Constant-current control method of multi-function electromagnetic transmitter.
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Constant-current control method of multi-function electromagnetic transmitter
NASA Astrophysics Data System (ADS)
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Fujisaki, Keisuke; Ikeda, Tomoyuki
2013-01-01
To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395
In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis.
Li, S Kevin; Higuchi, William I; Zhu, Honggang; Kern, Steven E; Miller, David J; Hastings, Matthew S
2003-09-04
A previous in vitro constant electrical resistance alternating current (AC) iontophoresis study with human epidermal membrane (HEM) and a model neutral permeant has shown less inter- and intra-sample variability in iontophoretic transport relative to conventional constant direct current (DC) iontophoresis. The objectives of the present study were to address the following questions. (1) Can the skin electrical resistance be maintained at a constant level by AC in humans in vivo? (2) Are the in vitro data with HEM representative of those in vivo? (3) Does constant skin resistance AC iontophoresis have less inter- and intra-sample variability than conventional constant current DC iontophoresis in vivo? (4) What are the electrical and the barrier properties of skin during iontophoresis in vivo? In the present study, in vitro HEM experiments were carried out with the constant resistance AC and the conventional constant current DC methods using mannitol and glucose as the neutral model permeants. In vivo human experiments were performed using glucose as the permeant with a constant skin resistance AC only protocol and two conventional constant current DC methods (continuous constant current DC and constant current DC with its polarity alternated every 10 min with a 3:7 on:off duty cycle). Constant current DC iontophoresis was conducted with commercial constant current DC devices, and constant resistance AC iontophoresis was carried out by reducing and maintaining the skin resistance at a constant target value with AC supplied from a function generator. This study shows that (1) skin electrical resistance can be maintained at a constant level during AC iontophoresis in vivo; (2) HEM in vitro and human skin in vivo demonstrate similar electrical and barrier properties, and these properties are consistent with our previous findings; (3) there is general qualitative and semi-quantitative agreement between the HEM data in vitro and human skin data in vivo; and (4) constant skin resistance AC iontophoresis generally provides less inter- and intra-subject variability than conventional constant current DC.
Systems and methods for providing power to a load based upon a control strategy
Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M
2013-12-24
Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.
A Limited In-Flight Evaluation of the Constant Current Loop Strain Measurement Method
NASA Technical Reports Server (NTRS)
Olney, Candida D.; Collura, Joseph V.
1997-01-01
For many years, the Wheatstone bridge has been used successfully to measure electrical resistance and changes in that resistance. However, the inherent problem of varying lead wire resistance can cause errors when the Wheatstone bridge is used to measure strain in a flight environment. The constant current loop signal-conditioning card was developed to overcome that difficulty. This paper describes a limited evaluation of the constant current loop strain measurement method as used in the F-16XL ship 2 Supersonic Laminar Flow Control flight project. Several identical strain gages were installed in close proximity on a shock fence which was mounted under the left wing of the F- 1 6XL ship 2. Two strain gage bridges were configured using the constant current loop, and two were configured using the Wheatstone bridge circuitry. Flight data comparing the output from the constant current loop configured gages to that of the Wheatstone bridges with respect to signal output, error, and noise are given. Results indicate that the constant current loop strain measurement method enables an increased output, unaffected by lead wire resistance variations, to be obtained from strain gages.
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
A constant current charge technique for low Earth orbit life testing
NASA Technical Reports Server (NTRS)
Glueck, Peter
1991-01-01
A constant current charge technique for low earth orbit testing of nickel cadmium cells is presented. The method mimics the familiar taper charge of the constant potential technique while maintaining cell independence for statistical analysis. A detailed example application is provided and the advantages and disadvantages of this technique are discussed.
Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1981-01-01
The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.
NASA Astrophysics Data System (ADS)
Jang, G. H.; Yeom, J. H.; Kim, M. G.
2007-03-01
This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.
Pulse charging of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1980-01-01
Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.
Monotonicity based imaging method for time-domain eddy current problems
NASA Astrophysics Data System (ADS)
Su, Z.; Ventre, S.; Udpa, L.; Tamburrino, A.
2017-12-01
Eddy current imaging is an example of inverse problem in nondestructive evaluation for detecting anomalies in conducting materials. This paper introduces the concept of time constants and associated natural modes in eddy current imaging. The monotonicity of time constants is then described and applied to develop a non-iterative imaging method. The proposed imaging method has a low computational cost which makes it suitable for real-time operations. Full 3D numerical examples prove the effectiveness of the method in realistic scenarios. This paper is dedicated to Professor Guglielmo Rubinacci on the occasion of his 65th Birthday.
Calculation of kinetic rate constants from thermodynamic data
NASA Technical Reports Server (NTRS)
Marek, C. John
1995-01-01
A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.
NASA Astrophysics Data System (ADS)
H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman
2016-05-01
In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.
Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control
NASA Astrophysics Data System (ADS)
Kiuchi, Mitsuyuki; Ohnishi, Tokuo
This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.
Design of laser diode driver with constant current and temperature control system
NASA Astrophysics Data System (ADS)
Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang
2017-10-01
A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.
Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode
NASA Technical Reports Server (NTRS)
Butler, E. A.; Blackham, A. U.
1971-01-01
Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.
Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current
ERIC Educational Resources Information Center
Jimenez, J. L.; Campos, I.; Aquino, N.
2008-01-01
We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…
Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz
2016-11-05
In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement
Petricevic, Slobodan J.; Mihailovic, Pedja M.
2016-01-01
Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043
Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells
Berlureau, Thierry; Liska, Jean-Louis
1999-11-16
A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.
Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method.
Du, Bin; Zhang, Zhen; Grubner, Sharon; Yurkovich, James T; Palsson, Bernhard O; Zielinski, Daniel C
2018-06-05
Reaction-equilibrium constants determine the metabolite concentrations necessary to drive flux through metabolic pathways. Group-contribution methods offer a way to estimate reaction-equilibrium constants at wide coverage across the metabolic network. Here, we present an updated group-contribution method with 1) additional curated thermodynamic data used in fitting and 2) capabilities to calculate equilibrium constants as a function of temperature. We first collected and curated aqueous thermodynamic data, including reaction-equilibrium constants, enthalpies of reaction, Gibbs free energies of formation, enthalpies of formation, entropy changes of formation of compounds, and proton- and metal-ion-binding constants. Next, we formulated the calculation of equilibrium constants as a function of temperature and calculated the standard entropy change of formation (Δ f S ∘ ) using a model based on molecular properties. The median absolute error in estimating Δ f S ∘ was 0.013 kJ/K/mol. We also estimated magnesium binding constants for 618 compounds using a linear regression model validated against measured data. We demonstrate the improved performance of the current method (8.17 kJ/mol in median absolute residual) over the current state-of-the-art method (11.47 kJ/mol) in estimating the 185 new reactions added in this work. The efforts here fill in gaps for thermodynamic calculations under various conditions, specifically different temperatures and metal-ion concentrations. These, to our knowledge, new capabilities empower the study of thermodynamic driving forces underlying the metabolic function of organisms living under diverse conditions. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bîrlea, Sinziana I; Corley, Gavin J; Bîrlea, Nicolae M; Breen, Paul P; Quondamatteo, Fabio; OLaighin, Gearóid
2009-01-01
We propose a new method for extracting the electrical properties of human skin based on the time constant analysis of its exponential response to impulse stimulation. As a result of this analysis an adjacent finding has arisen. We have found that stratum corneum electroporation can be detected using this analysis method. We have observed that a one time-constant model is appropriate for describing the electrical properties of human skin at low amplitude applied voltages (<30V), and a two time-constant model best describes skin electrical properties at higher amplitude applied voltages (>30V). Higher voltage amplitudes (>30V) have been proven to create pores in the skin's stratum corneum which offer a new, lower resistance, pathway for the passage of current through the skin. Our data shows that when pores are formed in the stratum corneum they can be detected, in-vivo, due to the fact that a second time constant describes current flow through them.
Vail, III, William Banning
2000-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.
NASA Technical Reports Server (NTRS)
James, G. H.; Imbrie, P. K.; Hill, P. S.; Allen, D. H.; Haisler, W. E.
1988-01-01
Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development.
NASA Astrophysics Data System (ADS)
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu
2014-11-01
Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less
NASA Astrophysics Data System (ADS)
Jung, I. I.; Lee, J. H.; Lee, C. S.; Choi, Y.-W.
2011-02-01
We propose a novel circuit to be applied to the front-end integrated circuits of gamma-ray spectroscopy systems. Our circuit is designed as a type of current conveyor (ICON) employing a constant- gm (transconductance) method which can significantly improve the linearity in the amplified signals by using a large time constant and the time-invariant characteristics of an amplifier. The constant- gm method is obtained by a feedback control which keeps the transconductance of the input transistor constant. To verify the performance of the propose circuit, the time constant variations for the channel resistances are simulated with the TSMC 0.18 μm transistor parameters using HSPICE, and then compared with those of a conventional ICON. As a result, the proposed ICON shows only 0.02% output linearity variation and 0.19% time constant variation for the input amplitude up to 100 mV. These are significantly small values compared to a conventional ICON's 1.39% and 19.43%, respectively, for the same conditions.
King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR
2012-02-07
The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.
Parameter Analysis for Arc Snubber of EAST Neutral Beam Injector
NASA Astrophysics Data System (ADS)
Wang, Haitian; Li, Ge; Cao, Liang; Dang, Xiaoqiang; Fu, Peng
2010-08-01
According to the B-H curve and structural dimensions of the snubber by the Fink-Baker Method, the inductive voltage and the eddy current of any core tape with the thickness of the saturated regions are derived when the accelerator breakdown occurs. Using the Ampere's law, in each core tape, the eddy current of the core lamination is equal to the arc current, and the relation of the thickness of the saturated regions for different laminations can be deduced. The total equivalent resistance of the snubber can be obtained. The transient eddy current model based on the stray capacitance and the equivalent resistance is analyzed, and the solving process is given in detail. The exponential time constant and the arc current are obtained. Then, the maximum width of the lamination and the minimum thickness of the core tape are determined. The experimental time constant of the eddy current obtained, with or without the bias current, is approximately the same as that by the analytical method, which proves the accuracy of the adopted assumptions and the analysis method.
Study on residual discharge time of lead-acid battery based on fitting method
NASA Astrophysics Data System (ADS)
Liu, Bing; Yu, Wangwang; Jin, Yueqiang; Wang, Shuying
2017-05-01
This paper use the method of fitting to discuss the data of C problem of mathematical modeling in 2016, the residual discharge time model of lead-acid battery with 20A,30A,…,100A constant current discharge is obtained, and the discharge time model of discharge under arbitrary constant current is presented. The mean relative error of the model is calculated to be about 3%, which shows that the model has high accuracy. This model can provide a basis for optimizing the adaptation of power system to the electrical motor vehicle.
NASA Astrophysics Data System (ADS)
Tampubolon, Marojahan; Pamungkas, Laskar; Hsieh, Yao Ching; Chiu, Huang Jen
2018-04-01
This paper presents the implementation of Constant Voltage (CV) and Constant Current (CC) control for a wireless charger system. A battery charging system needs these control modes to ensure the safety of the battery and the effectiveness of the charging system. Here, the wireless charger system does not employ any post-regulator stage to control the output voltage and output current of the charger. But, it uses a variable frequency control incorporated with a conventional PI control. As a result, the size and the weight of the system are reduced. This paper discusses the brief review of the SS-WPT, control strategy and implementation of the CV and CC control. Experimental hardware with 2kW output power has been performed and tested. The results show that the proposed CV and CC control method works well with the system.
1986-06-01
financial reporting in Republic of Korea Army (ROKA) procurement. A discussion of the nature of the ROKA procurement system and two alternatives to historical cost financial statements are presented. The concepts, methods and procedures of the historical cost/constant dollars financial statements are described. The proposal for current cost/constant dollars financial statements is presented and emphasis is given to the description of four problems in existing ROKA procurement due to using inadequate accounting information. Keywords: Cost accounting, Procurement, Current
Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal.
Gomes, O A; Yednak, C A R; Ribeiro de Almeida, R R; Teixeira-Souza, R T; Evangelista, L R
2017-03-01
The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric current profile across the sample is determined as a function of the elastic constants. In the reorientation process of the nematic director, the resistance and capacitance of the sample are determined by taking into account the elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied electrical field and measuring the resulting electrical current.
Precision envelope detector and linear rectifier circuitry
Davis, Thomas J.
1980-01-01
Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.
Exact simulation of integrate-and-fire models with exponential currents.
Brette, Romain
2007-10-01
Neural networks can be simulated exactly using event-driven strategies, in which the algorithm advances directly from one spike to the next spike. It applies to neuron models for which we have (1) an explicit expression for the evolution of the state variables between spikes and (2) an explicit test on the state variables that predicts whether and when a spike will be emitted. In a previous work, we proposed a method that allows exact simulation of an integrate-and-fire model with exponential conductances, with the constraint of a single synaptic time constant. In this note, we propose a method, based on polynomial root finding, that applies to integrate-and-fire models with exponential currents, with possibly many different synaptic time constants. Models can include biexponential synaptic currents and spike-triggered adaptation currents.
NASA Astrophysics Data System (ADS)
Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay
2015-01-01
In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.
Development of optimized segmentation map in dual energy computed tomography
NASA Astrophysics Data System (ADS)
Yamakawa, Keisuke; Ueki, Hironori
2012-03-01
Dual energy computed tomography (DECT) has been widely used in clinical practice and has been particularly effective for tissue diagnosis. In DECT the difference of two attenuation coefficients acquired by two kinds of X-ray energy enables tissue segmentation. One problem in conventional DECT is that the segmentation deteriorates in some cases, such as bone removal. This is due to two reasons. Firstly, the segmentation map is optimized without considering the Xray condition (tube voltage and current). If we consider the tube voltage, it is possible to create an optimized map, but unfortunately we cannot consider the tube current. Secondly, the X-ray condition is not optimized. The condition can be set empirically, but this means that the optimized condition is not used correctly. To solve these problems, we have developed methods for optimizing the map (Method-1) and the condition (Method-2). In Method-1, the map is optimized to minimize segmentation errors. The distribution of the attenuation coefficient is modeled by considering the tube current. In Method-2, the optimized condition is decided to minimize segmentation errors depending on tube voltagecurrent combinations while keeping the total exposure constant. We evaluated the effectiveness of Method-1 by performing a phantom experiment under the fixed condition and of Method-2 by performing a phantom experiment under different combinations calculated from the total exposure constant. When Method-1 was followed with Method-2, the segmentation error was reduced from 37.8 to 13.5 %. These results demonstrate that our developed methods can achieve highly accurate segmentation while keeping the total exposure constant.
Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel
2007-10-15
The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
Electrosynthesis of nanofibers and nano-composite films
Lin, Yuehe; Liang, Liang; Liu, Jun
2006-10-17
A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitivemore » to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.« less
Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry
Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo; ...
2017-10-24
Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less
Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo
Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less
NASA Astrophysics Data System (ADS)
Goh, Chin-Teng; Cruden, Andrew
2014-11-01
Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.
Method of Conjugate Radii for Solving Linear and Nonlinear Systems
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1999-01-01
This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.
NASA Astrophysics Data System (ADS)
Owens, A. R.; Kópházi, J.; Eaton, M. D.
2017-12-01
In this paper, a new method to numerically calculate the trace inequality constants, which arise in the calculation of penalty parameters for interior penalty discretisations of elliptic operators, is presented. These constants are provably optimal for the inequality of interest. As their calculation is based on the solution of a generalised eigenvalue problem involving the volumetric and face stiffness matrices, the method is applicable to any element type for which these matrices can be calculated, including standard finite elements and the non-uniform rational B-splines of isogeometric analysis. In particular, the presented method does not require the Jacobian of the element to be constant, and so can be applied to a much wider variety of element shapes than are currently available in the literature. Numerical results are presented for a variety of finite element and isogeometric cases. When the Jacobian is constant, it is demonstrated that the new method produces lower penalty parameters than existing methods in the literature in all cases, which translates directly into savings in the solution time of the resulting linear system. When the Jacobian is not constant, it is shown that the naive application of existing approaches can result in penalty parameters that do not guarantee coercivity of the bilinear form, and by extension, the stability of the solution. The method of manufactured solutions is applied to a model reaction-diffusion equation with a range of parameters, and it is found that using penalty parameters based on the new trace inequality constants result in better conditioned linear systems, which can be solved approximately 11% faster than those produced by the methods from the literature.
Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, P.; Nicholson, P.S.
1996-08-01
The mechanisms of electrophoretic deposition (EPD) are discussed and their shortcomings identified. The kinetics of the processes involved are analyzed for constant-current and constant-voltage conditions. A method of determining the Hamaker constant of suspended particles is developed by modeling the relationship between the particle interaction energy and the suspension stability. A three-probe dc technique is used to map the voltage profile around the depositing electrode, and the results are used to explain discrepancies between the calculated and experimentally observed voltage drops during deposition. A mechanism of deposition is proposed based on DLVO theory and particle double-layer distortion/thinning on application ofmore » a dc field to the suspension. Kinetic equations are developed for constant-current and constant-voltage EPD using mass balance conditions; these are verified by experiments. After the phenomenon is introduced and discussed, a critique of the application of EPD to the synthesis of ceramic shapes and coatings is given.« less
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Hilton, H. H.
1977-01-01
Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.
In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.
Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T
1997-10-01
The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.
The 'E' factor -- evolving endodontics.
Hunter, M J
2013-03-01
Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.
Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients
Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.
2011-01-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614
Quantification and compensation of eddy-current-induced magnetic-field gradients.
Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R
2011-09-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, Santhanam; Xi, Xiaomei; Ye, Xiang-Rong
A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less
NASA Astrophysics Data System (ADS)
Tinianov, Brandon D.; Nakagawa, Masami; Muñoz, David R.
2006-02-01
This article describes a novel technique for the measurement of the thermal conductivity of low-density (12-18kg/m3) fiberglass insulation and other related fibrous insulation materials using a noninvasive acoustic apparatus. The experimental method is an extension of earlier acoustic methods based upon the evaluation of the propagation constant from the acoustic pressure transfer function across the test material. To accomplish this, an analytical model is employed that describes the behavior of sound waves at the outlet of a baffled waveguide. The model accounts for the behavior of the mixed impedance interface introduced by the test material. Current results show that the technique is stable for a broad range of absorber thicknesses and densities. Experimental results obtained in the laboratory show excellent correlation between the thermal conductivity and both the real and imaginary components of the propagation constant. Correlation of calculated propagation constant magnitude versus measured thermal conductivity gave an R2 of 0.94 for the bulk density range (12-18kg/m3) typical for manufactured fiberglass batt materials. As an improvement to earlier acoustic techniques, measurement is now possible in noisy manufacturing environments with a moving test material. Given the promise of such highly correlated measurements in a robust method, the acoustic technique is well suited to continuously measure the thermal conductivity of the material during its production, replacing current expensive off-line methods. Test cycle time is reduced from hours to seconds.
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jufeng; Xia, Bing; Shang, Yunlong
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
Yang, Jufeng; Xia, Bing; Shang, Yunlong; ...
2016-12-22
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Scanning tunneling spectroscopy under large current flow through the sample.
Maldonado, A; Guillamón, I; Suderow, H; Vieira, S
2011-07-01
We describe a method to make scanning tunneling microscopy/spectroscopy imaging at very low temperatures while driving a constant electric current up to some tens of mA through the sample. It gives a new local probe, which we term current driven scanning tunneling microscopy/spectroscopy. We show spectroscopic and topographic measurements under the application of a current in superconducting Al and NbSe(2) at 100 mK. Perspective of applications of this local imaging method includes local vortex motion experiments, and Doppler shift local density of states studies.
Directional solidification processing of alloys using an applied electric field
NASA Technical Reports Server (NTRS)
McKannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)
1992-01-01
A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method is particularly suitable for use with nickel-based superalloys. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.
Gering, Kevin L
2013-08-27
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.
Scanning Tunneling Optical Resonance Microscopy
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave
2003-01-01
Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the feedback circuit could respond, then the voltage applied to the piezoelectric tip-height actuator could be measured by use of a lock-in amplifier locked to the modulation (chopping) signal. However, at a high modulation frequency (typically in the kilohertz range or higher), the feedback circuit would be unable to respond. In this case, the photoenhanced portion of the tunneling current could be measured directly. For this purpose, the tunneling current would be passed through a precise resistor and the voltage drop would be measured by use of the lock-in amplifier.
Novel operation and control of an electric vehicle aluminum/air battery system
NASA Astrophysics Data System (ADS)
Zhang, Xin; Yang, Shao Hua; Knickle, Harold
The objective of this paper is to create a method to size battery subsystems for an electric vehicle to optimize battery performance. Optimization of performance includes minimizing corrosion by operating at a constant current density. These subsystems will allow for easy mechanical recharging. A proper choice of battery subsystem will allow for longer battery life, greater range and performance. For longer life, the current density and reaction rate should be nearly constant. The control method requires control of power by controlling electrolyte flow in battery sub modules. As power is increased more sub modules come on line and more electrolyte is needed. Solenoid valves open in a sequence to provide the required power. Corrosion is limited because there is no electrolyte in the modules not being used.
Solidification processing of alloys using an applied electric field
NASA Technical Reports Server (NTRS)
Mckannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)
1990-01-01
A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.
Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment
ERIC Educational Resources Information Center
Ocaya, R. O.; Dejene, F. B.
2007-01-01
This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…
Invited Review Article: Measurements of the Newtonian constant of gravitation, G.
Rothleitner, C; Schlamminger, S
2017-11-01
By many accounts, the Newtonian constant of gravitation G is the fundamental constant that is most difficult to measure accurately. Over the past three decades, more than a dozen precision measurements of this constant have been performed. However, the scatter of the data points is much larger than the uncertainties assigned to each individual measurement, yielding a Birge ratio of about five. Today, G is known with a relative standard uncertainty of 4.7 × 10 -5 , which is several orders of magnitudes greater than the relative uncertainties of other fundamental constants. In this article, various methods to measure G are discussed. A large array of different instruments ranging from the simple torsion balance to the sophisticated atom interferometer can be used to determine G. Some instruments, such as the torsion balance can be used in several different ways. In this article, the advantages and disadvantages of different instruments as well as different methods are discussed. A narrative arc from the historical beginnings of the different methods to their modern implementation is given. Finally, the article ends with a brief overview of the current state of the art and an outlook.
Invited Review Article: Measurements of the Newtonian constant of gravitation, G
NASA Astrophysics Data System (ADS)
Rothleitner, C.; Schlamminger, S.
2017-11-01
By many accounts, the Newtonian constant of gravitation G is the fundamental constant that is most difficult to measure accurately. Over the past three decades, more than a dozen precision measurements of this constant have been performed. However, the scatter of the data points is much larger than the uncertainties assigned to each individual measurement, yielding a Birge ratio of about five. Today, G is known with a relative standard uncertainty of 4.7 × 10-5, which is several orders of magnitudes greater than the relative uncertainties of other fundamental constants. In this article, various methods to measure G are discussed. A large array of different instruments ranging from the simple torsion balance to the sophisticated atom interferometer can be used to determine G. Some instruments, such as the torsion balance can be used in several different ways. In this article, the advantages and disadvantages of different instruments as well as different methods are discussed. A narrative arc from the historical beginnings of the different methods to their modern implementation is given. Finally, the article ends with a brief overview of the current state of the art and an outlook.
Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito
2017-10-01
During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Machicado, Jorge D.; Amann, Stephen T; Anderson, Michelle A.; Abberbock, Judah; Sherman, Stuart; Conwell, Darwin; Cote, Gregory A.; Singh, Vikesh K.; Lewis, Michele; Alkaade, Samer; Sandhu, Bimaljit S.; Guda, Nalini M.; Muniraj, Thiruvengadam; Tang, Gong; Baillie, John; Brand, Randall; Gardner, Timothy B.; Gelrud, Andres; Forsmark, Christopher E.; Banks, Peter A.; Slivka, Adam; Wilcox, C. Mel; Whitcomb, David C.; Yadav, Dhiraj
2018-01-01
Background Chronic pancreatitis (CP) has a profound independent effect on quality of life (QOL). Our aim was to identify factors that impact the QOL in CP patients. Methods We used data on 1,024 CP patients enrolled in the three NAPS2 studies. Information on demographics, risk factors, co-morbidities, disease phenotype and treatments was obtained from responses to structured questionnaires. Physical (PCS) and mental (MCS) component summary scores generated using responses to the Short Form-12 (SF-12) survey were used to assess QOL at enrollment. Multivariable linear regression models determined independent predictors of QOL. Results Mean PCS and MCS scores were 36.7±11.7 and 42.4±12.2, respectively. Significant (p<0.05) negative impact on PCS scores in multivariable analyses was noted due to constant mild-moderate pain with episodes of severe pain or constant severe pain (10 points), constant mild-moderate pain (5.2), pain-related disability/unemployment (5.1), current smoking (2.9 points) and medical co-morbidities. Significant (p<0.05) negative impact on MCS scores was related to constant pain irrespective of severity (6.8-6.9 points), current smoking (3.9 points) and pain-related disability/unemployment (2.4 points). In women, disability/unemployment resulted in an additional reduction 3.7 point reduction in MCS score. Final multivariable models explained 27% and 18% of the variance in PCS and MCS scores, respectively. Etiology, disease duration, pancreatic morphology, diabetes, exocrine insufficiency and prior endotherapy/pancreatic surgery had no significant independent effect on QOL. Conclusion Constant pain, pain-related disability/unemployment, current smoking, and concurrent co-morbidities significantly affect the QOL in CP. Further research is needed to identify factors impacting QOL not explained by our analyses. PMID:28244497
Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2011-03-22
We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.
Inter-University Collaboration for Online Teaching Innovation: An Emerging Model
ERIC Educational Resources Information Center
Nerlich, Andrea Perkins; Soldner, James L.; Millington, Michael J.
2012-01-01
Distance education is constantly evolving and improving. To stay current, effective online instructors must utilize the most innovative, evidence-based teaching methods available to promote student learning and satisfaction in their courses. One emerging teaching method, referred to as blended online learning (BOL), involves collaborative…
A Computational Framework for Analyzing Stochasticity in Gene Expression
Sherman, Marc S.; Cohen, Barak A.
2014-01-01
Stochastic fluctuations in gene expression give rise to distributions of protein levels across cell populations. Despite a mounting number of theoretical models explaining stochasticity in protein expression, we lack a robust, efficient, assumption-free approach for inferring the molecular mechanisms that underlie the shape of protein distributions. Here we propose a method for inferring sets of biochemical rate constants that govern chromatin modification, transcription, translation, and RNA and protein degradation from stochasticity in protein expression. We asked whether the rates of these underlying processes can be estimated accurately from protein expression distributions, in the absence of any limiting assumptions. To do this, we (1) derived analytical solutions for the first four moments of the protein distribution, (2) found that these four moments completely capture the shape of protein distributions, and (3) developed an efficient algorithm for inferring gene expression rate constants from the moments of protein distributions. Using this algorithm we find that most protein distributions are consistent with a large number of different biochemical rate constant sets. Despite this degeneracy, the solution space of rate constants almost always informs on underlying mechanism. For example, we distinguish between regimes where transcriptional bursting occurs from regimes reflecting constitutive transcript production. Our method agrees with the current standard approach, and in the restrictive regime where the standard method operates, also identifies rate constants not previously obtainable. Even without making any assumptions we obtain estimates of individual biochemical rate constants, or meaningful ratios of rate constants, in 91% of tested cases. In some cases our method identified all of the underlying rate constants. The framework developed here will be a powerful tool for deducing the contributions of particular molecular mechanisms to specific patterns of gene expression. PMID:24811315
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.; Kelley, W. W.
1979-01-01
A study was conducted to determine the effect of head-wind profiles and mean head-wind velocities on runway landing capacity for airplanes flying constant-airspeed and constant-groundspeed approaches. It was determined that when the wind profiles were encountered with the currently used constant airspeed approach method, the landing capacity was reduced. The severity of these reductions increased as the mean head-wind value of the profile increased. When constant-groundspeed approaches were made in the same wind profiles, there were no losses in landing capacity. In an analysis of mean head winds, it was determined that in a mean head wind of 35 knots, the landing capacity using constant-airspeed approaches was 13% less than for the no wind condition. There were no reductions in landing capacity with constant-groundspeed approaches for mean head winds less than 35 knots. This same result was observed when the separation intervals between airplanes was reduced.
Findl, E.
1984-12-21
A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.
(In)validity of the constant field and constant currents assumptions in theories of ion transport.
Syganow, A; von Kitzing, E
1999-01-01
Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480
Start current of dielectric-loaded grating in Smith-Purcell radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com; Cao, Miaomiao, E-mail: mona486@yeah.net
In this paper, a three-dimensional dielectric loaded grating (DLG) is proposed for the Smith-Purcell (SP) device. Taking into the considerations of thickness and width of electron beam, the dispersion equation is derived by using field matches method. The complex frequency is obtained by the numerical solution of dispersion equation, in which the imaginary part represents linear growth rate. The impacts of the electron beam filling factor (EBFF) on growth rate are discussed under the condition that the beam current and beam current density are kept as constants, respectively. In addition, the start current for SP oscillator is obtained by usingmore » the dispersion relation combined with boundary conditions. The relationship between the start current and other parameters is discussed and compared with the conventional metal grating. The results show that with the increasing of EBFF, the peak growth rate increases rapidly firstly and then decreases slowly, in which the current and current density are kept as constants, respectively. For the SP oscillator, the start current is increased with the shifting up beam voltage, but it is decreased with the improved EBFF, and only it has a slightly increasing trend when EBFF is close to 1. In addition, the start current is decreased with the increasing of relative dielectric constant, which indicates that by introducing DLG, the start current can be effectively reduced. Theoretical results are in good agreement with that of the simulations.« less
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, M.L.; Wilcox, M.E.; Compernolle, R. van
Biodegradation rate constants for volatile organic compounds (VOCs) in activated-sludge systems are needed to quantify emissions. One current US environmental Protection Agency method for determining a biodegradation rate constant is Method 304B. In this approach, a specific activated-sludge unit is simulated by a continuous biological treatment system with a sealed headspace. Batch experiments, however, can be alternatives to Method 304B. Two of these batch methods are the batch test that uses oxygen addition (BOX) and the serum bottle test (SBT). In this study, Method 304B was directly compared to BOX and SBT experiments. A pilot-scale laboratory reactor was constructed tomore » serve as the Method 304B unit. Biomass from the unit was also used to conduct BOX and modified SBT experiments (modification involved use of a sealed draft-tube reactor with a headspace recirculation pump instead of a serum bottle) for 1,2-dichloroethane, diisopropyl ether, methyl tertiary butyl ether, and toluene. Three experimental runs--each consisting of one Method 304B experiment, one BOX experiment, and one modified SBT experiment--were completed. The BOX and SBT data for each run were analyzed using a Monod model, and best-fit biodegradation kinetic parameters were determined for each experiment, including a first-order biodegradation rate constant (K{sub 1}). Experimental results suggest that for readily biodegradable VOCs the two batch techniques can provide improved means of determining biodegradation rate constants compared with Method 304B. In particular, these batch techniques avoid the Method 304B problem associated with steady-state effluent concentrations below analytical detection limits. However, experimental results also suggest that the two batch techniques should not be used to determine biodegradation rate constants for slowly degraded VOCs (i.e., K{sub 1} {lt} 0.1 L/g VSS-h).« less
Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; Kofler, James M.; McCollough, Cynthia H.
2015-01-01
Objective To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. Materials and Methods A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. Results For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise–based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Conclusions Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects. PMID:25938214
Field-aligned current sources in the high-latitude ionosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1979-01-01
The paper determines the electric potential in a plane which is fed current from a pair of field-aligned current sheets. The ionospheric conductivity is modelled as a constant with an enhanced conductivity annular ring. It is shown that field-aligned current distributions are arbitrary functions of azimuth angle (MLT) and thus allow for asymmetric potential configurations over the pole cap. In addition, ionospheric surface currents are computed by means of stream functions. Finally, the discussion relates these methods to the electrical characteristics of the magnetosphere.
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.
1976-01-01
An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer.
NASA Astrophysics Data System (ADS)
Ewing, Jacob; Wang, Yuzheng; Arnold, David P.
2018-05-01
This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.
Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon
2013-05-01
A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.
Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling
Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo
2015-01-01
A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687
Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs
NASA Astrophysics Data System (ADS)
Fukadai, Takahisa; Sasamoto, Tomohiro
2018-05-01
We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.
NASA Astrophysics Data System (ADS)
Ajiatmo, Dwi; Robandi, Imam
2017-03-01
This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.
NASA Astrophysics Data System (ADS)
Zhang, Mingyang
2018-06-01
To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.
Thermally-induced voltage alteration for analysis of microelectromechanical devices
Walraven, Jeremy A.; Cole, Jr., Edward I.
2002-01-01
A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1980-01-01
Five amp-hour nickel-zinc cells were life cycled to evaluate four different charge methods. Three of the four waveforms investigated were 120 Hz full wave rectified sinusoidal (FWRS), 120 Hz silicon controlled rectified (SCR), and 1 kHz square wave (SW). The fourth, a constant current method, was used as a baseline of comparison. Three sealed Ni-Zn cells connected in series were cycled. Each series string was charged at an average c/20 rate, and discharged at a c/2.5 rate to a 75% rated depth. Results indicate that the relatively inexpensive 120 Hz FWRS charger appears feasible for charging 5 amp-hour nickel-zinc cells with no significant loss in average cycle life when compared to constant current charging. The 1-kHz SW charger could also be used with no significant loss in average cycle life, and suggests the possibility of utilizing the existing electric vehicle chopper controller circuitry for an on-board charger. There was an apparent difference using the 120 Hz SCR charger compared to the others, however, this difference could be due to an inadvertent severe overcharge, which occurred prior to cell failure. The remaining two positive pulse charging waveforms, FWRS and 1 kHz, did not improve the cycle life of 5 amp-hour nickel-zinc cells over that of constant current charging.
Qian, Cheng; Kovalchik, Kevin A; MacLennan, Matthew S; Huang, Xiaohua; Chen, David D Y
2017-06-01
Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-β-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sader, John E; Lu, Jianing; Mulvaney, Paul
2014-11-01
Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.
Simple constant-current-regulated power supply
NASA Technical Reports Server (NTRS)
Priebe, D. H. E.; Sturman, J. C.
1977-01-01
Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.
Remily-Wood, Elizabeth R.; Benson, Kaaron; Baz, Rachid C.; Chen, Y. Ann; Hussein, Mohamad; Hartley-Brown, Monique A.; Sprung, Robert W.; Perez, Brianna; Liu, Richard Z.; Yoder, Sean; Teer, Jamie; Eschrich, Steven A.; Koomen, John M.
2014-01-01
Purpose Quantitative mass spectrometry assays for immunoglobulins (Igs) are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, e.g. multiple myeloma. Experimental design Using LC-MS/MS data, Ig constant region peptides and transitions were selected for liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM). Quantitative assays were used to assess Igs in serum from 83 patients. Results LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1–4, IgA1–2, IgM, IgD, and IgE, as well as kappa(κ) and lambda(λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 multiple myeloma cell line and two MM patients. Conclusions and Clinical Relevance LC-MRM assays targeting constant region peptides determine the type and isoform of the involved immunoglobulin and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher interassay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. PMID:24723328
Remily-Wood, Elizabeth R; Benson, Kaaron; Baz, Rachid C; Chen, Y Ann; Hussein, Mohamad; Hartley-Brown, Monique A; Sprung, Robert W; Perez, Brianna; Liu, Richard Z; Yoder, Sean J; Teer, Jamie K; Eschrich, Steven A; Koomen, John M
2014-10-01
Quantitative MS assays for Igs are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, for example, multiple myeloma (MM). Using LC-MS/MS data, Ig constant region peptides, and transitions were selected for LC-MRM MS. Quantitative assays were used to assess Igs in serum from 83 patients. RNA sequencing and peptide-based LC-MRM are used to define peptides for quantification of the disease-specific Ig. LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1-4, IgA1-2, IgM, IgD, and IgE, as well as kappa (κ) and lambda (λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 MM cell line and two MM patients. LC-MRM assays targeting constant region peptides determine the type and isoform of the involved Ig and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher inter-assay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An investigation of improved airbag performance by vent control and gas injection
NASA Astrophysics Data System (ADS)
Lee, Calvin; Rosato, Nick; Lai, Francis
Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
Electrochemical Method of Making Porous Particles Using a Constant Current Density
NASA Technical Reports Server (NTRS)
Ferrari, Mauro (Inventor); Cheng, Ming-Cheng (Inventor); Liu, Xuewu (Inventor)
2014-01-01
Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maagd, P.G.J. de; Opperhuizen, A.; Sijm, D.T.H.M.
Aqueous solubilities, n-octanol/water partition coefficients (K{sub ow}S), and Henry`s law constants were determined for a range of polycyclic aromatic hydrocarbons (PAHs) using a generator-column, slow-stirring, and gas-purge method, respectively. The currently obtained data were compared to available literature data. For seven of the PAHs no K{sub ow}S previously were determined with the slow-stirring method. For four of the PAHs the present study reports the first experimental Henry`s law constants. Relationships between subcooled liquid solubilities, K{sub ow}S, and Henry`s law constants as a function of molar volume are discussed. A consistent data set was obtained, for which an excellent correlation wasmore » found between subcooled liquid solubility and molar volume. A linear fit did not accurately describe the relationship between log K{sub ow} and molar volume. This is probably due to a decreasing solubility in n-octanol with increasing molar volume. Finally, a high correlation was found between Henry`s law constant and molar volume. The presently obtained dataset can be used to predict the fate and behavior of unsubstituted homocyclic PAHs.« less
A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru
2009-02-01
A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.
Generalized rules for the optimization of elastic network models
NASA Astrophysics Data System (ADS)
Lezon, Timothy; Eyal, Eran; Bahar, Ivet
2009-03-01
Elastic network models (ENMs) are widely employed for approximating the coarse-grained equilibrium dynamics of proteins using only a few parameters. An area of current focus is improving the predictive accuracy of ENMs by fine-tuning their force constants to fit specific systems. Here we introduce a set of general rules for assigning ENM force constants to residue pairs. Using a novel method, we construct ENMs that optimally reproduce experimental residue covariances from NMR models of 68 proteins. We analyze the optimal interactions in terms of amino acid types, pair distances and local protein structures to identify key factors in determining the effective spring constants. When applied to several unrelated globular proteins, our method shows an improved correlation with experiment over a standard ENM. We discuss the physical interpretation of our findings as well as its implications in the fields of protein folding and dynamics.
Pomorski, Adam; Kochańczyk, Tomasz; Miłoch, Anna; Krężel, Artur
2013-12-03
Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.
NASA Technical Reports Server (NTRS)
Mcrae, Glenn A.; Cohen, Edward A.; Sponsler, Michael B.; Dougherty, Dennis A.
1986-01-01
The microwave spectra of five isotopic species of bicyclo (1.1.1) pentanone have been investigated. The rotational constants along with various centrifugal distortion constants for each species have been determined. From the rotational constants, a complete r(s) structure has been determined for the heavy atoms. Analysis of Stark effect measurements has shown the dipole moment to be along the a principal inertial axis with a magnitude of 3.164 (5) D. These results are compared with those obtained by four current theoretical methods: molecular mechanics (MM2), MNDO, and Hartree-Fock ab initio theory with STO-3G and 3-21G basis sets.
Kikta, Thomas J.; Mitchell, Ronald D.
1992-01-01
A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet.
Kikta, T.J.; Mitchell, R.D.
1992-11-24
A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.
A modification of the Hammett equation for predicting ionisation constants of p-vinyl phenols.
Sipilä, Julius; Nurmi, Harri; Kaukonen, Ann Marie; Hirvonen, Jouni; Taskinen, Jyrki; Yli-Kauhaluoma, Jari
2005-01-01
Currently there are several compounds used as drugs or studied as new chemical entities, which have an electron withdrawing group connected to a vinylic double bond in a phenolic or catecholic core structure. These compounds share a common feature--current computational methods utilizing the Hammett type equation for the prediction of ionisation constants fail to give accurate prediction of pK(a)'s for compounds containing the vinylic moiety. The hypothesis was that the effect of electron-withdrawing substituents on the pK(a) of p-vinyl phenols is due to the delocalized electronic structure of these compounds. Thus, this effect should be additive for multiple substituents attached to the vinylic double bond and quantifiable by LFER-based methods. The aim of this study was to produce an improved equation with a reduced tendency to underestimate the effect of the double bond on the ionisation of the phenolic hydroxyl. To this end a set of 19 para-substituted vinyl phenols was used. The ionisation constants were measured potentiometrically, and a training set of 10 compounds was selected to build a regression model (r2 = 0.987 and S.E. = 0.09). The average error with an external test set of six compounds was 0.19 for our model and 1.27 for the ACD-labs 7.0. Thus, we have been able to significantly improve the existing model for prediction of the ionisation constants of substituted p-vinyl phenols.
Wind-driven currents in a shallow lake or sea
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Gedney, R. T.
1971-01-01
For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island.
Evaluation of linear induction motor characteristics : the Yamamura model
DOT National Transportation Integrated Search
1975-04-30
The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...
NASA Astrophysics Data System (ADS)
Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.
2018-06-01
In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.
Flux-Feedback Magnetic-Suspension Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1990-01-01
Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.
NASA Astrophysics Data System (ADS)
Espenlaub, Andrew C.; Alhassan, Abdullah I.; Nakamura, Shuji; Weisbuch, Claude; Speck, James S.
2018-04-01
We report on measurements of the photo-modulated current-voltage and electroluminescence characteristics of forward biased single quantum well, blue InGaN/GaN light emitting diodes with and without electron blocking layers. Low intensity resonant optical excitation of the quantum well was observed to induce an additional forward current at constant forward diode bias, in contrast to the usual sense of the photocurrent in photodiodes and solar cells, as well as an increased electroluminescence intensity. The presence of an electron blocking layer only slightly decreased the magnitude of the photo-induced current at constant forward bias. Photo-modulation at constant forward diode current resulted in a reduced diode bias under optical excitation. We argue that this decrease in diode bias at constant current and the increase in forward diode current at constant applied bias can only be due to additional hot carriers being ejected from the quantum well as a result of an increased Auger recombination rate within the quantum well.
Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT).
Ider, Y Ziya; Onart, Serkan; Lionheart, William R B
2003-05-01
Magnetic resonance-electrical impedance tomography (MR-EIT) was first proposed in 1992. Since then various reconstruction algorithms have been suggested and applied. These algorithms use peripheral voltage measurements and internal current density measurements in different combinations. In this study the problem of MR-EIT is treated as a hyperbolic system of first-order partial differential equations, and three numerical methods are proposed for its solution. This approach is not utilized in any of the algorithms proposed earlier. The numerical solution methods are integration along equipotential surfaces (method of characteristics), integration on a Cartesian grid, and inversion of a system matrix derived by a finite difference formulation. It is shown that if some uniqueness conditions are satisfied, then using at least two injected current patterns, resistivity can be reconstructed apart from a multiplicative constant. This constant can then be identified using a single voltage measurement. The methods proposed are direct, non-iterative, and valid and feasible for 3D reconstructions. They can also be used to easily obtain slice and field-of-view images from a 3D object. 2D simulations are made to illustrate the performance of the algorithms.
Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters
Hirayama, Bruce A; Díez-Sampedro, Ana; Wright, Ernest M
2001-01-01
Electrophysiological methods were used to investigate the interaction of inhibitors with the human Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Inhibitor constants were estimated from both inhibition of substrate-dependent current and inhibitor-induced changes in cotransporter conformation. The competitive, non-transported inhibitors are substrate derivatives with inhibition constants from 200 nM (phlorizin) to 17 mM (esculin) for hSGLT1, and 300 nM (SKF89976A) to 10 mM (baclofen) for hGAT1. At least for hSGLT1, values determined using either method were proportional over 5-orders of magnitude. Correlation of inhibition to structure of the inhibitors resulted in a pharmacophore for glycoside binding to hSGLT1: the aglycone is coplanar with the pyranose ring, and binds to a hydrophobic/aromatic surface of at least 7×12Å. Important hydrogen bond interactions occur at five positions bordering this surface. In both hSGLT1 and hGAT1 the data suggests that there is a large, hydrophobic inhibitor binding site ∼8Å from the substrate binding site. This suggests an architectural similarity between hSGLT1 and hGAT1. There is also structural similarity between non-competitive and competitive inhibitors, e.g., phloretin is the aglycone of phlorizin (hSGLT1) and nortriptyline resembles SKF89976A without nipecotic acid (hGAT1). Our studies establish that measurement of the effect of inhibitors on presteady state currents is a valid non-radioactive method for the determination of inhibitor binding constants. Furthermore, analysis of the presteady state currents provide novel insights into partial reactions of the transport cycle and mode of action of the inhibitors. PMID:11588102
New methods for B meson decay constants and form factors from lattice NRQCD
NASA Astrophysics Data System (ADS)
Hughes, C.; Davies, C. T. H.; Monahan, C. J.; Hpqcd Collaboration
2018-03-01
We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O (αs) and ΛQCD/mb. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and Bs meson decay constants from lattice QCD calculations on ensembles that include u , d , s , and c quarks in the sea and those that have the u /d quark mass going down to its physical value. Our results are fB=0.196 (6 ) GeV , fBs=0.236(7 ) GeV , and fB s/fB=1.207 (7 ), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of fB=0.190 (4 ) GeV , fBs=0.229(5 ) GeV , and fB s/fB=1.206 (5 ).
Low noise constant current source for bias dependent noise measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talukdar, D.; Bose, Suvendu; Bardhan, K. K.
2011-01-15
A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 {mu}A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noisemore » voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.« less
NASA Astrophysics Data System (ADS)
Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.
2018-06-01
Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.
Use of the Maximum Likelihood Method in the Analysis of Chamber Air Dives
1988-01-01
the total gas pressure in compartment i, P0 is the current ambient pressure, 0 [ and A and B are constants (0.0026 min-’ -ATA- and 8.31 ATA...computer model (4), the Kidd- Stubbs 1971 decompression tables (11), and the current Defence and Civil Institute 20 of Environmental Medicine (DCIEM...it could be applied. Since the models are not suitable for this test, then within T ese no-deco current limits of statistical theory, the results can
Fehér, Csaba; Mensa, Josep
2016-09-01
Clostridium difficile infection (CDI) is increasingly recognized as an emerging healthcare problem of elevated importance. Prevention and treatment strategies are constantly evolving along with the apperance of new scientific evidence and novel treatment methods, which is well-reflected in the differences among consecutive international guidelines. In this article, we summarize and compare current guidelines of five international medical societies on CDI management, and discuss some of the controversial and currently unresolved aspects which should be addressed by future research.
METHOD OF PEAK CURRENT MEASUREMENT
Baker, G.E.
1959-01-20
The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockris, J.O.; Devanathan, M.A.V.
The galvanostatic double charging method was applied to determine the coverage of Ni cathodes with adsorbed atomic H in 2 N NaOH solutions. Anodic current densities were varied from 0.05 to 1.8 amp/sq cm. The plateau indicating absence of readsorption was between 0.6 and 1.8 amp/sq cm, for a constant cathodic c.d. of 1/10,000 amp/sq cm. The variation of the adsorbed H over cathodic c.d.'s ranging from 10 to the -6th power to 1/10 at a constant anodic c.d. of 1 amp/sq cm were calculated and the coverage calculated. The mechanism of the H evolution reaction was elucidated. The ratemore » determining step is discharge from a water molecules followed by rapid Tafel recombination. The rate constants for these processes and the rate constant for the ionisation, calculated with the extrapolated value of coverage for the reversible H electrode, were determined. A modification of the Tafel equation which takes into account both coverage and ionisation is in harmony with the results. A new method for the determination of coverage suitable for corrodible metals is described which involves the measurement of the rate of permeation of H by electrochemical techniques which enhances the sensitivity of the method. (Author)« less
Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072
Simulation and experimental investigation of structural dynamic frequency characteristics control.
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.
OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2011-01-01
We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465
Dielectric characterization of hot-mix asphalt at the smart road using GPR
NASA Astrophysics Data System (ADS)
Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.
2000-04-01
To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.
ENHANCED RECOVERY METHODS FOR 85KR AGE-DATING GROUNDWATER: ROYAL WATERSHED, MAINE
Potential widespread use of 85Kr, having a constant input function in the northern hemisphere, for groundwater age-dating would advance watershed investigations. The current input function of tritium is not sufficient to estimate young modern recharge waters. While tri...
Classifying Values by Categories
ERIC Educational Resources Information Center
Gündüz, Mevlüt
2016-01-01
The aim of this study is to make a new classification regarding the fact that the current classifications may change constantly because of values? gaining a different dimension and importance every single day. In this research descriptive research, which was used frequently in qualitative research methods, was preferred. This research was…
Development of variable LRFD \\0x03C6 factors for deep foundation design due to site variability.
DOT National Transportation Integrated Search
2012-04-01
The current design guidelines of Load and Resistance Factor Design (LRFD) specifies constant values : for deep foundation design, based on analytical method selected and degree of redundancy of the pier. : However, investigation of multiple sites in ...
ERIC Educational Resources Information Center
Varguez, Ricardo
2012-01-01
The constant expansion of Web 2.0 applications available on the World Wide Web and expansion of technology resources has prompted the need to better prepare current and future educators to make more effective use of such resources in their classrooms. The purpose of this embedded mixed methods case study was to describe the experiences and changes…
In Search of Easy-to-Use Methods for Calibrating ADCP's for Velocity and Discharge Measurements
Oberg, K.; ,
2002-01-01
A cost-effective procedure for calibrating acoustic Doppler current profilers (ADCP) in the field was presented. The advantages and disadvantages of various methods which are used for calibrating ADCP were discussed. The proposed method requires the use of differential global positioning system (DGPS) with sub-meter accuracy and standard software for collecting ADCP data. The method involves traversing a long (400-800 meter) course at a constant compass heading and speed, while collecting simultaneous DGPS and ADCP data.
THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS
NASA Astrophysics Data System (ADS)
Xu, Jing; He, Bo; Liu, Han Xing
It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.
Power conversion apparatus and method
Su, Gui-Jia [Knoxville, TN
2012-02-07
A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.
NASA Astrophysics Data System (ADS)
Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki
2018-07-01
The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.
Andreev current for low temperature thermometry
NASA Astrophysics Data System (ADS)
Faivre, T.; Golubev, D. S.; Pekola, J. P.
2015-05-01
We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminum is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: For instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range.
Electronic constant current and current pulse signal generator for nuclear instrumentation testing
Brown, R.A.
1994-04-19
Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.
Electronic constant current and current pulse signal generator for nuclear instrumentation testing
Brown, Roger A.
1994-01-01
Circuitry for testing the ability of an intermediate range nuclear instrut to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.
An MHD variational principle that admits reconnection
NASA Technical Reports Server (NTRS)
Rilee, M. L.; Sudan, R. N.; Pfirsch, D.
1997-01-01
The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.
Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.
Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars
2017-07-01
Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.
New methods for B meson decay constants and form factors from lattice NRQCD
Hughes, C.; Davies, C. T.H.; Monahan, C. J.
2018-03-20
We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O(α s) and Λ QCD/m b. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and B s meson decay constants from lattice QCDmore » calculations on ensembles that include u, d, s, and c quarks in the sea and those that have the u/d quark mass going down to its physical value. Our results are f B=0.196(6) GeV, f Bs=0.236(7) GeV, and f Bs/f B=1.207(7), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of f B=0.190(4) GeV, f Bs=0.229(5) GeV, and f Bs/f B=1.206(5).« less
New methods for B meson decay constants and form factors from lattice NRQCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, C.; Davies, C. T.H.; Monahan, C. J.
We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O(α s) and Λ QCD/m b. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and B s meson decay constants from lattice QCDmore » calculations on ensembles that include u, d, s, and c quarks in the sea and those that have the u/d quark mass going down to its physical value. Our results are f B=0.196(6) GeV, f Bs=0.236(7) GeV, and f Bs/f B=1.207(7), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of f B=0.190(4) GeV, f Bs=0.229(5) GeV, and f Bs/f B=1.206(5).« less
Makeyev, Oleksandr; Besio, Walter G
2016-08-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts using finite element method modeling. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the estimation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the estimation error may be decreased more than two-fold while for the quadripolar configuration more than six-fold decrease is expected.
Advanced Bode Plot Techniques for Ultrasonic Transducers
NASA Astrophysics Data System (ADS)
DeAngelis, D. A.; Schulze, G. W.
The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.
Water-waves on linear shear currents. A comparison of experimental and numerical results.
NASA Astrophysics Data System (ADS)
Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian
2016-04-01
Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Lithium-Polymer battery based on polybithiophene as cathode material
NASA Astrophysics Data System (ADS)
Chen, J.; Wang, J.; Wang, C.; Too, C. O.; Wallace, G. G.
Stainless-steel mesh electrodes coated with polybithiophene, obtained by electrochemical polymerization (constant potential and constant current), have been investigated as cathode materials in a lithium-polybithiophene rechargeable battery by cyclic voltammetry, electrochemical impedance spectroscopy and long-term charge-discharge cycling process. The effects of different growth methods on the surface morphology of the films and the charge-discharge capacity are discussed in detail. The results show that polybithiophene-hexafluorophosphate is a very promising cathode material for manufacturing lithium-polymer rechargeable batteries with a highly stable discharge capacity of 81.67 mAh g -1 after 50 cycles.
NASA Astrophysics Data System (ADS)
Ohara, Masaki; Noguchi, Toshihiko
This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.
Nuclear electromagnetic charge and current operators in Chiral EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori
2013-08-01
We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit
2018-04-20
Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
NASA Astrophysics Data System (ADS)
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations
2018-04-01
We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit
Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L.; Boone, John M.
2013-11-15
Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less
Semantic Technologies and Bio-Ontologies.
Gutierrez, Fernando
2017-01-01
As information available through data repositories constantly grows, the need for automated mechanisms for linking, querying, and sharing data has become a relevant factor both in research and industry. This situation is more evident in research fields such as the life sciences, where new experiments by different research groups are constantly generating new information regarding a wide variety of related study objects. However, current methods for representing information and knowledge are not suited for machine processing. The Semantic Technologies are a set of standards and protocols that intend to provide methods for representing and handling data that encourages reusability of information and is machine-readable. In this chapter, we will provide a brief introduction to Semantic Technologies, and how these protocols and standards have been incorporated into the life sciences to facilitate dissemination and access to information.
Material characterization of structural adhesives in the lap shear mode
NASA Technical Reports Server (NTRS)
Sancaktar, E.; Schenck, S. C.
1983-01-01
A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.
METHOD AND APPARATUS FOR DETERMINING AMALGAM DECOMPOSITION RATE
Johnson, R.W.; Wright, C.C.
1962-04-24
A method and apparatus for measuring the rate at which an amalgam decomposes in contact with aqueous solutions are described. The amalgam and an aqueous hydroxide solution are disposed in an electrolytic cell. The amalgam is used as the cathode of the cell, and an electrode and anode are disposed in the aqueous solution. A variable source of plating potential is connected across the cell. The difference in voltage between the amalgam cathode and a calibrated source of reference potential is used to control the variable source to null the difference in voltage and at the same time to maintain the concentration of the amalgam at some predetermined constant value. The value of the current required to maintain this concentration constant is indicative of the decomposition rate of the amalgam. (AEC)
Load positioning system with gravity compensation
NASA Technical Reports Server (NTRS)
Hollow, R. H.
1984-01-01
A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.
NASA Technical Reports Server (NTRS)
Ardalan, Sasan (Inventor)
2018-01-01
The invention relates to devices and methods of maintaining the current starved delay at a constant value across variations in voltage and temperature to increase the speed of operation of the sequential logic in the radiation hardened ASIC design.
Constant-Current Source For Measuring Low Resistances
NASA Technical Reports Server (NTRS)
Toomath, Robert L.
1996-01-01
Constant-current source constructed for measuring electrical resistances up to few ohms in power-supply equipment. By setting current at 1 A and measuring resulting voltage drop across item under test, one obtains voltage reading numerically equal to resistance in ohms.
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A
2015-02-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
NASA Astrophysics Data System (ADS)
Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.
Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei
2018-02-28
Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.
Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.
Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru
2017-04-18
Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.
An imbalance fault detection method based on data normalization and EMD for marine current turbines.
Zhang, Milu; Wang, Tianzhen; Tang, Tianhao; Benbouzid, Mohamed; Diallo, Demba
2017-05-01
This paper proposes an imbalance fault detection method based on data normalization and Empirical Mode Decomposition (EMD) for variable speed direct-drive Marine Current Turbine (MCT) system. The method is based on the MCT stator current under the condition of wave and turbulence. The goal of this method is to extract blade imbalance fault feature, which is concealed by the supply frequency and the environment noise. First, a Generalized Likelihood Ratio Test (GLRT) detector is developed and the monitoring variable is selected by analyzing the relationship between the variables. Then, the selected monitoring variable is converted into a time series through data normalization, which makes the imbalance fault characteristic frequency into a constant. At the end, the monitoring variable is filtered out by EMD method to eliminate the effect of turbulence. The experiments show that the proposed method is robust against turbulence through comparing the different fault severities and the different turbulence intensities. Comparison with other methods, the experimental results indicate the feasibility and efficacy of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Experimental investigation of large-scale vortices in a freely spreading gravity current
NASA Astrophysics Data System (ADS)
Yuan, Yeping; Horner-Devine, Alexander R.
2017-10-01
A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.
Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.
Yan, Guang; Li, S Kevin; Higuchi, William I
2005-12-10
Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).
Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.
2013-07-01
The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.
Optimal current waveforms for brushless permanent magnet motors
NASA Astrophysics Data System (ADS)
Moehle, Nicholas; Boyd, Stephen
2015-07-01
In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.
Electrochemical characterization and control of triple-layer muscles
NASA Astrophysics Data System (ADS)
Otero, Toribio F.; Cortes, Maria T.
2000-06-01
The electrochemical characterization of triple-layers formed by a EPA (Electroactive Polymer)/double-sided tape/EPA, like artificial muscles is described. Those muscles were characterized working under constant potential or under constant current. Due to the electrochemical nature of the electrochemomechanical property, muscles working under constant current produce constant movements, consuming increasing energies at decreasing temperatures, decreasing concentrations of electrolytes or trailing increasing masses. Muscles working at constant potential response with a faster movement if the temperature or the concentration of the electrolyte increase, or if the trailed weight decreases. Specific charges and specific energies were determined for every experimental condition.
Construction of exact constants of motion and effective models for many-body localized systems
NASA Astrophysics Data System (ADS)
Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.
2018-04-01
One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.
NASA Technical Reports Server (NTRS)
Kessler, L. L.
1976-01-01
Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Fukuhara, Mikio; Sugawara, Kazuyuki
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC. PMID:24959106
A new technique for Auger analysis of surface species subject to electron-induced desorption.
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1973-01-01
A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time-independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the sample velocity, incident electron current, beam diameter, and desorption cross section is analyzed. It is shown that it is advantageous to analyze the moving sample with a high beam current, in contrast to the usual practice of using a low beam current to minimize desorption from a stationary sample. The method is illustrated by the analysis of a friction transfer film of PTFE, in which the fluorine is removed by electron-induced desorption. The method is relevant to surface studies in the field of lubrication and catalysis.
A Path Algorithm for Constrained Estimation
Zhou, Hua; Lange, Kenneth
2013-01-01
Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382
NASA Astrophysics Data System (ADS)
Ramos, Andira; Moore, Kaitlin; Raithel, Georg
2015-05-01
Recent significant disagreement with the previously established size of the proton demonstrates a need to reconsider the current value of the Rydberg constant, the effects of the nuclear charge distribution and QED in hydrogen-like atoms. An experiment is in progress to obtain a measurement of the Rydberg constant by studying circular Rydberg atoms, which exhibit very small QED shifts and electron wavefunctions which do not overlap with the nucleus. Cold Rydberg atoms are trapped using a ponderomotive potential. To drive the transitions, a novel type of spectroscopy is used which utilizes an optical-lattice field that is intensity-modulated at the frequencies of atomic transitions. The method is free of typical spectroscopic selection rules and has been shown to drive transitions up to fifth order. Combined with optical Rydberg-atom trapping, the method enables the measurement of narrow, sub-THz transitions between long-lived circular Rydberg levels. Energy shifts affecting this precision measurement will also be discussed. This work is suported by NSF, NIST and NASA grants.
New Methods for B Decay Constants and Form Factors from Lattice NRQCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Christine; Hughes, Ciaran; Monahan, Christopher
We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.
New methods for B decay constants and form factors from Lattice NRQCD
NASA Astrophysics Data System (ADS)
Davies, Christine; Hughes, Ciaran; Monahan, Christopher
2018-03-01
We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.
NASA Technical Reports Server (NTRS)
Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)
1993-01-01
A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.
g-Factor of heavy ions: a new access to the fine structure constant.
Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W
2006-06-30
A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.
Method and apparatus for fringe-scanning chromosome analysis
Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.
1983-08-31
Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.
Makeyev, Oleksandr; Besio, Walter G.
2016-01-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933
Makeyev, Oleksandr; Besio, Walter G
2016-06-10
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.
A line- and load-regulated constant-current ac shock generator has been designed for animal behavior experiments. The self-contained unit has four operating modes, amplitude adjustment, and a leakage current detection circuit. A unique feature of this generator is that the good l...
Sanchez Lopez, Hector; Freschi, Fabio; Trakic, Adnan; Smith, Elliot; Herbert, Jeremy; Fuentes, Miguel; Wilson, Stephen; Liu, Limei; Repetto, Maurizio; Crozier, Stuart
2014-05-01
This article aims to present a fast, efficient and accurate multi-layer integral method (MIM) for the evaluation of complex spatiotemporal eddy currents in nonmagnetic and thin volumes of irregular geometries induced by arbitrary arrangements of gradient coils. The volume of interest is divided into a number of layers, wherein the thickness of each layer is assumed to be smaller than the skin depth and where one of the linear dimensions is much smaller than the remaining two dimensions. The diffusion equation of the current density is solved both in time-harmonic and transient domain. The experimentally measured magnetic fields produced by the coil and the induced eddy currents as well as the corresponding time-decay constants were in close agreement with the results produced by the MIM. Relevant parameters such as power loss and force induced by the eddy currents in a split cryostat were simulated using the MIM. The proposed method is capable of accurately simulating the current diffusion process inside thin volumes, such as the magnet cryostat. The method permits the priori-calculation of optimal pre-emphasis parameters. The MIM enables unified designs of gradient coil-magnet structures for an optimal mitigation of deleterious eddy current effects. Copyright © 2013 Wiley Periodicals, Inc.
Novel Superdielectric Materials: Aqueous Salt Solution Saturated Fabric
Phillips, Jonathan
2016-01-01
The dielectric constants of nylon fabrics saturated with aqueous NaCl solutions, Fabric-Superdielectric Materials (F-SDM), were measured to be >105 even at the shortest discharge times (>0.001 s) for which reliable data could be obtained using the constant current method, thus demonstrating the existence of a third class of SDM. Hence, the present results support the general theoretical SDM hypothesis, which is also supported by earlier experimental work with powder and anodized foil matrices: Any material composed of liquid containing dissolved, mobile ions, confined in an electrically insulating matrix, will have a very high dielectric constant. Five capacitors, each composed of a different number of layers of salt solution saturated nylon fabric, were studied, using a galvanostat operated in constant current mode. Capacitance, dielectric constant, energy density and power density as a function of discharge time, for discharge times from ~100 s to nearly 0.001 s were recorded. The roll-off rate of the first three parameters was found to be nearly identical for all five capacitors tested. The power density increased in all cases with decreasing discharge time, but again the observed frequency response was nearly identical for all five capacitors. Operational limitations found for F-SDM are the same as those for other aqueous solution SDM, particularly a low maximum operating voltage (~2.3 V), and dielectric “constants” that are a function of voltage, decreasing for voltages higher than ~0.8 V. Extrapolations of the present data set suggest F-SDM could be the key to inexpensive, high energy density (>75 J/cm3) capacitors. PMID:28774037
Method and apparatus for controlling current in inductive loads such as large diameter coils
Riveros, Carlos A.
1981-01-01
A method and apparatus for controlling electric current in loads that are essentially inductive, such that sparking and "ringing" current problems are reduced or eliminated. The circuit apparatus employs a pair of solid state switches (each of which switch may be an array of connected or parallel solid state switching devices such as transistors) and means for controlling those switches such that a power supply supplying two d.c. voltages (e.g. positive 150 volts d.c. and negative 150 volts d.c.) at low resistance may be connected across an essentially inductive load (e.g. a 6 gauge wire loop one hundred meters in diameter) alternatively and such that the first solid state switch is turned off and the second is turned on such that both are not on at the same time but the first turned on and the other on in less time than the inductive time constant (L/R) so that the load is essentially always presented with a low resistance path across its input. In this manner a steady AC current may be delivered to the load at a frequency desired. Shut-off problems are avoided by gradually shortening the period of switching to less than the time constant so that the maximum energy contained in the inductive load is reduced to approximately zero and dissipated in the inherent resistance. The invention circuit may be employed by adjusting the timing of switching to deliver a desired waveform (such as sinusoidal) to the load.
Flux-focusing eddy current probe and rotating probe method for flaw detection
NASA Astrophysics Data System (ADS)
Wincheski, Buzz A.; Fulton, James P.; Nath, Shridhar C.; Simpson, John W.; Namkung, Min
1994-11-01
A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.
Flux-focusing eddy current probe and rotating probe method for flaw detection
NASA Technical Reports Server (NTRS)
Wincheski, Buzz A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)
1994-01-01
A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.
Modeling AC ripple currents in HTS coated conductors by integral equations
NASA Astrophysics Data System (ADS)
Grilli, Francesco; Xu, Zhihan
2016-12-01
In several HTS applications, the superconducting tapes experience the simultaneous presence of DC and AC excitations. For example in high-current DC cables, where the transport current is not perfectly constant, but it exhibits some ripples at different frequencies introduced by the rectification process (AC-DC conversion). These ripples give rise to dissipation, whose magnitude and possible influence on the device's cooling requirements need to be evaluated. Here we report a study of the AC losses in a HTS coated conductor subjected to DC currents and AC ripples simultaneously. The modeling approach is based on an integral equation method for thin superconductors: the superconducting tape is modeled as a 1-D object with a non-linear resistivity, which includes the dependence of the critical current density Jc on the magnetic field. The model, implemented in a commercial finite-element program, runs very fast (the simulation of one AC cycle typically takes a few seconds on standard desktop workstation): this allows simulating a large number of cycles and estimating when the AC ripple losses stabilize to a constant value. The model is used to study the influence of the flux creep power index n on the stabilization speed and on the AC loss values, as well as the effect of using a field-dependent Jc instead of a constant one. The simulations confirm that the dissipation level should not be a practical concern in HTS DC cables. At the same time, however, they reveal a strong dependence of the results upon the power index n and the form of Jc , which spurs the question whether the power-law is the most suitable description of the superconductor's electrical behavior for this kind of analysis.
Magnitude of the current in 2D interlayer tunneling devices.
Feenstra, Randall M; de la Barrera, Sergio C; Li, Jun; Nie, Yifan; Cho, Kyeongjae
2018-01-15
Using the Bardeen tunneling method with first-principles wave functions, computations are made of the tunneling current in graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) vertical structures. Detailed comparison with prior experimental results is made, focusing on the magnitude of the achievable tunnel current. With inclusion of the effects of translational and rotational misalignment of the graphene and the h-BN, predicted currents are found to be about 15× larger than experimental values. A reduction in this discrepancy, to a factor of 2.5×, is achieved by utilizing a realistic size for the band gap of the h-BN, hence affecting the exponential decay constant for the tunneling.
Magnitude of the Current in Two-Dimensional Interlayer Tunneling Devices.
Feenstra, Randall; de la Barrera, Sergio; Li, Jun; Nie, Yifan; Cho, Kyeongjae
2018-01-02
Using the Bardeen tunneling method with first-principles wave functions, computations are made of the tunneling current in graphene / hexagonal-boron-nitride / graphene (G/h-BN/G) vertical structures. Detailed comparison with prior experimental results is made, focusing on the magnitude of the achievable tunnel current. With inclusion of the effects of translational and rotational misalignment of the graphene and the h-BN, predicted currents are found to be about 15x larger than experimental values. A reduction in this discrepancy, to a factor of 2.5x, is achieved by utilizing a realistic size for the band gap of the h-BN, hence affecting the exponential decay constant for the tunneling. © 2018 IOP Publishing Ltd.
Systematic error of diode thermometer.
Iskrenovic, Predrag S
2009-08-01
Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.
Measurement of the controlled variable during heating of Ti6Al4V for thixoforging
NASA Astrophysics Data System (ADS)
Gerlach, O.; Lechler, A.; Verl, A.
2018-02-01
Controlled heating of metal billets into the semi-solid state for thixoforming is a challenging task, mainly due to the difficulties in measuring the liquid fraction of the billet during heating. Past research primarily focused on methods measuring the liquid fraction during heating of low-melting aluminium alloys. One of these methods is time constant measurement, a contactless measurement method that uses the heating coil as a sensor. The current through the coil is used to determine the electrical time constant of the heating circuit, which itself is influenced by the specific resistance of the billet inside the coil. While previous works focused on the suitability of this method for industrial applications using aluminum alloys, this paper extends this research to the high-melting titanium alloy Ti6Al4V. This alloys shows high strength, low density and excellent corrosion resistance. It is therefore used to produce light-weight and durable components for medical and aerospace applications. Ti6Al4V is an expensive and difficult to machine alloy. Thus, it is an interesting alloy for thixoforging. However, heating of the billet into a homogeneous state of defined liquid fraction is difficult due to the poor thermal conductivity of Ti6Al4V. This paper analyses the potential of using time constant measurement for controlled heating of Ti6Al4V into the semi-solid state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Divan, Ralu; Parkinson, Bruce A.
2015-06-29
Carbon interdigitated array (IDA) electrodes have been applied to study the homogeneous hydrogen evolution electrocatalyst [Ni(PPh2NBn2)2]2+ (where PPh2NBn2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane). The existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. The currents on IDA electrodes for an EC’ (electron transfer reaction followed by a catalytic reaction) mechanism are derived from the number of redox cycles and the contribution of non-catalytic currents. The catalytic reaction rate constant was then extracted from the IDA current equations. Applying the IDA current and kinetic equations to the electrochemical responsemore » of the [Ni(PPh2NBn2)2]2+ catalyst yielded a rate constant of 0.10 s-1 for the hydrogen evolution reaction that agrees with the literature value. The quantitative analysis of IDA cyclic voltammetry can be used as a simple and straightforward method for determining rate constants in other catalytic systems. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.« less
Sokolov, V S; Apell, H J; Corrie, J E; Trentham, D R
1998-01-01
Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), from which the relatively slow rate of ATP release limits analysis of processes in the pump mechanism controlled by rate constants greater than 100 s(-1) at physiological pH. Here Na,K-ATPase was reinvestigated using the P3-[1-(3,5-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP (DMB-caged ATP), which has an ATP release rate of >10(5) s(-1). Under otherwise identical conditions, photorelease of ATP from DMB-caged ATP showed faster kinetics of the transient current compared to that from NPE-caged ATP. With DMB-caged ATP, transient currents had rate profiles that were relatively insensitive to pH and the concentration of caged compound. Rate constants of ATP binding and of the E1 to E2 conformational change were compatible with earlier studies. Rate constants of enzyme phosphorylation and ADP-dependent dephosphorylation were 600 s(-1) and 1.5 x 10(6) M(-1) s(-1), respectively, at pH 7.2 and 22 degrees C. PMID:9591656
NASA Astrophysics Data System (ADS)
Golding, Madeleine J.; Huppert, Herbert E.; Neufeld, Jerome A.
2013-03-01
The effects of capillary forces on the propagation of two-phase, constant-flux gravity currents in a porous medium are studied analytically and numerically in an axisymmetric geometry. The fluid within a two-phase current generally only partially saturates the pore space it invades. For long, thin currents, the saturation distribution is set by the vertical balance between gravitational and capillary forces. The capillary pressure and relative permeability of the fluid in the current depend on this saturation. The action of capillary forces reduces the average saturation, thereby decreasing the relative permeability throughout the current. This results in a thicker current, which provides a steeper gradient to drive flow, and a more blunt-nose profile. The relative strength of gravity and capillary forces remains constant within a two-phase gravity current fed by a constant flux and spreading radially, due to mass conservation. For this reason, we use an axisymmetric representation of the framework developed by Golding et al. ["Two-phase gravity currents in porous media," J. Fluid Mech. 678, 248-270 (2011)], 10.1017/jfm.2011.110, to investigate the effect on propagation of varying the magnitude of capillary forces and the pore-size distribution. Scaling analysis indicates that axisymmetric two-phase gravity currents fed by a constant flux propagate like t1/2, similar to their single-phase counterparts [S. Lyle, H. E. Huppert, M. Hallworth, M. Bickle, and A. Chadwick, "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)], 10.1017/S0022112005006713, with the effects of capillary forces encapsulated in the constant of proportionality. As a practical application of our new concepts and quantitative evaluations, we discuss the implications of our results for the process of carbon dioxide (CO2) sequestration, during which gravity currents consisting of supercritical CO2 propagate in rock saturated with aqueous brine. We apply our two-phase model including capillary forces to quantitatively assess seismic images of CO2 spreading at Sleipner underneath the North Sea.
Kannan, M Bobby; Wallipa, O
2013-03-01
In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles. Copyright © 2012 Elsevier B.V. All rights reserved.
Methods of Measurement of High Air Velocities by the Hot-wire Method
NASA Technical Reports Server (NTRS)
Weske, John R.
1943-01-01
Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.
High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate.
Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E
2014-11-01
In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14 ± 0.01 h(-1) ). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33 ± 0.02 h(-1) ) obtained at the lowest external resistance (100 Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic efficiencies rapidly increased due to decreased, and not constant, removal rates of substrate by non-exoelectrogens. These results show that higher current densities (lower resistances) redirect a greater percentage of substrate into current generation, enabling large increase in CEs with increased current densities. Biotechnol. Bioeng. 2014;111: 2163-2169. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Critical current densities in superconducting Y-Ba-Cu-O prepared by chelating method
NASA Astrophysics Data System (ADS)
Fujisawa, Tadashi; Okuyama, Katsuro; Ohshima, Shigetoshi; Takagi, Akira
1990-10-01
The IDA, NTA, HEDTA, EDTA, TTHA, and DTPA chelating agents have been used to prepare the Y-Ba-Cu-O compounds whose critical current is presently investigated. It is noted that the precursor YBCO prepared from large stability-constant metal complexes (HEDTA, EDTA, DTPA, and TTHA) exhibited very fine and homogeneous particles. The critical current density of a 1 x 4 x 15 mm block of YBCO sintered at 880-910 C for 24 h and subsequently annealed at 500 C in an O2 flow was approximately 500 A/sq cm at 77 K, in zero magnetic field.
Zn/gelled 6 M KOH/O 2 zinc-air battery
NASA Astrophysics Data System (ADS)
Mohamad, A. A.
The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6 M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50 mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell.
Graphene Mechanics: Current Status and Perspectives.
Galiotis, Costas; Frank, Otakar; Koukaras, Emmanuel N; Sfyris, Dimitris
2015-01-01
The mechanical properties of 2D materials such as monolayer graphene are of extreme importance for several potential applications. We summarize the experimental and theoretical results to date on mechanical loading of freely suspended or fully supported graphene. We assess the obtained axial properties of the material in tension and compression and comment on the methods used for deriving the various reported values. We also report on past and current efforts to define the elastic constants of graphene in a 3D representation. Current areas of research that are concerned with the effect of production method and/or the presence of defects upon the mechanical integrity of graphene are also covered. Finally, we examine extensively the work related to the effect of graphene deformation upon its electronic properties and the possibility of employing strained graphene in future electronic applications.
SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, K; Liu, B
Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less
Development of Methods for the Determination of pKa Values
Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram
2013-01-01
The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574
An original approach to elastic constants determination using a self-developed EMAT system
NASA Astrophysics Data System (ADS)
Jenot, Frédéric; Rivart, Frédéric; Camus, Liévin
2018-04-01
Electromagnetic Acoustic Transducers (EMATs) allow non-contact ultrasonic measurements in order to characterize structures for a wide range of applications. Considering non-ferromagnetic metal materials, excitation of elastic waves is due to Lorentz forces that result from an applied magnetic field and induced eddy currents in a near surface region of the sample. EMAT's design is based on a magnet structure associated with a coil leading to multiple configurations, which are able to excite bulk and guided acoustic waves. In this work, we first present a self-developed EMAT system composed of multiple emission and reception channels. In a second part, we propose an original method in order to determine the elastic constants of an isotropic material. To achieve this goal, Rayleigh and shear waves are used and the advantages of this method are clearly highlighted. The results obtained are then compared with conventional measurements achieved with piezoelectric transducers.
NASA Astrophysics Data System (ADS)
Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.
Chuang, Yen-Jun; Zhou, Xichun; Pan, Zhengwei; Turchi, Craig
2009-01-01
Carbohydrate functionalized nanoparticles, i.e., the glyconanoparticles, have wide application ranging from studies of carbohydrate-protein interactions, in vivo cell imaging, biolabeling, etc. Currently reported methods for preparation of glyconanoaprticles require multi-step modifications of carbohydrates moieties to conjugate to nanoparticle surface. However, the required synthetic manipulations are difficult and time consuming. We report herewith a simple and versatile method for preparing glyconanoparticles. This method is based on the utilization of clean and convenient microwave irradiation energy for one-step, site-specific conjugation of unmodified carbohydrates onto hydrazide-functionalized Au nanoparticles. A colorimetric assay that utilizes the ensemble of gold glyconanoparticles and Concanavalin A (ConA) was also presented. This feasible assay system was developed to analyze multivalent interactions and to determine the dissociation constant (Kd) for five kind of Au glyconanoparticles with lectin. Surface plasmon changes of the Au glyconanparticles as a function of lectin-carbohydrate interactions were measured and the dissociation constants were determined based on non-linear curve fitting. The strength of the interaction of carbohydrates with ConA was found to be as follows: Maltose > Mannose > Glucose > Lactose > MAN5. PMID:19698698
Chen, Chih-Chung; Johnson, Mark I
2009-10-01
Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.
The measurement system of birefringence and Verdet constant of optical fiber
NASA Astrophysics Data System (ADS)
Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun
2013-12-01
The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.
Combining coordination of motion actuators with driver steering interaction.
Tagesson, Kristoffer; Laine, Leo; Jacobson, Bengt
2015-01-01
A new method is suggested for coordination of vehicle motion actuators; where driver feedback and capabilities become natural elements in the prioritization. The method is using a weighted least squares control allocation formulation, where driver characteristics can be added as virtual force constraints. The approach is in particular suitable for heavy commercial vehicles that in general are over actuated. The method is applied, in a specific use case, by running a simulation of a truck applying automatic braking on a split friction surface. Here the required driver steering angle, to maintain the intended direction, is limited by a constant threshold. This constant is automatically accounted for when balancing actuator usage in the method. Simulation results show that the actual required driver steering angle can be expected to match the set constant well. Furthermore, the stopping distance is very much affected by this set capability of the driver to handle the lateral disturbance, as expected. In general the capability of the driver to handle disturbances should be estimated in real-time, considering driver mental state. By using the method it will then be possible to estimate e.g. stopping distance implied from this. The setup has the potential of even shortening the stopping distance, when the driver is estimated as active, this compared to currently available systems. The approach is feasible for real-time applications and requires only measurable vehicle quantities for parameterization. Examples of other suitable applications in scope of the method would be electronic stability control, lateral stability control at launch and optimal cornering arbitration.
A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.
Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry
2011-01-01
A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies. In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad. In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation. The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.
The Current SI Seen From the Perspective of the Proposed New SI
Taylor, Barry N.
2011-01-01
A revised International System of Units (SI) proposed by the International Committee for Weights and Measures is under consideration by the General Conference on Weights and Measures for eventual adoption. Widely recognized as a significant advance for both metrology and science, it is defined via statements that explicitly fix the numerical values of a selected set of seven reference constants when the values of these constants are expressed in certain specified units. At first sight this approach to defining a system of units appears to be quite different from that used to define the current SI. However, by showing how the definitions of the seven base units of the current SI also fix the numerical values of a set of seven reference constants (broadly interpreted) when the values of these constants are expressed in their coherent SI units, and how the definition of the current SI can be recast into the same form as that of the revised SI under consideration, we show that the revision is not as radical a departure from the current SI as it might initially seem. PMID:26989600
Flow-through electroporation based on constant voltage for large-volume transfection of cells.
Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang
2010-05-21
Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.
QSAR models based on quantum topological molecular similarity.
Popelier, P L A; Smith, P J
2006-07-01
A new method called quantum topological molecular similarity (QTMS) was fairly recently proposed [J. Chem. Inf. Comp. Sc., 41, 2001, 764] to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs. QTMS method uses quantum chemical topology (QCT) to define electronic descriptors drawn from modern ab initio wave functions of geometry-optimised molecules. It was shown that the current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In this article we study seven datasets of medicinal interest : the dissociation constants (pK(a)) for a set of substituted imidazolines , the pK(a) of imidazoles , the ability of a set of indole derivatives to displace [(3)H] flunitrazepam from binding to bovine cortical membranes , the influenza inhibition constants for a set of benzimidazoles , the interaction constants for a set of amides and the enzyme liver alcohol dehydrogenase , the natriuretic activity of sulphonamide carbonic anhydrase inhibitors and the toxicity of a series of benzyl alcohols. A partial least square analysis in conjunction with a genetic algorithm delivered excellent models. They are also able to highlight the active site, of the ligand or the molecule whose structure determines the activity. The advantages and limitations of QTMS are discussed.
ERIC Educational Resources Information Center
Russo, James; Hopkins, Sarah
2017-01-01
The current study considered young students' (7 and 8 years old) experiences and perceptions of mathematics lessons involving challenging (i.e. cognitively demanding) tasks. We used the Constant Comparative Method to analyse the interview responses (n = 73) regarding what work artefacts students were most proud of creating and why. Five themes…
NASA Astrophysics Data System (ADS)
Rong, X.; He, B.; Zhuang, L.
2017-08-01
The existing interior decoration of Qing Dynasty is the master of that of each dynasty, with its diversified forms and complicated functions. As early as 1920s, the Rehabilitation Committee of Qing court recorded the interior furnishing in the Forbidden City by using Chinese traditional documentary method. Today, along with the constantly updated techniques, the recording method for the current situation of interior decoration has gradually developed from two-dimensional drawings into digital and comprehensive record. However, the current research results are mostly limited to a single field. This paper takes the digital record and reproduction about the current situation of interior decoration in Jingfu Palace in the Forbidden City as an example. Through the use of photogrammetry, 3D laser scanning, virtual display and other technology and equipment at the forefront of architectural field, it makes qualitative and quantitative record about the interior decoration inside Jingfu Palace. By combing with the interpretation of historical documents, it restores the original design ideas hidden behind the current situation of interior decoration, so as to summarize the best recording and reproducing method of interior decoration of Qing Dynasty.
Constant potential pulse polarography
Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.
1976-01-01
The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.
1993-01-01
1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.
System and method for charging electrochemical cells in series
DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.
1980-01-01
A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.
Ultrafast current imaging by Bayesian inversion
Somnath, Suhas; Law, Kody J. H.; Morozovska, Anna; Maksymovych, Petro; Kim, Yunseok; Lu, Xiaoli; Alexe, Marin; Archibald, Richard K; Kalinin, Sergei V; Jesse, Stephen; Vasudevan, Rama K
2016-01-01
Spectroscopic measurements of current-voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference analysis. This "general-mode I-V"method allows three orders of magnitude faster rates than presently possible. The technique is demonstrated by acquiring I-V curves in ferroelectric nanocapacitors, yielding >100,000 I-V curves in <20 minutes. This allows detection of switching currents in the nanoscale capacitors, as well as determination of dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference towards extracting physics from rapid I-V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy. The data was analyzed using pycroscopy - an open-source python package available at https://github.com/pycroscopy/pycroscopy
Apparatus and method for electrical insulation in plasma discharge systems
Rhodes, Mark A [Redwood City, CA; Fochs, Scott N [Livermore, CA
2003-08-12
An apparatus and method to contain plasma at optimal fill capacity of a metallic container is disclosed. The invention includes the utilization of anodized layers forming the internal surfaces of the container volume. Bias resistors are calibrated to provide constant current at variable voltage conditions. By choosing the appropriate values of the bias resistors, the voltages of the metallic container relative to the voltage of an anode are adjusted to achieve optimal plasma fill while minimizing the chance of reaching the breakdown voltage of the anodized layer.
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1979-01-01
Five amp-hour nickel-zinc cells were life cycled to evaluate four different charge methods. Three of the four waveforms investigated were 120 Hz full wave rectified sinusoidal (FWRS), 120 Hz silicon controlled rectified (SCR), and 1 kHz square wave (SW). The fourth, a constant current method, was used as a baseline of comparison. Three sealed Ni-Zn cells connected in series were cycled. Each series string was charged at an average c/20 rate, and discharged at a c/2.5 rate to a 75% rated depth.
The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data
NASA Technical Reports Server (NTRS)
Konopliv, Alexander S.; Sjogren, William L.
1995-01-01
This report summarizes the current JPL efforts of generating a Mars gravity field from Viking 1 and 2 and Mariner 9 Doppler tracking data. The Mars 50c solution is a complete gravity field to degree and order 50 with solutions as well for the gravitational mass of Mars, Phobos, and Deimos. The constants and models used to obtain the solution are given and the method for determining the gravity field is presented. The gravity field is compared to the best current gravity GMM1 of Goddard Space Flight Center.
NASA Technical Reports Server (NTRS)
Anderson, Karl F. (Inventor)
1994-01-01
A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.
Non-perturbative determination of cV, ZV and ZS/ZP in Nf = 3 lattice QCD
NASA Astrophysics Data System (ADS)
Heitger, Jochen; Joswig, Fabian; Vladikas, Anastassios; Wittemeier, Christian
2018-03-01
We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the Schrödinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.
Improvement of the conductive network of positive electrodes and the performance of Ni-MH battery
NASA Astrophysics Data System (ADS)
Morimoto, Katsuya; Nakayama, Kousuke; Maki, Hideshi; Inoue, Hiroshi; Mizuhata, Minoru
2017-06-01
The pretreatment to modify the valence of cobalt by discharging at 0.2 C rate for 7.5 h before the first initial activation charge process is effective in improving the surface electronic conductivity among fine particles of positive electrode active materials. The discharge curves indicate the same locus within 1800 cycles, and the capacity of the pretreated battery is stable for over 4000 cycles. However, in-situ cell pretreatment with constant current has negative influence on other components. During the constant current pretreatment, the cell voltage rapidly falls to -0.5 V in the first 10 s of in-situ pretreatment. Therefore, we investigate the pretreatment by supplying a constant voltage to the battery instead of a constant current, and find the effective condition to improve the electrochemical performance and not to have any influence on other components of the battery.
Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant
ERIC Educational Resources Information Center
Beach, Darrell H.
1969-01-01
Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Lin, Heng; Oturan, Nihal; Wu, Jie; Sharma, Virender K; Zhang, Hui; Oturan, Mehmet A
2017-01-01
The degradation and mineralization of aspartame (ASP) in aqueous solution were investigated, for the first time, by electrochemical advanced oxidation processes (EAOPs) in which hydroxyl radicals were formed concomitantly in the bulk from Fenton reaction via in situ electrogenerated Fenton's reagent and at the anode surface from the water oxidation. Experiments were performed in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The effect of Fe 2+ concentration and applied current on the degradation and mineralization kinetics of ASP was evaluated. The absolute rate constant for the reaction between ASP and OH was determined as (5.23 ± 0.02) × 10 9 M -1 s -1 by using the competition kinetic method. Almost complete mineralization of ASP was achieved with BDD anode at 200 mA constant current electrolysis. The formation and generation of the formed carboxylic acids (as ultimate end products before complete mineralization) and released inorganic ion were monitored by ion-exclusion high performance liquid chromatography (HPLC) and ion chromatography techniques, respectively. The global toxicity of the treated ASP solution during treatment was assessed by the Microtox ® method using V. fischeri bacteria luminescence inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation
NASA Astrophysics Data System (ADS)
Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.
2000-06-01
A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.
Makeyev, Oleksandr; Besio, Walter G
2016-08-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are analytically compared to their constant inter-ring distances counterparts using coefficients of the Taylor series truncation terms. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the truncation error of the Laplacian estimation resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the truncation error may be decreased more than two-fold while for the quadripolar more than seven-fold decrease is expected.
The method of constant stimuli is inefficient
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Fitzhugh, Andrew
1990-01-01
Simpson (1988) has argued that the method of constant stimuli is as efficient as adaptive methods of threshold estimation and has supported this claim with simulations. It is shown that Simpson's simulations are not a reasonable model of the experimental process and that more plausible simulations confirm that adaptive methods are much more efficient that the method of constant stimuli.
NASA Astrophysics Data System (ADS)
Giacometti, José A.
2018-05-01
This work describes an enhanced corona triode with constant current adapted to characterize the electrical properties of thin dielectric films used in organic electronic devices. A metallic grid with a high ionic transparency is employed to charge thin films (100 s of nm thick) with a large enough charging current. The determination of the surface potential is based on the grid voltage measurement, but using a more sophisticated procedure than the previous corona triode. Controlling the charging current to zero, which is the open-circuit condition, the potential decay can be measured without using a vibrating grid. In addition, the electric capacitance and the characteristic curves of current versus the stationary surface potential can also be determined. To demonstrate the use of the constant current corona triode, we have characterized poly(methyl methacrylate) thin films with films with thicknesses in the range from 300 to 500 nm, frequently used as gate dielectric in organic field-effect transistors.
NASA Astrophysics Data System (ADS)
Castrillo, A.; de Vizia, M. D.; Fasci, E.; Odintsova, T.; Moretti, L.; Gianfrani, L.
The expression of the Doppler width of a spectral line, valid for a gaseous sample at thermodynamic equilibrium, represents a powerful tool to link the thermodynamic temperature to an optical frequency. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry. Implemented at the Second University of Naples on H218O molecules at the temperature of the triple point of water, this method has recently allowed to determine the Boltzmann constant with a global uncertainty of 24 parts over 106. Even though this is the best result ever obtained by using an optical method, its uncertainty is still far from the requirement for the new definition of the unit kelvin. To this end, Doppler broadening thermometry should approach the accuracy of 1 part per million. In this paper, we will report on our recent efforts to further develop and optimize Doppler broadening thermometry at 1.39 μm, using acetylene as a molecular target. Main progresses and current limitations will be highlighted.
Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review.
Kfoury, Miriana; Landy, David; Fourmentin, Sophie
2018-05-17
Cyclodextrins (CDs) are a family of cyclic oligosaccharides that constitute one of the most widely used molecular hosts in supramolecular chemistry. Encapsulation in the hydrophobic cavity of CDs positively affects the physical and chemical characteristics of the guests upon the formation of inclusion complexes. Such a property is interestingly employed to retain volatile guests and reduce their volatility. Within this scope, the starting crucial point for a suitable and careful characterization of an inclusion complex is to assess the value of the formation constant (K f ), also called stability or binding constant. This task requires the application of the appropriate analytical method and technique. Thus, the aim of the present paper is to give a general overview of the main analytical tools used for the determination of K f values for CD/volatile inclusion complexes. This review emphasizes on the advantages, inconvenients and limits of each applied method. A special attention is also dedicated to the improvement of the current methods and to the development of new techniques. Further, the applicability of each technique is illustrated by a summary of data obtained from the literature.
Measurement of rheology of distiller's grain slurries using a helical impeller viscometer.
Houchin, Tiffany L; Hanley, Thomas R
2004-01-01
Current research is focused on developing a process to convert the cellulose and hemicellulose in distiller's grains into fermentable sugars, increasing both ethanol yield and the amount of protein in the remaining solid product. The rheologic properties of distiller's grain slurries were determined for concentrations of 21, 23, and 25%. Distiller's grain slurries are non-Newtonian, heterogeneous fluids subject to particle settling. Traditional methods of viscosity measurement, such as cone-and-plate and concentric cylinder viscometers, are not adequate for these fluids. A helical impeller viscometer was employed to measure impeller torque over a range of rotational speeds. Newtonian and non-Newtonian calibration fluids were utilized to obtain constants that relate shear stresses and shear rates to the experimental data. The Newtonian impeller constant, c, was 151; the non-Newtonian shear rate constant, k, was 10.30. Regression analysis of experimental data was utilized for comparison to power law, Herschel-Bulkley, and Casson viscosity models with regression coefficients exceeding 0.99 in all cases.
Jackson, Neal
2015-01-01
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less
Compressing the fluctuation of the magnetic field by dynamic compensation
NASA Astrophysics Data System (ADS)
Wang, Wenli; Dong, Richang; Wei, Rong; Chen, Tingting; Wang, Qian; Wang, Yuzhu
2018-03-01
We present a dynamic compensation method to compress the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the atomic fountain clock. The coil current of the C-field is point-by-point modulated in accordance with the atoms probing the magnetic field along the flight trajectory. A homogeneous field with a 0.2 nT inhomogeneity is produced compared to a 5 nT under the static magnetic field with a constant current during the Ramsey interrogation. The corresponding uncertainty associated with the second-order Zeeman shift that we calculate is improved by one order of magnitude. The technique provides an alternative method to improve the uniformity of the magnetic field, particularly for large-scale equipment that is difficult to construct with an effective magnetic shielding. Our method is simple, robust, and essentially important in frequency evaluations concerning the dominant uncertainty contribution due to the quadratic Zeeman shift.
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
NASA Astrophysics Data System (ADS)
Hoernlein, W.
1988-11-01
Measurements were made of the complex reflection coefficient of hf (10-400 MHz) signals from semiconductor injection lasers supplied with a direct bias current ranging from several milliamperes up to the threshold value or higher. The hf impedance was calculated. The parameters of the equivalent electrical circuit made it possible to predict the modulation characteristics. The impedance corresponding to currents below the lasing threshold was used to find the differential carrier lifetime from the RC constant of the p-n junction of a laser diode. A description of the apparatus is supplemented by an account of the method used in calculation of the electrical parameters and carrier lifetimes. The first results obtained using this apparatus and method are reported.
Taubman, Matthew S; Phillips, Mark C
2015-04-07
A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.
Systems and Methods for Ejection of Ions from an Ion Trap
NASA Technical Reports Server (NTRS)
Cooks, Robert Graham (Inventor); Snyder, Dalton (Inventor)
2018-01-01
The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.
A New Method of Comparing Forcing Agents in Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.
We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approachmore » for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.« less
Mosley, Garrett L; Nguyen, Phuong; Wu, Benjamin M; Kamei, Daniel T
2016-08-07
The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...
2018-04-09
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.
Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M
2007-05-15
The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.
Variable energy constant current accelerator structure
Anderson, O.A.
1988-07-13
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Gabrielse, Gerald
2011-05-01
The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.
Gasper, J.D.; Aiken, G.R.; Ryan, J.N.
2007-01-01
Three experimental techniques - ion exchange, liquid-liquid extraction with competitive ligand exchange, and solid-phase extraction with competitive ligand exchange (CLE-SPE) - were evaluated as methods for determining conditional stability constants (K) for the binding of mercury (Hg2+) to dissolved organic matter (DOM). To determine the utility of a given method to measure stability constants at environmentally relevant experimental conditions, experimental results should meet three criteria: (1) the data must be experimentally valid, in that they were acquired under conditions that meet all the requirements of the experimental method, (2) the Hg:DOM ratio should be determined and it should fall within levels that are consistent with environmental conditions, and (3) the stability constants must fall within the detection window of the method. The ion exchange method was found to be limited by its detection window, which constrains the method to stability constants with log K values less than about 14. The liquid-liquid extraction method was found to be complicated by the ability of Hg-DOM complexes to partition into the organic phase. The CLE-SPE method was found to be the most suitable of these methods for the measurement of Hg-DOM stability constants. Stability constants for DOM isolates measured using the CLE-SPE method at environmentally relevant Hg:DOM ratios were log K = 25-30 (M-1). These values are consistent with the strong Hg2+ binding expected for reduced S-containing binding sites. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schneider, Peter; Sluse, Dominique
2013-11-01
The light travel time differences in strong gravitational lensing systems allows an independent determination of the Hubble constant. This method has been successfully applied to several lens systems. The formally most precise measurements are, however, in tension with the recent determination of H0 from the Planck satellite for a spatially flat six-parameters ΛCDM cosmology. We reconsider the uncertainties of the method, concerning the mass profile of the lens galaxies, and show that the formal precision relies on the assumption that the mass profile is a perfect power law. Simple analytical arguments and numerical experiments reveal that mass-sheet like transformations yield significant freedom in choosing the mass profile, even when exquisite Einstein rings are observed. Furthermore, the characterization of the environment of the lens does not break that degeneracy which is not physically linked to extrinsic convergence. We present an illustrative example where the multiple imaging properties of a composite (baryons + dark matter) lens can be extremely well reproduced by a power-law model having the same velocity dispersion, but with predictions for the Hubble constant that deviate by ~20%. Hence we conclude that the impact of degeneracies between parametrized models have been underestimated in current H0 measurements from lensing, and need to be carefully reconsidered.
The Most Energy Efficient Way to Charge the Capacitor in an RC Circuit
ERIC Educational Resources Information Center
Wang, Dake
2017-01-01
The voltage waveform that minimizes the energy loss in the resistance when charging the capacitor in a resistor-capacitor circuit is investigated using the calculus of variation. A linear voltage ramp gives the best efficiency, which means a constant current source should be used for charging. Comparison between constant current source and…
Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, George F.R.; Platts, Emma; Weltman, Amanda
2016-04-01
We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof ofmore » principle, with no definite claim on the physical mechanism required for the present dark energy to decay.« less
Estimation of lung shunt fraction from simultaneous fluoroscopic and nuclear images
NASA Astrophysics Data System (ADS)
van der Velden, Sandra; Bastiaannet, Remco; Braat, Arthur J. A. T.; Lam, Marnix G. E. H.; Viergever, Max A.; de Jong, Hugo W. A. M.
2017-11-01
Radioembolisation with yttrium-90 (90Y) is increasingly used as a treatment of unresectable liver malignancies. For safety, a scout dose of technetium-99m macroaggregated albumin (99mTc-MAA) is used prior to the delivery of the therapeutic activity to mimic the deposition of 90Y. One-day procedures are currently limited by the lack of nuclear images in the intervention room. To cope with this limitation, an interventional simultaneous fluoroscopic and nuclear imaging device is currently being developed. The purpose of this simulation study was to evaluate the accuracy of estimating the lung shunt fraction (LSF) of the scout dose in the intervention room with this device and compare it against current clinical methods. Methods: A male and female XCAT phantom, both with two respiratory profiles, were used to simulate various LSFs resulting from a scout dose of 150 MBq 99mTc-MAA. Hybrid images were Monte Carlo simulated for breath-hold (5 s) and dynamic breathing (10 frames of 0.5 s) acquisitions. Nuclear images were corrected for attenuation with the fluoroscopic image and for organ overlap effects using a pre-treatment CT-scan. For comparison purposes, planar scintigraphy and mobile gamma camera images (both 300 s acquisition time) were simulated. Estimated LSFs were evaluated for all methods and compared to the phantom ground truth. Results: In the clinically relevant range of 10-20% LSF, hybrid imaging overestimated LSF with approximately 2 percentage points (pp) and 3 pp for the normal and irregular breathing phantoms, respectively. After organ overlap correction, LSF was estimated with a more constant error. Errors in planar scintigraphy and mobile gamma camera imaging were more dependent on LSF, body shape and breathing profile. Conclusion: LSF can be estimated with a constant minor error with a hybrid imaging device. Estimated LSF is highly dependent on true LSF, body shape and breathing pattern when estimated with current clinical methods. The hybrid imaging device is capable of accurately estimating LSF within a few seconds in an interventional setting.
Susceptibility of superconductor disks and rings with and without flux creep
NASA Astrophysics Data System (ADS)
Brandt, Ernst Helmut
1997-06-01
First some consequences of the Bean assumption of constant critical current Jc in type-II superconductors are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear current-voltage law E~Jn, from which the saturated magnetic moment at constant ramp rate H-|Apa(t) is derived for rings with general hole radius a1 and general creep exponent n. Next the exact formulation for rings in a perpendicular applied field Ha(t) is presented in the form of an equation of motion for the current density in thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general magnetization curves m(Ha) and ac susceptibilities χ of rings with and without creep, accounting also for nonconstant Jc(B). Typical current and field (B) profiles are depicted. The initial slope of m(Ha) (the ideal diamagnetic moment) and the field of full penetration are expressed as functions of the inner and outer ring radii a1 and a. A scaling law is derived which states that for arbitrary creep exponent n the complex nonlinear ac susceptibility χ(H0,ω) depends only on the combination Hn-10/ω of the ac amplitude H0 and the ac frequency ω/2π. This scaling law thus connects the known dependencies χ=χ(ω) in the ohmic limit (n=1) and χ=χ(H0) in the Bean limit (n-->∞).
Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.
2016-01-01
The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs. PMID:27934904
NASA Astrophysics Data System (ADS)
Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.
2016-12-01
The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.
Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J
2016-12-09
The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal R s C behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics [corrected]. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance R s in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (R s , Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical R s C model. We validate our formulae with the experimental measurements of different EDLCs.
A simplified controller and detailed dynamics of constant off-time peak current control
NASA Astrophysics Data System (ADS)
Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan
2017-09-01
A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Finsterbusch, Jürgen
2010-04-01
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.
Anti-anthropic solutions to the cosmic coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedrow, Joseph M.; Griest, Kim, E-mail: j.m.fedrow@gmail.com, E-mail: kgriest@ucsd.edu
2014-01-01
A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predictedmore » by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.« less
Convection currents enhancement of the spring constant in optical tweezers
NASA Astrophysics Data System (ADS)
Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.
2016-09-01
In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in othermore » OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.« less
WE-AB-207B-06: Dose and Biological Uncertainties in Sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marteinsdottir, M; University of Iceland, Reykjavik; Schuemann, J
2016-06-15
Purpose: To understand the clinical impact of key uncertainties in proton therapy potentially affecting the analysis of clinical trials, namely the assumption of using a constant relative biological effectiveness (RBE) of 1.1 compared to variable RBE for proton therapy and the use of analytical dose calculation (ADC) methods. Methods: Proton dose distributions were compared for analytical and Monte Carlo (TOPAS) dose calculations. In addition, differences between using a constant RBE of 1.1 (RBE-constant) were compared with four different RBE models (to assess model variations). 10 patients were selected from an ongoing clinical trial on IMRT versus scanned protons for sarcoma.more » Comparisons were performed using dosimetric indices based on dose-volume histogram analyses and γ-index analyses. Results: For three of the RBE-models the mean dose, D95, D50 and D02 (dose values covering 95%, 50% and 2% of the target volume, respectively) were up to 5% lower than for RBE-constant. The dosimetric indices for one of the RBE-models were around 9% lower than for the RBE-constant model. The differences for V90 (the percentage of the target volume covered by 90% of the prescription dose) were up to 40% for three RBE-models, whereas for one the difference was around 95%. All ADC dosimetric indices were up to 5% larger than for RBE-constant. The γ-index passing rate for the target volume with a 3%/3mm criterion was above 97% for all models except for one, which was below 24%. Conclusion: Interpretation of clinical trials on sarcoma may depend on dose calculation uncertainties (as assessed by Monte Carlo). In addition, the biological dose distribution depends notably on which RBE model is utilized. The current practice of using a constant RBE of 1.1 may overestimate the target dose by as much as 5% for biological dose calculations. Performing an RBE uncertainty analysis is recommended for trial analysis. U19 projects - U19 CA 021239. PI: Delaney.« less
A new technique for Auger analysis of surface species subject to electron-induced desorption
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1973-01-01
A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.
Schwinger mechanism in electromagnetic field in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Bavarsad, Ehsan; Pyo Kim, Sang; Stahl, Clément; Xue, She-Sheng
2018-01-01
We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Chaotic jumps in the generalized first adiabatic invariant in current sheets
NASA Technical Reports Server (NTRS)
Brittnacher, M. J.; Whipple, E. C.
1991-01-01
The present study examines how the changes in the generalized first adiabatic invariant J derived from the separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. A method is proposed for determining distribution functions for an ensemble of particles following interaction with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant. Generalized drift velocities are obtained for a 1D tail configuration by using the generalized first invariant. The invariant remained constant except for the discrete changes caused by chaotic scattering as the particles cross the separatrix.
Survey of quantitative data on the solar energy and its spectra distribution
NASA Technical Reports Server (NTRS)
Thekaekara, M. P.
1976-01-01
This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Marczewski, Wojciech; Usowicz, Jerzy B.; Łukowski, Mateusz; Lipiec, Jerzy; Stankiewicz, Krystyna
2013-04-01
Radiometric observations with SMOS rely on the Radiation Transfer Equations (RTE) determining the Brightness Temperature (BT) in two linear polarization components (H, V) satisfying Fresnel principle of propagation in horizontally layered target media on the ground. RTE involve variables which bound the equations expressed in Electro-Magnetic (EM) terms of the intensity BT to the physical reality expressed by non-EM variables (Soil Moisture (SM), vegetation indexes, fractional coverage with many different properties, and the boundary conditions like optical thickness, layer definitions, roughness, etc.) bridging the EM domain to other physical aspects by means of the so called tau-omega methods. This method enables joining variety of different valuable models, including specific empirical estimation of physical properties in relation to the volumetric water content. The equations of RTE are in fact expressed by propagation, reflection and losses or attenuation existing on a considered propagation path. The electromagnetic propagation is expressed in the propagation constant. For target media on the ground the dielectric constant is a decisive part for effects of propagation. Therefore, despite of many various physical parameters involved, one must effectively and dominantly rely on the dielectric constant meant as a complex variable. The real part of the dielectric constant represents effect of apparent shortening the propagation path and the refraction, while the imaginary part is responsible for the attenuation or losses. This work engages statistical-physical modeling of soil properties considering the media as a mixture of solid grains, and gas or liquid filling of pores and contact bridges between compounds treated statistically. The method of this modeling provides an opportunity of characterizing the porosity by general statistical means, and is applicable to various physical properties (thermal, electrical conductivity and dielectric properties) which depend on composition of compounds. The method was developed beyond the SMOS method, but they meet just in RTE, at the dielectric constant. The dielectric constant is observed or measured (retrieved) by SMOS, regardless other properties like the soil porosity and without a direct relation to thermal properties of soils. Relations between thermal properties of soil to the water content are very consistent. Therefore, we took a concept of introducing effects of the soil porosity, and thermal properties of soils into the representation of the dielectric constant in complex measures, and thus gaining new abilities for capturing effects of the porosity by the method of SMOS observations. Currently we are able presenting few effects of relations between thermal properties and the soil moisture content, on examples from wetlands Biebrza and Polesie in Poland, and only search for correlations between SM from SMOS to the moisture content known from the ground. The correlations are poor for SMOS L2 data processed with the version of retrievals using the model of Dobson (501), but we expect more correlation for the version using the model of Mironov (551). If the supposition is confirmed, then we may gain encouragement to employing the statistical-physical modeling of the dielectric constant and thermal properties for the purposes of using this model in RTE and tau-omega method. Treating the soil porosity for a target of research directly is not enough strongly motivated like the use of effects on SM observable in SMOS.
Gilad, Ori; Ghosh, Anthony; Oh, Dongin; Holder, David S
2009-05-30
Electrical impedance tomography (EIT) is a recently developed medical imaging method which has the potential to produce images of fast neuronal depolarization in the brain. The principle is that current remains in the extracellular space at rest but passes into the intracellular space during depolarization through open ion channels. As current passes into the intracellular space across the capacitance of cell membranes at higher frequencies, applied current needs to be below 100 Hz. A method is presented for its measurement with subtraction of the contemporaneous evoked potentials which occur in the same frequency band. Neuronal activity is evoked by stimulation and resistance is recorded from the potentials resulting from injection of a constant current square wave at 1 Hz with amplitude less than 25% of the threshold for stimulating neuronal activity. Potentials due to the evoked activity and the injected square wave are removed by subtraction. The method was validated with compound action potentials in crab walking leg nerve. Resistance changes of -0.85+/-0.4% (mean+/-SD) occurred which decreased from -0.97+/-0.43% to -0.46+/-0.16% with spacing of impedance current application electrodes from 2 to 8 mm but did not vary significantly with applied currents of 1-10 microA. These tallied with biophysical modelling, and so were consistent with a genuine physiological origin. This method appears to provide a reproducible and artefact free means for recording resistance changes during neuronal activity which could lead to the long-term goal of imaging of fast neural activity in the brain.
Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data
Wickstrom, Lauren; Okur, Asim; Simmerling, Carlos
2009-01-01
Abstract Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement. PMID:19651043
Thermally-induced voltage alteration for integrated circuit analysis
Cole, Jr., Edward I.
2000-01-01
A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.
NASA Astrophysics Data System (ADS)
Mellett, T.; Parker, C.; Brown, M.; Coale, T.; Duckham, C.; Chappell, D.; Maldonado, M. T.; Bruland, K. W.; Buck, K. N.
2016-02-01
Two shipboard incubation experiments were carried out in July of 2014 to investigate potential sources and sinks of iron- and copper-binding organic ligands in the surface ocean. Seawater for the experiments was collected from the central California Current System (cCCS) and incubated under varying light conditions and in the presence and absence of natural phytoplankton communities. Incubation treatments were sampled over a period of up to 3 days for measurements of total dissolved copper and iron, and for the concentration and conditional stability constants of copper- and iron-binding organic ligands. Dissolved copper and iron were determined by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration on a Nobias PA1 resin. Organic ligand characteristics for iron and copper were determined using a method of competitive ligand exchange-absorptive cathodic stripping voltammetry (CLE-ACSV) with the added competing ligand salicylaldoxime. Trends in ligand concentrations and conditional stability constants across the different treatments and over the course of the incubation experiments will be presented.
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
Software compensation of eddy current fields in multislice high order dynamic shimming.
Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E
2011-06-01
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.
Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap
2017-06-21
A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.
Constant voltage electro-slag remelting control
Schlienger, Max E.
1996-01-01
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.
Determination of eddy current response with magnetic measurements.
Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B
2017-09-01
Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackler, H.D.; Chiang, Y.M.; French, R.H.
1996-05-10
Van der Waals dispersive forces produce attractive interactions between bodies, playing an important role in many material systems influencing colloidal and emulsion stability, wetting behavior, and intergranular forces in glass-ceramic systems. It is of technological importance to accurately quantify these interactions, conveniently represented by the Hamaker constant, A. To set the current level of accuracy for determining A, they were calculated from Lifshitz theory using full spectral data for muscovite mica, Al{sub 2}O{sub 3}, SiO{sub 2}, Si{sub 3}N{sub 4}, and rutile TiO{sub 2}, separated by vacuum or water. These were compared to Hamaker constants calculated from physical properties using themore » Tabor-Winterton approximation, a single oscillator model, a multiple oscillator model, and A`s calculated using force vs separation data from surface force apparatus and atomic force microscope studies. For materials with refractive indices between 1.4 and 1.8 separated by vacuum, all methods produce similar values, but for indices larger than 1.8 separated by vacuum, and any of these materials separated by water, results span a broader range. The present level of accuracy for the determination of Hamaker constants, here taken to be represented by the level of agreement between various methods, ranges from about 10% for the case of SiO{sub 2}/vacuum/SiO{sub 2} and TiO{sub 2}/water/TiO{sub 2} to a factor of approximately 7 for mica/water/mica.« less
Current Mode Neutron Noise Measurements in the Zero Power Reactor CROCUS
NASA Astrophysics Data System (ADS)
Pakari, O.; Lamirand, V.; Perret, G.; Braun, L.; Frajtag, P.; Pautz, A.
2018-01-01
The present article is an overview of developments and results regarding neutron noise measurements in current mode at the CROCUS zero power facility. Neutron noise measurements offer a non-invasive method to determine kinetic reactor parameters such as the prompt decay constant at criticality α = βeff / λ, the effective delayed neutron fraction βeff, and the mean generation time λ for code validation efforts. At higher detection rates, i.e. above 2×104 cps in the used configuration at 0.1 W, the previously employed pulse charge amplification electronics with BF3 detectors yielded erroneous results due to dead time effects. Future experimental needs call for higher sensitivity in detectors, higher detection rates or higher reactor powers, and thus a generally more versatile measurement system. We, therefore, explored detectors operated with current mode acquisition electronics to accommodate the need. We approached the matter in two ways: 1) By using the two compensated 10B-coated ionization chambers available in CROCUS as operational monitors. The compensated current signal of these chambers was extracted from coremonitoring output channels. 2) By developing a new current mode amplification station to be used with other available detectors in core. Characteristics and first noise measurements of the new current system are presented. We implemented post-processing of the current signals from 1)and 2) with the APSD/CPSD method to determine α. At two critical states (0.5 and 1.5 W), using the 10B ionization chambers and their CPSD estimate, the prompt decay constant was measured after 1.5 hours to be α=(156.9 ± 4.3) s-1 (1σ). This result is within 1σ of statistical uncertainties of previous experiments and MCNPv5-1.6 predictions using the ENDF/B-7.1 library. The newsystem connected to a CFUL01 fission chamber using the APSDestimate at 100 mW after 33 min yielded α = (160.8 ± 6.3) s-1, also within 1σ agreement. The improvements to previous neutron noise measurementsinclude shorter measurement durations that can achievecomparable statistical uncertainties and measurements at higherdetection rates.
De Shong, J.A. Jr.
1957-12-31
A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.
Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2000-06-23
The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at highmore » speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin
2011-11-15
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less
The need for virtual reality simulators in dental education: A review.
Roy, Elby; Bakr, Mahmoud M; George, Roy
2017-04-01
Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.
NASA Astrophysics Data System (ADS)
Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.
2014-09-01
Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.
EU mitigation potential of harvested wood products.
Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo
2015-12-01
The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).
Smith, Rebecca L.; Schukken, Ynte H.; Lu, Zhao; Mitchell, Rebecca M.; Grohn, Yrjo T.
2013-01-01
Objective To develop a mathematical model to simulate infection dynamics of Mycobacterium bovis in cattle herds in the United States and predict efficacy of the current national control strategy for tuberculosis in cattle. Design Stochastic simulation model. Sample Theoretical cattle herds in the United States. Procedures A model of within-herd M bovis transmission dynamics following introduction of 1 latently infected cow was developed. Frequency- and density-dependent transmission modes and 3 tuberculin-test based culling strategies (no test-based culling, constant (annual) testing with test-based culling, and the current strategy of slaughterhouse detection-based testing and culling) were investigated. Results were evaluated for 3 herd sizes over a 10-year period and validated via simulation of known outbreaks of M bovis infection. Results On the basis of 1,000 simulations (1000 herds each) at replacement rates typical for dairy cattle (0.33/y), median time to detection of M bovis infection in medium-sized herds (276 adult cattle) via slaughterhouse surveillance was 27 months after introduction, and 58% of these herds would spontaneously clear the infection prior to that time. Sixty-two percent of medium-sized herds without intervention and 99% of those managed with constant test-based culling were predicted to clear infection < 10 years after introduction. The model predicted observed outbreaks best for frequency-dependent transmission, and probability of clearance was most sensitive to replacement rate. Conclusions and Clinical Relevance Although modeling indicated the current national control strategy was sufficient for elimination of M bovis infection from dairy herds after detection, slaughterhouse surveillance was not sufficient to detect M bovis infection in all herds and resulted in subjectively delayed detection, compared with the constant testing method. Further research is required to economically optimize this strategy. PMID:23865885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, Andrew; Gale, Tom; Woolcock, Patrick
The economic recovery of petroleum, like other fossil fuels, is limited. Although the current price of oil has dramatically dropped due to increased production and new production methods, it is not expected to remain low for an extended period of time as demand increases. While new methods of obtaining these fossil energy reserves are constantly being invented and introduced, the cost of production generally continues to increase. New sources of energy such as fracking and oil shale or oil sands recovery can produce enormous amounts of energy, but at a severe cost. The current estimate on energy return for energymore » invested for oil shale for instance is just barely over 1, meaning that for every barrel of energy produced by oil shale there was nearly a barrel of energy invested to recover it. Furthermore, these new technologies are often constantly under attack for environmental concerns (especially given the poor ratio of energy conversion), while conventional oil is regarded as dangerous due to lack of domestic supply and susceptibility to foreign intervention that compromises overall national security. Alternatives to a petroleum-based supply of fuel are a potential route to address these issues, although they must also be economically feasible. The fuels industry is forced to consider these issues in addition to federal mandates intended to gradually diversify our fuel sources.« less
Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H
2015-01-01
To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.
Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G
2018-02-20
A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.
Machicado, Jorge D; Amann, Stephen T; Anderson, Michelle A; Abberbock, Judah; Sherman, Stuart; Conwell, Darwin L; Cote, Gregory A; Singh, Vikesh K; Lewis, Michele D; Alkaade, Samer; Sandhu, Bimaljit S; Guda, Nalini M; Muniraj, Thiruvengadam; Tang, Gong; Baillie, John; Brand, Randall E; Gardner, Timothy B; Gelrud, Andres; Forsmark, Christopher E; Banks, Peter A; Slivka, Adam; Wilcox, C Mel; Whitcomb, David C; Yadav, Dhiraj
2017-04-01
Chronic pancreatitis (CP) has a profound independent effect on quality of life (QOL). Our aim was to identify factors that impact the QOL in CP patients. We used data on 1,024 CP patients enrolled in the three NAPS2 studies. Information on demographics, risk factors, co-morbidities, disease phenotype, and treatments was obtained from responses to structured questionnaires. Physical and mental component summary (PCS and MCS, respectively) scores generated using responses to the Short Form-12 (SF-12) survey were used to assess QOL at enrollment. Multivariable linear regression models determined independent predictors of QOL. Mean PCS and MCS scores were 36.7±11.7 and 42.4±12.2, respectively. Significant (P<0.05) negative impact on PCS scores in multivariable analyses was noted owing to constant mild-moderate pain with episodes of severe pain or constant severe pain (10 points), constant mild-moderate pain (5.2), pain-related disability/unemployment (5.1), current smoking (2.9 points), and medical co-morbidities. Significant (P<0.05) negative impact on MCS scores was related to constant pain irrespective of severity (6.8-6.9 points), current smoking (3.9 points), and pain-related disability/unemployment (2.4 points). In women, disability/unemployment resulted in an additional 3.7 point reduction in MCS score. Final multivariable models explained 27% and 18% of the variance in PCS and MCS scores, respectively. Etiology, disease duration, pancreatic morphology, diabetes, exocrine insufficiency, and prior endotherapy/pancreatic surgery had no significant independent effect on QOL. Constant pain, pain-related disability/unemployment, current smoking, and concurrent co-morbidities significantly affect the QOL in CP. Further research is needed to identify factors impacting QOL not explained by our analyses.
Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method
NASA Technical Reports Server (NTRS)
Marek, C. John
1996-01-01
A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.
Measuring kinetics of complex single ion channel data using mean-variance histograms.
Patlak, J B
1993-07-01
The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance histogram technique provided a more credible analysis of the open, closed, and subconductance times for the patch. I also show that the method produces accurate results on simulated data in a wide variety of conditions, whereas the half-amplitude method, when applied to complex simulated data shows the same errors as were apparent in the real data. The utility and the limitations of this new method are discussed.
Adapting Western research methods to indigenous ways of knowing.
Simonds, Vanessa W; Christopher, Suzanne
2013-12-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid.
Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control
NASA Astrophysics Data System (ADS)
Postnikov, P. V.; Krotov, G. I.; Efimova, Yu A.; Rodchenkov, G. M.
2016-02-01
The design of new erythropoiesis-stimulating agents for clinical use necessitates constant development of methods for detecting the abuse of these substances, which are prohibited under the World Anti-Doping Code and are included in the World Anti-Doping Agency (WADA) prohibited list. This review integrates and describes systematically the published data on the key methods currently used by WADA-accredited anti-doping laboratories around the world to detect the abuse of erythropoiesis-stimulating agents, including direct methods (various polyacrylamide gel electrophoresis techniques, enzyme-linked immunosorbent assay, membrane enzyme immunoassay and mass spectrometry) and indirect methods (athlete biological passport). Particular attention is given to promising approaches and investigations that can be used to control prohibited erythropoietins in the near future. The bibliography includes 122 references.
Constant voltage electro-slag remelting control
Schlienger, M.E.
1996-10-22
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.
NASA Technical Reports Server (NTRS)
Wang, W. C.; Stone, P. H.
1979-01-01
The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.
Screening Protocol for the Electrochemical Characterization of Potential Supercapacitor Materials
2009-11-01
Felix Wong; DRDC Atlantic TM 2009-279; R & D pour la défense Canada – Atlantique; Novembre 2009. Introduction ou contexte : Les forces armées ont... 13 Figure 10: The effect of active material... 13 : Typical Constant Current Charge-Discharge Curve for a 1.34 mg Electrode of PAni-2NSA/MWNT at a Constant Current of 0.2 mA
NASA Technical Reports Server (NTRS)
Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.
1994-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.
Smeers, Inge; Decorte, Ronny; Van de Voorde, Wim; Bekaert, Bram
2018-05-01
DNA methylation is a promising biomarker for forensic age prediction. A challenge that has emerged in recent studies is the fact that prediction errors become larger with increasing age due to interindividual differences in epigenetic ageing rates. This phenomenon of non-constant variance or heteroscedasticity violates an assumption of the often used method of ordinary least squares (OLS) regression. The aim of this study was to evaluate alternative statistical methods that do take heteroscedasticity into account in order to provide more accurate, age-dependent prediction intervals. A weighted least squares (WLS) regression is proposed as well as a quantile regression model. Their performances were compared against an OLS regression model based on the same dataset. Both models provided age-dependent prediction intervals which account for the increasing variance with age, but WLS regression performed better in terms of success rate in the current dataset. However, quantile regression might be a preferred method when dealing with a variance that is not only non-constant, but also not normally distributed. Ultimately the choice of which model to use should depend on the observed characteristics of the data. Copyright © 2018 Elsevier B.V. All rights reserved.
Using Passive Two-Port Networks to Study the Forced Vibrations of Piezoceramic Transducers
NASA Astrophysics Data System (ADS)
Karlash, V. L.
2017-09-01
A generalization and subsequent development of experimental techniques, including methods of studying the phase-frequency relations between the measured components of admittance and instantaneous power are considered. The conditions of electric loading where electric currents, voltages, or instantaneous powers of constant amplitude in the piezoresonators are specified are numerically modeled. It is particularly established that the advanced Mason circuit with additional switch allows acquiring much more data on the forced vibrations of piezoceramic transducers than the classical circuit. The measured (at an arbitrary frequency) voltage drop across the piezoelement, its pull-up resistor, and at the input of the measuring circuit allow determining, with high accuracy, the current, conductivity, impedance, instantaneous power, and phase shifts when the amplitudes of electric current and voltage are given.
2JHH-resolved HSQC: Exclusive determination of geminal proton-proton coupling constants
NASA Astrophysics Data System (ADS)
Marcó, Núria; Nolis, Pau; Gil, Roberto R.; Parella, Teodor
2017-09-01
The measurement of two-bond proton-proton coupling constants (2JHH) in prochiral CH2 groups from the F2 dimension of 2D spectra is not easy due to the usual presence of complex multiplet J patterns, line broadening effects and strong coupling artifacts. These drawbacks are particularly pronounced and frequent in AB spin systems, as those normally exhibited by the pair of diastereotopic CH2 protons. Here, a novel 2JHH-resolved HSQC experiment for the exclusive and accurate determination of the magnitude of 2JHH from the doublet displayed along the highly-resolved indirect F1 dimension is described. A pragmatic 2JHH NMR profile affords a fast overview of the full range of existing 2JHH values. In addition, a 2JHH/δ(13C)-scaled version proves to be an efficient solution when severe signal overlapping complicate a rigorous analysis. The performance of the method is compared with other current techniques and illustrated by the determination of challenging residual dipolar 2DHH coupling constants of small molecules dissolved in weakly orienting media.
NASA Astrophysics Data System (ADS)
Cannon, William R.; Baker, Scott E.
2017-10-01
Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.
Acoustic-articulatory mapping in vowels by locally weighted regression
McGowan, Richard S.; Berger, Michael A.
2009-01-01
A method for mapping between simultaneously measured articulatory and acoustic data is proposed. The method uses principal components analysis on the articulatory and acoustic variables, and mapping between the domains by locally weighted linear regression, or loess [Cleveland, W. S. (1979). J. Am. Stat. Assoc. 74, 829–836]. The latter method permits local variation in the slopes of the linear regression, assuming that the function being approximated is smooth. The methodology is applied to vowels of four speakers in the Wisconsin X-ray Microbeam Speech Production Database, with formant analysis. Results are examined in terms of (1) examples of forward (articulation-to-acoustics) mappings and inverse mappings, (2) distributions of local slopes and constants, (3) examples of correlations among slopes and constants, (4) root-mean-square error, and (5) sensitivity of formant frequencies to articulatory change. It is shown that the results are qualitatively correct and that loess performs better than global regression. The forward mappings show different root-mean-square error properties than the inverse mappings indicating that this method is better suited for the forward mappings than the inverse mappings, at least for the data chosen for the current study. Some preliminary results on sensitivity of the first two formant frequencies to the two most important articulatory principal components are presented. PMID:19813812
Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A.
Yadav, Jaydeep; Korzekwa, Ken; Nagar, Swati
2018-05-07
Time-dependent inactivation (TDI) of cytochrome P450s (CYPs) is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to overpredict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human-liver microsomes. The inhibitors evaluated included troleandomycin (TAO), erythromycin (ERY), verapamil (VER), and diltiazem (DTZ) along with the primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (NDD). The complexities incorporated into the models included multiple-binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The resulting inactivation parameters were incorporated into static in vitro-in vivo correlation (IVIVC) models to predict clinical DDIs. For 77 clinically observed DDIs, with a hepatic-CYP3A-synthesis-rate constant of 0.000 146 min -1 , the average fold difference between the observed and predicted DDIs was 3.17 for the standard replot method and 1.45 for the numerical method. Similar results were obtained using a synthesis-rate constant of 0.000 32 min -1 . These results suggest that numerical methods can successfully model complex in vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach.
NASA Astrophysics Data System (ADS)
Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui
2017-10-01
Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.
Determination of magneto-optical constant of Fe films with weak measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Xiaodong; Hu, Dejiao; Du, Jinglei
2014-09-29
In this letter, a detecting method for the magneto-optical constant is presented by using weak measurements. The photonic spin Hall effect (PSHE), which manifests itself as spin-dependent splitting, is introduced to characterize the magneto-optical constant, and a propagation model to describe the quantitative relation between the magneto-optical constant and the PSHE is established. According to the amplified shift of the PSHE detected by weak measurements, we determinate the magneto-optical constant of the Fe film sample. The Kerr rotation is measured via the standard polarimetry method to verify the rationality and feasibility of our method. These findings may provide possible applicationsmore » in magnetic physics research.« less
Running coupling constant from lattice studies of gluon and ghost propagators
NASA Astrophysics Data System (ADS)
Cucchieri, A.; Mendes, T.
2004-12-01
We present a numerical study of the running coupling constant in four-dimensional pure-SU(2) lattice gauge theory. The running coupling is evaluated by fitting data for the gluon and ghost propagators in minimal Landau gauge. Following Refs. [1, 2], the fitting formulae are obtained by a simultaneous integration of the β function and of a function coinciding with the anomalous dimension of the propagator in the momentum subtraction scheme. We consider these formulae at three and four loops. The fitting method works well, especially for the ghost case, for which statistical error and hyper-cubic effects are very small. Our present result for ΛMS is 200-40+60 MeV, where the error is purely systematic. We are currently extending this analysis to five loops in order to reduce this systematic error.
Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant
NASA Astrophysics Data System (ADS)
Guerrero, Carlo L.; Perlado, Jose M.
2016-03-01
In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.
Eddy Current Sensing of Torque in Rotating Shafts
NASA Astrophysics Data System (ADS)
Varonis, Orestes J.; Ida, Nathan
2013-12-01
The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.
Intensity dynamics in a waveguide array laser
NASA Astrophysics Data System (ADS)
Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.
2011-02-01
We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.
A New TCP Congestion Control Supporting RTT-Fairness
NASA Astrophysics Data System (ADS)
Ogura, Kazumine; Nemoto, Yohei; Su, Zhou; Katto, Jiro
This paper focuses on RTT-fairness of multiple TCP flows over the Internet, and proposes a new TCP congestion control named “HRF (Hybrid RTT-Fair)-TCP”. Today, it is a serious problem that the flows having smaller RTT utilize more bandwidth than others when multiple flows having different RTT values compete in the same network. This means that a user with longer RTT may not be able to obtain sufficient bandwidth by the current methods. This RTT fairness issue has been discussed in many TCP papers. An example is CR (Constant Rate) algorithm, which achieves RTT-fairness by multiplying the square of RTT value in its window increment phase against TCP-Reno. However, the method halves its windows size same as TCP-Reno when a packet loss is detected. This makes worse its efficiency in certain network cases. On the other hand, recent proposed TCP versions essentially require throughput efficiency and TCP-friendliness with TCP-Reno. Therefore, we try to keep these advantages in our TCP design in addition to RTT-fairness. In this paper, we make intuitive analytical models in which we separate resource utilization processes into two cases: utilization of bottleneck link capacity and that of buffer space at the bottleneck link router. These models take into account three characteristic algorithms (Reno, Constant Rate, Constant Increase) in window increment phase where a sender receives an acknowledgement successfully. Their validity is proved by both simulations and implementations. From these analyses, we propose HRF-TCP which switches two modes according to observed RTT values and achieves RTT fairness. Experiments are carried out to validate the proposed method. Finally, HRF-TCP outperforms conventional methods in RTT-fairness, efficiency and friendliness with TCP-Reno.
The Effects of Varied versus Constant High-, Medium-, and Low-Preference Stimuli on Performance
ERIC Educational Resources Information Center
Wine, Byron; Wilder, David A.
2009-01-01
The purpose of the current study was to compare the delivery of varied versus constant high-, medium-, and low-preference stimuli on performance of 2 adults on a computer-based task in an analogue employment setting. For both participants, constant delivery of the high-preference stimulus produced the greatest increases in performance over…
Quantum rings in magnetic fields and spin current generation.
Cini, Michele; Bellucci, Stefano
2014-04-09
We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.
Shi, Yushuai; Dong, Xiandui
2013-06-24
A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Forced vibration of a carbon nanotube with emission currents in an electromagnetic field
NASA Astrophysics Data System (ADS)
Bulyarskiy, S. V.; Dudin, A. A.; Orlov, A. P.; Pavlov, A. A.; Leont'ev, V. L.
2017-11-01
The occurrence of vibrations in a single carbon nanotubes placed in an electromagnetic field through which constant field-emission current passes has been analyzed. It has been shown experimentally that the emission current, along with the constant component, has a variable one that resonates at a certain frequency. Calculations show a relationship between the resonance frequency and the parameters of the whole system and nanotube itself. The conditions under which resonance may occur in the terahertz range of vibration frequencies have been analyzed.
ON THE RELATION OF DIRECT CURRENTS TO CONDENSER DISCHARGES AS STIMULI
Blair, H. A.
1935-01-01
Data on the electrical stimulation of sciatic-gastrocnemius preparations of the frog by both direct currents and condenser discharges at the same time are discussed in relation to the validity of the differential equation See PDF for Equation where p is the local excitatory process, V the stimulating current or voltage, and K and k are constants. It is concluded that the constant k is the same whether it is derived from the data of the one stimulus or the other when the same fibres are being stimulated. PMID:19872885
Response of lead-acid batteries to chopper-controlled discharge: Preliminary results
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses up to 25 percent compared to constant current discharges at the same average discharge current of 100 amperes. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-ampere pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.
Response of lead-acid batteries to chopper-controlled discharge
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses at up to 25 percent compared to constant current discharges at the same average discharge current of 100 A. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-A pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.
Rollins, Derrick K; Teh, Ailing
2010-12-17
Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.
Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property
Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan
2017-01-01
Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971
Platelet composite coatings for tin whisker mitigation
Rohwer, Lauren E. S.; Martin, James E.
2015-09-14
In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF 2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less
Platelet Composite Coatings for Tin Whisker Mitigation
NASA Astrophysics Data System (ADS)
Rohwer, Lauren E. S.; Martin, James E.
2015-11-01
Reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohwer, Lauren E. S.; Martin, James E.
In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF 2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less
Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials
NASA Astrophysics Data System (ADS)
Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.
1993-07-01
The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
A partial Hamiltonian approach for current value Hamiltonian systems
NASA Astrophysics Data System (ADS)
Naz, R.; Mahomed, F. M.; Chaudhry, Azam
2014-10-01
We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.
The most energy efficient way to charge the capacitor in a RC circuit
NASA Astrophysics Data System (ADS)
Wang, Dake
2017-11-01
The voltage waveform that minimize the energy loss in the resistance when charging the capacitor in a resistor-capacitor circuit is investigated using the calculus of variation. A linear voltage ramp gives the best efficiency, which means a constant current source should be used for charging. Comparison between constant current source and battery-powered system is made to illustrate the energy advantage of the former.
NASA Astrophysics Data System (ADS)
Xia, H.; Shen, X. M.; Yang, X. C.; Xiong, Y.; Jiang, G. L.
2018-01-01
Deterministic electroplating repair is a novel method for rapidly repairing the attrited parts. By the qualitative contrast and quantitative comparison, influences of the current density on performances of the chrome-plated layer were concluded in this study. The chrome-plated layers were fabricated under different current densities when the other parameters were kept constant. Hardnesses, thicknesses and components, surface morphologies and roughnesses, and wearability of the chrome-plated layers were detected by the Vickers hardness tester, scanning electron microscope / energy dispersive X-ray detector, digital microscope in the 3D imaging mode, and the ball-milling instrument with profilograph, respectively. In order to scientifically evaluate each factor, the experimental data was normalized. A comprehensive evaluation model was founded to quantitative analyse influence of the current density based on analytic hierarchy process method and the weighted evaluation method. The calculated comprehensive evaluation indexes corresponding to current density of 40A/dm2, 45A/dm2, 50A/dm2, 55A/dm2, 60A/dm2, and 65A/dm2 were 0.2246, 0.4850, 0.4799, 0.4922, 0.8672, and 0.1381, respectively. Experimental results indicate that final optimal option was 60A/dm2, and the priority orders were 60A/dm2, 55A/dm2, 45A/dm2, 50A/dm2, 40A/dm2, and 65A/dm2.
Belousov-Zhabotinsky oscillations during the chemical or electrochemical generation of Ag + ions
NASA Astrophysics Data System (ADS)
Treindl, Ludovit; Hemmingsen, Tor; Ruoff, Peter
1997-05-01
The oscillatory Belousov-Zhabotinsky reaction has been studied in the presence of Ag + ions using potentiometric and amperometric methods. Amperometrically the oscillations were followed by monitoring the anodic current at a potential of 1.0 V, which corresponds to the electrooxidation of Br - ions. In the Ag +-perturbed BZ reaction we still observe anodic current oscillations due to the electrooxidation of Br - ions more or less loosely bound in AgBr mono- or oligomers. Solid AgBr, however, has been found to be chemically and electrochemically inert in the BZ reaction. The timescale of producing electrochemically inactive AgBr precipitate is a second-order process with a rate constant of 256 M -1 s -1.
A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2001-01-01
A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.
Reactive Coevaporation Synthesis and Characterization of SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiromu; Matsubara, Shogo; Miyasaka, Yoichi
1991-09-01
SrTiO3 thin films were prepared by the reactive coevaporation method, where the Ti and Sr metals were evaporated in oxygen ambient with an E-gun and K-cell, respectively. A uniform depth profile in composition was achieved by altering the Ti evaporation rate according to the Sr evaporation rate change. A typical dielectric constant of 170 was measured on films of 75 nm in thickness. The in-situ annealing in oxygen plasma reduced the leakage current.
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
Parameter estimation of extended free-burning electric arc within 1 kA
NASA Astrophysics Data System (ADS)
Sun, Qiuqin; Liu, Hao; Wang, Feng; Chen, She; Zhai, Yujia
2018-05-01
A long electric arc, as a common phenomenon in the power system, not only damages the electrical equipment but also threatens the safety of the system. In this work, a series of tests on a long electric arc in free air have been conducted. The arc voltage and current data were obtained, and the arc trajectories were captured using a high speed camera. The arc images were digitally processed by means of edge detection, and the length is formulated and achieved. Based on the experimental data, the characteristics of the long arc are discussed. It shows that the arc voltage waveform is close to the square wave with high-frequency components, whereas the current is almost sinusoidal. As the arc length elongates, the arc voltage and the resistance increase sharply. The arc takes a spiral shape with the effect of magnetic forces. The arc length will shorten briefly with the occurrence of the short-circuit phenomenon. Based on the classical Mayr model, the parameters of the long electric arc, including voltage gradient and time constant, with different lengths and current amplitudes are estimated using the linear least-square method. To reduce the computational error, segmentation interpolation is also employed. The results show that the voltage gradient of the long arc is mainly determined by the current amplitude but almost independent of the arc length. However, the time constant is jointly governed by these two variables. The voltage gradient of the arc with the current amplitude at 200-800 A is in the range of 3.9 V/cm-20 V/cm, and the voltage gradient decreases with the increase in current.
Monte Carlo method for photon heating using temperature-dependent optical properties.
Slade, Adam Broadbent; Aguilar, Guillermo
2015-02-01
The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A new evaluation method of electron optical performance of high beam current probe forming systems.
Fujita, Shin; Shimoyama, Hiroshi
2005-10-01
A new numerical simulation method is presented for the electron optical property analysis of probe forming systems with point cathode guns such as cold field emitters and the Schottky emitters. It has long been recognized that the gun aberrations are important parameters to be considered since the intrinsically high brightness of the point cathode gun is reduced due to its spherical aberration. The simulation method can evaluate the 'threshold beam current I(th)' above which the apparent brightness starts to decrease from the intrinsic value. It is found that the threshold depends on the 'electron gun focal length' as well as on the spherical aberration of the gun. Formulas are presented to estimate the brightness reduction as a function of the beam current. The gun brightness reduction must be included when the probe property (the relation between the beam current l(b) and the probe size on the sample, d) of the entire electron optical column is evaluated. Formulas that explicitly consider the gun aberrations into account are presented. It is shown that the probe property curve consists of three segments in the order of increasing beam current: (i) the constant probe size region, (ii) the brightness limited region where the probe size increases as d approximately I(b)(3/8), and (iii) the angular current intensity limited region in which the beam size increases rapidly as d approximately I(b)(3/2). Some strategies are suggested to increase the threshold beam current and to extend the effective beam current range of the point cathode gun into micro ampere regime.
The Gaseous Explosive Reaction : The Effect of Inert Gases
NASA Technical Reports Server (NTRS)
Stevens, F W
1928-01-01
Attention is called in this report to previous investigations of gaseous explosive reactions carried out under constant volume conditions, where the effect of inert gases on the thermodynamic equilibrium was determined. The advantage of constant pressure methods over those of constant volume as applied to studies of the gaseous explosive reaction is pointed out and the possibility of realizing for this purpose a constant pressure bomb mentioned. The application of constant pressure methods to the study of gaseous explosive reactions, made possible by the use of a constant pressure bomb, led to the discovery of an important kinetic relation connecting the rate of propagation of the zone of explosive reaction within the active gases, with the initial concentrations of those gases: s = K(sub 1)(A)(sup n1)(B)(sup n2)(C)(sup n3)------. By a method analogous to that followed in determining the effect of inert gases on the equilibrium constant K, the present paper records an attempt to determine their kinetic effect upon the expression given above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.M.; Balcavage, W.X.; Ramachandran, B.R.
Currently, a great deal of interest exists in developing quantitative descriptions of the transport behavior for organic chemical compounds in the environment. Transport between water and air is of particular significance in this regard. A new method for measurement of thermodynamic Henry`s law constants (H) is reported. In this method, the optical absorbance of a dilute aqueous solution containing an organic compound is followed with time as the compound partitions into the air above the solution in a sealed vessel. The change in optical absorbance and the vapor to liquid volume ratio of the vessel are then used to calculatemore » the value for H. The concentration of the organic compound in the aqueous and vapor phases need not be known. This method allows the approach to equilibrium to be observed in real time so that attainment of equilibrium is readily apparent. This method works particularly well for water-soluble compounds having low vapor pressures. The applicability of this method is limited to compounds that exhibit significant optical absorbance in the ultraviolet and visible regions of the electromagnetic spectrum. Values for H and their temperature dependencies measured using this new method are reported for methacrolein, methyl vinyl ketone, benzaldehyde, and acetophenone. Values for H are also reported for benzene, toluene, and ethylbenzene at 298 K. All reported H data are compared with previously reported values.« less
The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes
NASA Astrophysics Data System (ADS)
Fan, Liang; Lu, Huimin
2015-06-01
Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.
A partially reflecting random walk on spheres algorithm for electrical impedance tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de
2015-12-15
In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less
Electrochemical and mechanical polishing and shaping method and system
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell E. (Inventor); Gubarev, Mikhail V. (Inventor); Jones, William David (Inventor); Ramsey, Brian D. (Inventor); Benson, Carl M. (Inventor)
2011-01-01
A method and system are provided for the shaping and polishing of the surface of a material selected from the group consisting of electrically semi-conductive materials and conductive materials. An electrically non-conductive polishing lap incorporates a conductive electrode such that, when the polishing lap is placed on the material's surface, the electrode is placed in spaced-apart juxtaposition with respect to the material's surface. A liquid electrolyte is disposed between the material's surface and the electrode. The electrolyte has an electrochemical stability constant such that cathodic material deposition on the electrode is not supported when a current flows through the electrode, the electrolyte and the material. As the polishing lap and the material surface experience relative movement, current flows through the electrode based on (i) adherence to Faraday's Law, and (ii) a pre-processing profile of the surface and a desired post-processing profile of the surface.
Kalinowski, Alison; Krause, Kylene; Berdejo, Carla; Harrell, Kristina; Rosenblum, Katherine; Lumeng, Julie C.
2010-01-01
Objective To examine beliefs about the role of parenting in feeding and childhood obesity among mothers of lower socioeconomic status. Methods Individual semi-structured audio-taped interview with 91 mothers of preschool-aged children (49% of mothers obese, 21% of children obese) in the Midwestern United States. Participant comments were transcribed and common themes identified using the constant comparative method and NVivo software. Results Mothers often described their parents’ feeding style as authoritarian or neglectful, and their own current style as comparatively indulgent and better. Mothers described parents of overweight children as inept or neglectful, but never described their own parenting as such. Conclusions and Implications Encouraging mothers to reflect on how they were fed as children, how it may impact their current parenting, and how the relationship between mothering and child obesity is complex are important nutrition education opportunities. PMID:21724469
In vitro plant tissue culture: means for production of biological active compounds.
Espinosa-Leal, Claudia A; Puente-Garza, César A; García-Lara, Silverio
2018-05-07
Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
Compensated geothermal gradient: new map of old data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.W.
1986-05-01
Bottom-hole temperature measurement is one of the oldest forms of downhole information acquired by the oil industry. Old and new geothermal maps that are based on these measurements have invariably been drawn with an assumed constant or average ground surface temperature over the mapped areas. However, near ground-surface equilibrium temperature is a variable rather than a constant over any region; therefore, old and current geothermal gradient mapping methods give a false impression of the true thermal level of subsurface strata, and may lead to erroneous results of temperature-based calculations, such as the TTI. In this paper, a geothermal mapping methodmore » is presented in which extrapolated surface temperature is coupled with the corresponding geothermal gradient over the mapped area. The method was tested on areas in the Middle East and Africa. Results indicate that it is especially effective in delineating loci of vertical geothermal heat flux carried upwards by ascending subsurface fluids; such areas are preferential sites for hydrocarbon entrapment, especially in young sedimentary basins where migration is still in progress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, R.H.; Scheu, C.; Duscher, G.
1995-09-01
The interfacial electronic structure, presented as the interband transition strength J{sub cv}({omega}) of the interatomic bonds, can be determined by Kramers Kronig (KK) analysis of vacuum ultraviolet (VUV) reflectance or spatially resolved valence electron energy loss (SR-VEEL) spectra. For the wetted interfaces in Si{sub 3}N{sub 4}, equilibrium thin glass films are formed whose thickness is determined by a force balance between attractive and repulsive force terms KK analysis of J{sub cv}({omega}) to yield {var_epsilon}{sub 2}({xi}) for the phases present, permits the direct calculation of the configuration-dependent Hamaker constants for the attractive vdW forces from the interfacial electronic structure. Interband transitionmore » strengths and full spectral Hamaker constants for Si{sub 3}N{sub 4}samples containing a SiYAlON glass have been determined using SR-VEELS from grains and grain boundaries and compared with results from bulk VUV spectroscopy on separate samples of glass and nitride. The A{sub 121}Hamaker constant for Si{sub 3}N{sub 4} with glass of the bulk composition is 8 zJ (zJ = 10{sup {minus}21}J) from the more established optical method. The EELS method permits the determination of vdW forces based upon actual local compositions and structure, which may differ noticeably from bulk standards. Current results show that full spectral Hamaker constants determined from VUV and SR-VEEL measurements of uniform bulk samples agree, but care must be take in the single scattering and zero loss subtraction corrections, and more work is ongoing in this area. Still the results show that for the grain boundary films present in these polycrystalline Si{sub 3}N{sub 4} samples the glass composition is of lower index of refraction. This can arise from increased oxygen content in determined in situ from the SR-VEELS of a particular grain boundary film. 45 refs.« less
Cantilever spring constant calibration using laser Doppler vibrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohler, Benjamin
2007-06-15
Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offersmore » considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.« less
Huchra, J P
1992-04-17
The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.
Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí
2009-04-24
A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.
Characteristics of arc currents on a negatively biased solar cell array in a plasma
NASA Technical Reports Server (NTRS)
Snyder, D. B.
1984-01-01
The time dependence of the emitted currents during arcing on solar cell arrays is being studied. The arcs are characterized using three parameters: the voltage change of the array during the arc (i.e., the charge lost), the peak current during the arc, and the time constant describing the arc current. This paper reports the dependence of these characteristics on two array parameters, the interconnect bias voltage and the array capacitance to ground. It was found that the voltage change of the array during an arc is nearly equal to the bias voltage. The array capacitance, on the other hand, influences both the peak current and the decay time constant of the arc. Both of these characteristics increase with increasing capacitance.
Skegro, Darko; Stutz, Cian; Ollier, Romain; Svensson, Emelie; Wassmann, Paul; Bourquin, Florence; Monney, Thierry; Gn, Sunitha; Blein, Stanislas
2017-06-09
Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/β, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/β constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2011-08-15
Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.
Adapting Western Research Methods to Indigenous Ways of Knowing
Christopher, Suzanne
2013-01-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid. PMID:23678897
Optimal Electrodynamic Tether Phasing Maneuvers
NASA Technical Reports Server (NTRS)
Bitzer, Matthew S.; Hall, Christopher D.
2007-01-01
We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.
Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging
NASA Astrophysics Data System (ADS)
Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib
2017-11-01
This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.
Bi-stable dendrite in constant electric field: a model analysis.
Baginskas, A; Gutman, A; Svirskis, G
1993-03-01
Some neurons possess dendritic persistent inward current, which is activated during depolarization. Dendrites can be stably depolarized, i.e. they are bi-stable if the net current is inward. A proper method to show the existence of dendritic bi-stability is putting the neuron into the electric field to induce transmembrane potential changes along the dendrites. Here we present analytical and computer simulation of the bi-stable dendrite in the d.c. field. A prominent jump to a depolarization plateau can be seen in the soma upon initial hyperpolarization of its membrane. If a considerable portion of dendrites are parallel to the field it is impossible to switch off the depolarization plateau by changing the direction and the strength of the electric field. There is nothing similar in neurons with ohmic dendrites. The results of the simulation conform to the experimental observations in turtle motoneurons [Hounsgaard J. and Kiehn O. (1993) J. Physiol., Lond. (in press)]; comparison of the theoretical and the experimental results makes semi-quantitative estimation of some electrical parameters of dendrites possible. We propose modifications of the experiment which enable one to measure dendritic length constants and other parameters of stained neurons.
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Two-way communication for programming and measurement in a miniature implantable stimulator.
Thil, M A; Gérard, B; Jarvis, J C; Delbeke, J
2005-07-01
Implantable stimulators are needed for chronic electrical stimulation of nerves and muscles in experimental studies. The device described exploits the versatility of current microcontrollers for stimulation and communication in a miniature implant. Their standard outputs can provide the required selectable constant-current sources. In this device, pre-programmed stimulation paradigms were selected by transcutaneous light pulses. The potential of a programmable integrated circuit (PIC) was thus exploited. Implantable devices must be biocompatible. A novel encapsulation method that require no specialised equipment and that used two classical encapsulants, silicone and Teflon was developed. It was tested for implantation periods of up to four weeks. A novel way to estimate electrode impedance in awake animals is also presented. It was thus possible to follow the evolution of the nerve-electrode interface and, if necessary, to adjust the stimulation parameters. In practice, the electrode voltage at the end of a known constant-current pulse was measured by the PIC. The binary coded value was then indicated to the user as a series of muscle twitches that represented the binary value of the impedance measurement. This neurostimulator has been successfully tested in vitro and in vivo. Thresholds and impedance values were chronically monitored following implantation of a self-sizing spiral cuff electrode. Impedance variations in the first weeks could reflect morphological changes usually observed after the implantation of such electrodes.
Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao
2018-01-01
We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.
NASA Astrophysics Data System (ADS)
Seshavatharam, U. V. S.; Lakshminarayana, S.
If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential in this direction.
Khan, Mohammad Niyaz; Yusof, Nor Saadah Mohd; Razak, Norazizah Abdul
2013-01-01
The semi-empirical spectrophotometric (SESp) method, for the indirect determination of ion exchange constants (K(X)(Br)) of ion exchange processes occurring between counterions (X⁻ and Br⁻) at the cationic micellar surface, is described in this article. The method uses an anionic spectrophotometric probe molecule, N-(2-methoxyphenyl)phthalamate ion (1⁻), which measures the effects of varying concentrations of inert inorganic or organic salt (Na(v)X, v = 1, 2) on absorbance, (A(ob)) at 310 nm, of samples containing constant concentrations of 1⁻, NaOH and cationic micelles. The observed data fit satisfactorily to an empirical equation which gives the values of two empirical constants. These empirical constants lead to the determination of K(X)(Br) (= K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X and Br⁻). This method gives values of K(X)(Br) for both moderately hydrophobic and hydrophilic X⁻. The values of K(X)(Br), obtained by using this method, are comparable with the corresponding values of K(X)(Br), obtained by the use of semi-empirical kinetic (SEK) method, for different moderately hydrophobic X. The values of K(X)(Br) for X = Cl⁻ and 2,6-Cl₂C6H₃CO₂⁻, obtained by the use of SESp and SEK methods, are similar to those obtained by the use of other different conventional methods.
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
Eddy current gauge for monitoring displacement using printed circuit coil
Visioli, Jr., Armando J.
1977-01-01
A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.
Lott, B.; Escande, L.; Larsson, S.; ...
2012-07-19
Here, we present a method enabling the creation of constant-uncertainty/constant-significance light curves with the data of the Fermi-Large Area Telescope (LAT). The adaptive-binning method enables more information to be encapsulated within the light curve than with the fixed-binning method. Although primarily developed for blazar studies, it can be applied to any sources. Furthermore, this method allows the starting and ending times of each interval to be calculated in a simple and quick way during a first step. The reported mean flux and spectral index (assuming the spectrum is a power-law distribution) in the interval are calculated via the standard LATmore » analysis during a second step. In the absence of major caveats associated with this method Monte-Carlo simulations have been established. We present the performance of this method in determining duty cycles as well as power-density spectra relative to the traditional fixed-binning method.« less
Evolution in totally constrained models: Schrödinger vs. Heisenberg pictures
NASA Astrophysics Data System (ADS)
Olmedo, Javier
2016-06-01
We study the relation between two evolution pictures that are currently considered for totally constrained theories. Both descriptions are based on Rovelli’s evolving constants approach, where one identifies a (possibly local) degree of freedom of the system as an internal time. This method is well understood classically in several situations. The purpose of this paper is to further analyze this approach at the quantum level. Concretely, we will compare the (Schrödinger-like) picture where the physical states evolve in time with the (Heisenberg-like) picture in which one defines parametrized observables (or evolving constants of the motion). We will show that in the particular situations considered in this paper (the parametrized relativistic particle and a spatially flat homogeneous and isotropic spacetime coupled to a massless scalar field) both descriptions are equivalent. We will finally comment on possible issues and on the genericness of the equivalence between both pictures.
Study on constant-step stress accelerated life tests in white organic light-emitting diodes.
Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X
2014-11-01
In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.
Constraints on a possible variation of the fine structure constant from galaxy cluster data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holanda, R.F.L.; Landau, S.J.; Sánchez G, I.E.
2016-05-01
We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction ( f {sub gas}) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high- z quasar absorption systems, our constraints, considering a sample of 29 measurements of f {sub gas}, in the redshift interval 0.14 < z < 0.89, provide an independent estimate ofmore » α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun Sining; Department of Materials Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049; Wang Xiaoli
2008-08-04
Barium strontium titanate (BST) with the molar formula (Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}) has been prepared by two different processing methods: mixed-oxide (BST-MO) and reaction-sintering (BST-RS). X-ray powder diffraction study shows differences in grain size and crystal symmetry for both these ceramics. The former shows a tetragonal symmetry while the latter presents a cubic symmetry. The occurrence of polar micro-regions associated with the higher chemical non-homogeneous distribution of ion defects from the influence of the processing parameters is the main reason for the higher peak dielectric constant (K{sub m}), the higher remanent polarization (P{sub r}), the higher coercive field (E{sub c}),more » the higher peak current density (J{sub m}), and the lower temperature of peak dielectric constant (T{sub m}) in BST-MO ceramics.« less
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Lu, Y. L.; Liaw, P. K.; Choo, H.; Thompson, S. A.; Blust, J. W.; Browning, P. F.; Bhattacharya, A. K.; Aurrecoechea, J. M.; Klarstrom, D. L.
2008-03-01
The creep-fatigue crack-growth tests of HASTELLOY® X alloy were carried out at the temperatures of 649°C, 816°C, and 927°C in laboratory air. The experiments were conducted under a constant stress-intensity-factor-range (Δ K) control mode with a R-ratio of 0.05. In the constant Δ K tests, a Δ K of 27.5 MPa sqrt{m} and a triangular waveform with a frequency of 0.333 Hz were used. Various tensile hold times at the maximum load were imposed to study fatigue and creep-fatigue interactions. Crack lengths were measured by a direct current potential drop method. In this paper, effects of hold time and temperature on the crack-growth rates are discussed. Furthermore, the crack-growth rates of the HASTELLOY® X alloy are compared to those of the HAYNES® 188 and HAYNES® 230® superalloys.
Rail-to-rail differential input amplification stage with main and surrogate differential pairs
Britton, Jr., Charles Lanier; Smith, Stephen Fulton
2007-03-06
An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.
Numerical simulation of conservation laws
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; To, Wai-Ming
1992-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.
Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A
2010-02-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
Instanton rate constant calculations close to and above the crossover temperature.
McConnell, Sean; Kästner, Johannes
2017-11-15
Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2 + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Comparison of dark energy models after Planck 2015
NASA Astrophysics Data System (ADS)
Xu, Yue-Yao; Zhang, Xin
2016-11-01
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
NASA Astrophysics Data System (ADS)
Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.
2018-05-01
The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.
Measurement of discharge using tracers
Kilpatrick, Frederick A.; Cobb, Ernest D.
1984-01-01
The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where:Turbulence is excessive for current meter measurement but conducive to good mixing.Moving rocks and debris are damaging to any instruments placed in the flow.Cross-sectional areas or velocities are indeterminant or changing.There are some unsteady flows such as exist with storm-runoff events on small streams.The flow is physically inaccessible or unsafe.From a practical standpoint, such measurements are limited primarily to small streams due to excessively long channel mixing lengths required of larger streams. Very good accuracy can be obtained provided:Adequate mixing length and time are allowed.Careful field and laboratory techniques are employed.Dye losses are not significant.This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and Laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.
Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J
2012-02-01
Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.
Field induced transient current in one-dimensional nanostructure
NASA Astrophysics Data System (ADS)
Sako, Tokuei; Ishida, Hiroshi
2018-07-01
Field-induced transient current in one-dimensional nanostructures has been studied by a model of an electron confined in a 1D attractive Gaussian potential subjected both to electrodes at the terminals and to an ultrashort pulsed oscillatory electric field with the central frequency ω and the FWHM pulse width Γ. The time-propagation of the electron wave packet has been simulated by integrating the time-dependent Schrödinger equation directly relying on the second-order symplectic integrator method. The transient current has been calculated as the flux of the probability density of the escaping wave packet emitted from the downstream side of the confining potential. When a static bias-field E0 is suddenly applied, the resultant transient current shows an oscillatory decay behavior with time followed by a minimum structure before converging to a nearly constant value. The ω-dependence of the integrated transient current induced by the pulsed electric field has shown an asymmetric resonance line-shape for large Γ while it shows a fringe pattern on the spectral line profile for small Γ. These observations have been rationalized on the basis of the energy-level structure and lifetime of the quasibound states in the bias-field modified confining potential obtained by the complex-scaling Fourier grid Hamiltonian method.
Practical applications of current loop signal conditioning
NASA Astrophysics Data System (ADS)
Anderson, Karl F.
1994-10-01
This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature devices. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.
Current loop signal conditioning: Practical applications
NASA Technical Reports Server (NTRS)
Anderson, Karl F.
1995-01-01
This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature detectors. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.
Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives
NASA Technical Reports Server (NTRS)
Park, Michael A.; Green, Lawrence L.
2000-01-01
Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.
Mosaly, Prithima R; Mazur, Lukasz M; Marks, Lawrence B
2017-10-01
The methods employed to quantify the baseline pupil size and task-evoked pupillary response (TEPR) may affect the overall study results. To test this hypothesis, the objective of this study was to assess variability in baseline pupil size and TEPR during two basic working memory tasks: constant load of 3-letters memorisation-recall (10 trials), and incremental load memorisation-recall (two trials of each load level), using two commonly used methods (1) change from trail/load specific baseline, (2) change from constant baseline. Results indicated that there was a significant shift in baseline between the trails for constant load, and between the load levels for incremental load. The TEPR was independent of shifts in baseline using method 1 only for constant load, and method 2 only for higher levels of incremental load condition. These important findings suggest that the assessment of both the baseline and methods to quantify TEPR are critical in ergonomics application, especially in studies with small number of trials per subject per condition. Practitioner Summary: Quantification of TEPR can be affected by shifts in baseline pupil size that are most likely affected by non-cognitive factors when other external factors are kept constant. Therefore, quantification methods employed to compute both baseline and TEPR are critical in understanding the information processing of humans in practical ergonomics settings.
Scene-based nonuniformity correction using local constant statistics.
Zhang, Chao; Zhao, Wenyi
2008-06-01
In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.
Life prediction modeling based on cyclic damage accumulation
NASA Technical Reports Server (NTRS)
Nelson, Richard S.
1988-01-01
A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.
Bettens, Ryan P A
2003-01-15
Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.
Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.
1998-01-01
A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.
Particle tracing modeling of ion fluxes at geosynchronous orbit during substorms
NASA Astrophysics Data System (ADS)
Brito, T. V.; Jordanova, V.; Woodroffe, J. R.; Henderson, M. G.; Morley, S.; Birn, J.
2016-12-01
The SHIELDS project aims to couple a host of different models for different regions of the magnetosphere using different numerical methods such as MHD, PIC and particle tracing, with the ultimate goal of having a more realistic model of the whole magnetospheric environment capturing, as much as possible, the different physics of the various plasma populations. In that context, we present a modeling framework that can be coupled with a global MHD model to calculate particle fluxes in the inner magnetosphere, which can in turn be used to constantly update the input for a ring current model. In that regard, one advantage of that approach over using spacecraft data is that it produces a much better spatial and temporal coverage of the nightside geosynchronous region and thus a possibly more complete input for the ring current model, which will likely produce more accurate global results for the ring current population. In this presentation, we will describe the particle tracing method in more detail, describe the method used to couple it to the BATS-R-US 3D global MHD code, and the method used to update the flux results to the RAM-SCB ring current model. We will also present the simulation results for the July 18, 2013 period, which showed significant substorm activity. We will compare simulated ion fluxes on the nightside magnetosphere with spacecraft observations to gauge how well our simulations are capturing substorm dynamics.
Kuo, Dave Ta Fu; Chen, Ciara Chun
2016-12-01
Growing concern for the biological fate of organic contaminants and their metabolites and the urge to connect in vitro and in vivo toxicokinetics have prompted researchers to characterize the biotransformation behavior of organic contaminants in biota. The whole body biotransformation rate constant (k M ) is currently determined by the difference approach, which has significant methodological limitations. A new approach for determining k M from the kinetic observations of the parent contaminant and its intermediate metabolites is proposed. In this method, k M can be determined by fitting kinetic data of the parent contaminant and the metabolites to analytical equations that depict the bioaccumulation kinetics. The application of the proposed method is illustrated using worm bioaccumulation-biotransformation data collected from the literature. Furthermore, a metabolite parent concentration factor (MPCF) is also proposed to characterize the persistence of the metabolite in biota. Because both the proposed k M method and MPCF build on the existing theoretical framework for bioaccumulation, they can be readily incorporated into standard experimental bioaccumulation protocols or risk assessment procedures or frameworks. Possible limitations, implications, and future directions are elaborated. Environ Toxicol Chem 2016;35:2903-2909. © 2016 SETAC. © 2016 SETAC.
Predicting tidal currents in San Francisco Bay using a spectral model
Burau, Jon R.; Cheng, Ralph T.
1988-01-01
This paper describes the formulation of a spectral (or frequency based) model which solves the linearized shallow water equations. To account for highly variable basin bathymetry, spectral solutions are obtained using the finite element method which allows the strategic placement of the computation points in the specific areas of interest or in areas where the gradients of the dependent variables are expected to be large. Model results are compared with data using simple statistics to judge overall model performance in the San Francisco Bay estuary. Once the model is calibrated and verified, prediction of the tides and tidal currents in San Francisco Bay is accomplished by applying astronomical tides (harmonic constants deduced from field data) at the prediction time along the model boundaries.
NASA Astrophysics Data System (ADS)
Yaney, Perry P.; Ouchen, Fahima; Grote, James G.
2009-08-01
DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maulina, Hervin; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Subama, Emmistasega
2016-04-19
The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary partmore » of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.« less
New two-metric theory of gravity with prior geometry
NASA Technical Reports Server (NTRS)
Lightman, A. P.; Lee, D. L.
1973-01-01
A Lagrangian-based metric theory of gravity is developed with three adjustable constants and two tensor fields, one of which is a nondynamic 'flat space metric' eta. With a suitable cosmological model and a particular choice of the constants, the 'post-Newtonian limit' of the theory agrees, in the current epoch, with that of general relativity theory (GRT); consequently the theory is consistent with current gravitation experiments. Because of the role of eta, the gravitational 'constant' G is time-dependent and gravitational waves travel null geodesics of eta rather than the physical metric g. Gravitational waves possess six degrees of freedom. The general exact static spherically-symmetric solution is a four-parameter family. Future experimental tests of the theory are discussed.
Electroosmotically enhanced drying of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, S.; Law, S.E.
A laboratory system for experimentally characterizing electroosmotic dewatering of biomass has been developed. The system was used to investigate the dewatering at both constant voltage and constant current of two biomass materials, organic humus with peat and composted wastewater sludge (WWS). The moisture content of humus decreased to 22.5% from an initial value of 44.3% wet basis (wb) after 2 h 10 min of electroosmosis at 50 V across a 2.9-cm-thick bed, whereas that of sludge decreased to 54.5% from an initial value of 68.4% after 2 h 20 min at 40 V across the bed. The electrical energy requiredmore » to remove 1 kg of water by constant-voltage electroosmosis of humus varied from 23% to 61%, in the voltage range of 10--50 V, of the thermal energy required to change the same quantity of free water from liquid to vapor state. For WWS, the energy remained constant at a higher value of 88% over the 20--40-V range studied. The flowrate of liquid water out of the bed at constant voltage linearly increased with the applied electric field, and the electrical energy expended in the constant-current dewatering mode was seen to be a quadratic function of time as predicted by classical electrokinetic theory.« less
Samah, N L M A; Lee, Khuan Y; Sulaiman, S A; Jarmin, R
2017-07-01
Intolerance of histamine could lead to scombroid poisoning with fatal consequences. Current detection methods for histamine are wet laboratory techniques which employ expensive equipment that depends on skills of seasoned technicians and produces delayed test analysis result. Previous works from our group has established that ISFETs can be adapted for detecting histamine with the use of a novel membrane. However, work to integrate ISFETs with a readout interfacing circuit (ROIC) circuit to display the histamine concentration has not been reported so far. This paper concerns the development of a ROIC specifically to integrate with a Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET to display the histamine concentration. It embodies the design of constant voltage constant current (CVCC) circuit, amplification circuit and micro-controller based display circuit. A DC millivolt source is used to substitute the membrane modified ISFET as preliminary work. Input is histamine concentration corresponding to the safety level designated by the Food and Drugs Administration (FDA). Results show the CVCC circuit makes the output follows the input and keeps VDS constant. The amplification circuit amplifies the output from the CVCC circuit to the range 2.406-4.888V to integrate with the microcontroller, which is programmed to classify and display the histamine safety level and its corresponding voltage on a LCD panel. The ROIC could be used to produce direct output voltages corresponding to histamine concentrations, for in-situ applications.
New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes.
Vanamo, Ulriika; Hupa, Elisa; Yrjänä, Ville; Bobacka, Johan
2016-04-19
A novel approach to signal transduction concerning solid-contact ion-selective electrodes (SC-ISE) with a conducting polymer (CP) as the solid contact is investigated. The method presented here is based on constant potential coulometry, where the potential of the SC-ISE vs the reference electrode is kept constant using a potentiostat. The change in the potential at the interface between the ion-selective membrane (ISM) and the sample solution, due to the change in the activity of the primary ion, is compensated with a corresponding but opposite change in the potential of the CP solid contact. This enforced change in the potential of the solid contact results in a transient reducing/oxidizing current flow through the SC-ISE. By measuring and integrating the current needed to transfer the CP to a new state of equilibrium, the total cumulated charge that is linearly proportional to the change of the logarithm of the primary ion activity is obtained. In this work, different thicknesses of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) were used as solid contact. Also, coated wire electrodes (CWEs) were included in the study to show the general validity of the new approach. The ISM employed was selective for K(+) ions, and the selectivity of the membrane under implementation of the presented transduction mechanism was confirmed by measurements performed with a constant background concentration of Na(+) ions. A unique feature of this signal readout principle is that it allows amplification of the analytical signal by increasing the capacitance (film thickness) of the solid contact of the SC-ISE.
In-situ response time testing of thermocouples
NASA Astrophysics Data System (ADS)
Hashemian, H. M.; Petersen, K. M.; Hashemian, M.; Beverly, D. D.; Miller, L. F.
The Loop Current Step Response (LCSR) method has been developed for in situ response time testing of thermocouples and resistance thermometers. A means for measuring the sensor response for actual operating conditions and installation details is provided. This technology is ready to be assembled into an instrument for use in aerospace, nuclear, chemical and other industries where transient temperature measurements are important. The method provides time constant results within better than about 20 percent of value obtained from plunge tests. These results are based on tests performed in water at low flow rates (1M/sec) and in air flow rates ranging from a few meters per second to over a hundred kilometers per hour.
Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw
2015-01-01
Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Khabarova, K. Yu.; Kudeyarov, K. S.; Kolachevsky, N. N.
2017-06-01
Research and development in the field of optical clocks based on ultracold atoms and ions have enabled the relative uncertainty in frequency to be reduced down to a few parts in 1018. The use of novel, precise frequency comparison methods opens up new possibilities for basic research (sensitive tests of general relativity, a search for a drift of fundamental constants and a search for ‘dark matter’) as well as for state-of-the-art navigation and gravimetry. We discuss the key methods that are used in creating precision clocks (including transportable clocks) based on ultracold atoms and ions and the feasibility of using them in resolving current relativistic gravimetry issues.
Novel laboratory methods for determining the fine scale electrical resistivity structure of core
NASA Astrophysics Data System (ADS)
Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.
2014-12-01
High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be reduced to between 0.5 and 0.75 mm. Improvements to this resolution may be achieved by further reducing the electrode footprint to 0.1 mm × 0.1 mm using a novel high-impedance, non-contact potential probe. Initial results with this non-contact electric potential sensor indicate the possibility for generating images with grain-scale resolution.
Measuring kinetics of complex single ion channel data using mean-variance histograms.
Patlak, J B
1993-01-01
The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance histogram technique provided a more credible analysis of the open, closed, and subconductance times for the patch. I also show that the method produces accurate results on simulated data in a wide variety of conditions, whereas the half-amplitude method, when applied to complex simulated data shows the same errors as were apparent in the real data. The utility and the limitations of this new method are discussed. Images FIGURE 2 FIGURE 4 FIGURE 8 FIGURE 9 PMID:7690261
NASA Astrophysics Data System (ADS)
Williams, Tess Lawanna
Despite 25 years of intense research activity, high-temperature superconductors remain poorly understood, with the underlying pairing mechanism still unidentified. Efforts are complicated by the remarkably complex phase diagram, rich in energy-dependent charge and spin orders. In this thesis I describe the use of a Scanning Tunneling Microscope (STM) to study energy-dependent charge orders in Bi2-- yPbySr2CuO6+delta , a cuprate high-temperature superconductor. STM, a surface-sensitive probe used to map electronic structure with sub-meV energy resolution and sub-A spatial resolution, has contributed greatly to our current understanding of the cuprate high-temperature superconductors. However, STM data is acquired with a constant-current normalization condition. The measured differential conductance, g(x, y, V), is often taken to be proportional to the density of states at energy eV (where V is the voltage applied between tip and sample). In fact, due to the normalization condition, the measured g(x, y, V) is actually the quotient of the density of states at energy eV and the integrated density of states from the Fermi energy to eV. This unavoidable quotient may fold electronic structure from its true energy range into other energies. I discuss a new method to correct STM differential conductance spectra to remove the constant-current normalization condition. Using local work function measurements and the constant-current topograph, I create a map which does not suffer from the setpoint effect and contains a mixture of topographic information and properly normalized spectroscopic information. I apply this method to the extraction of the incommensurate charge modulation at q⃗˜34 2pa0 . I also extend the study of electronic nematic order, an atomic-lattice-periodic C4 → C2 symmetry breaking, from highly underdoped Bi2 Sr2CaCu2O 8+delta [28] to overdoped Bi2--yPb ySr2CuO6+/-delta. I find that the electronic nematic order parameter is robust to change of scan angle. I define and contrast three different electronic nematic orders with different phases with respect to the crystal. I discuss the effect of the choice of normalization and possible alternate explanations for the source of the calculated nematic order. Finally, I discuss a drift-correction technique, which removes picometer scale drift that is introduced into a spectral map by experimental imperfections, and characterize the optimal algorithm and potential artifacts that drift-correction may introduce.
Associating ground magnetometer observations with current or voltage generators
NASA Astrophysics Data System (ADS)
Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.
2017-07-01
A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.
We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...
We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...
1982-10-01
engine driven, precision, 30KW-400Iz gen set. Similar calculations were made for the current, naturally aspirally , six cylinder diesel driving the same...turbocharged engine re- placing the current six cylinder, naturally aspirated , engine. Data from the engine model calculations was used to design a...VATN control rod so as to hold nearly a constant manifold pressure. Therefore the engine operates essentially like a naturally aspirated engine i.e
Hydrodynamics of the Semi-Immersed Cylinder by Forced Oscillation Model Testing
NASA Astrophysics Data System (ADS)
Song, Chun-hui; Fu, Shi-xiao; Tang, Xiao-ying; Hu, Ke; Ma, Lei-xin; Ren, Tong-xin
2018-03-01
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters ( Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients. The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja
2007-06-15
We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less
The calcium current of Helix neuron
1978-01-01
Calcium current, Ica, was studied in isolated nerve cell bodies of Helix aspersa after suppression of Na+ and K+ currents. The suction pipette method described in the preceding paper was used. Ica rises to a peak value and then subsides exponentially and has a null potential of 150 mV or more and a relationship with [Ca2+]o that is hyperbolic over a small range of [Ca2+]o's. When [Ca2+]i is increased, Ica is reduced disproportionately, but the effect is not hyperbolic. Ica is blocked by extracellular Ni2+, La3+, Cd2+, and Co2+ and is greater when Ba2+ and Sr2+ carry the current. Saturation and blockage are described by a Langmuir adsorption relationship similar to that found in Balanus. Thus, the calcium conductance probably contains a site which binds the ions referred to. The site also appears to be voltage-dependent. Activation and inactivation of Ica are described by first order kinetics, and there is evidence that the processes are coupled. For example, inactivation is delayed slightly in its onset and tau inactivation depends upon the method of study. However, the currents are described equally well by either a noncoupled Hodgkin-Huxley mh scheme or a coupled reaction. Facilitation of Ica by prepulses was not observed. For times up to 50 ms, currents even at small depolarizations were accounted for by suitable adjustment of the activation and inactivation rate constants. PMID:660160
Students conception and perception of simple electrical circuit
NASA Astrophysics Data System (ADS)
Setyani, ND; Suparmi; Sarwanto; Handhika, J.
2017-11-01
This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.
Free energy perturbation method for measuring elastic constants of liquid crystals
NASA Astrophysics Data System (ADS)
Joshi, Abhijeet
There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.
NASA Astrophysics Data System (ADS)
Mäckel, Helmut; MacKenzie, Roderick C. I.
2018-03-01
Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.
Elevated temperature biaxial fatigue
NASA Technical Reports Server (NTRS)
Jordan, E. H.
1983-01-01
Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.
NASA Astrophysics Data System (ADS)
Miyake, Susumu; Kasashima, Takashi; Yamazaki, Masato; Okimura, Yasuyuki; Nagata, Hajime; Hosaka, Hiroshi; Morita, Takeshi
2018-07-01
The high power properties of piezoelectric transducers were evaluated considering a complex nonlinear elastic constant. The piezoelectric LCR equivalent circuit with nonlinear circuit parameters was utilized to measure them. The deformed admittance curve of piezoelectric transducers was measured under a high stress and the complex nonlinear elastic constant was calculated by curve fitting. Transducers with various piezoelectric materials, Pb(Zr,Ti)O3, (K,Na)NbO3, and Ba(Zr,Ti)O3–(Ba,Ca)TiO3, were investigated by the proposed method. The measured complex nonlinear elastic constant strongly depends on the linear elastic and piezoelectric constants. This relationship indicates that piezoelectric high power properties can be controlled by modifying the linear elastic and piezoelectric constants.
Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb
NASA Technical Reports Server (NTRS)
Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve
2011-01-01
This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
Perturbation-iteration theory for analyzing microwave striplines
NASA Technical Reports Server (NTRS)
Kretch, B. E.
1985-01-01
A perturbation-iteration technique is presented for determining the propagation constant and characteristic impedance of an unshielded microstrip transmission line. The method converges to the correct solution with a few iterations at each frequency and is equivalent to a full wave analysis. The perturbation-iteration method gives a direct solution for the propagation constant without having to find the roots of a transcendental dispersion equation. The theory is presented in detail along with numerical results for the effective dielectric constant and characteristic impedance for a wide range of substrate dielectric constants, stripline dimensions, and frequencies.
Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.
Razdan, Neil K; Koshy, David M; Prausnitz, John M
2017-11-07
A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.
Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins
Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.
2003-01-01
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899
NASA Astrophysics Data System (ADS)
Tang, Liguo; Zhang, Yang; Cao, Wenwu
2016-10-01
Although the self-consistency of the full matrix material constants of a piezoelectric sample obtained by the resonant ultrasonic spectroscopy technique can be guaranteed because all constants come from the same sample, it is a great challenge to determine the constants of a piezoelectric sample with strong anisotropy because it might not be possible to identify enough resonance modes from the resonance spectrum. To overcome this difficulty, we developed a strategy to use two samples of similar geometries to increase the number of easy identifiable modes. Unlike the IEEE resonance methods, sample-to-sample variation here is negligible because the two samples have almost the same dimensions, cut from the same specimen and poled under the same conditions. Using this method, we have measured the full matrix constants of a [011]c poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal, which has 17 independent constants. The self-consistency of the obtained results is checked by comparing the calculated elastic stiffness constants c33 D , c44 D , and c55 D with those directly measured ones using the ultrasonic pulse-echo method.
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
2002-07-01
A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
Temperature and circulation in the stratospheres of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, Barney J.; Gierasch, Peter J.; Leroy, Stephen S.
1989-01-01
A zonally symmetric, linear radiative-dynamical model is compared with observations of the upper tropospheres and stratospheres of the outer planets. Seasonal variation is included in the model. Friction is parameterized by linear drag (Rayleigh friction). Gas opacities are accounted for but aerosols are omitted. Horizontal temperature gradients are small on all the planets. Seasonal effects are strongest on Saturn and Neptune but are weak even in these cases, because the latitudinal gradient of radiative heating is weak. Seasonal effects on Uranus are extremely weak because the radiative time constant is longer that the orbital period. One free parameter in the model is the frictional time constant. Comparison with observed temperature perturbations over zonal currents in the troposphere shows that the frictional time constant is on the same order as the radiative time constant for all these objects. Vertical motions predicted by the model are extremely weak. They are much smaller than one scale height per orbital period, except in the immediate neighborhood of tropospheric and zonal currents.
NASA Astrophysics Data System (ADS)
Neissi, R.; Shamanian, M.; Hajihashemi, M.
2016-05-01
In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.
Measurement of discharge using tracers
Kilpatrick, F.A.; Cobb, Ernest D.
1985-01-01
The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where 1. Turbulence is excessive for current-meter measurement but conducive to good mixing. 2. Moving rocks and debris may damage instruments placed in the flow. 3. Cross-sectional areas or velocities are indeterminate or changing. 4. The flow is unsteady, such as the flow that exists with storm-runoff events on small streams and urban storm-sewer systems. 5. The flow is physically inaccessible or unsafe. From a practical standpoint, such methods are limited primarily to small streams, because of the excessively long channel-mixing lengths required for larger streams. Very good accuracy can be obtained provided that 1. Adequate mixing length and time are allowed. 2. Careful field and laboratory techniques are used. 3. Dye losses are not significant. This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.
Wang, Jun; Apte, Pankaj A; Morris, James R; Zeng, Xiao Cheng
2013-09-21
Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ*=1, √2, √3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ100 > γ110 > γ111.
Path Following in the Exact Penalty Method of Convex Programming.
Zhou, Hua; Lange, Kenneth
2015-07-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.
Path Following in the Exact Penalty Method of Convex Programming
Zhou, Hua; Lange, Kenneth
2015-01-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044
Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...
2015-06-17
In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less
2D instabilities of surface gravity waves on a linear shear current
NASA Astrophysics Data System (ADS)
Francius, Marc; Kharif, Christian
2016-04-01
Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437
The effects of varied versus constant high-, medium-, and low-preference stimuli on performance.
Wine, Byron; Wilder, David A
2009-01-01
The purpose of the current study was to compare the delivery of varied versus constant high-, medium-, and low-preference stimuli on performance of 2 adults on a computer-based task in an analogue employment setting. For both participants, constant delivery of the high-preference stimulus produced the greatest increases in performance over baseline; the varied presentation produced performance comparable to constant delivery of medium-preference stimuli. Results are discussed in terms of their implications for the selection and delivery of stimuli as part of employee performance-improvement programs in the field of organizational behavior management.
High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics
NASA Astrophysics Data System (ADS)
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi
2009-09-01
The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.
The effects of variable biome distribution on global climate.
Noever, D A; Brittain, A; Matsos, H C; Baskaran, S; Obenhuber, D
1996-01-01
In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. Previous biome maps either remain unchanging or shift without taking into account climatic feedbacks such as radiation and temperature. We develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed temperature trend and order of magnitude change. The model is then used to generate an optimized future biome distribution that minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search, an artificial intelligence method, the genetic algorithm, was employed. The method is to adjust biome areas subject to a constant global temperature and total surface area constraint. For regulating global temperature, oceans are found to dominate continental biomes. Algal beds are significant radiative levers as are other carbon intensive biomes including estuaries and tropical deciduous forests. To hold global temperature constant over the next 70 years this simulation requires that deserts decrease and forested areas increase. The effect of biome change on global temperature is revealed as a significant forecasting factor.
PSO Based PI Controller Design for a Solar Charger System
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
PSO based PI controller design for a solar charger system.
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).
Ion energy distribution and gas heating in the cathode fall of a direct-current microdischarge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Tsuyohito; Cappelli, Mark A.
2006-04-15
This paper reports on measurements of the ion energy distribution (IED) at the cathode of an argon dc microdischarge using energy-resolved molecular beam mass spectrometry. The measurements are conducted at a fixed pressure-electrode separation product (pd) of 1 cm Torr with a maximum discharge pressure of 20 Torr. The measured IED is compared to the theory of Davis and Vanderslice [W. D. Davis and T. A. Vanderslice, Phys. Rev. 131, 219 (1963)]. A higher pressure in a case of almost constant normalized current densities by pressure (Jp{sup -2}=0.080{+-}0.006 mAecm{sup -2} Torr{sup -2}) yields a lower ratio of the ion meanmore » free path to the sheath thickness. The results in almost constant Jp{sup -2} case then indicate that a scaling law of Jp{sup -2} is no longer applicable for IED of microdischarge. Expected background gaseous temperatures from IEDs with the collisional Child law have reasonable increasing with increased current density (J) in both cases of almost constant Jp{sup -2} and a constant pressure of 10 Torr. Supported by temperature measurement by laser absorption spectroscopy, it is demonstrated that the expanded theory might be applicable also to microdischarges (Ar{approx}20 Torr) with temperature adjusting.« less
1995-01-01
LamB (maltoporin) of Escherichia coli outer membrane was reconstituted into artificial lipid bilayer membranes. The channel contains a binding site for sugars and is blocked for ions when the site is occupied by a sugar. The on and off reactions of sugar binding cause an increase of the noise of the current through the channel. The sugar-induced current noise of maltoporin was used for the evaluation of the sugar-binding kinetics for different sugars of the maltooligosaccharide series and for sucrose. The on rate constant for sugar binding was between 10(6) and 10(7) M-1.s-1 for the maltooligosaccharides and corresponds to the movement of the sugars from the aqueous phase to the central binding site. The off rate (corresponding to the release of the sugars from the channel) decreased with increasing number of glucose residues in the maltooligosaccharides from approximately 2,000 s-1 for maltotriose to 180 s-1 for maltoheptaose. The kinetics for sucrose movement was considerably slower. The activation energies of the stability constant and of the rate constants for sugar binding were evaluated from noise experiments at different temperatures. The role of LamB in the transport of maltooligosaccharides across the outer membrane is discussed. PMID:7539481
Electric Machine with Boosted Inductance to Stabilize Current Control
NASA Technical Reports Server (NTRS)
Abel, Steve
2013-01-01
High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.
NASA Astrophysics Data System (ADS)
Landsgesell, Jonas; Holm, Christian; Smiatek, Jens
2017-03-01
The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.
NASA Astrophysics Data System (ADS)
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
2004-05-01
We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.
Particle-in-cell simulations of electron beam control using an inductive current divider
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...
2015-11-18
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I 1) while the outer conductor carries the remainder (I 2) with the injected beam current given by I b=I 1+I 2. The simulations are in agreement with the theory whichmore » predicts that the total force on the beam trajectory is proportional to (I 2-I 1) and the force on the beam envelope is proportional to I b. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less
Thermoelectric Generation Using Counter-Flows of Ideal Fluids
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.
2017-08-01
Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schotland, R.M.; Hartman, J.E.
1989-02-01
The accuracy in the determination of the solar constant by means of the Langley method is strongly influenced by the spatial inhomogeneities of the atmospheric aerosol. Volcanos frequently inject aerosol into the upper troposphere and lower stratosphere. This paper evaluates the solar constant error that would occur if observations had been taken throughout the plume of El Chichon observed by NASA aircraft in the fall of 1982 and the spring of 1983. A lidar method is suggested to minimize this error. 15 refs.
Current interactions from the one-form sector of nonlinear higher-spin equations
NASA Astrophysics Data System (ADS)
Gelfond, O. A.; Vasiliev, M. A.
2018-06-01
The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.
The limiting velocity effect in a magnetically held discharge with a moving wall
NASA Astrophysics Data System (ADS)
Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.
1991-08-01
Experiments are reported in which bodies with a mass of about 1 g were accelerated in nearly constant current regimes by using a discharge magnetically held against the channel wall, with maximum permissible accelerations of 3.5 x 10 exp 6 g and linear current densities of 60 kA/mm. A saturation of the velocity was observed at 4-6 mm/microsec. The velocity limit does not depend on the current intensity and duration or linear electrode inductance and is proportional to m exp -1/2; it is practically unaffected by the characteristics of body friction against the channel walls and by small deviations of the current pulse shape from its constant value. A simple empirical theory is proposed which provides an adequate description of the experimentally observed phenomena.
Microiontophoretic release of drugs from micropipettes
Clarke, G.; Hill, R. G.; Simmonds, M. A.
1973-01-01
1. The use of 24Na+ of high specific activity allowed its iontophoretic release from multibarrelled glass micropipettes to be followed over short periods with low currents. 2. When a negative retaining current was passed to reduce diffusional efflux between the periods of positive current expulsion of 24Na+, the rate of release of 24Na+ during the expulsion period progressively increased during the first minute before becoming constant. 3. The currents employed were similar to those normally used to regulate the microiontophoretic release of potent drugs such as γ-aminobutyric acid. It is therefore concluded that, during the usual period of response to such drugs, the rate of release of drug is not constant but increasing. 4. The implications of these observations for the construction of microiontophoretic dose-response relationships is discussed. PMID:4724187
Larson-Miller Constant of Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu
2013-06-01
Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.
Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong
2015-11-17
We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.
NASA Astrophysics Data System (ADS)
Jayarubi, J.; Peter, A. John
2017-05-01
Confinement potential profiles due to conduction and valence bands are obtained in a Ga0.7Al0.3As/ GaAs/ Ga0.7Al0.3As using variation formulism. The free electron distribution is carried out. The confined energy eigenvalue and its corresponding wavefunctions of charge carriers are found using self-consistent method. The confined energies with the geometrical confinement are computed. The potentials due to charges are done by Poisson equation. The effects of dielectric mismatch between the GaAs and GaAlAs semiconductors are introduced in the effective potential expressions. Transfer matrix method is employed to obtain the respective energies. The transmission probability is obtained for a constant well size. The high current density characteristics as a function of applied voltage is investigated. This investigation on the electromagnetically induced transparency in the photonic material will exploit in fabricating novel nonlinear optical devices in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn
The positive dc corona plasmas between coaxial cylinders in air under the application of a self-sustained criterion with photoionization are investigated in this paper. A photon absorption function suitable for cylindrical electrode, which can characterize the total photons within the ionization region, is proposed on the basis of the classic corona onset criteria. Based on the general fluid model with the self-sustained criterion, the role of photoionization in the ionization region is clarified. It is found that the surface electric field keeps constant under a relatively low corona current, while it is slightly weakened with the increase of the coronamore » current. Similar tendencies can be found under different conductor radii and relative air densities. The small change of the surface electric field will become more significant for the electron density distribution as well as the ionization activity under a high corona current, compared with the results under the assumption of a constant surface field. The assumption that the surface electric field remains constant should be corrected with the increase of the corona current when the energetic electrons with a distance from the conductor surface are concerned.« less
Present status of astronomical constants
NASA Astrophysics Data System (ADS)
Fukushima, T.
Given was the additional information to the previous report on the recent progress in the determinations of astronomical constants (Fukushima 2000). First noted was the revision of LG as 6.969290134×10-10 based on the proposal to shift its status from a primary to a defining constant (Petit 2000). Next focused was the significant update of the correction to the current precession constant, Δp, based on the recent LLR-based determination (Chapront et al. 2000) as -0.3164+/-0.0030"/cy. By combining this and the equal weighted average of VLBI determinations (Mathews et al. 2000; Petrov 2000; Shirai and Fukushima 2000; Vondrak and Ron 2000) as -0.2968+/-0.0043"/cy, we derived the best estimate of precession constant as p = 5028.790+/-0.005"/cy. Also redetermined were some other quantities related to the precession formula; namely the offsets of Celestial Ephemeris Pole of the International Celestial Reference System as &Deltaψ0sinɛ0 = (-17.0+/-0.3) mas and Δɛ0 = (-5.1+/-0.3) mas. As a result, the obliquity of the ecliptic at the epoch J2000.0 was estimated as ɛ0 = 23°26'21."4059+/-0."0003. As a summary, presented was the (revised) IAU 2000 File of Current Best Estimates of astronomical constants, which is to replace the former 1994 version (Standish 1995).
Fabrication of Microfluidic Valves Using a Hydrogel Molding Method
NASA Astrophysics Data System (ADS)
Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru
2015-08-01
In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.
Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.
Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru
2015-08-24
In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.
Method and apparatus for providing a precise amount of gas at a precise humidity
Hallman, Jr., Russell L.; Truett, James C.
2001-02-06
A fluid transfer system includes a permeable fluid carrier, a constant temperature source of a first fluid, and a constant pressure source of a second fluid. The fluid carrier has a length, an inlet end, and an outlet end. The constant pressure source connects to the inlet end and communicates the second fluid into the fluid carrier, and the constant temperature source surrounds a least of portion of the length. A mixture of the first fluid and the second fluid exits via the outlet end A method of making a mixture of two fluids is also disclosed.
Guo, Jia; Meakin, James A; Jezzard, Peter; Wong, Eric C
2015-03-01
Velocity-selective arterial spin labeling (VSASL) tags arterial blood on a velocity-selective (VS) basis and eliminates the tagging/imaging gap and associated transit delay sensitivity observed in other ASL tagging methods. However, the flow-weighting gradient pulses in VS tag preparation can generate eddy currents (ECs), which may erroneously tag the static tissue and create artificial perfusion signal, compromising the accuracy of perfusion quantification. A novel VS preparation design is presented using an eight-segment B1 insensitive rotation with symmetric radio frequency and gradient layouts (sym-BIR-8), combined with delays after gradient pulses to optimally reduce ECs of a wide range of time constants while maintaining B0 and B1 insensitivity. Bloch simulation, phantom, and in vivo experiments were carried out to determine robustness of the new and existing pulse designs to ECs, B0 , and B1 inhomogeneity. VSASL with reduced EC sensitivity across a wide range of EC time constants was achieved with the proposed sym-BIR-8 design, and the accuracy of cerebral blood flow measurement was improved. The sym-BIR-8 design performed the most robustly among the existing VS tagging designs, and should benefit studies using VS preparation with improved accuracy and reliability. © 2014 Wiley Periodicals, Inc.
EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocchetto, M.; Waldmann, I. P.; Tinetti, G.
2016-12-10
With a scheduled launch in 2018 October, the James Webb Space Telescope ( JWST ) is expected to revolutionize the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST , exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheresmore » and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parameterized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation biases the retrieved parameters considerably, overestimating the abundances by about one order of magnitude. The retrieved abundances using the parameterized profile are usually within 1 σ of the true state, and we found the retrieved uncertainties to be generally larger compared to the isothermal approximation. Interestingly, we found that by using the parameterized temperature profile we could place tight constraints on the temperature structure. This opens the possibility of characterizing the temperature profile of the terminator region of hot Jupiters. Lastly, we found that assuming a constant-with-altitude mixing ratio profile is a good approximation for most of the atmospheres under study.« less
Challenges in the Development of a Self-Calibrating Network of Ceilometers.
NASA Astrophysics Data System (ADS)
Hervo, Maxime; Wagner, Frank; Mattis, Ina; Baars, Holger; Haefele, Alexander
2015-04-01
There are more than 700 Automatic Lidars and Ceilometers (ALCs) currently operating in Europe. Modern ceilometers can do more than simply measure the cloud base height. They can also measure aerosol layers like volcanic ash, Saharan dust or aerosols within the planetary boundary layer. In the frame of E-PROFILE, which is part of EUMETNET, a European network of automatic lidars and ceilometers will be set up exploiting this new capability. To be able to monitor the evolution of aerosol layers over a large spatial scale, the measurements need to be consistent from one site to another. Currently, most of the instruments do not provide calibrated, only relative measurements. Thus, it is necessary to calibrate the instruments to develop a consistent product for all the instruments from various network and to combine them in an European Network like E-PROFILE. As it is not possible to use an external reference (like a sun photometer or a Raman Lidar) to calibrate all the ALCs in the E-PROFILE network, it is necessary to use a self-calibration algorithm. Two calibration methods have been identified which are suited for automated use in a network: the Rayleigh and the liquid cloud calibration methods In the Rayleigh method, backscatter signals from molecules (this is the Rayleigh signal) can be measured and used to calculate the lidar constant (Wiegner et al. 2012). At the wavelength used for most ceilometers, this signal is weak and can be easily measured only during cloud-free nights. However, with the new algorithm implemented in the frame of the TOPROF COST Action, the Rayleigh calibration was successfully performed on a CHM15k for more than 50% of the nights from October 2013 to September 2014. This method was validated against two reference instruments, the collocated EARLINET PollyXT lidar and the CALIPSO space-borne lidar. The lidar constant was on average within 5.5% compare to the lidar constant determined by the EARLINET lidar. It confirms the validity of the self-calibration method. For 3 CALIPSO overpasses the agreement was on average 20.0%. It is less accurate due to the large uncertainties of CALIPSO data close to the surface. In opposition to the Rayleigh method, Cloud calibration method uses the complete attenuation of the transmitter beam by a liquid water cloud to calculate the lidar constant (O'Connor 2004). The main challenge is the selection of accurately measured water clouds. These clouds should not contain any ice crystals and the detector should not get into saturation. The first problem is especially important during winter time and the second problem is especially important for low clouds. Furthermore the overlap function should be known accurately, especially when the water cloud is located at a distance where the overlap between laser beam and telescope field-of-view is still incomplete. In the E-PROFILE pilot network, the Rayleigh calibration is already performed automatically. This demonstration network maked available, in real time, calibrated ALC measurements from 8 instruments of 4 different types in 6 countries. In collaboration with TOPROF and 20 national weathers services, E-PROFILE will provide, in 2017, near real time ALC measurements in most of Europe.
The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data
NASA Technical Reports Server (NTRS)
Brown, E. N.; Czeisler, C. A.
1992-01-01
Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarząbek, D. M., E-mail: djarz@ippt.pan.pl
2015-01-15
A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal tomore » approximately 1%. Furthermore, a simple method for calibration of the photodetector’s lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.« less
Mahmood, Iftekhar
2004-01-01
The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.
Rapid, efficient charging of lead-acid and nickel-zinc traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1978-01-01
Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.
A single camera roentgen stereophotogrammetry method for static displacement analysis.
Gussekloo, S W; Janssen, B A; George Vosselman, M; Bout, R G
2000-06-01
A new method to quantify motion or deformation of bony structures has been developed, since quantification is often difficult due to overlaying tissue, and the currently used roentgen stereophotogrammetry method requires significant investment. In our method, a single stationary roentgen source is used, as opposed to the usual two, which, in combination with a fixed radiogram cassette holder, forms a camera with constant interior orientation. By rotating the experimental object, it is possible to achieve a sufficient angle between the various viewing directions, enabling photogrammetric calculations. The photogrammetric procedure was performed on digitised radiograms and involved template matching to increase accuracy. Co-ordinates of spherical markers in the head of a bird (Rhea americana), were calculated with an accuracy of 0.12mm. When these co-ordinates were used in a deformation analysis, relocations of about 0.5mm could be accurately determined.
Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads
NASA Astrophysics Data System (ADS)
Xu, Jiqiang; Lu, Wenzhou; Wu, Lei
2017-05-01
There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; White, Ralph E.
Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. Here in this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst-Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involvingmore » three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.« less
Energy from Ocean Waves, River Currents, and Wind
NASA Astrophysics Data System (ADS)
Guha, Shyamal
2006-05-01
The earth we live in is surrounded by fluids, which are in perpetual motion. There is air in the atmosphere, water in lakes, oceans and rivers. The air and water around us form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I conceived a few schemes of such conversion. The fluids whose kinetic energy can be converted into electro-mechanical energy are: ocean waters, river current and atmospheric air. In a book to be published in 2006, I have described different techniques of energy conversion. In the APS meeting, I plan to discuss some of these techniques.
SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chang, A
Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less
Glavinovíc, M I
1999-02-01
The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding the factors that determine the time course of vesicular content release as well as the spatiotemporal changes of glutamate concentration in the cleft is crucial for understanding the mechanism that generates postsynaptic currents.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Isnen, M.; Nasution, T. I.; Perangin-angin, B.
2016-08-01
The identification of changes in oil quality has been conducted by indicating the change of dielectric constant which was showed by sensor voltage. Sensor was formed from two parallel flats that worked by electromagnetic wave propagation principle. By measuring its amplitude of electromagnetic wave attenuation caused by interaction between edible oil samples and the sensor, dielectric constant could be identified and estimated as well as peroxide number. In this case, the parallel flats were connected to an electric oscillator 700 kHz. Furthermore, sensor system could showed measurable voltage differences for each different samples. The testing carried out to five oil samples after undergoing an oxidation treatment at fix temperature of 235oC for 0, 5, 10, 15 and 20 minutes. Iodometry method testing showed peroxide values about 1.99, 9.95, 5.96, 11.86, and 15.92 meq/kg respectively with rising trend. Besides that, the testing result by sensor system showed voltages values 1.139, 1.147, 1.165, 1.173, and 1.176 volts with rising trend, respectively. It means that the higher sensor voltages showed the higher damage rate of edible oil when the change in sensor voltage was caused by the change in oil dielectric constant in which heating process caused damage in edible oil molecules structure. The more damage of oil structure caused the more difficulties of oil molecules to polarize and it is indicated by smaller dielectric constant. Therefore electric current would be smaller when sensor voltage was higher. On the other side, the higher sensor voltage means the smaller dielectric constant and the higher peroxide number.
Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility
NASA Astrophysics Data System (ADS)
Injun, Song
2015-04-01
The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.
Increased Energy Delivery for Parallel Battery Packs with No Regulated Bus
NASA Astrophysics Data System (ADS)
Hsu, Chung-Ti
In this dissertation, a new approach to paralleling different battery types is presented. A method for controlling charging/discharging of different battery packs by using low-cost bi-directional switches instead of DC-DC converters is proposed. The proposed system architecture, algorithms, and control techniques allow batteries with different chemistry, voltage, and SOC to be properly charged and discharged in parallel without causing safety problems. The physical design and cost for the energy management system is substantially reduced. Additionally, specific types of failures in the maximum power point tracking (MPPT) in a photovoltaic (PV) system when tracking only the load current of a DC-DC converter are analyzed. The periodic nonlinear load current will lead MPPT realized by the conventional perturb and observe (P&O) algorithm to be problematic. A modified MPPT algorithm is proposed and it still only requires typically measured signals, yet is suitable for both linear and periodic nonlinear loads. Moreover, for a modular DC-DC converter using several converters in parallel, the input power from PV panels is processed and distributed at the module level. Methods for properly implementing distributed MPPT are studied. A new approach to efficient MPPT under partial shading conditions is presented. The power stage architecture achieves fast input current change rate by combining a current-adjustable converter with a few converters operating at a constant current.
Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar
2007-06-01
In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.
Eddy Current Rail Inspection Using AC Bridge Techniques.
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.
NASA Astrophysics Data System (ADS)
Zermeño, Víctor M. R.; Habelok, Krzysztof; Stępień, Mariusz; Grilli, Francesco
2017-03-01
The estimation of the critical current (I c) and AC losses of high-temperature superconductor devices through modeling and simulation requires the knowledge of the critical current density (J c) of the superconducting material. This J c is in general not constant and depends both on the magnitude (B loc) and the direction (θ, relative to the tape) of the local magnetic flux density. In principle, J c(B loc,θ) can be obtained from the experimentally measured critical current I c(B a,θ), where B a is the magnitude of the applied magnetic field. However, for applications where the superconducting materials experience a local field that is close to the self-field of an isolated conductor, obtaining J c(B loc,θ) from I c(B a,θ) is not a trivial task. It is necessary to solve an inverse problem to correct for the contribution derived from the self-field. The methods presented in the literature comprise a series of approaches dealing with different degrees of mathematical regularization to fit the parameters of preconceived nonlinear formulas by means of brute force or optimization methods. In this contribution, we present a parameter-free method that provides excellent reproduction of experimental data and requires no human interaction or preconception of the J c dependence with respect to the magnetic field. In particular, it allows going from the experimental data to a ready-to-run J c(B loc,θ) model in a few minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Kazakevich, G.; Johnson, R.; Lebedev, V.; ...
2018-06-14
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
[Grades evaluation of Phellodendri chinensis cortex pieces based on quality constant].
Deng, Zhe; Jiao, Meng-Jiao; Zhang, Jun; Zhang, Qing; Cui, Wen-Jin; Shen, Li; Cheng, Jin-Tang; Liu, An
2017-09-01
Quality constant is a comprehensive grades evaluation method for traditional Chinese medicine decoction pieces, which is better but based on traditional way. In this paper, a new grading mode for Phellodendri chinensis pieces was established based on quality constant evaluation method. The results showed that the range of relative quality constant for 15 batches of different samples was from 0.41 to 0.96. As customary, if these samples were divided into three grades: the relative quality constant shall be ≥0.77 for first grade; <0.77 but ≥0.48 for the second grade; and <0.48 for the third grade. This research indicated that the quality constant mode can be used to effectively grade the P. chinensis pieces in a scientific, reasonable, objective and specific way. Simultaneously, it provided a beneficial reference for grading cortex herbal pieces or medicines. Copyright© by the Chinese Pharmaceutical Association.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh
1991-01-01
The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.
Processing of Al2O3/SrTiO3/PDMS Composites With Low Dielectric Loss
NASA Astrophysics Data System (ADS)
Yao, J. L.; Guo, M. J.; Qi, Y. B.; Zhu, H. X.; Yi, R. Y.; Gao, L.
2018-05-01
Polydimethylsiloxane (PDMS) is widely used in the electrical and electronic industries due to its excellent electrical insulation and biocompatible characteristics. However, the dielectric constant of pure PDMS is very low which restricts its applications. Herein, we report a series of PDMS/Al2O3/strontium titanate (ST) composites with high dielectric constant and low loss prepared by a simple experimental method. The composites exhibit high dielectric constant (relative dielectric constant is 4) after the composites are coated with insulated Al2O3 particles, and the dielectric constant gets further improved for composites with ST particles (dielectric constant reaches 15.5); a lower dielectric loss (tanδ= 0.05) is also found at the same time which makes co-filler composites suitable for electrical insulation products, and makes the experimental method more interesting in modern teaching.
NASA Astrophysics Data System (ADS)
Yoneda, Makoto; Dohmeki, Hideo
The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.
Diagnostic methods for platelet bacteria screening: current status and developments.
Störmer, Melanie; Vollmer, Tanja
2014-02-01
Bacterial contamination of blood components and the prevention of transfusion-associated bacterial infection still remains a major challenge in transfusion medicine. Over the past few decades, a significant reduction in the transmission of viral infections has been achieved due to the introduction of mandatory virus screening. Platelet concentrates (PCs) represent one of the highest risks for bacterial infection. This is due to the required storage conditions for PCs in gas-permeable containers at room temperature with constant agitation, which support bacterial proliferation from low contamination levels to high titers. In contrast to virus screening, since 1997 in Germany bacterial testing of PCs is only performed as a routine quality control or, since 2008, to prolong the shelf life to 5 days. In general, bacterial screening of PCs by cultivation methods is implemented by the various blood services. Although these culturing systems will remain the gold standard, the significance of rapid methods for screening for bacterial contamination has increased over the last few years. These new methods provide powerful tools for increasing the bacterial safety of blood components. This article summarizes the course of policies and provisions introduced to increase bacterial safety of blood components in Germany. Furthermore, we give an overview of the different diagnostic methods for bacterial screening of PCs and their current applicability in routine screening processes.
Body Fat and Muscle Mass as Functions of Body Water
ERIC Educational Resources Information Center
Sutton, R. A.; Miller, Carolyn
2007-01-01
Hydrostatic weighing and chemical dilution are well accepted methods for measuring body composition. Recently, Dual Energy X-ray Absorptiometry (DEXA) has become the preferred method. The two compartment algorithms used by these methods assume a fixed constant for lean body tissue. This constant has long been suspect of variations due to many…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalini, K.; Muneeswaran, M.; Giridharan, N. V., E-mail: giri@nitt.edu
2016-05-23
Ferroelectric Na{sub 0.5}(Bi{sub 1-x}Pr{sub x}){sub 0.5}TiO{sub 3} (x=0.00, 0.10) ceramics have been synthesized through sol-gel method. The phase formation has been confirmed by X-ray diffraction analysis of ceramics annealed at 800°C. The relaxation mechanism is observed from variation of dielectric constant with respect to temperature and frequency. Substitution of Pr reduces vacancies and defects identified from leakage current measurements. Further, the polarization Vs electric field (P-E) measurements have been performed at room temperature.
Grøftehauge, Morten K; Hajizadeh, Nelly R; Swann, Marcus J; Pohl, Ehmke
2015-01-01
Over the last decades, a wide range of biophysical techniques investigating protein-ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.
Grøftehauge, Morten K.; Hajizadeh, Nelly R.; Swann, Marcus J.; Pohl, Ehmke
2015-01-01
Over the last decades, a wide range of biophysical techniques investigating protein–ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography. PMID:25615858
NASA Astrophysics Data System (ADS)
Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik
2001-07-01
Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.
Yeung, Joanne Chung Yan; de Lannoy, Inés; Gien, Brad; Vuckovic, Dajana; Yang, Yingbo; Bojko, Barbara; Pawliszyn, Janusz
2012-09-12
In vivo solid-phase microextraction (SPME) can be used to sample the circulating blood of animals without the need to withdraw a representative blood sample. In this study, in vivo SPME in combination with liquid-chromatography tandem mass spectrometry (LC-MS/MS) was used to determine the pharmacokinetics of two drug analytes, R,R-fenoterol and R,R-methoxyfenoterol, administered as 5 mg kg(-1) i.v. bolus doses to groups of 5 rats. This research illustrates, for the first time, the feasibility of the diffusion-based calibration interface model for in vivo SPME studies. To provide a constant sampling rate as required for the diffusion-based interface model, partial automation of the SPME sampling of the analytes from the circulating blood was accomplished using an automated blood sampling system. The use of the blood sampling system allowed automation of all SPME sampling steps in vivo, except for the insertion and removal of the SPME probe from the sampling interface. The results from in vivo SPME were compared to the conventional method based on blood withdrawal and sample clean up by plasma protein precipitation. Both whole blood and plasma concentrations were determined by the conventional method. The concentrations of methoxyfenoterol and fenoterol obtained by SPME generally concur with the whole blood concentrations determined by the conventional method indicating the utility of the proposed method. The proposed diffusion-based interface model has several advantages over other kinetic calibration models for in vivo SPME sampling including (i) it does not require the addition of a standard into the sample matrix during in vivo studies, (ii) it is simple and rapid and eliminates the need to pre-load appropriate standard onto the SPME extraction phase and (iii) the calibration constant for SPME can be calculated based on the diffusion coefficient, extraction time, fiber length and radius, and size of the boundary layer. In the current study, the experimental calibration constants of 338.9±30 mm(-3) and 298.5±25 mm(-3) are in excellent agreement with the theoretical calibration constants of 307.9 mm(-3) and 316.0 mm(-3) for fenoterol and methoxyfenoterol respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dehghanian, Changiz; Sabet Bokati, Kazem
2018-04-01
This study presents composite electrode materials based on Electrochemically Reduced graphene oxide (ERGO) and Ni-Cu Foam for supercapacitor applications. Constant potential (CP) method was used to form reduced graphene oxide on Ni-Cu foam and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-Ray Photoelectron Spectra (XPS), Raman Spectroscopy and electrochemical measurements. ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure. The ERGO served as a conductive network to facilitate the collection and transportation of electrons during the cycling, improved the conductivity of Ni-Cu foam, and allowed for a larger specific surface area. The irregular porous structure allowed for the easy diffusion of the electrolyte into the inner region of the electrode. Moreover, the nanocomposite directly fabricated on Ni-Cu foam with a better adhesion and avoided the use of polymer binder. This method efficiently reduced ohmic polarization and enhanced the rate capability. As a result, the Ni-Cu foam/ERGO nanocomposite exhibited a specific capacitance of 1259.3 F g-1 at 2 A g-1and about 99.3% of the capacitance retained after 5000 cycles. The capacitance retention was about 3% when the current density increased from 2 A g-1 to 15 A g-1. This two-step process drop cast and GO reduction by potentiostatic method is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.
Van der Kloot, W
1988-01-01
1. Following motor nerve stimulation there is a period of greatly enhanced quantal release, called the early release period or ERP (Barrett & Stevens, 1972b). Until now, measurements of the probability of quantal releases at different points in the ERP have come from experiments in which quantal output was greatly reduced, so that the time of release of individual quanta could be detected or so that the latency to the release of the first quantum could be measured. 2. A method has been developed to estimate the timing of quantal release during the ERP that can be used at much higher levels of quantal output. The assumption is made that each quantal release generates an end-plate current (EPC) that rises instantaneously and then decays exponentially. The peak amplitude of the quantal currents and the time constant for their decay are measured from miniature end-plate currents (MEPCs). Then a number of EPCs are averaged, and the times of release of the individual quanta during the ERP estimated by a simple mathematical method for deconvolution derived by Cohen, Van der Kloot & Attwell (1981). 3. The deconvolution method was tested using data from preparations in high-Mg2+ low-Ca2+ solution. One test was to reconstitute the averaged EPCs from the estimated times of quantal release and the quantal currents, by using Fourier convolution. The reconstructions fit well to the originals. 4. Reconstructions were also made from averaged MEPCs which do not rise instantaneously and the estimated times of quantal release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2466987
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
Current Regulator For Sodium-Vapor Lamps
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1989-01-01
Regulating circuit maintains nearly-constant alternating current in sodium-vapor lamp. Regulator part of dc-to-ac inverter circuit used to supply power to street lamp from battery charged by solar-cell array.
Nonlinear conductivity of a holographic superconductor under constant electric field
NASA Astrophysics Data System (ADS)
Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei
2017-02-01
The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.
NASA Astrophysics Data System (ADS)
Tooming, T.; Thomberg, T.; Kurig, H.; Jänes, A.; Lust, E.
2015-04-01
The electrochemical impedance spectroscopy, cyclic voltammetry, constant current charge/discharge and the constant power discharge methods have been applied to establish the electrochemical characteristics of the electrical double-layer capacitor (EDLC) consisting of the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) ionic liquid and microporous carbon electrodes. Microporous carbon material used for preparation of electrodes (GDAC - glucose derived activated carbon), has been synthesised from D-(+)-glucose by the hydrothermal carbonization method, including subsequent pyrolysis, carbon dioxide activation and surface cleaning step with hydrogen. The Brunauer-Emmett-Teller specific surface area (SBET = 1540 m2 g-1), specific surface area calculated using the non-local density functional theory in conjunction with stable adsorption integral equation using splines (SAIEUS) model SSAIEUS = 1820 m2 g-1, micropore surface area (Smicro = 1535 m2 g-1), total pore volume (Vtot = 0.695 cm3 g-1) and the pore size distribution were obtained from the N2 sorption data. The SBET, Smicro and Vtot values have been correlated with the electrochemical characteristics strongly dependent on the carbon activation conditions applied for EDLCs. Wide region of ideal polarizability (ΔV ≤ 3.2 V), very short charging/discharging time constant (2.7 s), and high specific series capacitance (158 F g-1) have been calculated for the optimized carbon material GDAC-10h (activation of GDAC with CO2 during 10 h) in EMImBF4 demonstrating that this system can be used for completing the EDLC with high energy- and power densities.