach to Optical Sectioning of 3d Translucent Objects for Ophthalmology Purposes

    NASA Astrophysics Data System (ADS)

    Razguli, A. V.; Iroshnikov, N. G.; Larichev, A. V.; Romanenko, T. E.; Goncharov, A. S.

    2017-05-01

    In this paper we deal with the problem of optical sectioning. This is a post processing step while investigating of 3D translucent medical objects based on rapid refocusing of the imaging system by the adaptive optics technique. Each image, captured in focal plane, can be represented as the sum of in-focus true section and out-of-focus images of the neighboring sections of the depth that are undesirable in the subsequent reconstruction of 3D object. The problem of optical sectioning under consideration is to elaborate a robust approach capable of obtaining a stack of cross section images purified from such distortions. For a typical sectioning statement arising in ophthalmology we propose a local iterative method in Fourier spectral plane. Compared to the non-local constant parameter selection for the whole spectral domain, the method demonstrates both improved sectioning results and a good level of scalability when implemented on multi-core CPUs.

  8. Detecting temporal change in land-surface altitude using robotic land-surveying techniques and geographic information system applications at an earthen dam site in Southern Westchester County, New York

    USGS Publications Warehouse

    Noll, Michael L.; Chu, Anthony

    2017-08-14

    In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment at the Hillview Reservoir in southern Westchester County, New York. Monthly site inspections at the reservoir indicated an approximately 90-square-foot depression in the land surface directly upslope from a seep that has episodically flowed since 2007. In July 2008, the U.S. Geological Survey surveyed the topography of land surface in this depression area by collecting high-accuracy (resolution less than 1 inch) measurements. A point of origin was established for the topographic survey by using differentially corrected positional data collected by a global navigation satellite system. Eleven points were surveyed along the edge of the depression area and at arbitrary locations within the depression area by using robotic land-surveying techniques. The points were surveyed again in March 2012 to evaluate temporal changes in land-surface altitude. Survey measurements of the depression area indicated that the land-surface altitude at 8 of the 11 points decreased beyond the accepted measurement uncertainty during the 44 months from July 2008 to March 2012. Two additional control points were established at stable locations along Hillview Avenue, which runs parallel to the embankment. These points were measured during the July 2008 survey and measured again during the March 2012 survey to evaluate the relative accuracy of the altitude measurements. The relative horizontal and vertical (altitude) accuracies of the 11 topographic measurements collected in March 2012 were ±0.098 and ±0.060 feet (ft), respectively. Changes in topography at 8 of the 11 points ranged from 0.09 to 0.63 ft and topography remained constant, or within the measurement uncertainty, for 3 of the 11 points.Two cross sections were constructed through the depression area by using land-surface altitude data that were interpolated from positional data collected during the two topographic surveys. Cross section A–A′ was approximately 8.5 ft long and consisted of three surveyed points that trended north to south across the depression. Land-surface altitude change decreased along the entire north-south trending cross section during the 44 months, and ranged from 0.2 to more than 0.6 ft. In general, greater land-surface altitude change was measured north of the midpoint as compared to south of the midpoint of the cross section. Cross section B–B′ was 18 ft long and consisted of six surveyed points that trended east to west across the depression. Land-surface altitude change generally decreased or remained constant along the east-west trending cross section during the 44 months and ranged from 0.0 to 0.3 ft. Volume change of the depression area was calculated by using a three-dimensional geographic information system utility that subtracts interpolated surfaces. The results indicated a net volume loss of approximately 38 ±5 cubic feet of material from the depression area during the 44 months.

  9. Free drainage of aqueous foams: Container shape effects on capillarity and vertical gradients

    NASA Astrophysics Data System (ADS)

    Saint-Jalmes, A.; Vera, M. U.; Durian, D. J.

    2000-06-01

    The standard drainage equation applies only to foam columns of constant cross-sectional area. Here, we generalize to include the effects of arbitrary container shape and develop an exact solution for an exponential, "Eiffel Tower", sample. This geometry largely eliminates vertical wetness gradients, and hence capillary effects, and should permit a clean test of dissipation mechanisms. Agreement with experiment is not achieved at late times, however, highlighting the importance of both boundary conditions and coarsening.

  10. Continuous estimates of Survival through Eight Years of Service Using FY 1979 Cross-Sectional Data.

    DTIC Science & Technology

    1981-07-01

    performed for Class A school attendees and non-A school attendees, holding constant the effects of age, educational level, and mental group.* Mean...through eight years of service for _ non-prior service mail recruits. Average survival 0 times by education , mental group, and age are calculated from...attendees is 35 months and for non-A school attendees is 28 months. As expected, we found that educational level has the great- est impact on survival

  11. Empfangsleistung in Abhängigkeit von der Zielentfernung bei optischen Kurzstrecken-Radargeräten.

    PubMed

    Riegl, J; Bernhard, M

    1974-04-01

    The dependence of the received optical power on the range in optical short-distance radar range finders is calculated by means of the methods of geometrical optics. The calculations are based on a constant intensity of the transmitter-beam cross section and on an ideal thin lens for the receiver optics. The results are confirmed by measurements. Even measurements using a nonideal thick lens system for the receiver optics are in reasonable agreement with the calculations.

  12. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Friedl, R. R.; Golden, D. M.; Kurylo, M. J.; Moortgat, G. K.; Wine, P. H.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.; Finlayson-Pitts, B. J.; hide

    2006-01-01

    This is the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/.

  13. Model of the final borehole geometry for helical laser drilling

    NASA Astrophysics Data System (ADS)

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  14. Thermophysical Properties of Selected Rocks.

    DTIC Science & Technology

    1974-04-01

    the region below the melting point . Selected values are for Dresser basalt based on the data of Navarro and DeWitt [861 and of Marovelli and Veith [51...TO AT = T2 - T 1, q Is the rate of heat flow, A is the cross-sectional area of the specimen, and Ax is the distance between points of temperature...heater provides a constant heat, q, per unit time and length, and the temperature at a point in the spec- imen is recorded as a function of time. The

  15. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  16. A Nonlinear Finite Element Framework for Viscoelastic Beams Based on the High-Order Reddy Beam Theory

    DTIC Science & Technology

    2012-06-09

    employed theories are the Euler-Bernoulli beam theory (EBT) and the Timoshenko beam theory ( TBT ). The major deficiency associated with the EBT is failure to...account for defor- mations associated with shearing. The TBT relaxes the normality assumption of the EBT and admits a constant state of shear strain...on a given cross-section. As a result, the TBT necessitates the use of shear correction coefficients in order to accurately predict transverse

  17. Interpretation of neutrino-matter interactions at low energies as contraction of gauge group of Electroweak Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N. A., E-mail: gromov@dm.komisc.ru

    The very weak neutrino-matter interactions are explained with the help of the gauge group contraction of the standard Electroweak Model. The mathematical contraction procedure is connected with the energy dependence of the interaction cross section for neutrinos and corresponds to the limiting case of the Electroweak Model at low energies. Contraction parameter is connected with the universal Fermi constant of weak interactions and neutrino energy as j{sup 2}(s) = {radical}(G{sub F} s)

  18. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  19. Determination of the radial profile of the photoelastic coefficient of polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Acheroy, Sophie; Merken, Patrick; Geernaert, Thomas; Ottevaere, Heidi; Thienpont, Hugo; Berghmans, Francis

    2016-04-01

    We determine the radial profile of the photoelastic constant C(r) in two single mode and one multimode polymer optical fibers (POFs), all fabricated from polymethylmethacrylate (PMMA). To determine C(r) we first determine the retardance of the laterally illuminated fiber submitted to a known tensile stress uniformly distributed over the fiber cross-section. Then we determine the inverse Abel transform of the measured retardance to finally obtain C(r). We compare two algorithms based on the Fourier theory to perform the inverse transform. We obtain disparate distributions of C(r) in the three fibers. The mean value of C(r) varies from -7.6×10-14 to 5.4×10-12 Pa-1. This indicates that, in contrast to glass fibers, the radial profile of the photoelastic constant can considerable vary depending on the type and treatment of POFs, even when made from similar materials, and hence the photoelastic constant should be measured for each type of POF.

  20. Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins.

    PubMed

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2014-01-01

    Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains. Copyright © 2013 Wiley Periodicals, Inc.

  1. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  2. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  3. Analytic Results for e+e- --> tt-bar and gammagamma --> tt-bar Observables near the Threshold up to the Next-to-Next-to-Leading Order of NRQCD

    NASA Astrophysics Data System (ADS)

    Penin, A. A.; Pivovarov, A. A.

    2001-02-01

    We present an analytical description of top-antitop pair production near the threshold in $e^+e^-$ annihilation and $\\g\\g$ collisions. A set of basic observables considered includes the total cross sections, forward-backward asymmetry and top quark polarization. The threshold effects relevant for the basic observables are described by three universal functions related to S wave production, P wave production and S-P interference. These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total $e^+e^-\\to t\\bar t$ cross section near the threshold is obtained in the next-to-next-to-leading order in the closed form including the contribution due to the axial coupling of top quark and mediated by the Z-boson. The effects of the running of the strong coupling constant and of the finite top quark width are taken into account analytically for the P wave production and S-P wave interference.

  4. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    DOE PAGES

    McDermott, Samuel D.

    2018-06-01

    Here, we suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v n~(10 –(2–3)) n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ~0.1–1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ~O(100 MeV). Darkmore » fusion firmly predicts constant σv below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less

  5. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV).more » Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less

  6. Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingoez, A.; Lapierre, Alain; Nguyen, A.-T.

    2005-12-15

    We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 {mu}Torr of H{sub 2}, N{sub 2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H{sub 2} and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O{sub 2} are extracted from measurements usingmore » air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A 69, 22105 (2004)].« less

  7. Three-dimensional Fourier-domain optical coherence tomography of alveolar mechanics in stepwise inflated and deflated isolated and perfused rabbit lungs

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund

    2007-07-01

    Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.

  8. Bronchial-arterial interdependence in isolated dog lung.

    PubMed

    Lai-Fook, S J; Kallok, M J

    1982-04-01

    The bronchus and artery, embedded in the lung parenchyma, were modeled as adjoining cylindrical tubes in an elastic continuum. Solutions using finite-element analysis of nonuniform stress and strain occurring from an initial uniform state were computed for a reduction in arterial pressure. Maximal nonuniform principal and shear stresses in the parenchyma, equal to 2.5 times the mean periarterial stresses, occurred in the region adjacent to the bronchial-arterial joint. Bronchial cross section became oval and elongated along the line passing through the centers of the tubes, whereas arterial cross section elongated at right angles to this line. These predicted changes in shape of bronchus and artery were verified by radiographic measurements in isolated lobes, held at constant transpulmonary pressures of 4 and 25 cmH2O while arterial pressure was varied. Results suggest that peribronchovascular interstitial fluid pressure may be nonuniform and that the bronchial-arterial joint may be the preferential site for emphysematous perivascular lesions, which may occur on lung hyperinflation.

  9. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    NASA Astrophysics Data System (ADS)

    McDermott, Samuel D.

    2018-06-01

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn˜(10-(2 -3 ))n , where n =1 , 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ˜0.1 - 1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ ˜O (100 MeV ) . Dark fusion firmly predicts constant σ v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  10. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.

    Here, we suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v n~(10 –(2–3)) n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ~0.1–1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ~O(100 MeV). Darkmore » fusion firmly predicts constant σv below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less

  11. Reversing the effects of formalin fixation with citraconic anhydride and heat: a universal antigen retrieval method.

    PubMed

    Namimatsu, Shigeki; Ghazizadeh, Mohammad; Sugisaki, Yuichi

    2005-01-01

    Formalin is a commonly used fixative for tissue preservation in pathology laboratories. A major adverse effect of this fixative is the concealing of tissue antigens by protein cross-linking. To achieve a universal antigen retrieval method for immunohistochemistry under a constant condition, we developed a new method in which the effects of formalin fixation were reversed with citraconic anhydride (a reversible protein cross-linking agent) plus heating. Formalin-fixed, paraffin-embedded tissues from various organs were examined for immunohistochemical localization of a wide variety of antigens. Deparaffinized tissue sections were placed in an electric kitchen pot containing 0.05% citraconic anhydride solution, pH 7.4, and the pot was set at "keep warm" temperature mode of 98C for 45 min. This mode allowed heating the sections at a constant temperature. The sections were then washed in buffer solution and immunostained using a labeled streptavidin-biotin method using an automated stainer. In general, formalin-fixed tissues demonstrated specific immunostainings comparable to that in fresh frozen tissues and significantly more enhanced than after conventional antigen retrieval methods. In particular, even difficult-to-detect antigens such as CD4, cyclin D1, granzyme beta, bcl-6, CD25, and lambda chain revealed distinct immunostainings. Different classes of antigens such as cellular markers and receptors, as well as cytoplasmic and nuclear proteins, consistently produced enhanced reactions. This method provides efficient antigen retrieval for successful immunostaining of a wide variety of antigens under an optimized condition. It also allows standardization of immunohistochemistry for formalin-fixed tissues in pathology laboratories, eliminating inter-laboratory discrepancies in results for accurate clinical and research studies.

  12. The psychomechanics of simulated sound sources: Material properties of impacted bars

    NASA Astrophysics Data System (ADS)

    McAdams, Stephen; Chaigne, Antoine; Roussarie, Vincent

    2004-03-01

    Sound can convey information about the materials composing an object that are often not directly available to the visual system. Material and geometric properties of synthesized impacted bars with a tube resonator were varied, their perceptual structure was inferred from multidimensional scaling of dissimilarity judgments, and the psychophysical relations between the two were quantified. Constant cross-section bars varying in mass density and viscoelastic damping coefficient were synthesized with a physical model in experiment 1. A two-dimensional perceptual space resulted, and the dimensions were correlated with the mechanical parameters after applying a power-law transformation. Variable cross-section bars varying in length and viscoelastic damping coefficient were synthesized in experiment 2 with two sets of lengths creating high- and low-pitched bars. In the low-pitched bars, there was a coupling between the bar and the resonator that modified the decay characteristics. Perceptual dimensions again corresponded to the mechanical parameters. A set of potential temporal, spectral, and spectrotemporal correlates of the auditory representation were derived from the signal. The dimensions related to mass density and bar length were correlated with the frequency of the lowest partial and are related to pitch perception. The correlate most likely to represent the viscoelastic damping coefficient across all three stimulus sets is a linear combination of a decay constant derived from the temporal envelope and the spectral center of gravity derived from a cochlear representation of the signal. These results attest to the perceptual salience of energy-loss phenomena in sound source behavior.

  13. An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bétrémieux, Yan; Swain, Mark R.

    2017-05-01

    Although the formalism of Lecavelier des Etangs et al. is extremely useful to understand what shapes transmission spectra of exoplanets, it does not include the effects of a sharp change in flux with altitude generally associated with surfaces and optically thick clouds. Recent advances in understanding the effects of refraction in exoplanet transmission spectra have, however, demonstrated that even clear thick atmospheres have such a sharp change in flux due to a refractive boundary. We derive a more widely applicable analytical formalism by including first-order effects from all these 'surfaces' to compute an exoplanet's effective radius, effective atmospheric thickness and spectral modulation for an atmosphere with a constant scaleheight. We show that the effective radius cannot be located below these 'surfaces' and that our formalism matches the formalism of Lecavelier des Etangs et al. in the case of a clear atmosphere. Our formalism explains why clouds and refraction reduce the contrast of spectral features, and why refraction decreases the Rayleigh scattering slope as wavelength increases, but also shows that these are common effects of all 'surfaces'. We introduce the concept of a 'surface' cross-section, the minimum mean cross-section that can be observed, as an index to characterize the location of 'surfaces' and provide a simple method to estimate their effects on the spectral modulation of homogeneous atmospheres. We finally devise a numerical recipe that extends our formalism to atmospheres with a non-constant scaleheight and arbitrary sources of opacity, a potentially necessary step to interpret observations.

  14. Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution

    NASA Astrophysics Data System (ADS)

    Migliore, Christina; Winter, Henry; Murphy, Nicholas

    2018-01-01

    The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.

  15. Integral and differential cross section measurements at low collision energies for the N2++CH4/CD4 reactions

    NASA Astrophysics Data System (ADS)

    Nicolas, Christophe; Torrents, Raquel; Gerlich, Dieter

    2003-02-01

    Absolute integral cross sections are measured in the collision energy range between 0.1 to 3.5 eV for the N2++CH4 and N2++CD4 reactions using the universal guided ion beam apparatus. The reaction branching ratio, CX3+:CX2+:N2X+ (X=H or D), is found to be 0.86:0.09:0.05 and 0.88:0.07:0.05 for the N2++CH4 and N2++CD4 reactions, respectively. The CH3+/CH2+ ratio is constant over the whole collision energy range and very similar to the one obtained for the almost isoenergetic Ar++CH4 reaction. Axial velocity distributions of the product ions are measured by time of flight at collision energies between 0.1 and 3.5 eV. The results provide direct insight into the reaction dynamics. The dissociative charge transfer channels, leading to CH3+ and CH2+ product ions, occur via an electron jump combined with some exchange of momentum between the colliding partners. The H (D) transfer leading to N2H+ can be described as a direct process, similar to a spectator stripping mechanism. Various isotope effects are observed, the dominant being that the cross sections for reaction with CH4 are up to 20% bigger than the corresponding ones for CD4.

  16. n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV

    NASA Astrophysics Data System (ADS)

    Pigni, Marco T.; Capote, Roberto; Trkov, Andrej; Pronyaev, Vladimir G.

    2017-09-01

    In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO) pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL) collaborated with the International Atomic Energy Agency (IAEA) to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs) and thermal prompt fission neutron spectra (PFNS). Performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF) measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅

  17. Temporal scaling of the growth dependent optical properties of microalgae

    NASA Astrophysics Data System (ADS)

    Zhao, J. M.; Ma, C. Y.; Liu, L. H.

    2018-07-01

    The optical properties of microalgae are basic parameters for analyzing light field distribution in photobioreactors (PBRs). With the growth of microalgae cell, their optical properties will vary with growth time due to accumulation of pigment and lipid, cell division and metabolism. In this work, we report a temporal scaling behavior of the growth dependent optical properties of microalgae cell suspensions with both experimental and theoretical evidence presented. A new concept, the temporal scaling function (TSF), defined as the ratio of absorption or scattering cross-sections at growth phase to that at stationary phase, is introduced to characterize the temporal scaling behavior. The temporal evolution and temporal scaling characteristics of the absorption and scattering cross-sections of three example microalgae species, Chlorella vulgaris, Chlorella pyrenoidosa, and Chlorella protothecoides, were experimentally studied at spectral range 380-850 nm. It is shown that the TSFs of the absorption and scattering cross-sections for different microalgae species are approximately constant at different wavelength, which confirms theoretical predictions very well. With the aid of the temporal scaling relation, the optical properties at any growth time can be calculated based on those measured at stationary phase, hence opens a new way to determine the time-dependent optical properties of microalgae. The findings of this work will help the understanding of time dependent optical properties of microalgae and facilitate their applications in light field analysis in PBRs design.

  18. Quantitative x-ray photoelectron spectroscopy: Quadrupole effects, shake-up, Shirley background, and relative sensitivity factors from a database of true x-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Seah, M. P.; Gilmore, I. S.

    2006-05-01

    An analysis is provided of the x-ray photoelectron spectroscopy (XPS) intensities measured in the National Physical Laboratory (NPL) XPS database for 46 solid elements. This present analysis does not change our previous conclusions concerning the excellent correlation between experimental intensities, following deconvolving the spectra with angle-averaged reflection electron energy loss data, and the theoretical intensities involving the dipole approximation using Scofield’s cross sections. Here, more recent calculations for cross sections by Trzhaskovskaya involving quadrupole terms are evaluated and it is shown that their cross sections diverge from the experimental database results by up to a factor of 5. The quadrupole angular terms lead to small corrections that are close to our measurement limit but do appear to be supported in the present analysis. Measurements of the extent of shake-up for the 46 elements broadly agree with the calculations of Yarzhemsky but not in detail. The predicted constancy in the shake-up contribution by Yarzhemsky implies that the use of the Shirley background will lead to a peak area that is a constant fraction of the true peak area including the shake-up intensities. However, the measured variability of the shake-up contribution makes the Shirley background invalid for quantification except for situations where the sensitivity factors are from reference samples similar to those being analyzed.

  19. Measurement of the e+e-→π+π-π0π0 cross section using initial-state radiation at BABAR

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Fritsch, M.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; de Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; Losecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'Vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; de Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; Babar Collaboration

    2017-11-01

    The process e+e-→π+π-2 π0γ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb-1 of data collected around a center-of-mass energy of √{s }=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel's contribution to the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon is calculated as (gμπ+π-2 π0-2 )/2 =(17.9 ±0.1stat±0.6syst)×10-10 in the energy range 0.85 GeV

  20. Polyad breaking phenomenon associated with a local-to-normal mode transition and suitability to estimate force constants

    NASA Astrophysics Data System (ADS)

    Bermúdez-Montaña, M.; Lemus, R.; Castaños, O.

    2017-12-01

    In a system of two interacting harmonic oscillators a local-to-normal mode transition is manifested as a polyad breaking phenomenon. This phenomenon is associated with the suitability to estimate zeroth-order force constants in the framework of a local mode description. This transition is also exhibited in two interacting Morse oscillators. To study this case, an appropriate parameterisation going from a molecule with local mode behaviour (H2O) to a molecule presenting a normal mode behaviour (CO2) is introduced. Concepts from quantum mechanics like fidelity, entropy and probability density, as well from nonlinear classical mechanics like Poincaré sections are used to detect the transition region. It is found that fidelity and entropy are sensitive complementary properties to detect the local-to-normal transition. Poincaré sections allow the local-to-normal transition to be detected through the appearance of chaos as a consequence of the polyad breaking phenomenon. In addition, two kinds of avoided energy crossings are identified in accordance with the different regions of the spectrum.

  1. The metabolic equivalents of one-mile walking by older adults; implications for health promotion

    PubMed Central

    Gault, Mandy Lucinda; Willems, Mark Elisabeth Theodorus

    2017-01-01

    Background: Instructions for older adults regarding the intensity of walking may not elicit an intensity to infer health gains. We recorded the metabolic equivalents (METs) during a 1-mile walk using constant and predicted values of resting MET in older adults to establish walking guidelines for health promotion and participation. Methods: In a cross-sectional design study, participants (15 men, 10 women) walked 1-mile overground, in a wooden floored gymnasium, wearing the Cosmed K4b2 for measurement of energy expenditure. Constant or predicted values for resting MET were used to calculate the number of 1-mile walks to meet 450-750 MET∙min∙wk-1. Results: Participants had MET values higher than 3 for both methods, with 29% and 64% of the participants higher than 6 for a constant and predicted MET value, respectively. The METs of the1-mile walk were (mean ± SD) 6 ± 1 and 7 ± 1 METs using constant and predicted resting MET,and similar for men (constant: 6 ± 1 METs; predicted: 7 ± 1 METs) and women (constant: 5±1METs; predicted: 6 ± 1 METs) (P > 0.05). Conclusion: Older adults that are instructed to walk 1-mile at a fast and constant pace meet the minimum required intensity for physical activity, and public health guidelines. Health professionals, that administer exercise, could encourage older adults to accumulate between six and nine 1-mile walks per week for health gains. PMID:29085799

  2. The metabolic equivalents of one-mile walking by older adults; implications for health promotion.

    PubMed

    Gault, Mandy Lucinda; Willems, Mark Elisabeth Theodorus

    2017-01-01

    Background: Instructions for older adults regarding the intensity of walking may not elicit an intensity to infer health gains. We recorded the metabolic equivalents (METs) during a 1-mile walk using constant and predicted values of resting MET in older adults to establish walking guidelines for health promotion and participation. Methods: In a cross-sectional design study, participants (15 men, 10 women) walked 1-mile overground, in a wooden floored gymnasium, wearing the Cosmed K4b 2 for measurement of energy expenditure. Constant or predicted values for resting MET were used to calculate the number of 1-mile walks to meet 450-750 MET∙min∙wk -1 . Results: Participants had MET values higher than 3 for both methods, with 29% and 64% of the participants higher than 6 for a constant and predicted MET value, respectively. The METs of the1-mile walk were (mean ± SD) 6 ± 1 and 7 ± 1 METs using constant and predicted resting MET,and similar for men (constant: 6 ± 1 METs; predicted: 7 ± 1 METs) and women (constant: 5±1METs; predicted: 6 ± 1 METs) (P > 0.05). Conclusion: Older adults that are instructed to walk 1-mile at a fast and constant pace meet the minimum required intensity for physical activity, and public health guidelines. Health professionals, that administer exercise, could encourage older adults to accumulate between six and nine 1-mile walks per week for health gains.

  3. Effects of collision cascade density on radiation defect dynamics in 3C-SiC

    PubMed Central

    Bayu Aji, L. B.; Wallace, J. B.; Kucheyev, S. O.

    2017-01-01

    Effects of the collision cascade density on radiation damage in SiC remain poorly understood. Here, we study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. We find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. These results demonstrate clearly (and quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC. PMID:28304397

  4. Effects of collision cascade density on radiation defect dynamics in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayu Aji, L. B.; Wallace, J. B.; Kucheyev, S. O.

    Effects of the collision cascade density on radiation damage in SiC remain poorly understood. We study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. Here, we find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. Our results demonstrate clearly (andmore » quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC.« less

  5. Effects of collision cascade density on radiation defect dynamics in 3C-SiC

    DOE PAGES

    Bayu Aji, L. B.; Wallace, J. B.; Kucheyev, S. O.

    2017-03-17

    Effects of the collision cascade density on radiation damage in SiC remain poorly understood. We study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. Here, we find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. Our results demonstrate clearly (andmore » quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC.« less

  6. The GMO Sumrule and the πNN Coupling Constant

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).

  7. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    NASA Astrophysics Data System (ADS)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  8. A Computer Code for a One-Dimensional Dynamic Model of the Mesosphere and Lower Thermosphere.

    DTIC Science & Technology

    1984-03-07

    electron flux, both at energy 4 The ionization cross section is given by 9 u( ) = S(,W) dW (57) I 2. Nicolet, M., and Aikin, A.C. (1960) The formation of the... energy in ev, and P, y, P, and S are parameters obtained from the best fit of Eq. (58) to experimental and theoretical results. Table B22 lists the values...Chem. 47:1783-1793. .E.. .I 73) Rate constants of thermal energy binary ion-molecule rtactions (of zqeionomic interest, At. Data Nucl. Data Tables 12

  9. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 16. Supplement to Evaluation 15: Update of Key Reactions

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Friedl, R. R.; Barker, J. R.; Golden, D. M.; Kurylo, M. J.; Wine, P. H.; Abbatt, J.; Burkholder, J. B.; Kolb, C. E.; Moortgat, G. K.; hide

    2009-01-01

    This is the supplement to the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/.

  10. Free Radical-Surface Interactions Using Multiphoton Ionization of Free Radicals

    DTIC Science & Technology

    1989-01-01

    Atoms, Rgf4PI 9 t Free Radl!cals)aj" i Atoms, Cross Section -’r RE)* I of Free Radicals arid Atonn. 𔄃 43S’RACT (Conti n reverse if necessary Ind identi...these surfaces. The basic philosophy of our CF 3I -+- nhv-CF, - t - I . program consists of generating a particular neutral species at A low pressures...constant for the escape of radicals out of the " reactor is shown in Eq. (6): .= k =, 4 .4,., I /V, (6) L !J 7 where t ,,, is the thermal molecular

  11. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  12. Sigma models with negative curvature

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-16

    Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  13. Experimental Search for a Heavy Electron

    DOE R&D Accomplishments Database

    Boley, C. D.; Elias, J. E.; Friedman, J. I.; Hartmann, G. C.; Kendall, H. W.; Kirk, P.N.; Sogard, M. R.; Van Speybroeck, L. P.; de Pagter, J. K.

    1967-09-01

    A search for a heavy electron of the type considered by Low and Blackmon has been made by studying the inelastic scattering of 5 BeV electrons from hydrogen. The search was made over a range of values of the mass of the heavy electron from 100 t0 1300 MeV. No evidence for such a particle was observed. Upper limits on the production cross sections were determined and employed to deducelimits on the values of the electron-photon-heavy electron coupling constant in Low and Blackmon=s theory.

  14. A Theoretical and Experimental Study of Planing Surfaces Including Effects of Cross Section and Plan Form

    NASA Technical Reports Server (NTRS)

    Shuford, Charles L , Jr

    1958-01-01

    A summary is given of the background and present status of the pure-planing theory for rectangular flat plates and v-bottom surfaces. The equations reviewed are compared with experiment. In order to extend the range of available planing data, the principal planing characteristics for models having sharp bottom surfaces having constant angles of dead rise of 20 degrees and 40 degrees. Planing data were also obtained for flat-plate surfaces with very slightly rounded chines for which decreased lift and drag coefficients are obtained.

  15. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    PubMed

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-07

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the microfluidic network under investigation. The results obtained in this work are consistent with previously reported data and suitable for a wide range of lab-on-chip applications.

  16. Study of DD Neutrons and their Transmission in Iron Spheres

    NASA Astrophysics Data System (ADS)

    Dhakal, Sushil

    The Deuterium-Deuteron (DD) reaction has been used as a neutron source to study the transport of neutrons in natural iron. The scattering targets are used in the form of spheres and the neutron transmission measurement has been done at 7-MeV incident deuteron beam energy. The purpose of this study is to test the elastic and non-elastic neutron scattering cross sections for iron in the ENDF/B-VII data library, as some indications about the inaccuracy of those cross sections have been found from previous studies. The experiment has been carried out using the 4.5-MV tandem accelerator at Edwards Accelerator Laboratory at Ohio University, Athens, Ohio. The DD source reaction has been measured at 5- and 7-MeV deuteron beam energy. The D(d,n)3He monoenergetic reaction cross section has been measured from 0° to 135° at both 5- and 7-MeV beam energy and the D(d,np)D breakup reaction cross section has been measured up to 60° laboratory angles at 7-MeV beam energy. The target used is a deuterium gas cell of 3-cm length at approximately 2 atmosphere absolute pressure. The neutron energy is determined using the time of flight method. A NE213 liquid scintillation detector is used for neutron detection and the thick-target 27Al(d,n) reaction is used for the determination of neutron detector efficiency. The monoenergetic reaction cross section has been found to be in reasonable agreement with previous evaluations. The neutron transmission studies through iron spheres is done using two natural iron spheres with thicknesses of 3 and 8 cm. The DD source measurement (sphere-off) were repeated for the transmission studies and the neutron source was covered with the spheres for the transmission measurements. The experimental transmitted neutron spectrum is compared with the calculation done using Monte Carlo simulation code MCNP6.1 developed by Los Alamos National Laboratory. MCNP uses ENDF/B-VII.1 evaluated iron cross section for the simulation. The calculated and experimental neutron spectrum in time of flight has been compared at various laboratory angles from 0° to 150°. The calculated and experimental neutron time of flight spectra for neutron counts under the main peak (D(d,n)3He peak region) agree within the error bars for angles 90°, 135° and 150° for larger sphere (8-cm thickness) whereas they agree for all angles 0°, 15°, 30°, 45°, 90°, 135° and 150° for smaller sphere (3-cm thickness). However, the calculated and experimental neutron spectra show a difference of 12%, 11.80%, 16.85% and 19.67% in the main peak neutron counts for larger sphere at angles 0°, 15°, 30° and 45° respectively which can not be accounted for by the systematic uncertainty in our measurement (the 5% uncertainty in the target thickness and the 5% efficiency systematics are the main contributors). The sphere-off to on ratios for the calculation and the experiment also show a significant difference at those angles and this comparison is more robust as it avoids most of the systematic uncertainties including the efficiency. These differences likely come from the uncertainty in the ENDF cross section used. To test the ENDF cross section sensitivity, elastic cross section is decreased by 10% and inelastic cross section is increased by 14.78% in the energy range 7.2 to 11 MeV which corresponds to the energy range of the monoenergetic neutron peak for angles between 0° to 45°. This cross section modification keeps the total cross section constant on average in that energy range as the total in the library is assumed to be correct. This modification reduces the difference between the calculation and the experiment and brings it in agreement within the error bars. This result implies the possibility of underestimation of inelastic cross section in the above energy range and hence the overestimation of elastic cross section in the ENDF library.

  17. Fractal scaling laws of black carbon aerosol and their influence on spectral radiative properties

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Chakrabarty, R. K.; Heinson, W.

    2016-12-01

    Current estimates of the direct radiative forcing for Black Carbon (BC) aerosol span over a poorly constrained range between 0.2 and 1 W.m-2. To improve this large uncertainty, tighter constraints need to be placed on BC's key wavelength-dependent optical properties, namely, the absorption (MAC) and scattering (MSC) cross sections per unit mass and hemispherical upscatter fraction (β; a dimensionless scattering directionality parameter). These parameters are very sensitive to changes in particle morphology and complex refractive index nindex. Their interplay determines the magnitude of net positive or negative radiative forcing efficiencies. The current approach among climate modelers for estimating MAC and MSC values of BC is from their optical cross-sections calculated assuming spherical particle morphology with homogeneous, constant-valued refractive index in the visible solar spectrum. The β values are typically assumed to be a constant across this spectrum. This approach, while being computationally inexpensive and convenient, ignores the inherent fractal morphology of BC and its scaling behaviors, and resulting optical properties. In this talk, I will present recent results from my laboratory on determination of the fractal scaling laws of BC aggregate packing density and its complex refractive index for size spanning across three orders of magnitude, and their effects on spectral (Visible-infrared wavelength) scaling of MAC, MSC, and β values. Our experiments synergistically combined novel BC generation techniques, aggregation models, contact-free multi-wavelength optical measurements, and electron microscopy analysis. The scale dependence of nindex on aggregate size followed power-law exponents of -1.4 and -0.5 for sub- and super-micron size aggregates, respectively. The spherical Rayleigh-optics approximation limits, used by climate models for spectral extrapolation of BC optical cross-sections and deconvolution of multi-species mixing ratios, are redefined using the concept of phase shift parameter. I will highlight the importance of size-dependent β values and its role in offsetting the strong light absorbing nature of BC. Finally, the errors introduced in forcing efficiency calculations of BC by assuming spherical homogeneous morphology will be evaluated.

  18. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael

    2013-07-20

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminositymore » and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.« less

  19. Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer.

    PubMed

    Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y

    2008-11-10

    A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.

  20. On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Eva E.; Martin, William R.

    Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Dopplerbroadened rejection correction (DBRC) scheme.« less

  1. On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes

    DOE PAGES

    Davidson, Eva E.; Martin, William R.

    2017-05-26

    Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Dopplerbroadened rejection correction (DBRC) scheme.« less

  2. Prediction of Chain Propagation Rate Constants of Polymerization Reactions in Aqueous NIPAM/BIS and VCL/BIS Systems.

    PubMed

    Kröger, Leif C; Kopp, Wassja A; Leonhard, Kai

    2017-04-06

    Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.

  3. Investigation of the reaction 74Ge(p,γ)75As using the in-beam method to improve reaction network predictions for p nuclei

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Endres, J.; Netterdon, L.; Zilges, A.; Foteinou, V.; Provatas, G.; Konstantinopoulos, T.; Axiotis, M.; Ashley, S. F.; Harissopulos, S.; Rauscher, T.

    2012-09-01

    Background: Astrophysical models studying the origin of the neutron-deficient p nuclides require knowledge of proton capture cross sections at low energy. The production site of the p nuclei is still under discussion but a firm basis of nuclear reaction rates is required to address the astrophysical uncertainties. Data at astrophysically relevant interaction energies are scarce. Problems with the prediction of charged particle capture cross sections at low energy were found in the comparisons between previous data and calculations in the Hauser-Feshbach statistical model of compound reactions.Purpose: A measurement of 74Ge(p,γ)75As at low proton energies, inside the astrophysically relevant energy region, is important in several respects. The reaction is directly important because it is a bottleneck in the reaction flow which produces the lightest p nucleus 74Se. It is also an important addition to the data set required to test reaction-rate predictions and to allow an improvement in the global p+nucleus optical potential required in such calculations.Method: An in-beam experiment was performed, making it possible to measure in the range 2.1≤Ep≤3.7MeV, which is for the most part inside the astrophysically relevant energy window. Angular distributions of the γ-ray transitions were measured with high-purity germanium detectors at eight angles relative to the beam axis. In addition to the total cross sections, partial cross sections for the direct population of 12 levels were determined.Results: The resulting cross sections were compared to Hauser-Feshbach calculations using the code smaragd. Only a constant renormalization factor of the calculated proton widths allowed a good reproduction of both total and partial cross sections. The accuracy of the calculation made it possible to check the spin assignment of some states in 75As. In the case of the 1075-keV state, a double state with spins and parities of 3/2- and 5/2- is needed to explain the experimental partial cross sections. A change in parity from 5/2+ to 5/2- is required for the state at 401 keV. Furthermore, in the case of 74Ge, studying the combination of total and partial cross sections made it possible to test the γ width, which is essential in the calculation of the astrophysical 74As(n,γ)75As rate.Conclusions: Between data and statistical model prediction a factor of about two was found. Nevertheless, the improved astrophysical reaction rate of 74Ge(p,γ) (and its reverse reaction) is only 28% larger than the previous standard rate. The prediction of the 74As(n,γ)75As rate (and its reverse) was confirmed, the newly calculated rate differs only by a few percent from the previous prediction. The in-beam method with high-efficiency detectors proved to be a powerful tool for studies in nuclear astrophysics and nuclear structure.

  4. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  5. QED Based Calculation of the Fine Structure Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ 2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. Thismore » exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.« less

  6. Technique for measurement of characteristic impedance and propagation constant for porous materials

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won; Atchley, Anthony A.

    2005-09-01

    Knowledge of acoustic properties such as characteristic impedance and complex propagation constant is useful to characterize the acoustic behaviors of porous materials. Song and Bolton's four-microphone method [J. Acoust. Soc. Am. 107, 1131-1152 (2000)] is one of the most widely employed techniques. In this method two microphones are used to determine the complex pressure amplitudes for each side of a sample. Muehleisen and Beamer [J. Acoust. Soc. Am. 117, 536-544 (2005)] improved upon a four-microphone method by interchanging microphones to reduce errors due to uncertainties in microphone response. In this paper, a multiple microphone technique is investigated to reconstruct the pressure field inside an impedance tube. Measurements of the acoustic properties of a material having square cross-section pores is used to check the validity of the technique. The values of characteristic impedance and complex propagation constant extracted from the reconstruction agree well with predicted values. Furthermore, this technique is used in investigating the acoustic properties of reticulated vitreous carbon (RVC) in the range of 250-1100 Hz.

  7. Effect of Convection Associated with Cross-section Change during Directional Solidification of Binary Alloys on Dendritic Array Morphology and Macrosegregation

    NASA Astrophysics Data System (ADS)

    Ghods, Masoud

    This dissertation explores the role of different types of convection on macrosegregation and on dendritic array morphology of two aluminum alloys directionally solidified through cylindrical graphite molds having both cross-section decrease and increase. Al- 19 wt. % Cu and Al-7 wt. % Si alloys were directionally solidified at two growth speed of 10 and 29.1 mum s-1 and examined for longitudinal and radial macrosegregation, and for primary dendrite spacing and dendrite trunk diameter. Directional solidification of these alloys through constant cross-section showed clustering of primary dendrites and parabolic-shaped radial macrosegregation profile, indicative of "steepling convection" in the mushy-zone. The degree of radial macrosegregation increased with decreased growth speed. The Al- 19 wt. % Cu samples, grown under similar conditions as Al-7 wt. % Si, showed more radial macrosegregation because of more intense "stepling convection" caused by their one order of magnitude larger coefficient of solutal expansion. Positive macrosegregation right before, followed by negative macrosegregation right after an abrupt cross-section decrease (from 9.5 mm diameter to 3.2 mm diameter), were observed in both alloys; this is because of the combined effect of thermosolutal convection and area-change-driven shrinkage flow in the contraction region. The degree of macrosegregation was found to be higher in the Al- 19 wt. % Cu samples. Strong area-change-driven shrinkage flow changes the parabolic-shape radial macrosegregation in the larger diameter section before contraction to "S-shaped" profile. But in the smaller diameter section after the contraction very low degree of radial macrosegregation was found. The samples solidified through an abrupt cross-section increase (from 3.2 mm diameter to 9.5 mm diameter) showed negative macrosegregation right after the cross-section increase on the expansion platform. During the transition to steady-state after the expansion, radial macrosegregation profile in locations close to the expansion was found to be "S-shaped". This is attributed to the redistribution of solute-rich liquid ahead of the mushy-zone as it transitions from the narrow portion below into the large diameter portion above. Solutal remelting and fragmentation of dendrite branches, and floating of these fragmented pieces appear to be responsible for spurious grains formation in Al- 19 wt. % Cu samples after the cross-section expansion. New grain formation was not observed in Al-7 wt. % Si in similar locations; it is believed that this is due to the sinking of the fragmented dendrite branches in this alloy. Experimentally observed radial and axial macrosegregations agree well with the results obtained from the numerical simulations carried out by Dr. Mark Lauer and Prof. David R. Poirier at the University of Arizona. Trunk Diameter (TD) of dendritic array appears to respond more readily to the changing growth conditions as compared to the Nearest Neighbor Spacing (NNS) of primary dendrites.

  8. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2009-01-31

    ISS018-E-024949 (31 Jan. 2009) --- The All-American Canal, the largest irrigation canal in the world and a key landmark along the California-Mexico border, is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This image captures about 15 kilometers of the important infrastructure corridor just west of Yuma, AZ. The prominent dark line crossing the image is the Canal which is crossed, in this view, by Interstate Highway 8. The canal carries 740.6 cubic meters (26,155 cubic feet) of water per second from the Colorado River westward to support the intensive agriculture of California?s Imperial Valley to the northwest, and to nine cities including San Diego, CA. The canal system is the Imperial Valley?s only source of water, and allows irrigation of more than 2,000 square kilometers (500,000 acres) of agricultural fields. The Coachella Canal, one of four main branch canals, leads water north to Imperial Valley. This section of the canal requires constant maintenance. Approximately 68,000 acre-feet of water per year are lost by seepage from the All-American Canal - especially where the canal crosses the great Algodones Dune Field, a portion of which is visible extending from top to bottom in the center of the image. Additionally, dune sand is constantly blown to the southeast, and into the canal. As part of California?s Colorado River Water Use Plan, 37 kilometers (23 miles) of the canal is being lined to prevent water loss by seepage. A recently opened sector parallels the old canal (right) and new lined sectors are under construction (bright lines, center). Engineers have sited new sections of the canal to avoid the worst areas of dune-sand invasion, so that the new configuration will be significantly cheaper to maintain and operate. A new road crosses the dunes and marks the US?Mexico border as part of border fence construction efforts. The margin of the Colorado River floodplain in Mexico is just visible two kilometers south of the border (lower left corner). This floodplain is Mexico?s equivalent of the Imperial Valley in terms of its enormous irrigated agricultural production.

  9. Analysis of Z 0 couplings to charged leptons

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Humbert, R.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; OregliaP, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1990-09-01

    The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0. The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol- = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be ǎ2olvˇ2ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants ǎ2ol = 0.998±0.024 and vˇ2ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2overlineθw are found to be 0.998±0.024 and 0.233 +0.045-0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2overlineθw, the results sin 2overlineθSMw = 0.233 +0.007-0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: Rz = 21.72 +0.71-0.65.

  10. Bone strength in pure bending: bearing of geometric and material properties.

    PubMed

    Winter, Werner

    2008-01-01

    Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.

  11. A new multigroup method for cross-sections that vary rapidly in energy

    NASA Astrophysics Data System (ADS)

    Haut, T. S.; Ahrens, C.; Jonko, A.; Lowrie, R.; Till, A.

    2017-01-01

    We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods. We demonstrate the accuracy and efficiency of the approach on three model problems. First we consider the Elsasser band model with constant temperature and a line spacing ε =10-4 . Second, we consider a neutron transport application for fast neutrons incident on iron, where the characteristic resonance spacing ε necessitates ≈ 16 , 000 energy discretization parameters if Planck-weighted cross sections are used. Third, we consider an atmospheric TRT problem for an opacity corresponding to water vapor over a frequency range 1000-2000 cm-1, where we take 12 homogeneous layers between 1-15 km, and temperature/pressure values in each layer from the standard US atmosphere. For all three problems, we demonstrate that we can achieve between 0.1 and 1 percent relative error in the solution, and with several orders of magnitude fewer parameters than a standard multigroup formulation using Planck-weighted (source-weighted) opacities for a comparable accuracy.

  12. Impact buckling of thin bars in the elastic range for any end condition

    NASA Technical Reports Server (NTRS)

    Taub, Josef

    1934-01-01

    Following a qualitative discussion of the complicated process involved in a short-period, longitudinal force applied to an originally not quite straight bar, the actual process is substituted by an idealized process for the purpose of analytical treatment. The simplifications are: the assumption of an infinitely high rate of propagation of the elastic longitudinal waves in the bar, limitation to slender bars, disregard of material damping and of rotatory inertia, the assumption of consistently small elastic deformations, the assumption of cross-sectional dimensions constant along the bar axis, the assumption of a shock-load constant in time, and the assumption of eccentricities on one plane. Then follow the mathematical principles for resolving the differential equation of the simplified problem, particularly the developability of arbitrary functions with steady first and second and intermittently steady third and fourth derivatives into one convergent series, according to the natural functions of the homogeneous differential equation.

  13. Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.; hide

    2007-01-01

    Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.

  14. Measurement of the neutral to charged current cross section ratios for neutrino and and antineutrino interactions on protons

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; O'Neale, S. W.; Hoffmann, E.; Haidt, D.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Retter, M. L.; Saitta, B.; Shotton, P. N.; Towers, S. J.; Bullock, F. W.; Burke, S.; Fitch, P. J.; Birmingham-Bonn-CERN-Imperial College-München(MPI)-Oxford-University College Collaboration

    1986-10-01

    The ratios Rvp and Rvp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/ c and a charged multiplicity of at least 3, it was found that R vp = 0.384 ± 0.015 and R vp = 0.338 ± 0.014 ± 0.016, corresponding to a value of sin 2θ w(M woverlineMSof 0.225 ± 0.030 . Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u2l- d2L = -0.080 ± 0.043 ± 0.012 and u2R- d2R = 0.021±0.055±0.028.

  15. The dynamic flexural response of propeller blades. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Djordjevic, S. Z.

    1982-01-01

    The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.

  16. Revisiting the SOLVE ClOOCl and ClO measurements in consideration of the Pope et al., 2007 results.

    NASA Astrophysics Data System (ADS)

    Stimpfle, R. M.; Wilmouth, D. M.; Anderson, J. G.

    2008-12-01

    The interpretation of the SOLVE measurements of ClOOCl and ClO has recently acquired renewed interest with the publication of new ClOOCl cross section measurements (Pope et al, 2007) that are significantly smaller than expected. The SOLVE analysis showed agreement with J values based upon the JPL 2002 or Burkholder 1990 cross sections, dependent upon various values for the rate constant for dimer production. J values based upon Pope are currently not in agreement with the SOLVE observations and/or their analysis. As various hypotheses emerge to possibly rationalize the Pope results, it is worthwhile to consider two critical constraints that the SOLVE halogen data place on any newly considered Clx photochemistry. The first constraint is the lack of a detectable Cl atom signal in the observed background signal at the temperature used for thermal dissociation of ClOOCl. The second constraint is the observed SZA dependence of the partitioning of ClO and ClOOCl. Here we present evidence of the Cl atom constraint.

  17. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  18. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  19. Implications of HARP Results for the Energy of the Proton Driver for a Neutrino Factory and Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, J.; Mokhov, N.V.; Striganov, S.I.

    2010-06-09

    Cross-section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross-section data are corrected for the beam-energy dependent 'amplification' due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield ismore » maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T{sub beam} < 11 GeV, and within 20% of the maximum for T{sub beam} as low as 2 GeV. This result is insensitive to which of the two HARP groups results are used, and to which pion generator is used to compute the thick target effects.« less

  20. The Effect of Prism Orientation in the Indentation Testing of Human Molar Enamel

    PubMed Central

    Braly, A.; Darnell, L.A.; Mann, A.B.; Teaford, M.F.; Weihs, T.P.

    2007-01-01

    Recent nanoindentation studies have demonstrated that the hardness and Young's modulus of human molar enamel decreases by more than 50% on moving from the occlusal surface to the dentin-enamel junction on cross-sectional samples. Possible sources of these variations are changes in local chemistry, microstructure, and prism orientation. This study investigates the latter source by performing nanoindentation tests at two different orientations relative to the hydroxyapatite prisms: parallel and perpendicular. A single sample volume was tested in order to maintain a constant chemistry and microstructure. The resulting data show very small differences between the two orientations for both hardness and Young's modulus. The 1.5 to 3.0% difference is significantly less than the standard deviations found within the data set. Thus, the variations in hardness and Young's modulus on cross-sectional samples of human molar are attributed to changes in local chemistry (varying levels of mineralization, organic matter, and water content) and changes in microstructure (varying volume fractions of inorganic crystals and organic matrix). The impact of prism orientation on mechanical properties measured by nanoindentation appears to be minimal. PMID:17449008

  1. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less

  2. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle.

    PubMed Central

    Nishiye, E; Somlyo, A V; Török, K; Somlyo, A P

    1993-01-01

    1. The effects of MgADP on cross-bridge kinetics were investigated using laser flash photolysis of caged ATP (P3-1(2-nitrophenyl) ethyladenosine 5'-triphosphate), in guinea-pig portal vein smooth muscle permeabilized with Staphylococcus aureus alpha-toxin. Isometric tension and in-phase stiffness transitions from rigor state were monitored upon photolysis of caged ATP. The estimated concentration of ATP released from caged ATP by high-pressure liquid chromatography (HPLC) was 1.3 mM. 2. The time course of relaxation initiated by photolysis of caged ATP in the absence of Ca2+ was well fitted during the initial 200 ms by two exponential functions with time constants of, respectively, tau 1 = 34 ms and tau 2 = 1.2 s and relative amplitudes of 0.14 and 0.86. Multiple exponential functions were needed to fit longer intervals; the half-time of the overall relaxation was 0.8 s. The second order rate constant for cross-bridge detachment by ATP, estimated from the rate of initial relaxation, was 0.4-2.3 x 10(4) M-1 s-1. 3. MgADP dose dependently reduced both the relative amplitude of the first component and the rate constant of the second component of relaxation. Conversely, treatment of muscles with apyrase, to deplete endogenous ADP, increased the relative amplitude of the first component. In the presence of MgADP, in-phase stiffness decreased during force maintenance, suggesting that the force per cross-bridge increased. The apparent dissociation constant (Kd) of MgADP for the cross-bridge binding site, estimated from its concentration-dependent effect on the relative amplitude of the first component, was 1.3 microM. This affinity is much higher than the previously reported values (50-300 microM for smooth muscle; 18-400 microM for skeletal muscle; 7-10 microM for cardiac muscle). It is possible that the high affinity reflects the properties of a state generated during the co-operative reattachment cycle, rather than that of the rigor bridge. 4. The rate constant of MgADP release from cross-bridges, estimated from its concentration-dependent effect on the rate constant of the second (tau 2) component, was 0.35-7.7 s-1. To the extent that reattachment of cross-bridges could slow relaxation even during the initial 200 ms, this rate constant may be an underestimate. 5. Inorganic phosphate (Pi, 30 mM) did not affect the rate of relaxation during the initial approximately 50 ms, but accelerated the slower phase of relaxation, consistent with a cyclic cross-bridge model in which Pi increases the proportion of cross-bridges in detached ('weakly bound') states.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:8487195

  3. Capillary pumping independent of the liquid surface energy and viscosity

    NASA Astrophysics Data System (ADS)

    Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter

    2018-03-01

    Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.

  4. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric constant at both resonance and off resonance frequencies. The effective piezoelectric constant can be alternated by varying the size of each component, the degree of the pre-curvature of the positive strain components, the thickness of each layer in the multilayer stacks, and the piezoelectric constant of the material used. Because all of the elements are piezoelectric components, Stacked HYBATS can serve as projector and receiver for underwater detection. The performance of this innovation can be enhanced by improving the piezoelectric properties.

  5. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations

    NASA Astrophysics Data System (ADS)

    Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina

    2017-02-01

    Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

  6. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  7. Interhemispheric comparison of atmospheric circulation features as evaluated from Nimbus satellite data

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.; Vonderhaar, T. H.; Adler, R. F.; Srivatsangam, S.; Fields, A.

    1973-01-01

    A relationship is established between relative geostrophic vorticity on an isobaric surface and the Laplacian of the underlying layer-mean temperature. This relationship is used to investigate the distribution of vorticity and baroclinicity in a jet-stream model which is constantly recurrent in the winter troposphere. The investigation shows that the baroclinic and vorticity fields of the extratropical troposphere must be bifurcated with two extrema in the middle and subpolar latitudes. This pattern is present in daily tropospheric meridional cross-sections. The reasons for the disappearance of bifurcation in the time-and-longitude averaged distributions are discussed.

  8. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.

    PubMed

    Park, H M; Hong, S M; Lee, J S

    2007-10-01

    A reduced-order model is derived for electroosmotic flow in a microchannel of nonuniform cross section using the Karhunen-Loève Galerkin (KLG) procedure. The resulting reduced-order model is shown to predict electroosmotic flows accurately with minimal consumption of computer time for a wide range of zeta potential zeta and dielectric constant epsilon. Using the reduced-order model, a practical method is devised to estimate zeta from the velocity measurements of the electroosmotic flow in the microchannel. The proposed method is found to estimate zeta with reasonable accuracy even with noisy velocity measurements.

  9. Fine modeling of reinforced thermoplastic filament winding container

    NASA Astrophysics Data System (ADS)

    Duan, Chenghong; Huang, Jinhao; Wu, Liang; Luo, Xiangpeng

    2018-05-01

    Reinforced thermoplastic containers has been widely used because of its corrosion-resistant, fatigue-resistant features. The characteristics of the liner and wound layer material and the different winding methods lead to the fact that the model obtained according to the ordinary pressure vessel modeling method does not reflect the actual situation of the reinforced thermoplastic container. In this paper, the thickness of stratified winding was calculated based on the principle of constant fiber total volume and equal cross-sectional area. ANSYS ACP module was used to refine the full winding container and provide a reference for engineering simulation solution.

  10. Finite Element Modelling and Analysis of Conventional Pultrusion Processes

    NASA Astrophysics Data System (ADS)

    Akishin, P.; Barkanov, E.; Bondarchuk, A.

    2015-11-01

    Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.

  11. A new technique for Auger analysis of surface species subject to electron-induced desorption

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.

  12. Optical Isolators With Transverse Magnets

    NASA Technical Reports Server (NTRS)

    Fan, Yuan X.; Byer, Robert L.

    1991-01-01

    New design for isolator includes zigzag, forward-and-backward-pass beam path and use of transverse rather than longitudinal magnetic field. Design choices produce isolator with as large an aperture as desired using low-Verdet-constant glass rather than more expensive crystals. Uses commercially available permanent magnets in Faraday rotator. More compact and less expensive. Designed to transmit rectangular beam. Square cross section of beam extended to rectangular shape by increasing one dimension of glass without having to increase magnetic field. Potentially useful in laser systems involving slab lasers and amplifiers. Has applications to study of very-high-power lasers for fusion research.

  13. Rovibrational transitions of H2 by collision with H+ at high temperature

    NASA Astrophysics Data System (ADS)

    González-Lezana, T.; Honvault, P.

    2017-05-01

    The H+ + H2 reaction is studied by means of both exact and statistical quantum methods. Integral cross-sections for processes initiated with rotationally excited H2(v, j = 1) to produce molecular hydrogen in its rotational ground state are reported up to a value of the collision energy of 3 eV. Rate constants for state-to-state transitions between different H2 rovibrational states are calculated up to 3000 K. Special emphasis is made on ortho/para conversion processes in which the parity j of the H2(j) states changes.

  14. Role of the N*(1535) in the J/{psi}{yields}p{eta}p and J/{psi}{yields}pK{sup +}{lambda} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, L. S.; Oset, E.; Zou, B. S.

    2009-02-15

    We study the J/{psi}{yields}p{eta}p and J/{psi}{yields}pK{sup +}{lambda} reactions with a unitary chiral approach. We find that the unitary chiral approach, which generates the N*(1535) dynamically, can describe the data reasonably well, particularly the ratio of the integrated cross sections. This study provides further support for the unitary chiral description of the N*(1535). We also discuss some subtle differences between the coupling constants determined from the unitary chiral approach and those determined from phenomenological studies.

  15. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  16. REVIEWS OF TOPICAL PROBLEMS: Astrophysical and laboratory applications of self-alignment

    NASA Astrophysics Data System (ADS)

    Kazantsev, S. A.

    1983-04-01

    Self-alignment of excited atoms which is observed in the laboratory and in astrophysical situations is reviewed. It is described classically and in terms of quantum mechanics. Astrophysical manifestations of selfalignment of excited atoms in the solar atmosphere and applications of self-alignment in magnetometry are analyzed. Self-alignment in low-pressure gas-discharge plasmas in the laboratory is described in detail. The cross sections for depolarizing collisions measured by this method are tabulated along with the lifetimes of excited inert gas atoms. These atomic constants can be used in practical magnetometry of the outer solar atmosphere.

  17. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE PAGES

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    2017-11-20

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  18. Development of Ultra-Fine Multigroup Cross Section Library of the AMPX/SCALE Code Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Byoung Kyu; Sik Yang, Won; Kim, Kang Seog

    The Consortium for Advanced Simulation of Light Water Reactors Virtual Environment for Reactor Applications (VERA) neutronic simulator MPACT is being developed by Oak Ridge National Laboratory and the University of Michigan for various reactor applications. The MPACT and simplified MPACT 51- and 252-group cross section libraries have been developed for the MPACT neutron transport calculations by using the AMPX and Standardized Computer Analyses for Licensing Evaluations (SCALE) code packages developed at Oak Ridge National Laboratory. It has been noted that the conventional AMPX/SCALE procedure has limited applications for fast-spectrum systems such as boiling water reactor (BWR) fuels with very highmore » void fractions and fast reactor fuels because of its poor accuracy in unresolved and fast energy regions. This lack of accuracy can introduce additional error sources to MPACT calculations, which is already limited by the Bondarenko approach for resolved resonance self-shielding calculation. To enhance the prediction accuracy of MPACT for fast-spectrum reactor analyses, the accuracy of the AMPX/SCALE code packages should be improved first. The purpose of this study is to identify the major problems of the AMPX/SCALE procedure in generating fast-spectrum cross sections and to devise ways to improve the accuracy. For this, various benchmark problems including a typical pressurized water reactor fuel, BWR fuels with various void fractions, and several fast reactor fuels were analyzed using the AMPX 252-group libraries. Isotopic reaction rates were determined by SCALE multigroup (MG) calculations and compared with continuous energy (CE) Monte Carlo calculation results. This reaction rate analysis revealed three main contributors to the observed differences in reactivity and reaction rates: (1) the limitation of the Bondarenko approach in coarse energy group structure, (2) the normalization issue of probability tables, and (3) neglect of the self-shielding effect of resonance-like cross sections at high energy range such as (n,p) cross section of Cl35. The first error source can be eliminated by an ultra-fine group (UFG) structure in which the broad scattering resonances of intermediate-weight nuclides can be represented accurately by a piecewise constant function. A UFG AMPX library was generated with modified probability tables and tested against various benchmark problems. The reactivity and reaction rates determined with the new UFG AMPX library agreed very well with respect to Monte Carlo Neutral Particle (MCNP) results. To enhance the lattice calculation accuracy without significantly increasing the computational time, performing the UFG lattice calculation in two steps was proposed. In the first step, a UFG slowing-down calculation is performed for the corresponding homogenized composition, and UFG cross sections are collapsed into an intermediate group structure. In the second step, the lattice calculation is performed for the intermediate group level using the condensed group cross sections. A preliminary test showed that the condensed library reproduces the results obtained with the UFG cross section library. This result suggests that the proposed two-step lattice calculation approach is a promising option to enhance the applicability of the AMPX/SCALE system to fast system analysis.« less

  19. Tension Amplification in Molecular Brushes in Solutions and on Substrates

    PubMed Central

    Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael

    2009-01-01

    Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133

  20. Ultrasound melted polymer sleeve for improved screw anchorage in trabecular bone--A novel screw augmentation technique.

    PubMed

    Schmoelz, W; Mayr, R; Schlottig, F; Ivanovic, N; Hörmann, R; Goldhahn, J

    2016-03-01

    Screw anchorage in osteoporotic bone is still limited and makes treatment of osteoporotic fractures challenging for surgeons. Conventional screws fail in poor bone quality due to loosening at the screw-bone interface. A new technology should help to improve this interface. In a novel constant amelioration process technique, a polymer sleeve is melted by ultrasound in the predrilled screw hole prior to screw insertion. The purpose of this study was to investigate in vitro the effect of the constant amelioration process platform technology on primary screw anchorage. Fresh frozen femoral heads (n=6) and vertebrae (n=6) were used to measure the maximum screw insertion torque of reference and constant amelioration process augmented screws. Specimens were cut in cranio-caudal direction, and the screws (reference and constant amelioration process) were implanted in predrilled holes in the trabecular structure on both sides of the cross section. This allowed the pairwise comparison of insertion torque for constant amelioration process and reference screws (femoral heads n=18, vertebrae n=12). Prior to screw insertion, a micro-CT scan was made to ensure comparable bone quality at the screw placement location. The mean insertion torque for the constant amelioration process augmented screws in both, the femoral heads (44.2 Ncm, SD 14.7) and the vertebral bodies (13.5 Ncm, SD 6.3) was significantly higher than for the reference screws of the femoral heads (31.7 Ncm, SD 9.6, p<0.001) and the vertebral bodies (7.1 Ncm, SD 4.5, p<0.001). The interconnection of the melted polymer sleeve with the surrounding trabecular bone in the constant amelioration process technique resulted in a higher screw insertion torque and can improve screw anchorage in osteoporotic trabecular bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Skyrme forces and the fusion-fission dynamics of the 132Sn+64Ni→196Pt* reaction

    NASA Astrophysics Data System (ADS)

    Jain, Deepika; Kumar, Raj; Sharma, Manoj K.; Gupta, Raj K.

    2012-02-01

    The dependence of the fusion-fission process on Skyrme forces is studied by using the dynamical cluster-decay model (DCM) and the ℓ-summed extended-Wong model in the 132Sn+64Ni→196Pt* reaction, where the nuclear proximity potential is obtained by using the semiclassical extended Thomas-Fermi (ETF) approach in the Skyrme energy density formalism (SEDF) under the frozen density approximation. The DCM gives an excellent fit to the measured fusion evaporation residue (ER) and the fission cross sections below and above barrier energies, with ER data needing “barrier lowering” at below-barrier energies for each Skyrme force (an in-built property of the DCM). The fission cross sections show a contribution of quasifission (qf) at the above-barrier two or three highest energies, depending on the Skyrme force. Calculations are illustrated for three Skyrme forces, GSkI, SSk, and SIII. Another interesting result is that there is a change of fission mass distribution from a predominantly asymmetric one to a symmetric one with a decrease in the N/Z ratio of the compound nucleus, independent of the choice of nuclear interaction potential, which gives an opportunity to address the isospin effects in the Pt* nucleus. Within the ℓ-summed extended-Wong model we find that the GSkI and SSk forces fit the total fusion cross-section data exactly, whereas the SIII force needs “barrier modification” in order to fit the data at below-barrier energies. This happens because the isospin and neutron-proton asymmetry nature of GSkI and SSk forces is different from that of the SIII force, and because the center-of-mass energy Ec.m. dependence of the barrier height for the SIII force and that of Blocki [Ann. Phys. (NY)10.1016/0003-4916(77)90249-4 105, 427 (1977)] differs strongly (by a constant amount of ˜7 MeV) from those for GSKI and SSk forces. Note that, because of the associated preformation factor with each fragment, the DCM has the advantage of treating various decay processes separately, whereas the Wong model describes only the total fusion cross section, a sum of cross sections due to all contributing processes.

  2. Renner-Teller quantum dynamics of NH(a(1)Delta) + H reactions on the NH(2) A(2)A(1) and X(2)B(1) coupled surfaces.

    PubMed

    Defazio, P; Gamallo, P; González, M; Petrongolo, C

    2010-09-16

    Four reactions NH(a1Delta) + H′(2S) are investigated by the quantum mechanical real wavepacket method, taking into account nonadiabatic Renner-Teller (RT) and rovibronic Coriolis couplings between the involved states. We consider depletion (d) to N(2D) + H2(X1Sigmag+), exchange (e) to NH′(a1Delta) + H(2S), quenching (q) to NH(X3Sigma-) + H′(2S), and exchange-quenching (eq) to NH′(X3Sigma-) + H(2S). We extend our RT theory to a general AB + C collision using a geometry-dependent but very simple and empirical RT matrix element. Reaction probabilities, cross sections, and rate constants are presented, and RT results are compared with Born-Oppenheimer (BO), experimental, and semiclassical data. The nonadiabatic couplings open two new channels, (q) and (eq), and increase the (d) and (e) reactivity with respect to the BO one, when NH(a1Delta) is rotationally excited. In this case, the quantum cross sections are larger than the semiclassical ones at low collision energies. The calculated rate constants at 300 K are k(d) = 3.06, k(e) = 3.32, k(q) = 1.44, and k(eq) = 1.70 in 10(-11) cm3 s(-1) compared with the measured values k(d) = (3.2 =/- 1.7), k(q + eq) = (1.7 +/- 0.3), and k(total) = (4.8 +/- 1.7). The theoretical depletion rate is thus in good agreement with the experimental value, but the quenching and total rates are overestimated, because the present RT couplings are too large. This discrepancy is probably due to our simple and empirical RT matrix element.

  3. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  4. [Excitation transfer between high-lying states in K2 in collisions with ground state K and H2 molecules].

    PubMed

    Shen, Xiao-Yan; Liu, Jing; Dai, Kang; Shen, Yi-Fan

    2010-02-01

    Pure potassium vapor or K-H2 mixture was irradiated in a glass fluorescence cell with pulses of 710 nm radiation from an OPO laser, populating K2 (1lambda(g)) state by two-photon absorption. Cross sections for 1lambda(g)-3lambda(g) transfer in K2 were determined using methods of molecular fluorescence. During the experiments with pure K vapor, the cell temperature was varied between 553 and 603 K. The K number density was determined spectroscopically by the white-light absorption measurement in the blue wing of the self-broadened resonance D2 line. The resulting fluorescence included a direct component emitted in the decay of the optically excitation and a sensitized component arising from the collisionally populated state. The decay signal of time-resolved fluorescence from1lambda(g) -->1 1sigma(u)+ transition was monitored. It was seen that just after the laser pulse the fluorescence of the photoexcited level decreased exponentially. The effective lifetimes of the 1lambda(g) state can be resolved. The plot of reciprocal of effective lifetimes of the 1lambda(g) state against K densities yielded the slope that indicated the total cross section for deactivation and the intercept that provided the radiative lifetime of the state. The radiative lifetime (20 +/- 2) ns was obtained. The cross section for deactivation of the K2(1lambda(g)) molecules by collisions with K is (2.5 +/- 0.3) x 10(-14) cm2. The time-resolved intensities of the K23lambda(g) --> 1 3sigma(u)+ (484 nm) line were measured. The radiative lifetime (16.0 +/- 3.2) ns and the total cross section (2.5 +/- 0.6) x 10(-14) cm2 for deactivation of the K2 (3lambda(g)) state can also be determined through the analogous procedure. The time-integrated intensities of 1lambda(g) --> 1 1sigma(u)+ and 3lambda(g) --> 1 3sigma(u)+ transitions were measured. The cross section (1.1 +/- 0.3) x10(-14) cm2 was obtained for K2 (1lambda(g))+ K --> K2 (3lambda(g)) + K collisions. During the experiments with K-H2 mixture, the cell temperature was kept constant at 553 K. The H2 pressure was varied between 40 and 400 Pa. The effects of K2-K collisions could not be neglected. These effects were subtracted out using the results of the pure K experiments. The cross section (2.7 +/- 1.1) x 10(-15) cm2 was obtained for K2 (1lambda(g)) + H2 --> K2 (3lambda(g))+H2 collisions. The cross section is (6.8 +/- 2.7) x 10(-15) cm2 for K2 (3lambda(g)) + H2 --> states out of K2 (3lambda(g)) + H2 collisions.

  5. The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum.

    PubMed

    Melis, A; Thielen, A P

    1980-02-08

    In the present study we used three types of Nicotiana tabacum, cv John William's Broad Leaf (the wild type and two mutants, the yellow-green Su/su and the yellow Su/su var. Aurea) in order to correlat functional properties of Photosystem II and Photosystem I with the structural organization of their chloroplasts. The effective absorption cross-section of Photosystem II and Photosystem I centers was measured by means of the rate constant of their photoconversion under light-limiting conditions. In agreement with earlier results (Okabe, K., Schmid, G.H. and Straub, J. (1977) Plant Physiol. 60, 150--156) the photosynthetic unit size for both System II and System I in the two mutants was considerably smaller as compared to the wild type. We observed biphasic kinetics in the photoconversion of System II in all three types of N. tabacum. However, the photoconversion of System I occurred with monophasic and exponential kinetics. Under our experimental conditions, the effective cross-section of Photosystem I was comparable to that of the fast System II component (alpha centers). The relative amplitude of the slow System II component (beta centers) varied between 30% in the wild type to 70% in the Su/su var. Aurea mutant. The increased fraction of beta centers is correlated with the decreased fraction of appressed photosynthetic membranes in the chloroplasts of the two mutants. As a working hypothesis, it is suggested that beta centers are located on photosynthetic membranes directly exposed to the stroma medium.

  6. Electron attachment to the SF{sub 6} molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com; Kosarim, A. V.

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF{sub 6} molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF{sub 6} molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit–Wigner formula, we find that intersection ofmore » the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05–0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ε ≪ 2 meV, while in the range 2 meV ≪ ε ≪ 80 meV, the cross section is inversely proportional to ε. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ≈ 3 × 10{sup −4} K{sup −1}. The coupling factor is independent of the temperature at T > 400 K.« less

  7. [The practice of special observation in adults in the German-speaking part of Switzerland - a descriptive cross-sectional study].

    PubMed

    Lienhardt, Andrea; Rabenschlag, Franziska; Panfil, Eva-Maria

    2018-06-08

    The practice of special observation in adults in the German-speaking part of Switzerland - a descriptive cross-sectional study Abstract. Psychiatric Special Observation (PSO) is an intervention often used by nurses to prevent service users of harming themselves or to protect others. The intervention ranges between control and therapy and is resource intensive. Despite the widespread use of PSO, there is still no data on the practice of the intervention in Switzerland. What is the current practice of PSO in adults in psychiatric hospitals in the German-speaking part of Switzerland? Descriptive cross-sectional study. Nurses from inpatient psychiatric services in the German-speaking part of Switzerland completed a questionnaire based on a concept analysis of PSO. 538 questionnaires were analysed. PSO was more often conducted intermittent than as constant observation. In more than one out of four cases, suicidality reasoned as a cause for prescription. Nurses generally used standardized instruments to assess the risk of harming oneself or others. The duration of PSO lasted eight hours or more in three out of four cases. In every fifth case, there was no validation of the need of the intervention taking place during one shift. Nurses have a neutral attitude towards the intervention and are experiencing no or weak negative feelings during performance of PSO. The results suggest that there is an inconsistent performance of PSO in Switzerland as well as in other countries. The validation of the need of the intervention is insufficient. To facilitate PSO as a justified performance, the preparation of an interprofessional guideline is recommended.

  8. Measurement of the e + e - → π + π - π 0 π 0 cross section using initial-state radiation at BABAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, the process e +e –→π +π –2π 0γ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb –1 of data collected around a center-of-mass energy of √s=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel’s contribution to the leading order hadronic vacuum polarization contribution to the anomalous magneticmore » moment of the muon is calculated as (gπ +π–2π0 μ–2)/2=(17.9 ± 0.1 stat ± 0.6 syst)×10–10 in the energy range 0.85 GeV < E CM < 1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z 0-pole is determined as Δαπ +π–2π0(M 2 Z)=(4.44 ± 0.02 stat ± 0.14 syst) × 10 –4. Furthermore, intermediate resonances are studied and especially the cross section of the process e +e –→ωπ 0→π +π –2π 0 is measured.« less

  9. Fabrication of concave micromirrors for single cell imaging via controlled over-exposure of organically modified ceramics in single step lithography

    PubMed Central

    Bonabi, A.; Cito, S.; Tammela, P.; Jokinen, V.

    2017-01-01

    This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp®, via single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp® upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20–200 μm) and the depth (here, 15–45 μm). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp® microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration. PMID:28652888

  10. Fabrication of concave micromirrors for single cell imaging via controlled over-exposure of organically modified ceramics in single step lithography.

    PubMed

    Bonabi, A; Cito, S; Tammela, P; Jokinen, V; Sikanen, T

    2017-05-01

    This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp ® , via single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp ® upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20-200  μ m) and the depth (here, 15-45  μ m). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp ® microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration.

  11. Measurement of the e + e - → π + π - π 0 π 0 cross section using initial-state radiation at BABAR

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-11-29

    Here, the process e +e –→π +π –2π 0γ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb –1 of data collected around a center-of-mass energy of √s=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel’s contribution to the leading order hadronic vacuum polarization contribution to the anomalous magneticmore » moment of the muon is calculated as (gπ +π–2π0 μ–2)/2=(17.9 ± 0.1 stat ± 0.6 syst)×10–10 in the energy range 0.85 GeV < E CM < 1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z 0-pole is determined as Δαπ +π–2π0(M 2 Z)=(4.44 ± 0.02 stat ± 0.14 syst) × 10 –4. Furthermore, intermediate resonances are studied and especially the cross section of the process e +e –→ωπ 0→π +π –2π 0 is measured.« less

  12. Emotional states as mediators between tinnitus loudness and tinnitus distress in daily life: Results from the “TrackYourTinnitus” application

    PubMed Central

    Probst, Thomas; Pryss, Rüdiger; Langguth, Berthold; Schlee, Winfried

    2016-01-01

    The psychological process how tinnitus loudness leads to tinnitus distress remains unclear. This cross-sectional study investigated the mediating role of the emotional state “stress level” and of the two components of the emotional state “arousal” and “valence” with N = 658 users of the “TrackYourTinnitus” smartphone application. Stress mediated the relationship between tinnitus loudness and tinnitus distress in a simple mediation model and even in a multiple mediation model when arousal and valence were held constant. Arousal mediated the loudness-distress relationship when holding valence constant, but not anymore when controlling for valence as well as for stress. Valence functioned as a mediator when controlling for arousal and even when holding arousal and stress constant. The direct effect of tinnitus loudness on tinnitus distress remained significant in all models. This study demonstrates that emotional states affect the process how tinnitus loudness leads to tinnitus distress. We thereby could show that the mediating influence of emotional valence is at least equally strong as the influence of stress. Implications of the findings for future research, assessment, and clinical management of tinnitus are discussed. PMID:26853815

  13. Observing random walks of atoms in buffer gas through resonant light absorption

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  14. Compartmentalized storage tank for electrochemical cell system

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  15. Experiment to verify the permeability of Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartline, B.K.; Lister, C.R.B.

    1978-04-01

    A fluid layer sandwiched between 2 flat plates (Hele-Shaw cell) has been assumed to model a saturated porous medium with permeability, D2/12, dependent only on the gap width, D. For situations where the properties of the porous matrix are important, such as thermal convection, the total cross section (Y) of the sandwich should enter into the computation of permeability. To decide which of these approaches is valid, the onset of convection was observed in a Hele-Shaw cell with constant gap width but spatially varying wall thickness. Convection begins in the thin-walled section at a lower temperature difference than it doesmore » where the walls are thick. Data confirm that D3/12Y is the permeability of Hele-Shaw cells used to model thermal convection in porous layers.« less

  16. A transmission line model for propagation in elliptical core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the casemore » of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.« less

  17. Investigation of Saltwater Intrusion and Recirculation of Seawater for Henry Constant Dispersion and Velocity-Dependent Dispersion Problems and Field-Scale Problem

    NASA Astrophysics Data System (ADS)

    Motz, L. H.; Kalakan, C.

    2013-12-01

    Three problems regarding saltwater intrusion, namely the Henry constant dispersion and velocity-dependent dispersion problems and a larger, field-scale velocity-dependent dispersion problem, have been investigated to determine quantitatively how saltwater intrusion and the recirculation of seawater at a coastal boundary are related to the freshwater inflow and the density-driven buoyancy flux. Based on dimensional analysis, saltwater intrusion and the recirculation of seawater are dependent functions of the independent ratio of freshwater advective flux relative to the density-driven vertical buoyancy flux, defined as az (or a for an isotropic aquifer), and the aspect ratio of horizontal and vertical dimensions of the cross-section. For the Henry constant dispersion problem, in which the aquifer is isotropic, saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the constant dispersion coefficient treated as a scalar quantity, the porosity, and the freshwater advective flux, defined as b. For the Henry velocity-dependent dispersion problem, the ratio b is zero, and saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the vertical and horizontal dispersivities, or rα = αz/αx. For an anisotropic aquifer, saltwater intrusion and recirculation are also dependent on the ratio of vertical and horizontal hydraulic conductivities, or rK = Kz/Kx. For the field-scale velocity-dependent dispersion problem, saltwater intrusion and recirculation are dependent on the same independent ratios as the Henry velocity-dependent dispersion problem. In the two-dimensional cross-section for all three problems, freshwater inflow occurs at an upgradient boundary, and recirculated seawater outflow occurs at a downgradient coastal boundary. The upgradient boundary is a specified-flux boundary with zero freshwater concentration, and the downgradient boundary is a specified-head boundary with a specified concentration equal to seawater. Equivalent freshwater heads are specified at the downstream boundary to account for density differences between freshwater and saltwater at the downstream boundary. The three problems were solved using the numerical groundwater flow and transport code SEAWAT for two conditions, i.e., first for the uncoupled condition in which the fluid density is constant and thus the flow and transport equations are uncoupled in a constant-density flowfield, and then for the coupled condition in which the fluid density is a function of the total dissolved solids concentration and thus the flow and transport equations are coupled in a variable-density flowfield. A wide range of results for the landward extent of saltwater intrusion and the amount of recirculation of seawater at the coastal boundary was obtained by varying the independent dimensionless ratio az (or a in problem one) in all three problems. The dimensionless dispersion ratio b was also varied in problem one, and the dispersivity ratio rα and the hydraulic conductivity ratio rK were also varied in problems two and three.

  18. Use and Impact of Covariance Data in the Japanese Latest Adjusted Library ADJ2010 Based on JENDL-4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, K., E-mail: yokoyama.kenji09@jaea.go.jp; Ishikawa, M.

    2015-01-15

    The current status of covariance applications to fast reactor analysis and design in Japan is summarized. In Japan, the covariance data are mainly used for three purposes: (1) to quantify the uncertainty of nuclear core parameters, (2) to identify important nuclides, reactions and energy ranges which are dominant to the uncertainty of core parameters, and (3) to improve the accuracy of core design values by adopting the integral data such as the critical experiments and the power reactor operation data. For the last purpose, the cross section adjustment based on the Bayesian theorem is used. After the release of JENDL-4.0,more » a development project of the new adjusted group-constant set ADJ2010 was started in 2010 and completed in 2013. In the present paper, the final results of ADJ2010 are briefly summarized. In addition, the adjustment results of ADJ2010 are discussed from the viewpoint of use and impact of nuclear data covariances, focusing on {sup 239}Pu capture cross section alterations. For this purpose three kind of indices, called “degree of mobility,” “adjustment motive force,” and “adjustment potential,” are proposed.« less

  19. Mie and debye scattering in dusty plasmas

    PubMed

    Guerra; Mendonca

    2000-07-01

    We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accomplished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud, which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we treat the Debye-Mie field as a whole and study its properties. The main results of this study are (1) the Mie (Debye) field dominates at small (large) wavelengths and in the Rayleigh limit the Debye field is constant; (2) the total cross section has an interference term between the Debye and Mie fields, important in some regimes; (3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously thought; (4) a method is proposed to determine the charge of the grain (divided by a certain suppression factor) and the Debye length of the plasma; (5) a correction to the dispersion relation of an electromagnetic wave propagating in a plasma is derived.

  20. Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks.

    PubMed

    Cybulski, Olgierd; Jakiela, Slawomir; Garstecki, Piotr

    2015-12-01

    The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.

  1. Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-01-27

    Our search is presented for a singly produced excited bottom quark (b*) decaying to a top quark and a W boson in the all-hadronic, lepton+jets, and dilepton final states in proton-proton collisions at √s = 8 TeV recorded by the CMS experiment at the CERN LHC. Data corresponding to an integrated luminosity of 19.7 fb -1 are used. No significant excess of events is observed with respect to standard model expectations. We set limits at 95% confidence on the product of the b* quark production cross section and its branching fraction to tW. Furthermore, the cross section limits are interpretedmore » for scenarios including left-handed, right-handed, and vector-like couplings of the b* quark and are presented in the two-dimensional coupling plane based on the production and decay coupling constants. The masses of the left-handed, right-handed, and vectorlike b* quark states are excluded at 95% confidence below 1390, 1430, and 1530 GeV, respectively, for benchmark couplings. This analysis gives the most stringent limits on the mass of the b* quark to date.« less

  2. Elastic scattering of X-rays and gamma rays by 2S electrons in ions and neutral atoms

    NASA Astrophysics Data System (ADS)

    Costescu, A.; Spânulescu, S.; Stoica, C.

    2012-08-01

    The nonrelativistic limit of Rayleigh scattering amplitude on 2s electrons of neutral and partially ionized atoms is obtained by making use of the Green Function method. The result takes into consideration the retardation, relativistic kinematics and screening effects. The spurious singularities introduced by the retardation in a nonrelativistic approach are cancelled by the relativistic kinematics. For neutral and partially ionized atoms, a screening model is considered with an effective charge obtained by fitting the Hartree-Fock charge distribution with pure Coulombian wave functions corresponding to a central potential of a nucleus with Zeff as the atomic number. The total cross section of the photoeffect on the 2s electrons is also calculated from the imaginary part of the forward scattering amplitude by means of the optical theorem. The numerical results obtained are in a good agreement (10%) with the ones obtained by Kissell for the Rayleigh amplitude and by Scofield for the Photoeffect total cross section on the 2s electrons, for atoms with atomic number 18 ≤ Z ≤ 92 and photon energies ω≤αZm. (α=1/137,... is the fine structure constant, m is the electron mass).

  3. Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at √{s}=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhu, S.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Awad, A.; El-Khateeb, E.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Dattola, D.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Knapp, B.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-01-01

    A search is presented for a singly produced excited bottom quark (b*) decaying to a top quark and a W boson in the all-hadronic, lepton+jets, and dilepton final states in proton-proton collisions at √{s}=8 TeV recorded by the CMS experiment at the CERN LHC. Data corresponding to an integrated luminosity of 19.7 fb-1 are used. No significant excess of events is observed with respect to standard model expectations. We set limits at 95% confidence on the product of the b* quark production cross section and its branching fraction to tW. The cross section limits are interpreted for scenarios including left-handed, right-handed, and vector-like couplings of the b* quark and are presented in the two-dimensional coupling plane based on the production and decay coupling constants. The masses of the left-handed, right-handed, and vector-like b* quark states are excluded at 95% confidence below 1390, 1430, and 1530 GeV, respectively, for benchmark couplings. This analysis gives the most stringent limits on the mass of the b∗ quark to date. [Figure not available: see fulltext.

  4. Note: cryogenic microstripline-on-Kapton microwave interconnects.

    PubMed

    Harris, A I; Sieth, M; Lau, J M; Church, S E; Samoska, L A; Cleary, K

    2012-08-01

    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and crosstalk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.

  5. Simple model of foam drainage

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.; Coughlan, S.

    1994-10-01

    A simple model of foam drainage is introduced in which the Plateau borders and quadruple junctions are identified with pools that discharge through channels to pools underneath. The flow is driven by gravity and there are friction losses in the exhausting channels. The equation of Bernoulli combined with the Hagen-Poiseuille equation is applied to describe the flow. The area of the cross section of the exhausting channels can be taken as a constant or may vary during drainage. The predictions of the model are compared with standard drainage curves and with the results of a recently reported experiment in which additional liquid is supplied at the top of the froth.

  6. Experimental observations of granular debris flows

    NASA Astrophysics Data System (ADS)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  7. Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

    NASA Astrophysics Data System (ADS)

    Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; D'Agostini, G.; Dané, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Lukin, P. A.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Papenbrock, M.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Selce, A.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.; Jegerlehner, F.; KLOE-2 Collaboration

    2017-04-01

    We have measured the running of the effective QED coupling constant α (s) in the time-like region 0.6 <√{ s} < 0.975 GeV with the KLOE detector at DAΦNE using the Initial-State Radiation process e+e- →μ+μ- γ. It represents the first measurement of the running of α (s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α (s), which is the strongest direct evidence both in time- and space-like regions achieved in a single measurement. By using the e+e- →π+π- cross section measured by KLOE, the real and imaginary parts of the shift Δα (s) have been extracted. From a fit of the real part of Δα (s) and assuming the lepton universality the branching ratio BR (ω →μ+μ-) = (6.6 ±1.4stat ±1.7syst) ṡ10-5 has been determined.

  8. Theoretical Investigation of Kinetic Processes in Small Radicals of Importance in Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Millard; Dagdigian, Paul J.

    Our group studies inelastic and reactive collisions of small molecules, focusing on radicals important in combustion environments. The goal is the better understanding of kinetic processes that may be difficult to access experimentally. An essential component is the accurate determination and fitting of potential energy surfaces (PESs). After fitting the ab initio points to obtain global PESs, we treat the dynamics using time-independent (close-coupling) methods. Cross sections and rate constants for collisions of are determined with our Hibridon program suite . We have studied energy transfer (rotationally, vibrationally, and/or electronically inelastic) in small hydrocarbon radicals (CH 2 and CH 3)more » and the CN radical. We have made a comparison with experimental measurements of relevant rate constants for collisions of these radicals. Also, we have calculated accurate transport properties using state-of-the-art PESs and to investigate the sensitivity to these parameters in 1-dimensional flame simulations. Of particular interest are collision pairs involving the light H atom.« less

  9. The Effect of Area Variation on Wave Rotor Elements

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    1997-01-01

    The effect of varying the cross-sectional flow area of the passages of a wave rotor is examined by means of the method of characteristics. An idealized expansion wave, an idealized inlet port, and an idealized compression stage are considered. It is found that area variation does not have a very significant effect on the expansion wave, nor on the compression stage. For the expansion wave, increasing the passage area in the flow direction has the same effect as a diffuser, so that the flow emerges at a lower velocity than it would for the constant area case. This could be advantageous. The inlet is strongly affected by the area variation, as it changes the strength of the hammer shock wave, thereby changing the pressure behind it. In this case, reduction in the passage area in the flow direction leads to increased pressure. However, this result is dependent on the assumption that the inlet conditions remain constant with area variation. This may not be the case.

  10. Systematic study on the isotopic behavior of fusion barrier using the density-dependent nucleon-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Khalaj, M.

    By changing the neutron and nuclear matter incompressibility constant K, we investigate the isotopic behavior of the fusion barriers for the collision of large number of different isotopes with condition of 0.7 ≤ N/Z ≤ 1.36. Here, the double folding (DF) model which is accompanied by density-dependent (DD) versions of M3Y interactions is adopted as a basic heavy ion-ion potential. We show that the selected DD potentials predict a linear behavior for the calculated fusion barrier heights as a function of (N/Z - 1) for both proton- and neutron-rich systems. Moreover, the results indicate that the isotopic behavior of these values depend linearly on the change in the K constant. The isotopic studies conducted on the fusion cross-section also shows that the properties of the nuclear matter in the range of energy which is below the fusion barrier will quite affect the fusion process.

  11. A simple and efficient shear-flexible plate bending element

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz A.

    1987-01-01

    A shear-flexible triangular element formulation, which utilizes an assumed quadratic displacement potential energy approach and is numerically integrated using Gauss quadrature, is presented. The Reissner/Mindlin hypothesis of constant cross-sectional warping is directly applied to the three-dimensional elasticity theory to obtain a moderately thick-plate theory or constant shear-angle theory (CST), wherein the middle surface is no longer considered to be the reference surface and the two rotations are replaced by the two in-plane displacements as nodal variables. The resulting finite-element possesses 18 degrees of freedom (DOF). Numerical results are obtained for two different numerical integration schemes and a wide range of meshes and span-to-thickness ratios. These, when compared with available exact, series or finite-element solutions, demonstrate accuracy and rapid convergence characteristics of the present element. This is especially true in the case of thin to very thin plates, when the present element, used in conjunction with the reduced integration scheme, outperforms its counterpart, based on discrete Kirchhoff constraint theory (DKT).

  12. Multichannel calculation of the very narrow Ds0 *(2317) and the very broad D0 *(2300-2400)

    NASA Astrophysics Data System (ADS)

    Rupp, G.; van Beveren, E.

    2007-03-01

    The narrow D s0 * (2317) and broad D 0 * (2300-2400) charmed scalar mesons and their radial excitations are described in a coupled-channel quark model that also reproduces the properties of the light scalar nonet. All two-meson channels containing ground-state pseudoscalars and vectors are included. The parameters are chosen fixed at published values, except for the overall coupling constant λ, which is fine-tuned to reproduce the D s0 * (2317) mass, and a damping constant α for subthreshold contributions. Variations of λ and D 0 * (2300-2400) pole postions are studied for different α values. Calculated cross-sections for S-wave DK and Dπ scattering, as well as resonance pole positions, are given for the value of α that fits the light scalars. The thus predicted radially excited state D s0 *‧(2850), with a width of about 50MeV, seems to have been observed already.

  13. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  14. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Kashif; Ahmad, Shabbir; Ahmad, Shahzad, E-mail: shahzadahmadbzu@gmail.com

    In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms ofmore » both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.« less

  15. Applicability of a numerical model to predict vertical distribution of suspended sediment concentration along the depth in Dithmarschen Bight

    NASA Astrophysics Data System (ADS)

    Rahbani, M.

    2012-04-01

    A three dimensional numerical model of Delft3d-flow was developed to simulate the current velocity and sediment transport of Piep tidal channel system. This channel system is part of Dithmarschen Bight located in the German North Sea coast. It consists of two main channel namely Norderpiep, and Süderpiep. These two channels conjunct together to form Piep channel near the land on tidal flat. The source of the required field data for this study was those collected under "Prediction of Medium Term Coastal Morphodynamics", known as the PROMORPH project. It was executed during the period May 1999 to June 2002. Those measured data used for calibration and validation of the model were current velocity and suspended sediment concentration (SSC). Current velocities were collected using ADCP devise. Suspended sediment concentration data was prepared by converting the measured values of light transmission. These data was collected using transmissometer. On the basis of some in situ mechanical sampler data an equation was developed to convert light transmission to the SSC. Field data were carried out at several stations along the width of three cross sections from the surface to the bottom, taking into account the limitations. To verify the performance of the calibrated model, its results were compared with the field data. The comparison between the modeled and measured current velocity shows an accuracy of about 0.2 m/s. Factor of two of measured SSC were used to evaluate the performance of the model regarding these values. Some dissimilarity was found between the modeled SSC and those of the field data.To verify the cause of this dissimilarity, two comparing procedures were carried out. First the evolution of the vertical profile of the SSC from the model and those from the field were prepared and compared. In another procedure the snapshot of distribution of SSC at each cross section during different phases of a tidal cycle were prepared using the model results and compared with those derived from the field. It was found that the predicted SSC values are in good agreement with the field data during the periods of flood phase and low slack water. However, spatial dissimilarities are observed in the distribution of the SSC, during the periods of high slack water and the ebb phase. It was also found that the model could not simulate the peak SSC during the ebb current at Piep cross section which is located near the land. An insufficient supply of sediment from the tidal flat area in the model was considered to be responsible. several parameters and/or factors found to be responsible among them the usage of constant settling velocity and also constant erosion rate. The input of different values of the critical bed shear stress for erosion for the tidal flat areas and the tidal channel eastward of the cross section did improve the model results.

  16. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  17. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease

    NASA Technical Reports Server (NTRS)

    Walker, M. F.; Zee, D. S.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    Directional abnormalities of vestibular and optokinetic responses in patients with cerebellar degeneration are reported. Three-axis magnetic search-coil recordings of the eye and head were performed in eight cerebellar patients. Among these patients, examples of directional cross-coupling were found during (1) high-frequency, high-acceleration head thrusts; (2) constant-velocity chair rotations with the head fixed; (3) constant-velocity optokinetic stimulation; and (4) following repetitive head shaking. Cross-coupling during horizontal head thrusts consisted of an inappropriate upward eye-velocity component. In some patients, sustained constant-velocity yaw-axis chair rotations produced a mixed horizontal-torsional nystagmus and/or an increase in the baseline vertical slow-phase velocity. Following horizontal head shaking, some patients showed an increase in the slow-phase velocity of their downbeat nystagmus. These various forms of cross-coupling did not necessarily occur to the same degree in a given patient; this suggests that different mechanisms may be responsible. It is suggested that cross-coupling during head thrusts may reflect a loss of calibration of brainstem connections involved in the direct vestibular pathways, perhaps due to dysfunction of the flocculus. Cross-coupling during constant-velocity rotations and following head shaking may result from a misorientation of the angular eye-velocity vector in the velocity-storage system. Finally, responses to horizontal optokinetic stimulation included an inappropriate torsional component in some patients. This suggests that the underlying organization of horizontal optokinetic tracking is in labyrinthine coordinates. The findings are also consistent with prior animal-lesion studies that have shown a role for the vestibulocerebellum in the control of the direction of the VOR.

  18. Photoeffect cross sections of some rare-earth elements at 145.4 keV

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.

    1985-08-01

    Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.

  19. Measurement of cardiac output from dynamic pulmonary circulation time CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Scalzetti, Ernest M.

    Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA,more » which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.« less

  20. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    PubMed

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  1. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense of longer computation time.

  2. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  3. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  4. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  5. Reducing cross-sectional data using a genetic algorithm method and effects on cross-section geometry and steady-flow profiles

    USGS Publications Warehouse

    Berenbrock, Charles E.

    2015-01-01

    The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.

  6. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  7. The effect of topography on pyroclastic flow mobility

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Calder, E. S.

    2010-12-01

    Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.

  8. Milestone report on MD potential development for uranium silicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Zhang, Yongfeng; Hales, Jason Dean

    2016-03-01

    This report summarizes the progress on the interatomic potential development of triuranium-disilicide (U 3Si 2) for molecular dynamics (MD) simulations. The development is based on the Tersoff type potentials for single element U and Si. The Si potential is taken from the literature and a Tersoff type U potential is developed in this project. With the primary focus on the U 3Si 2 phase, some other U-Si systems such as U 3Si are also included as a test of the transferability of the potentials for binary U-Si phases. Based on the potentials for unary U and Si, two sets ofmore » parameters for the binary U-Si system are developed using the Tersoff mixing rules and the cross-term fitting, respectively. The cross-term potential is found to give better results on the enthalpy of formation, lattice constants and elastic constants than those produced by the Tersoff mixing potential, with the reference data taken from either experiments or density functional theory (DFT) calculations. In particular, the results on the formation enthalpy and lattice constants for the U 3Si 2 phase and lattice constants for the high temperature U 3Si (h-U 3Si) phase generated by the cross-term potential agree well with experimental data. Reasonable agreements are also reached on the elastic constants of U 3Si 2, on the formation enthalpy for the low temperature U 3Si (m-U 3Si) and h-U 3Si phases, and on the lattice constants of m-U 3Si phase. All these phases are predicted to be mechanically stable. The unary U potential is tested for three metallic U phases (α, β, γ). The potential is found capable to predict the cohesive energies well against experimental data for all three phases. It matches reasonably with previous experiments on the lattice constants and elastic constants of αU.« less

  9. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  10. Study of BenW (n = 1-12) clusters: An electron collision perspective

    NASA Astrophysics Data System (ADS)

    Modak, Paresh; Kaur, Jaspreet; Antony, Bobby

    2017-08-01

    This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.

  11. Distinctive viscoelastic and viscoplastic nanomechanics of ionically cross-linked polyelectrolyte complexes under intermittent relaxation and creep

    NASA Astrophysics Data System (ADS)

    Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin

    This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.

  12. Averaging cross section data so we can fit it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  13. New cross sections for H on H2 collisional transitions

    NASA Astrophysics Data System (ADS)

    Zou, Qianxia

    2011-12-01

    The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.

  14. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    NASA Astrophysics Data System (ADS)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  15. Greybody factor of a scalar field from Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Ahmed, Jamil; Saifullah, K.

    2018-04-01

    In this work we derive a general expression for the greybody factor of non-minimally coupled scalar fields in Reissner-Nordström-de Sitter spacetime in low frequency approximation. Greybody factor as a characteristic of effective potential barrier, will be presented. We discuss the role of cosmological constant both, in the absence as well as in the presence of non-minimal coupling. Considering non-minimal coupling as a mass term, its effect on the greybody factor will be discussed. We also elaborate the significance of the results by giving formulae of differential energy rate and general absorption cross section. The greybody factor gives insight into the spectrum of Hawking radiations.

  16. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-01-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  17. From bare to renormalized order parameter in gauge space: Structure and reactions

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2017-09-01

    It is not physically obvious why one can calculate with similar accuracy, as compared to the experimental data, the absolute cross section associated with two-nucleon transfer processes between members of pairing rotational bands, making use of simple BCS (constant matrix elements) or of many-body [Nambu-Gorkov (NG), nuclear field theory (NFT)] spectroscopic amplitudes. Restoration of spontaneous symmetry breaking and associated emergent generalized rigidity in gauge space provides the answer and points to a new emergence: A physical sum rule resulting from the intertwining of structure and reaction processes, closely connected with the central role induced pairing interaction plays in structure, together with the fact that successive transfer dominates Cooper pair tunneling.

  18. Canali-type channels on Venus - Some genetic constraints

    NASA Technical Reports Server (NTRS)

    Komatsu, Goro; Kargel, Jeffrey S.; Baker, Victor R.

    1992-01-01

    Canali-type channels on Venus are unique because of their great lengths (up to 6800 km) and nearly constant channel cross sectional shapes along their paths. A simple model incorporating channel flow and radiative cooling suggests that common terrestrial-type tholeiite lava cannot sustain a superheated and turbulent state for the long distances required for thermal erosion of canali within allowable discharge rates. If canali formed mainly by constructional processes, laminar tholeiitic flow of relatively high, sustained discharge rates might travel the observed distances, but the absence of levees would need to be explained. An exotic low temperature, low viscosity lava like carbonatite or sulfur seems to be required for the erosional genesis of canali.

  19. Intraband Raman laser gain in a boron nitride coupled quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorthy, N. Narayana; Peter, A. John, E-mail: a.john.peter@gmail.com

    2016-05-23

    On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B{sub 0.3}Ga{sub 0.7}N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.

  20. Hydrogen injection scheme influence on flow structure in supersonic combustor of constant cross-section

    NASA Astrophysics Data System (ADS)

    Starov, A. V.; Goldfeld, M. A.

    2017-10-01

    The efficiency of using two variants of hydrogen injection (distributed and non-distributed injection from vertical pylons) is experimentally investigated. The tests are performed in the attached pipeline regime with the Mach number at the model combustor entrance M=2. The combustion chamber has a backward-facing step at the entrance and slotted channels for combustion stabilization. The tested variants of injection differ basically by the shapes of the fuel jets and, correspondingly, by the hydrogen distribution over the combustor. As a result, distributed injection is found to provide faster ignition, upstream displacement of the elevated pressure region, and more intense combustion over the entire combustor volume.

  1. A phenomenological study of photon production in low energy neutrino nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting inmore » Detroit MI.« less

  2. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  3. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  4. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  5. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.

    PubMed

    Candau, Robin; Kawai, Masataka

    2011-12-01

    Our goal is to correlate kinetic constants obtained from fluorescence studies of myofibril suspension with those from mechanical studies of skinned muscle fibers from rabbit psoas. In myofibril studies, the stopped-flow technique with tryptophan fluorescence was used; in muscle fiber studies, tension transients with small amplitude sinusoidal length perturbations were used. All experiments were performed using the equivalent solution conditions (200 mM ionic strength, pH 7.00) at 10°C. The concentration of MgATP was varied to characterize kinetic constants of the ATP binding step 1 (K (1): dissociation constant), the binding induced cross-bridge detachment step 2 (k (2), k (-2): rate constants), and the ATP cleavage step 3 (k (3), k (-3)). In myofibrils we found that K (1) = 0.52 ± 0.08 mM (±95% confidence limits), k (2) = 242 ± 24 s(-1), and k (-2) ≈ 0; in muscle fibers, K (1) = 0.46 ± 0.06 mM, k (2) = 286 ± 32 s(-1), and k (-2) = 57 ± 21 s(-1). From these results, we conclude that myofibrils and muscle fibers exhibit nearly equal ATP binding step, and nearly equal ATP binding induced cross-bridge detachment step. Consequently, there is a good correlation between process C (phase 2 of step analysis) and the cross-bridge detachment step. The reverse detachment step is finite in fibers, but almost absent in myofibrils. We further studied partially cross-linked myofibrils and found little change in steps 2 and 3, indicating that cross-linking does not affect these steps. However, we found that K (1) is 2.5× of native myofibrils, indicating that MgATP binding is weakened by the presence of the extra load. We further studied the phosphate (Pi) effect in myofibrils, and found that Pi is a competitive inhibitor of MgATP, with the inhibitory dissociation constant of ~9 mM. Similar results were also deduced from fiber studies. To characterize the ATP cleavage step in myofibrils, we measured the slow rate constant in fluorescence, and found that k (3) + k (-3) = 16 ± 1 s(-1).

  6. Riverbank erosion induced by gravel bar accretion

    NASA Astrophysics Data System (ADS)

    Klösch, Mario; Habersack, Helmut

    2010-05-01

    Riverbank erosion is known to be strongly fluvially controlled and determination of shear stresses at the bank surface and at the bank toe is a crucial point in bank erosion modeling. In many modeling attempts hydraulics are simulated separately in a hydrodynamic-numerical model and the simulated shear stresses are further applied onto the bank surface in a bank erosion model. Hydrodynamics are usually simulated at a constant geometry. However, in some cases bed geometry may vary strongly during the event, changing the conditions for hydrodynamics along the bank. This research seeks to investigate the effect of gravel bar accretion during high discharges on final bank retreat. At a restored section of the Drava River bed widenings have been implemented to counter bed degradation. There, in an initiated side-arm, self-dynamic widening strongly affects bed development and long-term connectivity to the main channel. Understanding the riverbank erosion processes there would help to improve planning of future restoration measures. At one riverbank section in the side-arm large bank retreat was measured repeatedly after several flow events. This section is situated between two groins with a distance of 60 m, which act as lateral boundaries to the self-widening channel. In front of this bank section a gravel bar developed. During low flow condition most discharge of the side-arm flows beside the gravel bar along the bank, but shear stresses are too low for triggering bank erosion. For higher discharges results from a two-dimensional hydrodynamic-numerical model suggested shear stresses there to be generally low during the entire events. At some discharges the modeled flow velocities even showed to be recirculating along the bank. These results didn't explain the observed bank retreat. Based on the modeled shear stresses, bank erosion models would have greatly underestimated the bank retreat induced by the investigated events. Repeated surveys after events applying terrestrial photogrammetry, continuous observation of the bank section with a time-lapse camera and continuous measurement of soil hydrological variables showed that around the flow peaks steeper banks collapsed, when matric suction and hence soil shear strength decreased below critical values. But much larger bank erosion with continuous transport of failed blocks from the bank toe was observed to occur during the falling limbs of the hydrographs, when discharge went back to mean flow condition. The flow velocities along the bank then were much larger than at the same discharges during the rising limbs of the hydrographs. Surveys of the riverbed demonstrated a temporary decreased cross section for the flow along the bank because of aggradation and resulting gravel bar accretion during the event. The decreased cross section led to the high flow velocities and shear stresses observed at the end of the events. After every bar accretion, the cross section was re-established by bed degradation along the bank and by massive bank erosion. Monitoring results of the gravel bar accretion and bank retreat are presented. Shear stresses modeled at a constant geometry are compared to the shear stresses modeled when bar accretion was considered. The results highlight the importance of non-equilibrium sediment transport processes during flood events for bank erosion and the need for its consideration in bank erosion modeling. Demonstrated here at a riverbank between groins, bar accretion may play a general role at gravel-bed rivers for bank erosion, particularly near lateral constraints.

  7. Damage accumulation in closed cross-section, laminated, composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.

  8. Pressure broadening and pressure shift of diatomic iodine at 675 nm

    NASA Astrophysics Data System (ADS)

    Wolf, Erich N.

    Doppler-limited, steady-state, linear absorption spectra of 127 I2 (diatomic iodine) near 675 nm were recorded with an internally-referenced wavelength modulation spectrometer, built around a free-running diode laser using phase-sensitive detection, and capable of exceeding the signal-to-noise limit imposed by the 12-bit data acquisition system. Observed I2 lines were accounted for by published spectroscopic constants. Pressure broadening and pressure shift coefficients were determined respectively from the line-widths and line-center shifts as a function of buffer gas pressure, which were determined from nonlinear regression analysis of observed line shapes against a Gaussian-Lorentzian convolution line shape model. This model included a linear superposition of the I2 hyperfine structure based on changes in the nuclear electric quadrupole coupling constant. Room temperature (292 K) values of these coefficients were determined for six unblended I 2 lines in the region 14,817.95 to 14,819.45 cm-1 for each of the following buffer gases: the atoms He, Ne, Ar, Kr, and Xe; and the molecules H2, D2, N2, CO2, N2O, air, and H2O. These coefficients were also determined at one additional temperature (388 K) for He and CO2, and at two additional temperatures (348 and 388 K) for Ar. Elastic collision cross-sections were determined for all pressure broadening coefficients in this region. Room temperature values of these coefficients were also determined for several low-J I2 lines in the region 14,946.17 to 14,850.29 cm-1 for Ar. A line shape model, obtained from a first-order perturbation solution of the time-dependent Schrodinger equation for randomly occurring interactions between a two-level system and a buffer gas treated as step-function potentials, reveals a relationship between the ratio of pressure broadening to pressure shift coefficients and a change in the wave function phase-factor, interpreted as reflecting the "cause and effect" of state-changing events in the microscopic domain. Collision cross-sections determined from this model are interpreted as reflecting the inelastic nature of collision-induced state-changing events. A steady-state kinetic model for the two-level system compatible with the Beer-Lambert law reveals thermodynamic constraints on the ensemble-average state-changing rates and collision cross-sections, and leads to the proposal of a relationship between observed asymmetric line shapes and irreversibility in the microscopic domain.

  9. Atomic Data for the K-vacancy States of Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.

    2003-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.

  10. Nurse managers' decision-making in daily unit operation in peri-operative settings: a cross-sectional descriptive study.

    PubMed

    Siirala, Eriikka; Peltonen, Laura-Maria; Lundgrén-Laine, Heljä; Salanterä, Sanna; Junttila, Kristiina

    2016-09-01

    To describe the tactical and the operational decisions made by nurse managers when managing the daily unit operation in peri-operative settings. Management is challenging as situations change rapidly and decisions are constantly made. Understanding decision-making in this complex environment helps to develop decision support systems to support nurse managers' operative and tactical decision-making. Descriptive cross-sectional design. Data were collected from 20 nurse managers with the think-aloud method during the busiest working hours and analysed using thematic content analysis. Nurse managers made over 700 decisions; either ad hoc (n = 289), near future (n = 268) or long-term (n = 187) by nature. Decisions were often made simultaneously with many interruptions. Ad hoc decisions covered staff allocation, ensuring adequate staff, rescheduling surgical procedures, confirmation tangible resources and following-up the daily unit operation. Decisions in the near future were: planning of surgical procedures and tangible resources, and planning staff allocation. Long-term decisions were: human recourses, nursing development, supplies and equipment, and finances in the unit. Decision-making was vulnerable to interruptions, which sometimes complicated the managing tasks. The results can be used when planning decision support systems and when defining the nurse managers' tasks in peri-operative settings. © 2016 John Wiley & Sons Ltd.

  11. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  12. A new potential energy surface of the OH2+ system and state-to-state quantum dynamics studies of the O+ + H2 reaction.

    PubMed

    Li, Wentao; Yuan, Jiuchuang; Yuan, Meiling; Zhang, Yong; Yao, Minghai; Sun, Zhigang

    2018-01-03

    A new global potential energy surface (PES) of the O + + H 2 system was constructed with the permutation invariant polynomial neural network method, using about 63 000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets. For improving the accuracy of the PES, the basis set was extrapolated to the complete basis set limit by the two-point extrapolation method. The root mean square error of fitting was only 5.28 × 10 -3 eV. The spectroscopic constants of the diatomic molecules were calculated and compared with previous theoretical and experimental results, which suggests that the present results agree well with the experiment. On the newly constructed PES, reaction dynamics studies were performed using the time-dependent wave packet method. The calculated integral cross sections (ICSs) were compared with the available theoretical and experimental results, where a good agreement with the experimental data was seen. Significant forward and backward scatterings were observed in the whole collision energy region studied. At the same time, the differential cross sections biased the forward scattering, especially at higher collision energies.

  13. Role of stag beetle jaw bending and torsion in grip on rivals.

    PubMed

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2-7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. © 2016 The Author(s).

  14. Role of stag beetle jaw bending and torsion in grip on rivals

    PubMed Central

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2–7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. PMID:26763329

  15. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  16. Self-selection contributes significantly to the lower adiposity offaster, longer-distanced, male and female walkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T.

    2006-01-06

    Although cross-sectional studies show active individuals areleaner than their sedentary counterparts, it remains to be determined towhat extent this is due to initially leaner men and women choosing toexercise longer and more intensely (self-selection bias). In this reportwalking volume (weekly distance) and intensity (speed) were compared tocurrent BMI (BMIcurrent) and BMI at the start of walking (BMIstarting) in20,353 women and 5,174 men who had walked regularly for exercise for 7.2and 10.6 years,respectively. The relationships of BMIcurrent andBMIstarting with distance and intensity were nonlinear (convex). Onaverage, BMIstarting explained>70 percent of the association betweenBMIcurrent and intensity, and 40 percent and 17 percentmore » of theassociation between BMIcurrent and distance in women and men,respectively. Although the declines in BMIcurrent with distance andintensity were greater among fatter than leaner individuals, the portionsattributable to BMIstarting remained relatively constant regardless offatness. Thus self-selection bias accounts for most of the decline in BMIwith walking intensity and smaller albeit significant proportions of thedecline with distance. This demonstration of self-selection is germane toother cross-sectional comparisons in epidemiological research, givenself-selection is unlikely to be limited to weight or peculiar tophysical activity.« less

  17. Chiral corrections to the Adler-Weisberger sum rule

    NASA Astrophysics Data System (ADS)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  18. Active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2016-09-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated numerically. Imperfections are given by an initial deformation of the beam-column caused by a constant imperfection force. With the piezo-elastic supports, active bending moments in arbitrary directions orthogonal to the beam-column's longitudinal axis can be applied at both beam- column's ends. The imperfect beam-column is loaded by a gradually increasing axial compressive force resulting in a lateral deformation of the beam-column. First, a finite element model of the imperfect structure for numerical simulation of the active buckling control is presented. Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With the proposed active buckling control it is possible to stabilize the imperfect beam-column in arbitrary lateral direction for axial loads above the theoretical critical buckling load and the maximum bearable load of the passive structure.

  19. Magnetic small-angle neutron scattering of bulk ferromagnets.

    PubMed

    Michels, Andreas

    2014-09-24

    We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.

  20. Complete band gaps of phononic crystal plates with square rods.

    PubMed

    El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H

    2012-04-01

    Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Monitoring remineralization of enamel subsurface lesions by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mandurah, Mona M.; Sadr, Alireza; Shimada, Yasushi; Kitasako, Yuichi; Nakashima, Syozi; Bakhsh, Turki A.; Tagami, Junji; Sumi, Yasunori

    2013-04-01

    Optical coherence tomography (OCT) is a potential clinical tool for enamel lesion monitoring. Swept-source OCT findings were compared with cross-sectional nanohardness findings of enamel. Subsurface bovine enamel lesions in three groups were subjected to (1) deionized water (control), (2) phosphoryl oligosaccharide of calcium (POs-Ca) or (3) POs-Ca with 1 ppm fluoride for 14 days. B-scans images were obtained at 1310-nm center wavelength on sound, demineralized and remineralized areas after 4, 7, and 14 days. The specimens were processed for cross-sectional nanoindentation. Reflectivity from enamel that had increased with demineralization decreased with remineralization. An OCT attenuation coefficient parameter (μt), derived based on the Beer-Lambert law as a function of backscatter signal slope, showed a strong linear regression with integrated nanohardness of all regions (p<0.001, r=-0.97). Sound enamel showed the smallest, while demineralized enamel showed the highest μt. In group three, μt was significantly lower at four days than baseline, but remained constant afterwards. In group two, the changes were rather gradual. There was no significant difference between groups two and three at 14 days in nanohardness or μt POs-Ca with fluoride-enhanced nanohardness of the superficial zone. OCT signal attenuation demonstrated a capability for monitoring changes of enamel lesions during remineralization.

  2. Atomic Data for the K-Vacancy States of Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.

    2002-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.

  3. Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media

    PubMed Central

    Shearer, Tom; Parnell, William J.; Abrahams, I. David

    2015-01-01

    The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney–Rivlin and a two-term Arruda–Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney–Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda–Boyce material, both inflation and deflation are found to decrease the scattered power. PMID:26543398

  4. Internet Pornography Use, Perceived Addiction, and Religious/Spiritual Struggles.

    PubMed

    Grubbs, Joshua B; Exline, Julie J; Pargament, Kenneth I; Volk, Fred; Lindberg, Matthew J

    2017-08-01

    Prior work has demonstrated that religious beliefs and moral attitudes are often related to sexual functioning. The present work sought to examine another possibility: Do sexual attitudes and behaviors have a relationship with religious and spiritual functioning? More specifically, do pornography use and perceived addiction to Internet pornography predict the experience of religious and spiritual struggle? It was expected that feelings of perceived addiction to Internet pornography would indeed predict such struggles, both cross-sectionally and over time, but that actual pornography use would not. To test these ideas, two studies were conducted using a sample of undergraduate students (N = 1519) and a sample of adult Internet users in the U.S. (N = 713). Cross-sectional analyses in both samples found that elements of perceived addiction were related to the experience of religious and spiritual struggle. Additionally, longitudinal analyses over a 1-year time span with a subset of undergraduates (N = 156) and a subset of adult web users (N = 366) revealed that perceived addiction to Internet pornography predicted unique variance in struggle over time, even when baseline levels of struggle and other related variables were held constant. Collectively, these findings identify perceived addiction to Internet pornography as a reliable predictor of religious and spiritual struggle.

  5. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    NASA Astrophysics Data System (ADS)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.

    2002-05-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.

  6. Ion dipole capture cross sections at low ion and rotational energies - Comparison of integrated capture cross sections with reaction cross sections for NH3 and H2O parent-ion collisions.

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.; Canright, R. B., Jr.

    1972-01-01

    The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.

  7. Sex- and age-related differences in mid-thigh composition and muscle quality determined by computed tomography in middle-aged and elderly Japanese.

    PubMed

    Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi

    2015-06-01

    Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.

  8. An experimental study of the structure and acoustic field of a jet in a cross stream. [Ames 7-ft by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Camelier, I.; Karamcheti, K.

    1976-01-01

    The plane of symmetry of a high speed circular jet was surveyed to measure the mean and turbulent velocity fields by using constant temperature hot wire anemometry. The intensity of the noise radiated from the jet was determined in the tunnel test section by utilizing the cross-correlation at a particular time delay between the signals of two microphones suitably located along a given direction. Experimental results indicate that the turbulent intensity inside the crossflow jet increases by a factor of (1 + 1/2) as compared to the turbulent intensity of the same jet under free conditions, with r indicating the ratio of the jet velocity by the cross stream velocity. The peak observed in the turbulence spectra obtained inside the potential core of the jet has a frequency that increases by the same factor with respect to the corresponding frequency measured in the case of the free jet. The noise radiated by the jet becomes more intense as the crossflow velocity increases. The measured acoustic intensity of the crossflow jet is higher than the value which would be expected from the increase of the turbulent intensity only.

  9. Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections

    NASA Technical Reports Server (NTRS)

    Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.

    1990-01-01

    An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.

  10. Nano-fabricated plasmonic optical transformer

    DOEpatents

    Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli

    2015-06-09

    The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.

  11. Geologic cross section C-C' through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.

    2012-01-01

    Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  12. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribani, P.L.; Urbano, N.

    2000-01-01

    Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with thosemore » for a standard side-wall cross-connected system.« less

  13. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  14. Improvements to the missile aerodynamic prediction code DEMON3

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.; Johnson, David L.; Lesieutre, Daniel J.

    1992-01-01

    The computer program DEMON3 was developed for the aerodynamic analysis of nonconventional supersonic configurations comprising a body with noncircular cross section and up to two wing or fin sections. Within a wing or fin section, the lifting surfaces may be cruciform, triform, planar, or low profile layouts; the planforms of the lifting surfaces allow for breaks in sweep. The body and fin sections are modeled by triplet and constant u-velocity panels, respectively, accounting for mutual body-fin interference. Fin thickness effects are included for the use of supersonic planar source panels. One of the unique features of DEMON3 is the modeling of high angle of attack vortical effects associated with the lifting surfaces and the body. In addition, shock expansion and Newtonian pressure calculation methods can be optionally engaged. These two dimensional nonlinear methods are augmented by aerodynamic interference determined from the linear panel methods. Depending on the geometric details of the body, the DEMON3 program can be used to analyze nonconventional configurations at angles of attack up to 25 degrees for Mach numbers from 1.1 to 6. Calculative results and comparisons with experimental data demonstrate the capabilities of DEMON3. Limitations and deficiencies are listed.

  15. Understanding the kinetics of the ClO dimer cycle

    NASA Astrophysics Data System (ADS)

    von Hobe, M.; Salawitch, R. J.; Canty, T.; Keller-Rudek, H.; Moortgat, G. K.; Grooß, J.-U.; Müller, R.; Stroh, F.

    2007-06-01

    Among the major factors controlling ozone loss in the polar vortices in winter/spring is the kinetics of the ClO dimer catalytic cycle. Here, we propose a strategy to test and improve our understanding of these kinetics by comparing and combining information on the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate from laboratory experiments, theoretical studies and field observations. Concordant with a number of earlier studies, we find considerable inconsistencies of some recent laboratory results with rate theory calculations and stratospheric observations of ClO and Cl2O2. The set of parameters for which we find the best overall consistency - namely the ClO/Cl2O2 equilibrium constant suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on absorption cross sections in the range between the JPL 2006 assessment and the laboratory study by Burkholder et al. (1990) - is not congruent with the latest recommendations given by the JPL and IUPAC panels and does not represent the laboratory studies currently regarded as the most reliable experimental values. We show that the incorporation of new Pope et al. (2007) Cl2O2 absorption cross sections into several models, combined with best estimates for other key parameters (based on either JPL and IUPAC evaluations or on our study), results in severe model underestimates of observed ClO and observed ozone loss rates. This finding suggests either the existence of an unknown process that drives the partitioning of ClO and Cl2O2, or else some unidentified problem with either the laboratory study or numerous measurements of atmospheric ClO. Our mechanistic understanding of the ClO/Cl2O2 system is grossly lacking, with severe implications for our ability to simulate both present and future polar ozone depletion.

  16. Multi-frequency bioelectrical impedance analysis (BIA) compared to magnetic resonance imaging (MRI) for estimation of fat-free mass in colorectal cancer patients treated with chemotherapy.

    PubMed

    Palle, Stine S; Møllehave, Line T; Taheri-Kadkhoda, Zahra; Johansen, Susanne; Larsen, Lisbeth; Hansen, Janne W; Jensen, Nikolaj K G; Elingaard, Anette O; Møller, Alice H; Larsen, Karen; Andersen, Jens R

    2016-12-01

    Changes in body composition in cancer patients during chemotherapy are associated with treatment related toxicities or mortalities. Thus, it is relevant to identify accessible, relatively inexpensive, portable and reliable tools for evaluation of body composition in cancer patients during the course of their treatments. To examine relationships between single cross-sectional thighs magnetic resonance imaging (MRI), skeletal muscle mass (SM) as reference and multi-frequency bioelectrical impedance analysis (BIA) fat free mass (FFM) in patients with colorectal cancer undergoing chemotherapy. In an observational, prospective study we examine the relationships between single cross-sectional thighs MRI (T1-weighted (1.5 T) SM compared to FFM BIA (8-electrodes multi-frequency Tanita MC780MA)) and FFM skin-fold thickness (ST) (4-points (Harpenden, Skinfold Caliper)) and SM equation for non-obese persons from Lee et al. 2000 (L2000) (based on age, height, weight, sex and race). FFM and SM (kg) were calculated based on either area (MRI) or weight. 18 CRC patients (10 males and 8 females) with mean (SD) age 67 yr (6) were measured at baseline, and 13 were available for follow-up. BIA overestimated FFM kg for all 31 measurements with mean (SD) 18.0 kg (6.0) compared to the MRI. ST overestimated FFM kg with mean 12.4 kg (6.2) and L2000 underestimated SM kg in 18 measurements and overestimated in 13 with a total mean of -4.3 kg (6.8). BIA and ST were the best alternatives to MRI as they showed constant and thereby correctable errors. The equation, L2000, carried the smallest average measurement error but it was non-constant. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  17. Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.

    1958-01-01

    An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.

  18. High lateral resolution exploration using surface waves from noise records

    NASA Astrophysics Data System (ADS)

    Chávez-García, Francisco José Yokoi, Toshiaki

    2016-04-01

    Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.

  19. KSC-01pp1551

    NASA Image and Video Library

    2001-08-31

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- EXPEDITION FOUR INSIGNIA -- The International Space Station (ISS) Expedition Four crew patch has an overall diamond shape, showing the "diamond in the rough" configuration of the Station during expedition four. The red hexagonal shape with stylized American and Russian flags represents the cross-sectional view of the S0 truss segment, which the crew will attach to the U.S. Lab Destiny. The persistent Sun shining on the Earth and Station represents the constant challenges that the crew and ground support team will face every day while operating the International Space Station, while shedding new light through daily research. The green portion of the Earth represents the fourth color in the visible spectrum and the black void of space represents humankind's constant quest to explore the unknown. The NASA insignia design for Shuttle flights ts is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced

  20. Expedition 4 crew insignia

    NASA Image and Video Library

    2001-08-01

    ISS004-S-001 (August 2001) --- The International Space Station (ISS) Expedition 4 crew patch has an overall diamond shape, showing the “diamond in the rough” configuration of the Station during expedition 4. The red hexagonal shape with stylized American and Russian flags represents the cross-sectional view of the S0 truss segment, which the crew will attach to the U.S. Lab Destiny. The persistent Sun shining on the Earth and Station represents the constant challenges that the crew and ground support team will face every day while operating the International Space Station, while shedding new light through daily research. The green portion of the Earth represents the fourth color in the visible spectrum and the black void of space represents humankind’s constant quest to explore the unknown. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  1. Facial anthropometry of Hong Kong Chinese babies.

    PubMed

    Fok, T F; Hon, K L; So, H K; Wong, E; Ng, P C; Lee, A K Y; Chang, A

    2003-08-01

    To provide a database of the craniofacial measurements of Chinese infants born in Hong Kong. Prospective cross-sectional study. A total of 2371 healthy singleton, born consecutively at the Prince of Wales Hospital and the Union Hospital from June 1998 to June 2000, were included in the study. The range of gestation was 33-42 weeks. Measurements included facial width (FW), facial height (FH), nasal length (NL), nasal width (NW), and length of the philtrum (PhilL). The facial, nasal, nasofacial and nasozygomatic indices were derived. The data show generally higher values for males in the parameters measured. The various indices remained remarkably constant and did not vary significantly between the two genders or with gestation. When compared with previously published data for white people term babies, Chinese babies have similar NW but shorter philtrum length. The human face appears to grow in a remarkably constant fashion as defined by the various indices of facial proportions. This study establishes the first set of gestational age-specific standard of such craniofacial parameters for Chinese new-borns, potentially enabling early syndromal diagnosis. There are significant inter-racial differences in these craniofacial parameters.

  2. Neck and shoulder disorders in medical secretaries. Part I. Pain prevalence and risk factors.

    PubMed

    Kamwendo, K; Linton, S J; Moritz, U

    1991-01-01

    420 medical secretaries took part in a cross-sectional study at examining the prevalence of musculoskeletal disorders as well as the relationship between neck and shoulder pain and possible risk factors. Sixty-three percent had experienced neck pain sometime during the previous year and while 15% had suffered almost constant pain 32% had experienced neck pain only occasionally. Shoulder pain during the previous year had been experienced by 62%, 17% had suffered almost constant pain while 29% experienced pain only occasionally. Fifty-one percent had experienced low back pain. Age and length of employment were significantly related to neck and shoulder pain. Furthermore, working with office machines 5 hours or more per day was associated with a significantly increased risk for neck pain (OR 1.7), shoulder pain (OR 1.9) and headache (OR 1.8). Finally, a poorly experienced psychosocial work environment was significantly related to headache, neck, shoulder and low back pain. The results of this study suggest that work with office machines as well as the psychosocial work environment are important factors in neck and shoulder pain.

  3. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  4. Chemi-luminescence measurements of hyperthermal Xe{sup +}/Xe{sup 2+}+ NH{sub 3} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince, Benjamin D.; Steiner, Colby P.; Chiu, Yu-Hui

    2012-04-14

    Luminescence spectra are recorded for the reactions of Xe{sup +}+ NH{sub 3} and Xe{sup 2+}+ NH{sub 3} at energies ranging from 11.5 to 206 eV in the center-of-mass (E{sub cm}) frame. Intense features of the luminescence spectra are attributed to the NH (A {sup 3}{Pi}{sub i}-X {sup 3}{Sigma}{sup -}), hydrogen Balmer series, and Xe I emission observable for both primary ions. Evidence for charge transfer products is only found through Xe I emission for both primary ions and NH{sup +} emission for Xe{sup 2+} primary ions. For both primary ions, the absolute NH (A-X) cross section increases with collision energymore » before leveling off at a constant value, approximately 9 x 10{sup -18} cm{sup 2}, at about 50 eV while H-{alpha} emission increases linearly with collision energy. The nascent NH (A) populations derived from the spectral analysis are found to be independent of collision energy and have a constant rotational temperature of 4200 K.« less

  5. AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Lucius, J.L.; Petrie, L.M.

    1976-03-01

    AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less

  6. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.

    PubMed

    Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew

    2016-08-01

    To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  8. Parameterized Cross Sections for Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.

    2000-01-01

    An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.

  9. An investigation of MCNP6.1 beryllium oxide S(α, β) cross sections

    DOE PAGES

    Sartor, Raymond F.; Glazener, Natasha N.

    2016-03-08

    In MCNP6.1, materials are constructed by identifying the constituent isotopes (or elements in a few cases) individually. This list selects the corresponding microscopic cross sections calculated from the free-gas model to create the material macroscopic cross sections. Furthermore, the free-gas model and the corresponding material macroscopic cross sections assume that the interactions of atoms do not affect the nuclear cross sections.

  10. DBCC Software as Database for Collisional Cross-Sections

    NASA Astrophysics Data System (ADS)

    Moroz, Daniel; Moroz, Paul

    2014-10-01

    Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.

  11. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  12. A cryofuge for cold-collision experiments with slow polar molecules

    NASA Astrophysics Data System (ADS)

    Wu, Xing; Gantner, Thomas; Koller, Manuel; Zeppenfeld, Martin; Chervenkov, Sotir; Rempe, Gerhard

    2017-11-01

    Ultracold molecules represent a fascinating research frontier in physics and chemistry, but it has proven challenging to prepare dense samples at low velocities. Here, we present a solution to this goal by means of a nonconventional approach dubbed cryofuge. It uses centrifugal force to bring cryogenically cooled molecules to kinetic energies below 1 K × kB in the laboratory frame, where kB is the Boltzmann constant, with corresponding fluxes exceeding 1010 per second at velocities below 20 meters per second. By attaining densities higher than 109 per cubic centimeter and interaction times longer than 25 milliseconds in samples of fluoromethane as well as deuterated ammonia, we observed cold dipolar collisions between molecules and determined their collision cross sections.

  13. Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements

    PubMed Central

    Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf

    2011-01-01

    The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311

  14. Dynamics of the evaporative dewetting of a volatile liquid film confined within a circular ring.

    PubMed

    Sun, Wei; Yang, Fuqian

    2015-04-07

    The dewetting dynamics of a toluene film confined within a copper ring on a deformable PMMA film is studied. The toluene film experiences evaporation and dewetting, which leads to the formation of a circular contact line around the center of the copper ring. The contact line recedes smoothly toward the copper ring at a constant velocity until reaching a dynamic "stick" state to form the first circular polymer ridge. The average receding velocity is found to be dependent on the dimensions of the copper ring (the copper ring diameter and the cross-sectional diameter of the copper wire) and the thickness of the PMMA films. A model is presented to qualitatively explain the evaporative dewetting phenomenon.

  15. Tensor polarization of the ϕ meson photoproduced at high t

    NASA Astrophysics Data System (ADS)

    McCormick, K.; Audit, G.; Laget, J. M.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Farhi, L.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Gai, M.; Garçon, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lukashin, K.; Major, W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sanzone-Arenhovel, M.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Witkowski, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhao, J.; Zhou, Z.

    2004-03-01

    As part of a measurement [

    E. Anciant et al., Phys. Rev. Lett. 85, 4682 (2000)
    ] of the cross section of ϕ meson photoproduction to high momentum transfer, we measured the polar angular decay distribution of the outgoing K+ in the channel ϕ→ K+ K- in the ϕ center-of-mass frame (the helicity frame). We find that s -channel helicity conservation (SCHC) holds in the kinematical range where t -channel exchange dominates (up to -t˜2.5 GeV2 for Eγ =3.6 GeV ). Above this momentum, u -channel production of a ϕ meson dominates and induces a violation of SCHC. The deduced value of the ϕNN coupling constant lies in the upper range of previously reported values.

  16. Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring BENDING-BENDING Elastic Coupling

    NASA Astrophysics Data System (ADS)

    SONG, O.; JEONG, N.-H.; LIBRESCU, L.

    2000-10-01

    A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.

  17. K-shell Photoionization of Na-like to Cl-like Ions of Mg, Si, S, Ar, and Ca

    NASA Technical Reports Server (NTRS)

    Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2010-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  18. Refrigerant pressurization system with a two-phase condensing ejector

    DOEpatents

    Bergander, Mark [Madison, CT

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  19. Control of laminar separation over airfoils by acoustic excitation

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Mckinzie, D. J.

    1988-01-01

    The effect of acoustic excitation in reducing laminar separation over two-dimensional airfoils at low angles of attack is investigated experimentally. Airfoils of two different cross sections, each with two different chord lengths, are studied in the chord Reynolds number range of 25,000 is less than R sub c is less than 100,000. While keeping the amplitude of the excitation induced velocity perturbation a constant, it is found that the most effective frequency scales as U (sup 3/2)(sub infinity). The parameter St/R (sup 1/2)(sub c), corresponding to the most effective f sub p for all the cases studied, falls in the range of 0.02 to 0.03, St being the Strouhal number based on the chord.

  20. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  1. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries

    USGS Publications Warehouse

    Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.

    1990-01-01

    The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.

  2. Cooling of Gas Turbines. 3; Analysis of Rotor and Blade Temperatures in Liquid-Cooled Gas Turbines

    NASA Technical Reports Server (NTRS)

    Brown, W. Byron; Livingood, John N. B.

    1947-01-01

    A theoretical analysis of the radial temperature distribution through the rotor and constant cross sectional area blades near the coolant passages of liquid cooled gas turbines was made. The analysis was applied to obtain the rotor and blade temperatures of a specific turbine using a gas flow of 55 pounds per second, a coolant flow of 6.42 pounds per second, and an average coolant temperature of 200 degrees F. The effect of using kerosene, water, and ethylene glycol was determined. The effect of varying blade length and coolant passage lengths with water as the coolant was also determined. The effective gas temperature was varied from 2000 degrees to 5000 degrees F in each investigation.

  3. Hyperon-Nucleon Interaction and Strangeness Production in PP Collisions

    NASA Astrophysics Data System (ADS)

    Haidenbauer, J.

    2002-09-01

    A new model for the hyperon-nucleon (ΛN, ΣN) interaction is presented. The model incorporates the standard one-boson exchange contributions of the lowest pseudoscalar and vector meson multiplets with coupling constants fixed by SU(6) symmetry relations. As the main feature of the new model, the exchange of two correlated pions or kaons, both in the scalar-isoscalar (σ) and vector-isovector (ρ) channels, is included. Furthermore, results of a model calculation for the reactions pp → NΛK and pp → NΣK near their thresholds are reported. Special attention is paid to the cross section ratio σpp→pΛK+pp→pΣ0K+ which was found to be unexpectedly large in recent experiments.

  4. Torsion effect on fully developed flow in a helical pipe

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    1987-01-01

    Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.

  5. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  6. Different roles of electron beam in two stream instability in an elliptical waveguide for generation and amplification of THz electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, S.; Jazi, B., E-mail: jaziada@kashanu.ac.ir; Jahanbakht, S.

    2016-08-15

    In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electronmore » beam plays a stabilizing role.« less

  7. IDENTIFYING ELEVEN FACTORS OF SERVICE MARKETING MIX (4PS) EFFECTIVE ON TENDENCY OF PATIENTS TOWARD PRIVATE HOSPITAL.

    PubMed

    Hosseini, Seyed Mojtaba; Etesaminia, Samira; Jafari, Mehrnoosh

    2016-10-01

    One of the important factors of correct management is to identify the reasons for patient tendency toward private hospitals. This study measures these factors based on service marketing mixes. This study used a cross sectional descriptive methodology. The study was conducted during 6 months in 2015. The studied population included patients of private hospitals in Tehran. Random sampling was used (n = 200). Data was collected by an author-made questionnaire for service marketing factors. Reliability and validity of the questionnaire were confirmed. Data analysis was done using factor analysis test in SPSS 20. The results showed that constant attendance of physicians and nurses has the highest effect (0.707%) on patient tendency toward private hospitals.

  8. Multiple frequency radar observations of high-latitude E region irregularities in the HF modified ionosphere

    NASA Technical Reports Server (NTRS)

    Noble, S. T.; Gordon, W. E.; Djuth, F. T.; Jost, R. J.; Hedberg, A.

    1987-01-01

    This paper discusses the results of the September 1983 observations of artificial field-aligned irregularities (AFAIs) in the Tromso, Norway region, made by backscatter radars operating at 46.9, 143.8, 21.4, and 140.0 MHz. Four classes of resonant instability processes at work in the E and F regions are examined in detail: (1) the coupling of parametric decay instability waves across geomagnetic field lines, (2) thermal parametric instability, (3) four-wave interaction thermal parametric instability, and (4) the resonance instability. The characteristics of the AFAI scatter are described, with special attention given to the growth and decay time constants, functional dependence on the heater power and polarization, and the scattering cross sections of the irregularities.

  9. Angular distributions for a model system of nonadiabatic molecular collisions: The quenching of Na*(3p) by H/sub 2/ and D/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiland, W.; Tittes, U.; Hertel, I.V.

    Angular distributions for the electronic to vibrational rotational and translational energy (E-VRT) transfer process Na*(3p)+H/sub 2/,D/sub 2/..-->..Na(3s)+H/sub 2/(v',j') with product energy analysis have been measured for the first time. The differential cross sections are forward peaked, constant but small between 35/sup 0/ and 160/sup 0/ and very slightly increasing at 180/sup 0/. The observations can be qualitatively understood by a simple model for the particle motion on the attractive A/sup 2/B/sub 2/ excited-state surface with a hop to the repulsive X/sup 2/A/sub 1/ ground state.

  10. Lateral resolution improvement in scanning nonlinear dielectric microscopy by measuring super-higher-order nonlinear dielectric constants

    NASA Astrophysics Data System (ADS)

    Chinone, N.; Yamasue, K.; Hiranaga, Y.; Honda, K.; Cho, Y.

    2012-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can be used to visualize polarization distributions in ferroelectric materials and dopant profiles in semiconductor devices. Without using a special sharp tip, we achieved an improved lateral resolution in SNDM through the measurement of super-higher-order nonlinearity up to the fourth order. We observed a multidomain single crystal congruent LiTaO3 (CLT) sample, and a cross section of a metal-oxide-semiconductor (MOS) field-effect-transistor (FET). The imaged domain boundaries of the CLT were narrower in the super-higher-order images than in the conventional image. Compared to the conventional method, the super-higher-order method resolved the more detailed structure of the MOSFET.

  11. Geologic Cross Section E-E' through the Appalachian Basin from the Findlay Arch, Wood County, Ohio, to the Valley and Ridge Province, Pendleton County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.

    2008-01-01

    Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).

  12. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry.

    PubMed

    Haler, Jean R N; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-11-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.

  13. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-08-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.

  14. Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Dagdigian, Paul J.; Alexander, Millard H.

    2013-03-01

    We report a theoretical investigation of the relaxation of the umbrella vibrational mode (the ν2 mode) of the CH3 molecule in its ground tilde{X}^2A_2^' ' } electronic state in collisions with helium. We have calculated a four-dimensional potential energy surface (PES) for the interaction between CH3 with different umbrella displacements and a helium atom, using a restricted open-shell coupled-cluster method with inclusion of all single, double, and (perturbatively) triple excitations [RCCSD(T)]. With this PES we carried out full close-coupling scattering calculations including all CH3 umbrella-rotational levels with v2 ⩽ 3. To our knowledge, this work represents the first fully quantum calculations of ro-vibrational relaxation of a polyatomic. In more detail, we investigate propensities in the calculated ro-vibrational cross sections and the dependence on initial rotational excitation, as well as determining thermal rate constants. Overall, ro-vibrational relaxation is nearly two orders of magnitude less efficient than pure-rotational relaxation, with a noticeable dependence on the initial rotational level. We predict the room temperature v2 = 1 vibrational relaxation rate constant to be 5.4 × 10-12 cm3 molecule-1 s-1, compared to the rate constants for pure-rotational relaxation of the lower rotational levels (˜2.0 × 10-10 cm3 molecule-1 s-1).

  15. Effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived silicate thin films

    NASA Astrophysics Data System (ADS)

    Ghisleni, Rudy

    A study on the effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived thin films has been performed. Hybrid organic/inorganic modified silicate thin films were synthesized by sol-gel processing from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto (100) Si substrates. The synthesized films were investigated by nanoindentation, photoluminescence spectroscopy, and Raman spectroscopy. Hybrid TEOS/MTES sol-gel films modified by ion irradiation with deposited electronic energies of 1.87 x 1025 eV/cm3 or higher showed higher values of reduced elastic modulus and hardness than 800°C heat treated films. Thus, ion irradiation was found to be an effective means in converting the polymer sol into ceramic type coatings. The ions used in this study were Cu2+, N2+, Si+, O+, N+, He+, and H+, with incident energies ranging from 100 keV to 2 MeV, and fluences ranging from 1 x 1014 to 1 x 1017 ions/cm2. Both the reduced elastic modulus and hardness were seen to increase monotonically with the increase in ion fluence, with an observed maximum hardness of 7.7 GPa (an unirradiated film hardness was 0.4 GPa) and a maximum reduced elastic modulus of 84.0 GPa (an unirradiated film reduced elastic modulus was 7.1 GPa) for 250 keV N2+ irradiation with a 5 x 1016 ions/cm2 fluence. The electronic stopping power was found to be principally responsible for the film hardening, while the role of nuclear stopping power was minimal. A monotonic increase in hardness with increase in electronic energy deposited to the film surface was found. A model describing the hardening of ion irradiated films was developed. This model characterizes the hardening effectiveness of the ion species considered by two parameters: the constant hardening cross-section and the hardening coefficient. Where the hardening cross-section represents the cross-sectional area hardened by the interaction of an incident ion with the target, and the hardening coefficient represents an index of the cross-sectional area gradient as a function of fluence. The increase in hardness of hybrid sol-gel films following ion irradiation was linked to structural changes. Ion irradiation results in a cross-linked silica film as well as the segregation of amorphous carbon clusters, both of which contributed to increase the mechanical properties of the films.

  16. A comparison of total reaction cross section models used in particle and heavy ion transport codes

    NASA Astrophysics Data System (ADS)

    Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.

    To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.

  17. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  18. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for draining the bulk fluid in a continuous circuit. The functional operation of the SPS involves introducing liquid flow (from a human body, a syringe, or other source) to the two-phase inlet while an air fan pulls on the air exit lines. The fan is operated until the liquid is fully introduced. The system is drained by negative pressure on the liquid drain lines when the SPS containment system is full.

  19. BACKSCAT Lidar Simulation Version 3.0: Technical Documentation and Users Guide

    DTIC Science & Technology

    1992-12-03

    Raman Cross Section of Some Simple Gases, J. Opt. Soc. Am., 63:73. 20 Penny, C.M., St. Peters, R.L., and Lapp, M., (1974) Absolute Rotational Raman...of the molecule, and the remaining columns list the relative normalized cross sections for the respective excitation wavelength. The absolute Raman...cross section is obtained by simply multiplying the relative normalized cross section for a molecular species of interest by the absolute cross section

  20. Analysis, design, fabrication, and performance of three-dimensional braided composites

    NASA Astrophysics Data System (ADS)

    Kostar, Timothy D.

    1998-11-01

    Cartesian 3-D (track and column) braiding as a method of composite preforming has been investigated. A complete analysis of the process was conducted to understand the limitations and potentials of the process. Knowledge of the process was enhanced through development of a computer simulation, and it was discovered that individual control of each track and column and multiple-step braid cycles greatly increases possible braid architectures. Derived geometric constraints coupled with the fundamental principles of Cartesian braiding resulted in an algorithm to optimize preform geometry in relation to processing parameters. The design of complex and unusual 3-D braids was investigated in three parts: grouping of yarns to form hybrid composites via an iterative simulation; design of composite cross-sectional shape through implementation of the Universal Method; and a computer algorithm developed to determine the braid plan based on specified cross-sectional shape. Several 3-D braids, which are the result of variations or extensions to Cartesian braiding, are presented. An automated four-step braiding machine with axial yarn insertion has been constructed and used to fabricate two-step, double two-step, four-step, and four-step with axial and transverse yarn insertion braids. A working prototype of a multi-step braiding machine was used to fabricate four-step braids with surrogate material insertion, unique hybrid structures from multiple track and column displacement and multi-step cycles, and complex-shaped structures with constant or varying cross-sections. Braid materials include colored polyester yarn to study the yarn grouping phenomena, Kevlar, glass, and graphite for structural reinforcement, and polystyrene, silicone rubber, and fasteners for surrogate material insertion. A verification study for predicted yarn orientation and volume fraction was conducted, and a topological model of 3-D braids was developed. The solid model utilizes architectural parameters, generated from the process simulation, to determine the composite elastic properties. Methods of preform consolidation are investigated and the results documented. The extent of yarn deformation (packing) resulting from preform consolidation was investigated through cross-sectional micrographs. The fiber volume fraction of select hybrid composites was measured and representative unit cells are suggested. Finally, a comparison study of the elastic performance of Kevlar/epoxy and carbon/Kevlar hybrid composites was conducted.

  1. A scanning Raman lidar for observing the spatio-temporal distribution of water vapor

    NASA Astrophysics Data System (ADS)

    Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka

    2016-12-01

    We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site. From the wide-range cross-sectional observations of the water vapor mixing ratio and the backscatter ratio of aerosols within a 2000 m range, we can detect small-scale water vapor structures on a horizontal scale of several hundred meters in the atmospheric boundary layer.

  2. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at different incident energies are measured, one can determine both the proton and neutron radii for unstable nuclei as well. The total reaction cross sections calculated in this paper are given as Supplemental Material for the sake of future measurements.

  3. Aeroacoustic measurements on a NACA 0012 applying the Coherent Particle Velocity method

    NASA Astrophysics Data System (ADS)

    Plogmann, B.; Würz, W.

    2013-07-01

    Aeroacoustic measurements on two NACA 0012 airfoil sections with different chord length and sharp trailing edge were conducted at the Laminar Wind Tunnel (LWT) of the University of Stuttgart. The LWT is a closed test section wind tunnel with a very low turbulence level and an acoustically optimized diffusor section allowing for high-quality aerodynamic as well as aeroacoustic measurements. Trailing edge noise measurements were performed using the Coherent Particle Velocity (CPV) method, which is based on a cross-spectral analysis of two hot-wire sensor signals placed on the suction and the pressure side of the airfoil trailing edge, respectively. At high angles of attack, the cross-spectral analysis of the two sensor signals used for the measurement of the trailing edge noise can be prone to a disturbing influence of hydrodynamic fluctuations. Hence, continuous shifts in the phasing of the cross-correlation are observed mainly for low sensor distances to the trailing edge. The quantitative evaluation of the trailing edge noise predominately in the low frequency range is, therefore, considerably disturbed. A new approach is proposed, which allows for the correction of the cross-correlation function based on the averaged single wire auto-spectrum. The results are compared to measurements with increased sensor distance and show good agreement. In the following, trailing edge noise measurements were performed on a NACA 0012 airfoil in a wide range of angles of attack ( α = 0°-8°) and free-stream velocities (u_{infty} = 30{-}70 {{m/s}}). The tripped flow cases exhibit a very good consistency for the scaling of the 1/3 octave spectra based on outer variables. Moreover, a common intersection point of the sound pressure level was observed for trailing edge noise spectra measured at constant free-stream velocity and different angles of attack. In cases without boundary layer tripping, the presence of an acoustic feedback loop was observed and linked to the presence of a laminar separation bubble on the pressure side in the vicinity of the trailing edge. Finally, a comparison of the aeroacoustic measurements based on the CPV method showed reasonably good agreement with published data obtained with both a microphone array and the Coherent Output Power method in open-test section facilities.

  4. Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2016-09-01

    We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.

  5. Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Li, Suyuan; Jiang, Li

    2018-07-01

    The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  6. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  7. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie M.; Mashnik, Stepan G.

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  8. FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Frolov, V. V.

    1990-01-01

    A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.

  9. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less

  11. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  12. Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Srivastava, S. K.

    1991-01-01

    A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.

  13. Determination of mass balance and entrainment in the stratified Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Stoner, J.D.

    1972-01-01

    During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.

  14. Nuclear Forensics and Radiochemistry: Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  15. Fragmentation Cross Sections of Medium-Energy 35Cl, 40Ar, and 48TiBeams on Elemental Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Guetersloh, S.; Heilbronn, L.

    Charge-changing and fragment production cross sections at 0degrees have been obtained for interactions of 290, 400, and 650MeV/nucleon 40Ar beams, 650 and 1000 MeV/nucleon 35Cl beams, and a 1000MeV/nucleon 48Ti beam. Targets of C, CH2, Al, Cu, Sn, and Pb were used.Using standard analysis methods, we obtain fragment cross sections forcharges as low as 8 for Cl and Ar beams, and as low as 10 for the Tibeam. Using data obtained with small-acceptance detectors, we reportfragment production cross sections for charges as low as 5, corrected foracceptance using a simple model of fragment angular distributions. Withthe lower-charged fragment cross sections,more » we cancompare the data topredictions from several models (including NUCFRG2, EPAX2, and PHITS) ina region largely unexplored in earlier work. As found in earlier workwith other beams, NUCFRG2 and PHITS predictions agree reasonably wellwith the data for charge-changing cross sections, but do not accuratelypredict the fragment production cross sections. The cross sections forthe lightest fragments demonstrate the inadequacy of several models inwhich the cross sections fall monotonically with the charge of thefragment. PHITS, despite not agreeing particularly well with the fragmentproduction cross sections on average, nonetheless qualitativelyreproduces somesignificant features of the data that are missing from theother models.« less

  16. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  17. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  18. CEPXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less

  19. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  20. Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner

    PubMed Central

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases. PMID:25420047

  1. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    PubMed

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  2. Kinetics of force recovery following length changes in active skinned single fibres from rabbit psoas muscle

    PubMed Central

    Burton, Kevin; Simmons, Robert M; Sleep, John; Smith, David A

    2006-01-01

    Redevelopment of isometric force following shortening of skeletal muscle is thought to result from a redistribution of cross-bridge states. We varied the initial force and cross-bridge distribution by applying various length-change protocols to active skinned single fibres from rabbit psoas muscle, and observed the effect on the slowest phase of recovery (‘late recovery’) that follows transient changes. In response to step releases that reduced force to near zero (∼8 nm (half sarcomere)−1) or prolonged shortening at high velocity, late recovery was well described by two exponentials of approximately equal amplitude and rate constants of ∼2 s−1 and ∼9 s−1 at 5°C. When a large restretch was applied at the end of rapid shortening, recovery was accelerated by (1) the introduction of a slow falling component that truncated the rise in force, and (2) a relative increase in the contribution of the fast exponential component. The rate of the slow fall was similar to that observed after a small isometric step stretch, with a rate of 0.4–0.8 s−1, and its effects could be reversed by reducing force to near zero immediately after the stretch. Force at the start of late recovery was varied in a series of shortening steps or ramps in order to probe the effect of cross-bridge strain on force redevelopment. The rate constants of the two components fell by 40–50% as initial force was raised to 75–80% of steady isometric force. As initial force increased, the relative contribution of the fast component decreased, and this was associated with a length constant of about 2 nm. The results are consistent with a two-state strain-dependent cross-bridge model. In the model there is a continuous distribution of recovery rate constants, but two-exponential fits show that the fast component results from cross-bridges initially at moderate positive strain and the slow component from cross-bridges at high positive strain. PMID:16497718

  3. Temperature-dependent inotropic and lusitropic indices based on half-logistic time constants for four segmental phases in isovolumic left ventricular pressure-time curve in excised, cross-circulated canine heart.

    PubMed

    Mizuno, Ju; Mohri, Satoshi; Yokoyama, Takeshi; Otsuji, Mikiya; Arita, Hideko; Hanaoka, Kazuo

    2017-02-01

    Varying temperature affects cardiac systolic and diastolic function and the left ventricular (LV) pressure-time curve (PTC) waveform that includes information about LV inotropism and lusitropism. Our proposed half-logistic (h-L) time constants obtained by fitting using h-L functions for four segmental phases (Phases I-IV) in the isovolumic LV PTC are more useful indices for estimating LV inotropism and lusitropism during contraction and relaxation periods than the mono-exponential (m-E) time constants at normal temperature. In this study, we investigated whether the superiority of the goodness of h-L fits remained even at hypothermia and hyperthermia. Phases I-IV in the isovolumic LV PTCs in eight excised, cross-circulated canine hearts at 33, 36, and 38 °C were analyzed using h-L and m-E functions and the least-squares method. The h-L and m-E time constants for Phases I-IV significantly shortened with increasing temperature. Curve fitting using h-L functions was significantly better than that using m-E functions for Phases I-IV at all temperatures. Therefore, the superiority of the goodness of h-L fit vs. m-E fit remained at all temperatures. As LV inotropic and lusitropic indices, temperature-dependent h-L time constants could be more useful than m-E time constants for Phases I-IV.

  4. Geologic Cross Section D-D' Through the Appalachian Basin from the Findlay Arch, Sandusky County, Ohio, to the Valley and Ridge Province, Hardy County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.

    2009-01-01

    Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  5. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  6. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom

    NASA Astrophysics Data System (ADS)

    Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin

    2016-07-01

    Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.

  7. Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions

    NASA Astrophysics Data System (ADS)

    Famaey, Benoit; Khoury, Justin; Penco, Riccardo

    2018-03-01

    The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter (DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. As a proof of principle, we present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. For consistency with direct detection constraints, our DM particles must be either very light (m ll mb) or very heavy (mgg mb), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. In this exploratory paper, we focus on the heavy DM/cooling case because it is technically simpler, since the average energy exchanged turns out to be approximately constant throughout galaxies. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light of the unusual density dependence of the cross section of DM particles.

  8. Effectiveness and Cost Efficiency of Different Surveillance Components for Proving Freedom and Early Detection of Disease: Bluetongue Serotype 8 in Cattle as Case Study for Belgium, France and the Netherlands.

    PubMed

    Welby, S; van Schaik, G; Veldhuis, A; Brouwer-Middelesch, H; Peroz, C; Santman-Berends, I M; Fourichon, C; Wever, P; Van der Stede, Y

    2017-12-01

    Quick detection and recovery of country's freedom status remain a constant challenge in animal health surveillance. The efficacy and cost efficiency of different surveillance components in proving the absence of infection or (early) detection of bluetongue serotype 8 in cattle populations within different countries (the Netherlands, France, Belgium) using surveillance data from years 2006 and 2007 were investigated using an adapted scenario tree model approach. First, surveillance components (sentinel, yearly cross-sectional and passive clinical reporting) within each country were evaluated in terms of efficacy for substantiating freedom of infection. Yearly cross-sectional survey and passive clinical reporting performed well within each country with sensitivity of detection values ranging around 0.99. The sentinel component had a sensitivity of detection around 0.7. Secondly, how effective the components were for (early) detection of bluetongue serotype 8 and whether syndromic surveillance on reproductive performance, milk production and mortality data available from the Netherlands and Belgium could be of added value were evaluated. Epidemic curves were used to estimate the timeliness of detection. Sensitivity analysis revealed that expected within-herd prevalence and number of herds processed were the most influential parameters for proving freedom and early detection. Looking at the assumed direct costs, although total costs were low for sentinel and passive clinical surveillance components, passive clinical surveillance together with syndromic surveillance (based on reproductive performance data) turned out most cost-efficient for the detection of bluetongue serotype 8. To conclude, for emerging or re-emerging vectorborne disease that behaves such as bluetongue serotype 8, it is recommended to use passive clinical and syndromic surveillance as early detection systems for maximum cost efficiency and sensitivity. Once an infection is detected and eradicated, cross-sectional screening for substantiating freedom of infection and sentinel for monitoring the disease evolution are recommended. © 2016 Blackwell Verlag GmbH.

  9. SU-E-T-236: Deconvolution of the Total Nuclear Cross-Sections of Therapeutic Protons and the Characterization of the Reaction Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmer, W.

    2015-06-15

    Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated withmore » typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the description of lateral scatter.« less

  10. FFM water mockup studies of the near-wake region of permeable flow blockages. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, J. D.

    1976-10-01

    An experimental study of transport in the near-wake region of permeable, planar flow blockages was conducted in a vertical-flow channel with a hexagonal cross section. Experiments included measurements of axial pressure distributions along channel walls exposed to the free stream and wake region and pressure differences between the free stream and wake regions at fixed axial positions. Further, time constants for scalar decay in the near-wake region were determined by salt conductivity tests. A single blockage geometry was used in all tests; the blockage, which was attached to the channel wall, obstructed 58 percent of the cross section when themore » blockage was solid. For one series of tests, discrete jets were machined into the blockage and water was metered into the recirculation zone at velocities of the order of the mean channel velocity. Increased jet velocity reduced the resistence time of salt in the recirculation zone, and when the jet velocity was as high as the accelerated free stream flow at the vena contracta, counterrotating cells were introduced in the recirculating zone. In a second series of tests, uniformly spaced holes were drilled in the blockages to give blockage porosities of 11 and 24 percent. The residence time of salt in the near wake decreased significantly as the blockage porosity was increased to 24 percent.« less

  11. A variational approach to the study of capillary phenomena

    NASA Technical Reports Server (NTRS)

    Emmer, M.; Gonzalez, E.; Tamanini, I.

    1982-01-01

    The problem of determining the free surface of a liquid in a capillary tube, and of a liquid drop, sitting first on a horizontal plane and then on more general surfaces is considered. With some modifications, the method applies to the study of pendent drops and of rotating drops as well. The standard capillary problem, i.e. the determination of the free surface of a liquid in a thin tube of general cross section, which resuls from the simultaneous action of surface tension, boundary adhesion and gravity is discussed. It turns out that in this case the existence of the solution surface depends heavily on the validity of a simple geometric condition about the mean curvature of the boundary curve of the cross section of the capillary tube. Some particular examples of physical interest are also be discussed. Liquid drops sitting on or hanging from a fixed horizontal plane are discussed. The symmetry of the solutions (which can actually be proved, as consequence of a general symmetrization argument) now plays the chief role in deriving both the existence and the regularity of energy-minimizing configurations. When symmetry fails (this is the case, for example, when the contact angle between the drop and the plate is not constant, or when the supporting surface is not itself symmetric), then more sophisticated methods must be used. Extensions in this direction are outlined.

  12. Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr

    1958-01-01

    An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.

  13. Induction of strand breaks by low-energy electrons (8-68 eV) in a self-assembled monolayer of oligonucleotides: Effective cross sections and attenuation lengths

    NASA Astrophysics Data System (ADS)

    Cai, Zhongli; Dextraze, Marie-Eve; Cloutier, Pierre; Hunting, Darel; Sanche, Léon

    2006-01-01

    Self-assembled monolayers of 5'-P32-labeled 3'-thiolated oligonucleotides chemisorbed on gold were bombarded by low-energy electrons (LEE) of 8-68eV. Shorter 5'-P32-oligonucleotides produced by LEE-induced strand breaks were separated with denaturing polyacrylamide gel electrophoresis and quantified by phosphor imaging. The yields of short oligonucleotides (y) decrease exponentially with their length (n), following the equation y =ae-bn, where a and b are constants, which are related to the average effective cross section per nucleotide for DNA strand break (σeff) and the attenuation length (AL=1/b) of LEE, respectively. The AL decreases with LEE energies from 2.5±0.6nm at 8eVto0.8±0.1nm at 68eV, whereas σeff increases from (3±1)×10-18to(5.1±1.6)×10-17cm2 within the same energy range. The energy dependence of σeff shows a resonance peak of (2.8±0.9)×10-17cm2 at 18eV superimposed on a monotonically rising curve. Transient electron attachment to a σ* anion state of the deoxyribose group, followed by dipolar dissociation into H- and the corresponding positive-ion radical, leading to C-O bond cleavage, is proposed to account for this maximum.

  14. Cross sectional study of young people's awareness of and involvement with tobacco marketing.

    PubMed

    MacFadyen, L; Hastings, G; MacKintosh, A M

    2001-03-03

    To examine young people's awareness of and involvement with tobacco marketing and to determine the association, if any, between this and their smoking behaviour. Cross sectional, quantitative survey, part interview and part self completion, administered in respondents' homes. North east England. Stratified random sample of 629 young people aged 15 and 16 years who had "opted in" to research through a postal consent procedure. There was a high level of awareness of and involvement in tobacco marketing among the 15-16 year olds sampled in the study: around 95% were aware of advertising and all were aware of some method of point of sale marketing. Awareness of and involvement with tobacco marketing were both significantly associated with being a smoker: for example, 30% (55/185) of smokers had received free gifts through coupons in cigarette packs, compared with 11% (21/199) of non-smokers (P<0.001). When other factors known to be linked with teenage smoking were held constant, awareness of coupon schemes, brand stretching, and tobacco marketing in general were all independently associated with current smoking status. Teenagers are aware of, and are participating in, many forms of tobacco marketing, and both awareness and participation are associated with current smoking status. This suggests that the current voluntary regulations designed to protect young people from smoking are not working, and that statutory regulations are required.

  15. Studies of jet cross-sections and production properties with the ATLAS and CMS detectors

    NASA Astrophysics Data System (ADS)

    Anjos, Nuno

    2016-07-01

    Several characteristics of jet production in pp collisions have been measured by the ATLAS and CMS collaborations at the LHC. Measurements of event shapes and multi-jet production probe the dynamics of QCD in the soft regime and can constrain parton shower and hadronisation models. Measurements of multi-jet systems with a veto on additional jets probe QCD radiation effects. Double-differential cross-sections for threeand four-jet final states are measured at different centre-of-mass energies of pp collisions and are compared to expectations based on NLO QCD calculations. The distribution of the jet charge has been measured in di-jet events and compared to predictions from different hadronisation models and tunes. Jet-jet energy correlations are sensitive to the strong coupling constant. These measurements constitute precision tests of QCD in a new energy regime. Work supported by the Beatriu de Pinós program managed by Agència de Gestió d'Ajuts Universitaris i de Recerca with the support of the Secretaria d'Universitats i Recerca of the Departament d'Economia i Coneixement of the Generalitat de Catalunya, and the Cofund program of the Marie Curie Actions of the 7th R&D Framework Program of the European Union. Work partially supported by MINECO under grants SEV-2012-0234, FPA2013-48308, and FPA2012-38713, which include FEDER funds from the European Union.

  16. The study on changes of rectum area in proton prostate cancer therapy

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Lee, H. K.; Shin, H. W.; Kim, S. C.; Cho, J. H.

    2015-10-01

    The purpose of this study is to determine the changes in the rectum area during treatment and to identify the rectum area within the given field of view in order to reproduce the same pose as that presented during therapy planning to properly deliver the planned dose to the prostate. We obtained digitally reconstructed radiographs after planning treatment for 30 patients out of all patients who had been subjected to proton prostate cancer therapy from August 2012 to November 2014 at this hospital. We then obtained an image using a digital imaging positioning system (DIPS) on the first day of treatment. When planning the digitally reconstructed radiograph treatment, we determined the change in size of the rectum between the actual treatment and treatment planning by measuring the cross section of the rectum and the cross section on the image from the DIPS. The results indicated that the rectum area in the digitally reconstructed radiograph taken during treatment planning and the rectum area obtained from the DIPS image during treatment were different. As a consequence, when region targeted for proton treatment of prostate cancer does not maintain a constant volume, the position of the prostate does not receive an adequate dose due to such changes. Therefore, the results of this study will be useful to determine the corresponding volume during a prostate treatment plan.

  17. Effective atomic number and electron density of amino acids within the energy range of 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.

    2016-08-01

    Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.

  18. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2015-02-21

    The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  19. Scattering study of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction on an ab initio based analytical potential energy surface

    NASA Astrophysics Data System (ADS)

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N.

    2016-01-01

    Initial state selected dynamics of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]+ structure lying 0.72 eV below the Ne + NeH+ asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.

  20. Transient kinetics of the rapid shape change of unstirred human blood platelets stimulated with ADP.

    PubMed Central

    Deranleau, D A; Dubler, D; Rothen, C; Lüscher, E F

    1982-01-01

    Unstirred (isotropic) suspensions of human blood platelets stimulated with ADP in a stopped-flow laser turbidimeter exhibit a distinct extinction maximum during the course of the classical rapid conversion of initially smooth flat discoid cells to smaller-body spiny spheres. This implies the existence of a transient intermediate having a larger average light scattering cross section (extinction coefficient) than either the disc or the spiny sphere. Monophasic extinction increases reaching the same final value were observed when either discoid or spiny sphere platelets were converted to smooth spheres by treatment with chlorpromazine, and sphering of discoid cells was accompanied by a larger total extinction change than the retraction of pseudopods by already spherical cells. These and other results suggest that the ADP-induced transient state represents platelets that are approximately as "spherical" as the irregular spiny sphere but lack the characteristic long pseudopods and as a consequence are larger bodied. Fitting the ADP progress curves to the series reaction A leads to B leads to C by means of the light scattering equivalent of the Beer-Lambert law yielded scattering cross sections that are consistent with this explanation. The rate constants for the two reaction steps were identical, indicating that ADP activation corresponds to a continuous random (Poisson) process with successive apparent states "disc," "sphere," and "spiny sphere," whose individual probabilities are determined by a single rate-limiting step. PMID:6961409

Top