Sample records for constant emission component

  1. NGC 4388- Spectral Studies of the First Seyfert 2 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Beckman, V.; Gehrels, N.; Favre, P.; Courvoisier, T. J.-L.; Walter, R.; Malzac, J.; Petrucci, P.-O.

    2004-01-01

    We present first INTEGRAL and XMM-Newton ob- servations of a Seyfert galaxy, the type 2 AGN NGC 4388. Several INTEGRAL observations performed in 2003 allow us to study the spectrum in the 20 - 300 keV range. In addition two XMM-Newton observations give detailed insight into the 0.2 - 10 keV emission. Comparison with previous observations by BeppoSAX, SIGMA and CGROIOSSE show that the overall spectrum for soft X-rays up to the gamma-rays can be described by a highly absorbed and variable non-thermal component in addition to constant non-absorbed thermal emission of low abundance (2 - 5%Za), plus a constant Fe K alpha line. The hard X-ray component is well described by a simple power law with a mean photon index of 1 = 1.7. During the INTEGRAL observations the flux at 100 keV increased by a factor of 1.5. The analysis of XMM-Newton data implies that the emission below 3 keV is decoupled from the AGN and probably due to extended emission as seen in Chandra observations. The constant iron line emission is apparently also decoupled from the direct emission of the central engine and likely to be generated in the obscuring material, e.g. in the molecular torus or even further away.

  2. Forced vibration of a carbon nanotube with emission currents in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bulyarskiy, S. V.; Dudin, A. A.; Orlov, A. P.; Pavlov, A. A.; Leont'ev, V. L.

    2017-11-01

    The occurrence of vibrations in a single carbon nanotubes placed in an electromagnetic field through which constant field-emission current passes has been analyzed. It has been shown experimentally that the emission current, along with the constant component, has a variable one that resonates at a certain frequency. Calculations show a relationship between the resonance frequency and the parameters of the whole system and nanotube itself. The conditions under which resonance may occur in the terahertz range of vibration frequencies have been analyzed.

  3. INTEGRAL and XMM-Newton Spectral Studies of NGC 4388

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Favre, P.; Walter, R.; Courvoisier, T. J.-L.; Petrucci, P.-O.; Malzac, J.

    2004-01-01

    We present first INTEGRAL and XMM-Newton observations of a Seyfert galaxy, the type 2 AGN NGC 4388. Several INTEGRAL observations performed in 2003 allow us to study the spectrum in the 20 - 300 keV range. In addition two XMM-Newton observations give detailed insight into the 0.2 - 10 keV emission. Comparison with previous observations by BeppoSAX, SIGMA and CGRO/OSSE show that the overall spectrum for soft X-rays up to the gamma-rays can be described by a highly absorbed (N(sub H approx. = 2.7 x 10(exp 23)/sq cm) and variable non-thermal component in addition to constant non-absorbed thermal emission (T approx. = 0.8 keV) of low abundance (Z approx. 5% Z (solar)), plus a constant Fe K a line. The hard X-ray component is well described by a simple power law with a mean photon index of Gamma = 1.7. During the INTEGRAL observations the flux at 100 keV increased by a factor of 1.5. The analysis of XMM-Newton data implies that the emission below 3 keV is decoupled from the AGN and probably due to extended emission as seen in Chandra observations. The constant iron line emission is apparently also decoupled from the direct emission of the central engine and likely to be generated in the obscuring material, e.g. in the molecular torus.

  4. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  5. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  6. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  7. The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls

    PubMed Central

    Vanderelst, Dieter; Lee, Ya-Fu; Geipel, Inga; Kalko, Elisabeth K. V.; Kuo, Yen-Min; Peremans, Herbert

    2013-01-01

    Bats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant frequency part of the calls, previous evidence suggests that the noseleaves of these animals are tuned to the frequencies in the frequency modulated components of the calls. In this paper, we seek further support for this hypothesis by simulating the emission beam pattern of the bat Rhinolophus formosae. Filling the furrows of lancet and removing the basal lappets (i.e., two flaps on the noseleaf) we find that these conspicuous features of the noseleaf focus the emitted energy mostly for frequencies in the frequency-modulated components. Based on the assumption that this component of the call is used by the bats for ranging, we develop a qualitative model to assess the increase in performance due to the furrows and/or the lappets. The model confirms that both structures decrease the ambiguity in selecting relevant targets for ranging. The lappets and the furrows shape the emission beam for different spatial regions and frequency ranges. Therefore, we conclude that the presented evidence is in line with the hypothesis that different parts of the noseleaves of Rhinolophidae are tuned to different frequency ranges with at least some of the most conspicuous ones being tuned to the frequency modulated components of the calls—thus yielding strong evidence for the sensory importance of the component. PMID:23882226

  8. Emission Rates of Volatile Organic Compounds Released from Newly Produced Household Furniture Products Using a Large-Scale Chamber Testing Method

    PubMed Central

    Ho, Duy Xuan; Kim, Ki-Hyun; Ryeul Sohn, Jong; Hee Oh, Youn; Ahn, Ji-Won

    2011-01-01

    The emission rates of volatile organic compounds (VOCs) were measured to investigate the emission characteristics of five types of common furniture products using a 5 m3 size chamber at 25°C and 50% humidity. The results indicated that toluene and α-pinene are the most dominant components. The emission rates of individual components decreased constantly through time, approaching the equilibrium emission level. The relative ordering of their emission rates, if assessed in terms of total VOC (TVOC), can be arranged as follows: dining table > sofa > desk chair > bedside table > cabinet. If the emission rates of VOCs are examined between different chemical groups, they can also be arranged in the following order: aromatic (AR) > terpenes (TER) > carbonyl (CBN) > others > paraffin (PR) > olefin (HOL) > halogenated paraffin (HPR). In addition, if emission strengths are compared between coated and uncoated furniture, there is no significant difference in terms of emission magnitude. Our results indicate that the emission characteristics of VOC are greatly distinguished between different furniture products in terms of relative dominance between different chemicals. PMID:22125421

  9. Three state-of-the-art individual electric and hybrid vehicle test reports, volume 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Procedures used in determining the energy efficiency and economy of a gasoline-electric hybrid taxi, an electric passenger car, and an electric van are described. Tabular and graphic data show results of driving cycle and constant speed tests, energy distribution to various components, efficiency of the components, and, for the hybrid vehicle, the emissions.

  10. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    PubMed

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. 40 CFR 51.363 - Quality assurance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test, the evaporative system tests, and emission control component checks (as applicable); (vi...) A check of the Constant Volume Sampler flow calibration; (5) A check for the optimization of the... selection, and power absorption; (9) A check of the system's ability to accurately detect background...

  12. 40 CFR 86.527-90 - Test procedures, overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 86.527-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... constant volume (variable dilution) sampler. (d) Except in cases of component malfunction or failure, all... emissions measurements are made. For exhaust testing, this requires sampling and analysis of the dilution...

  13. Observations of Ellerman bomb emission features in He I D3 and He I 10 830 Å

    NASA Astrophysics Data System (ADS)

    Libbrecht, Tine; Joshi, Jayant; Rodríguez, Jaime de la Cruz; Leenaarts, Jorrit; Ramos, Andrés Asensio

    2017-02-01

    Context. Ellerman bombs (EBs) are short-lived emission features, characterised by extended wing emission in hydrogen Balmer lines. Until now, no distinct signature of EBs has been found in the He I 10 830 Å line, and conclusive observations of EBs in He I D3 have never been reported. Aims: We aim to study the signature of EBs in neutral helium triplet lines. Methods: The observations consisted of ten consecutive SST/TRIPPEL raster scans close to the limb, featuring the Hβ, He I D3 and He I 10 830 Å spectral regions. We also obtained raster scans with IRIS and made use of the SDO/AIA 1700 Å channel. We used Hazel to invert the neutral helium triplet lines. Results: Three EBs in our data show distinct emission signatures in neutral helium triplet lines, most prominently visible in the He I D3 line. The helium lines have two components: a broad and blueshifted emission component associated with the EB, and a narrower absorption component formed in the overlying chromosphere. One of the EBs in our data shows evidence of strong velocity gradients in its emission component. The emission component of the other two EBs could be fitted using a constant slab. Our analysis hints towards thermal Doppler motions having a large contribution to the broadening for helium and IRIS lines. We conclude that the EBs must have high temperatures to exhibit emission signals in neutral helium triplet lines. An order of magnitude estimate places our observed EBs in the range of T 2 × 104-105 K. Movies associated to Figs. 3-5 are available at http://www.aanda.org

  14. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; hide

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  15. Evolution of the symbiotic binary system AG Pegasi - The slowest classical nova eruption ever recorded

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.

  16. Volatile organic compounds and particulates as components of diesel engine exhaust gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, H.; Bandeira de Melo, G.; Ousmanov, F.

    1999-07-01

    Volatile organic compounds (VOC) and soot particles have been determined in a Diesel`s exhaust gas. A new sampling method allowed the measurement of emissions of organic compounds (C{sub 1} to C{sub 20}) in a gas chromatogram at a detection limit of ca. 0.2 mg/m{sup 3}. Particles were collected with a filter bed of ceramic particles and characterized by temperature programmed desorption (TPD) and oxidation (TPO). Engine runs were always performed at a fixed and constant air to fuel equivalence ratio ({lambda}) and with a constant volumetric efficiency, because these parameters strongly influenced the emissions in terms of both composition andmore » order of magnitude. The effective combustion temperature again strongly governed the nature of the emissions. Model fuels, composed of individual paraffins and aromatics and additions of sulfur compounds and an organic nitrate (for cetane number enhancement) were used. The results contribute to the understanding of the origin of specific emissions from Diesel engines. These newly developed methods are recommended for further application.« less

  17. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  18. A Temporal Correlation in Quiescent Gamma-Ray Burst Prompt Emission: Evidence for Prognitor Memory

    NASA Astrophysics Data System (ADS)

    Patton, Thomas L.; Giblin, Timothy; Hakkila, Jon E.

    2018-06-01

    In spite of the insight gained into the nature of the Gamma-Ray Bursts (GRB) from early and late-time X-Ray observations in the Swift era, GRB prompt emission continues to provide clues and new insight into the activity of the central engine. A comprehensive understanding of all emission components observed in GRBs, from the traditional prompt GRB emission to the long lived X-Ray and optical decay super- imposed with late-time flaring activity, currently remains allusive. Using data from the Swift Burst Alert Telescope (BAT), we've identified and measured durations observed in GRBs that exhibit multi-episodic prompt emission behavior. Duration analysis of the burst attributes revealed no significant correlations between emissions and quiet time durations. This variability allows us to extrapolate that the central engine is constantly active.

  19. TRACING INFALL AND ROTATION ALONG THE OUTFLOW CAVITY WALLS OF THE L483 PROTOSTELLAR ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Gigi Y.C.; Lim, Jeremy; Takakuwa, Shigehisa

    2016-12-10

    Single-dish observations in CS(7–6) reveal emission extending out to thousands of au along the outflow axis of low-mass protostars and having a velocity gradient in the opposite direction to that of their outflows. This emission has been attributed to dense and warm gas flowing outward along the walls of bipolar outflow cavities. Here, we present combined single-dish and interferometric CS(7–6) maps for the low-mass protostar L483, revealing a newly discovered compact central component (radius ≲800 au) and previously unknown features in its extended component (visible out to ∼4000 au). The velocity gradient and skewed (toward the redshifted side) brightness distributionmore » of the extended component are detectable out to a radius of ∼2000 au, but not beyond. The compact central component exhibits a velocity gradient in the same direction as, but which is steeper than that of, the extended component. Furthermore, both components exhibit a velocity gradient with an approximately constant magnitude across the outflow axis, apparent in the extended component not just through but also away from the center out to 2000 au. We point out contradictions between our results and model predictions for outflowing gas and propose a new model in which all of the aforementioned emission can be qualitatively explained by gas inflowing along the outflow cavity walls of a rigidly rotating envelope. Our model also can explain the extended CS(7–6) emission observed around other low-mass protostars.« less

  20. A Reduced Form Model for Ozone Based on Two Decades of ...

    EPA Pesticide Factsheets

    A Reduced Form Model (RFM) is a mathematical relationship between the inputs and outputs of an air quality model, permitting estimation of additional modeling without costly new regional-scale simulations. A 21-year Community Multiscale Air Quality (CMAQ) simulation for the continental United States provided the basis for the RFM developed in this study. Predictors included the principal component scores (PCS) of emissions and meteorological variables, while the predictand was the monthly mean of daily maximum 8-hour CMAQ ozone for the ozone season at each model grid. The PCS form an orthogonal basis for RFM inputs. A few PCS incorporate most of the variability of emissions and meteorology, thereby reducing the dimensionality of the source-receptor problem. Stochastic kriging was used to estimate the model. The RFM was used to separate the effects of emissions and meteorology on ozone concentrations. by running the RFM with emissions constant (ozone dependent on meteorology), or constant meteorology (ozone dependent on emissions). Years with ozone-conducive meteorology were identified, and meteorological variables best explaining meteorology-dependent ozone were identified. Meteorology accounted for 19% to 55% of ozone variability in the eastern US, and 39% to 92% in the western US. Temporal trends estimated for original CMAQ ozone data and emission-dependent ozone were mostly negative, but the confidence intervals for emission-dependent ozone are much

  1. The heliocentric evolution of cometary infrared spectra - Results from an organic grain model

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Sagan, Carl; Mumma, Michael J.

    1989-01-01

    An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.

  2. FERMI Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-03

    Here, we report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range.more » This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below ~50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t –1.5. The LAT detected a photon with the highest energy so far measured from a GRB, 33.4 +2.7 –3.5 GeV. This event arrived 82 s after the GBM trigger and ~50 s after the prompt phase emission had ended in the GBM band. In conclusion, we discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.« less

  3. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  4. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  5. Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.

    PubMed

    Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V

    2017-09-01

    We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.

  6. Exciplex fluorescence emission from simple organic intramolecular constructs in non-polar and highly polar media as model systems for DNA-assembled exciplex detectors.

    PubMed

    Bichenkova, Elena V; Sardarian, Ali R; Wilton, Amanda N; Bonnet, Pascal; Bryce, Richard A; Douglas, Kenneth T

    2006-01-21

    Organic intramolecular exciplexes, N-(4-dimethylaminobenzyl)-N-(1-pyrenemethyl)amine (1) and N'-4-dimethylaminonaphthyl-N-(1-pyrenemethyl)amine (2), were used as model systems to reveal major factors affecting their exciplex fluorescence, and thus lay the basis for developing emissive target-assembled exciplexes for DNA-mounted systems in solution. These models with an aromatic pyrenyl hydrocarbon moiety as an electron acceptor appropriately connected to an aromatic dimethylamino electron donor component (N,N-dimethylaminophenyl or N,N-dimethylaminonaphthyl) showed strong intramolecular exciplex emission in both non-polar and highly polar solvents. The effect of dielectric constant on the maximum wavelength for exciplex emission was studied, and emission was observed for 1 and 2 over the full range of solvent from non-polar hydrocarbons up to N-methylformamide with a dielectric constant of 182. Quantum yields were determined for these intramolecular exciplexes in a range of solvents relative to that for Hoechst 33,258. Conformational analysis of 1 was performed both computationally and via qualitative 2D NMR using (1)H-NOESY experiments. The results obtained indicated the contribution of pre-folded conformation(s) to the ground state of 1 conducive to exciplex emission. This research provides the initial background for design of self-assembled, DNA-mounted exciplexes and underpins further development of exciplex-based hybridisation bioassays.

  7. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  8. Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.

    2006-01-01

    We present multiple Chandra and XMM-Newton observations of the type 1.8 Seyfert galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an active galactic nucleus: the source switched from reflection-dominated to transmission-dominated and back in just 6 weeks. During this time the soft thermal component, arising from a approx. 1 kpc region around the center, remained constant. The reflection component is constant at all timescales, and its high flux relative to the primary component implies the presence of thick gas covering a large fraction of the solid angle. The presence of this gas, and the fast variability timescale, suggest that the Compton-thick to Compton-thin change is due to variation in the line-of-sight absorber rather than to extreme intrinsic emission variability. We discuss a structure of the circumuclear absorber/reflector that can explain the observed X-ray spectral and temporal properties.

  9. Real-time black carbon emission factor measurements from light duty vehicles.

    PubMed

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  10. Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1,f2) area study

    NASA Astrophysics Data System (ADS)

    Schneider, Sandra; Prijs, Vera F.; Schoonhoven, Ruurd

    2003-06-01

    Lower sideband distortion product otoacoustic emissions (DPOAEs), measured in the ear canal upon stimulation with two continuous pure tones, are the result of interfering contributions from two different mechanisms, the nonlinear distortion component and the linear reflection component. The two contributors have been shown to have a different amplitude and, in particular, a different phase behavior as a function of the stimulus frequencies. The dominance of either component was investigated in an extensive (f1,f2) area study of DPOAE amplitude and phase in the guinea pig, which allows for both qualitative and quantitative analysis of isophase contours. Making a minimum of additional assumptions, simple relations between the direction of constant phase in the (f1,f2) plane and the group delays in f1-sweep, f2-sweep, and fixed f2/f1 paradigms can be derived, both for distortion (wave-fixed) and reflection (place-fixed) components. The experimental data indicate the presence of both components in the lower sideband DPOAEs, with the reflection component as the dominant contributor for low f2/f1 ratios and the distortion component for intermediate ratios. At high ratios the behavior cannot be explained by dominance of either component.

  11. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  12. Detection of a long-duration solar gamma-ray flare on Jun. 11, 1991 with EGRET on Compton-GRO

    NASA Technical Reports Server (NTRS)

    Kanbach, G.; Bertsch, D. L.; Fitchel, C. E.; Hartman, R. C.; Hunter, S. D.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasslewander, H. A.

    1992-01-01

    On 11 Jun. 1991, the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (Comption-GRO) observed high energy gamma radiation above 30 MeV from the Sun following an intense flare around 2:00 Universal Time (UT). After the decay of most of the x ray flare, which caused nearly complete deadtime losses in EGRET, high energy emission was registered during the interval from about 3:30 UT to at least 10:30 UT. Gamma rays were detected up to energies above 1 GeV. The solar origin of the emission is assured by the time profile of the gamma ray count rate and by time resolved sky maps, which show a clear maximum at the position of the sun. The gamma ray lightcurve of the flare can be described with two components: a fast decaying emission with an e-folding time constant of about 25 minutes and a slow decay with about 255 minutes. There are indications for a spectral evolution with time, such that the emission below 100 MeV fades away earlier than the 100 to 300 MeV radiation, roughly in the time scale of the fast component. The spectrum of the flare can be fitted with a composite of a proton generated pion neutral spectrum and an electron bremsstrahlung component. The latter can be identified with the fast decaying component of the lightcurve.

  13. Modeling greenhouse gas emissions from dairy farms.

    PubMed

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  14. [The behavior of fiber-reinforced plastics during laser cutting].

    PubMed

    Emmrich, M; Levsen, K; Trasser, F J

    1992-06-01

    The pattern of the organic emissions, which are produced by processing of fibre reinforced plastics (epoxy resins reinforced by aramid and glass fibres and phenol resins reinforced by aramid fibre) with laser beam was studied and the concentrations of the main components determined. Despite the application of plastic materials with different chemical structures, the observed patterns are very similar. Mainly aromatic hydrocarbons are emitted, especially benzene and toluene, as well as some heteroatom-containing aromatic hydrocarbons (e.g. phenol). By use of oxygen as process gas the emissions during cutting of glass fibre reinforced plastics can be reduced, while they will be constantly high with aramid fibre reinforced plastics.

  15. The Role of Artificial Atmospheric CO2 Removal in Stabilizing Earth's Climate

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna; Zickfeld, Kirsten

    2014-05-01

    Recent research showed that global mean temperature remains approximately constant for several centuries after complete cessation of CO2 emissions, while global mean thermosteric sea level continues to rise. This implies that a net artificial removal of CO2 from the atmosphere may be necessary to decrease the atmospheric CO2 concentrations more rapidly and bring the climate system components to their previous states on human timescales. The purpose of this study is to explore the reversibility of climate responses to a range of realistic CO2 emission scenarios, which follow a gradual transition from fossil-fuel driven economy to a zero-emission energy system with implementation of negative CO2 emissions, using the University of Victoria Earth System Climate Model of intermediate complexity (UVic ESCM 2.9). The CO2 emission pathways were designed to meet constraints related to the implementation of negative emission technologies derived from the integrated assessment literature. Our simulations show that while it is possible, in principle, to revert the global mean temperature after a phase of overshoot, the thermosteric sea level rise is not reversible on human timescales for the range of emission scenarios considered. During the negative emission phase, CO2 is released form the natural (terrestrial and marine) carbon sinks, which diminishes the efficiency of negative emissions implemented. In addition, spatial changes of vegetation distribution patterns are not entirely reversible on human timescales. We suggest that while negative emissions could potentially stabilize the global mean temperature at a desired level, such technology does not supersede reductions in fossil fuel emissions, as the artificial CO2 capture at large scale has many limitations and is unable to stabilize other climate system components (e.g. sea level) at desired levels.

  16. Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel.

    PubMed

    Mosonik, Bornes C; Kibet, Joshua K; Ngari, Silas M; Nyamori, Vincent O

    2018-06-21

    Pyrolysis of biodiesel at high temperatures may result in the formation of transient and stable free radicals immobilized on particulate emissions. Consequently, free radicals adsorbed on particulates are believed to be precursors for health-related illnesses such as cancer, cardiac arrest, and oxidative stress. This study explores the nature of free radicals and particulate emissions generated when Croton megalocarpus biodiesel is pyrolyzed at 600 °C in an inert environment of flowing nitrogen at a residence time of 0.5 s at 1 atm. The surface morphology of thermal emissions were imaged using a field emission gun scanning electron microscope (FEG SEM) while the radical characteristics were investigated using an electron paramagnetic resonance spectrometer (EPR). A g-value of 2.0024 associated with a narrow ∆Hp-p of 3.65 G was determined. The decay rate constant for the radicals was low (1.86 × 10 -8  s -1 ) while the half-life was long ≈ 431 days. The observed EPR characterization of Croton megalocarpus thermal particulates revealed the existence of free radicals typical of those found in coal. The low g-value and low decay rate constant suggests that the free radicals in particulates are possibly carbon-centered. The mechanistic channel for the formation of croton char from model biodiesel component (9-dodecenoic acid, methyl ester) has been proposed in this study.

  17. EVIDENCE OF SPREADING LAYER EMISSION IN A THERMONUCLEAR SUPERBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koljonen, K. I. I.; Kajava, J. J. E.; Kuulkers, E., E-mail: karri.koljonen@nyu.edu

    2016-10-01

    When a neutron star (NS) accretes matter from a companion star in a low-mass X-ray binary, the accreted gas settles onto the stellar surface through a boundary/spreading layer. On rare occasions the accumulated gas undergoes a powerful thermonuclear superburst powered by carbon burning deep below the NS atmosphere. In this paper, we apply the non-negative matrix factorization spectral decomposition technique to show that the spectral variations during a superburst from 4U 1636–536 can be explained by two distinct components: (1) the superburst emission characterized by a variable temperature blackbody radiation component and (2) a quasi-Planckian component with a constant, ∼2.5more » keV, temperature varying by a factor of ∼15 in flux. The spectrum of the quasi-Planckian component is identical in shape and characteristics to the frequency-resolved spectra observed in the accretion/persistent spectrum of NS low-mass X-ray binaries and agrees well with the predictions of the spreading layer model by Inogamov and Sunyaev. Our results provide yet more observational evidence that superbursts—and possibly also normal X-ray bursts—induce changes in the disc–star boundary.« less

  18. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  19. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide

    NASA Astrophysics Data System (ADS)

    Moraes, Thiago A.; Barlow, Peter W.; Klingelé, Emile; Gallep, Cristiano M.

    2012-06-01

    Semi-circadian rhythms of spontaneous photon emission from wheat seedlings germinated and grown in a constant environment (darkened chamber) were found to be synchronized with the rhythm of the local gravimetric (lunisolar) tidal acceleration. Time courses of the photon-count curves were also found to match the growth velocity profile of the seedlings. Pair-wise analyses of the data—growth, photon count, and tidal—by local tracking correlation always revealed significant coefficients ( P > 0.7) for more than 80% of any of the time periods considered. Using fast Fourier transform, the photon-count data revealed periodic components similar to those of the gravimetric tide. Time courses of biophoton emissions would appear to be an additional, useful, and innovative tool in both chronobiological and biophysical studies.

  20. Spectral Monitoring of NGC 1365: Nucleus and Variable ULX

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Fabbiano, G.

    2004-01-01

    A letter has been submitted to ApJ, and is in the final stages of revision on the spectral variability of the nuclear source. We presented multiple Chandra and XMM-Newton observations of the Seyfert Galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an AGN: the source switched from reflection dominated to Compton- thin and back in just 6 weeks. During this time the soft thermal component, arising from a 1-kpc region around the center, remained constant. The reflection component is constant at all timescales, and its flux is a fraction of 5% or higher of the direct 2-10 keV emission, implying the presence of thick gas covering a big fraction of the solid angle. The presence of this gas, and the hst variability time scale, suggest that the Compton-thick to Compton thin change is due to variation in the line-of-sight absorber, rather than to extreme intrinsic emission variability. We discuss a structure of the circumnuclear absorbed reflector which can explain the observed X-ray spectral and temporal properties. But these important results come only from scratching the surface of the data, since we did not need any detailed spectral analysis to distinguish between the Compton thick and Compton thin states of the source, the difference in both spectral shape and flux being huge.

  1. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  2. Initial Investigation of a Novel Thermal Storage Concept as Part of a Renewable Energy System

    DTIC Science & Technology

    2013-06-01

    stress (pascal) z-component of shear stress (pascal) Fslip constant Esl ip constant surface tension gradient (n/m-k) specularity coefficient...Axis x-component of ¥-Component of z- component of x -component of v-component of z-component of Fs l ip constant Esl i p constant Rotation

  3. Preferential emission into epsilon-near-zero metamaterial [Invited

    DOE PAGES

    Galfsky, Tal; Sun, Zheng; Jacob, Zubin; ...

    2015-11-23

    We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnOmore » on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser.« less

  4. Estimates of RF-induced erosion at antenna-connected beryllium plasma-facing components in JET

    DOE PAGES

    Klepper, C. C.; Borodin, D.; Groth, M.; ...

    2016-01-18

    Radio-frequency (RF)-enhanced surface erosion of beryllium (Be) plasma-facing components is explored, for the first time, using the ERO code. We applied the code in order to measure the RF-enhanced edge Be line emission at JET Be outboard limiters, in the presence of high-power, ion cyclotronresonance heating (ICRH) in L-mode discharges. In this first modelling study, the RF sheath effect from an ICRH antenna on a magnetically connected, limiter region is simulated by adding a constant potential to the local sheath, in an attempt to match measured increases in local Be I and Be II emission of factors of 2 3.more » It was found that such increases are readily simulated with added potentials in the range of 100 200 V, which is compatible with expected values for potentials arising from rectification of sheath voltage oscillations from ICRH antennas in the scrape-off layer plasma. We also estimated absolute erosion values within the uncertainties in local plasma conditions.« less

  5. Utilization of methanol for polymer electrolyte fuel cells in mobile systems

    NASA Astrophysics Data System (ADS)

    Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.

    1994-04-01

    The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.

  6. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    NASA Technical Reports Server (NTRS)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  7. Carbon emission from the soil surface in a mature blueberry pine forest of the middle taiga (Republic of Komi)

    NASA Astrophysics Data System (ADS)

    Osipov, A. F.

    2016-08-01

    Data on the input of plant falloff and organic matter decomposition on the surface of the peaty podzolic-gleyic humus-illuvial (Gleyic Podzol) soil under a mature blueberry pine forest in the middle taiga are presented. The fractional composition of the falloff was determined, and constants of decomposition for its components were calculated. The carbon flux to the atmosphere due to the mineralization of plant residues is estimated at 251 g/m2. A close positive correlation ( r = 0.71; P < 0.05) was found between the carbon dioxide emission measured using a gas analyzer and the soil temperature at the depth of 10 cm. The CO2 emission for a growing period calculated from the data on its dependence on soil temperature in different years varied from 243 to 313 g C/m2 and was related to weather conditions.

  8. Exploring the dynamics of fluorescence staining of bacteria with cyanine dyes for the development of kinetic assays

    NASA Astrophysics Data System (ADS)

    Thomas, Marlon Sheldon

    Bacterial infections continue to be one of the major health risks in the United States. The common occurrence of such infection is one of the major contributors to the high cost of health care and significant patient mortality. The work presented in this thesis describes spectroscopic studies that will contribute to the development of a fluorescent assay that may allow the rapid identification of bacterial species. Herein, the optical interactions between six bacterial species and a series of thiacyanine dyes are investigated. The interactions between the dyes and the bacterial species are hypothesized to be species-specific. For this thesis, two Gram-negative strains, Escherichia coli (E. coli) TOP10 and Enterobacter aerogenes; two Gram-positive bacterial strains, Bacillus sphaericus and Bacillus subtilis; and two Bacillus endospores, B. globigii and B. thuringiensis, were used to test the proposed hypothesis. A series of three thiacyanine dyes---3,3'-diethylthiacyanine iodide (THIA), 3,3'-diethylthiacarbocyanine iodide (THC) and thiazole orange (THO)---were used as fluorescent probes. The basis of our spectroscopic study was to explore the bacterium-induced interactions of the bacterial cells with the individual thiacyanine dyes or with a mixture of the three dyes. Steady-state absorption spectroscopy revealed that the different bacterial species altered the absorption properties of the dyes. Mixed-dye solutions gave unique absorption patterns for each bacteria tested, with competitive binding observed between the bacteria and spectrophotometric probes (thiacyanine dyes). Emission spectroscopy recorded changes in the emission spectra of THIA following the introduction of bacterial cells. Experimental results revealed that the emission enhancement of the dyes resulted from increases in the emission quantum yield of the thiacyanine dyes upon binding to the bacteria cellular components. The recorded emission enhancement data were fitted to an exponential (mono-exponential or bi-exponential) function, and time constants were extracted by regressing on the experimental data. The addition of the TWEEN surfactants decreased the rate at which the dyes interacted with the bacterial cells, which typically resulted in larger time constants derived from an exponential fit. ANOVA analysis of the time constants confirmed that the values of the time constants clustered in a narrow range and were independent of dye concentration and weakly dependent on cell density.

  9. Estimated Mid-Infrared (200-2000 cm-1) Optical Constants of Some Silica Polymorphs

    NASA Astrophysics Data System (ADS)

    Glotch, Timothy; Rossman, G. R.; Michalski, J. R.

    2006-09-01

    We use Lorentz-Lorenz dispersion analysis to model the mid-infrared (200-2000 cm-1) optical constants, of opal-A, opal-CT, and tridymite. These minerals, which are all polymorphs of silica (SiO2), are potentially important in the analysis of thermal emission spectra acquired by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) and Mars Exploration Rover Mini-TES instruments in orbit and on the surface of Mars as well as emission spectra acquired by telescopes of planetary disks and dust and debris clouds in young solar systems. Mineral samples were crushed, washed, and sieved and emissivity spectra of the >100; μm size fraction were acquired at Arizona State University's emissivity spectroscopy laboratory. Therefore, the spectra and optical constants are representative of all crystal orientations. Ideally, emissivity or reflectance measurements of single polished crystals or fine powders pressed to compact disks are used for the determination of mid-infrared optical constants. Measurements of these types of surfaces eliminate or minimize multiple reflections, providing a specular surface. Our measurements, however, likely produce a reasonable approximation of specular emissivity or reflectance, as the minimum particle size is greater than the maximum wavelength of light measured. Future work will include measurement of pressed disks of powdered samples in emission and reflection, and when possible, small single crystals under an IR reflectance microscope, which will allow us to assess the variability of spectra and optical constants under different sample preparation and measurement conditions.

  10. The influence of the ionized medium on synchrotron emission in interstellar space.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1972-01-01

    The effect of the ionized gas on synchrotron emission in the interstellar medium is investigated. A detailed calculation of the synchrotron emissivity of cosmic electrons, assumed to have an isotropic pitch-angle distribution in a uniform magnetic field, is made as a function of frequency and observation angle with respect to the field. The results are presented both as a local emissivity and as an intensity, the latter obtained by neglecting free-free absorption in the interstellar medium and by assuming that the emissivity is constant along the line of sight. The comparison of these results with previous studies on the nature of the low-frequency turnover of the galactic nonthermal radio background reveals that, except if the component perpendicular to the line of sight of the interstellar magnetic field is small (less than 1 microgauss), or if the cosmic-ray electron spectrum is cut off at energies below a few hundred MeV, the suppression of synchrotron emission by the ambient electrons has in general a lesser effect than free-free absorption by these electrons, and that in some cases this suppression effect is almost entirely negligible.

  11. Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane.

    PubMed

    Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G

    2010-01-01

    A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.

  12. Study of the Variability of the Reflection Component in Seyfert 1 Galaxies: Connecting the Fe K Variability with the Compton Hump

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Miniutti, G.; Malaguti, G.; Gallo, L.; Goldwurm, A.

    2009-05-01

    We present preliminary results of an ongoing project devoted to the study of the continuum and Fe K band variability in a sample of bright AGNs. These kind of studies may break the spectral degeneracy between the different absorption/emission models, allowing ``safe'' measurements of the disc and black hole properties from the broad line shapes. In fact, the Fe K band, alone, allows a first separation between the different components. Here we show the case of NGC 3783 which shows both a constant and a variable reflection component as well as strong ionized absorption. We show that a fundamental contribution will be given by Simbol-X that will allow to simultaneously measure not only the Fe K variability, but also the connected reflection hump variations.

  13. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC).

    PubMed

    Singh, Shatrughan; D'Sa, Eurico J; Swenson, Erick M

    2010-07-15

    Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin, Louisiana, USA,was examined by excitation emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC). CDOM optical properties of absorption and fluorescence at 355nm along an axial transect (36 stations) during March, April, and May 2008 showed an increasing trend from the marine end member to the upper basin with mean CDOM absorption of 11.06 + or - 5.01, 10.05 + or - 4.23, 11.67 + or - 6.03 (m(-)(1)) and fluorescence 0.80 + or - 0.37, 0.78 + or - 0.39, 0.75 + or - 0.51 (RU), respectively. PARAFAC analysis identified two terrestrial humic-like (component 1 and 2), one non-humic like (component 3), and one soil derived humic acid like (component 4) components. The spatial variation of the components showed an increasing trend from station 1 (near the mouth of basin) to station 36 (end member of bay; upper basin). Deviations from this increasing trend were observed at a bayou channel with very high chlorophyll-a concentrations especially for component 3 in May 2008 that suggested autochthonous production of CDOM. The variability of components with salinity indicated conservative mixing along the middle part of the transect. Component 1 and 4 were found to be relatively constant, while components 2 and 3 revealed an inverse relationship for the sampling period. Total organic carbon showed increasing trend for each of the components. An increase in humification and a decrease in fluorescence indices along the transect indicated an increase in terrestrial derived organic matter and reduced microbial activity from lower to upper basin. The use of these indices along with PARAFAC results improved dissolved organic matter characterization in the Barataria Basin. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    PubMed

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  15. Existence of a new emitting singlet state of proflavine: femtosecond dynamics of the excited state processes and quantum chemical studies in different solvents.

    PubMed

    Kumar, Karuppannan Senthil; Selvaraju, Chellappan; Malar, Ezekiel Joy Padma; Natarajan, Paramasivam

    2012-01-12

    Proflavine (3,6-diaminoacridine) shows fluorescence emission with lifetime, 4.6 ± 0.2 ns, in all the solvents irrespective of the solvent polarity. To understand this unusual photophysical property, investigations were carried out using steady state and time-resolved fluorescence spectroscopy in the pico- and femtosecond time domain. Molecular geometries in the ground and low-lying excited states of proflavine were examined by complete structural optimization using ab initio quantum chemical computations at HF/6-311++G** and CIS/6-311++G** levels. Time dependent density functional theory (TDDFT) calculations were performed to study the excitation energies in the low-lying excited states. The steady state absorption and emission spectral details of proflavine are found to be influenced by solvents. The femtosecond fluorescence decay of the proflavine in all the solvents follows triexponential function with two ultrafast decay components (τ(1) and τ(2)) in addition to the nanosecond component. The ultrafast decay component, τ(1), is attributed to the solvation dynamics of the particular solvent used. The second ultrafast decay component, τ(2), is found to vary from 50 to 215 ps depending upon the solvent. The amplitudes of the ultrafast decay components vary with the wavelength and show time dependent spectral shift in the emission maximum. The observation is interpreted that the time dependent spectral shift is not only due to solvation dynamics but also due to the existence of more than one emitting state of proflavine in the solvent used. Time resolved area normalized emission spectral (TRANES) analysis shows an isoemissive point, indicating the presence of two emitting states in homogeneous solution. Detailed femtosecond fluorescence decay analysis allows us to isolate the two independent emitting components of the close lying singlet states. The CIS and TDDFT calculations also support the existence of the close lying emitting states. The near constant lifetime observed for proflavine in different solvents is suggested to be due to the similar dipole moments of the ground and the evolved emitting singlet state of the dye from the Franck-Condon excited state.

  16. An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Herter, T. L.; Maercker, M.; Lau, R. M.; Sloan, G. C.

    2018-01-01

    The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell (M shell ∼ 7.3 × 10‑3 M ⊙) that is thought to have been produced during a thermal pulse event ∼2200 years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μm. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative-transfer code DUSTY, and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with n ∝ r α , where α ={0.75}-0.25+0.45 and a dust mass of {M}d={9.0}-4.1+2.3× {10}-6 {M}ȯ . The strong departure from an r ‑2 law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass loss that has been inferred from observations of the molecular gas.

  17. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  18. Broadband giant-refractive-index material based on mesoscopic space-filling curves

    NASA Astrophysics Data System (ADS)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-08-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.

  19. Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal waters.

    PubMed

    Bai, Ying; Cui, Zhengguo; Su, Rongguo; Qu, Keming

    2018-04-18

    The indirect photodegradation behaviors of acetaminophen (APAP) were investigated in the presence of four kinds of dissolved organic matter (DOM) and were also assessed in the presence of seawater components and conditions such as salinity, pH, nitrate and bicarbonate. The results showed three important findings: firstly, in the indirect photolysis of APAP, the contributions of 3 DOM*, ·OH and 1 O 2 were >85.0%, 2.3-9.9% and 0.8-2.6% at pH 8.0. Secondly, DOM was divided into four terrestrial humic-like components by Excitation-emission matrix spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC). This study showed a good linearity between DOM fluorescence components and the indirect photodegradation of APAP (R 2  = 0.92) and the differences in photodegradation rates of APAP among various DOM solutions were due to the diverse compositions of DOM. Finally, salinity was an important factor influencing the removal of APAP, and the APAP photodegradation rate constants increased from (3.33 ± 0.07) × 10 -5 s -1 to (1.25 ± 0.05) × 10 -4 s -1 with increasing salinity. The increased pseudo-first-order rate constants for photolysis of APAP with increasing salinity, pH and nitrate were attributed to the enhanced generation of reactive intermediates (RI) and easier reactions between RI and APAP. The increased APAP removal rate constant with increasing bicarbonate was likely ascribed to the yield of ∙CO 3 - . This is the first report of the roles of DOM components and salinity on the indirect photolysis of APAP. These findings would be essential to predict the photochemical fate of APAP and would also allow for a better understanding of the environmental fate of other phenolic contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Lifetimes of bacteriochlorophyll fluorescence in Rhodopseudomonas viridis and Heliobacterium chlorum at low temperatures

    NASA Technical Reports Server (NTRS)

    Kleinherenbrink, F. A.; Cheng, P.; Amesz, J.; Blankenship, R. E.

    1993-01-01

    Fluorescence lifetimes of isolated membranes of Rhodopseudomonas viridis were measured in the temperature range of 77 K to 25 K. At room temperature, the main component of the fluorescence decay of bacteriochlorophyll (BChl) b had a time constant of 50 ps. In contrast to other purple bacteria, the emission at low temperature was spectrally homogeneous and showed essentially single lifetimes of 140 ps at 77 K and 180 ps at 25 K, with the primary electron donor in the oxidized state. Taking into account the relative fluorescence yields with open and closed reaction centers, we arrive at numbers of 125 ps and 215 ps, respectively, for open reaction centers. These numbers are significantly smaller than expected on the basis of measurements of the efficiency of charge separation, perhaps suggesting that the excitation decay in the absence of reaction centers is considerably faster at low temperature than at room temperature. At least four different spectral components with different lifetimes were observed at 25 K in the emission of Heliobacterium chlorum, a short-wavelength component of about 30 ps and three longer-wavelength components of about 100 ps, 300 ps, and 900 ps. This indicates a strong heterogeneity in the emitting pigment, BChl g-808. The component with the shortest lifetime does not appear to be affected by the redox state of the reaction center and might reflect energy transfer to BChl g species which are connected to the reaction center.

  1. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    PubMed Central

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  2. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  3. Effect of temperature on postillumination isoprene emission in oak and poplar.

    PubMed

    Li, Ziru; Ratliff, Ellen A; Sharkey, Thomas D

    2011-02-01

    Isoprene emission from broadleaf trees is highly temperature dependent, accounts for much of the hydrocarbon emission from plants, and has a profound effect on atmospheric chemistry. We studied the temperature response of postillumination isoprene emission in oak (Quercus robur) and poplar (Populus deltoides) leaves in order to understand the regulation of isoprene emission. Upon darkening a leaf, isoprene emission fell nearly to zero but then increased for several minutes before falling back to nearly zero. Time of appearance of this burst of isoprene was highly temperature dependent, occurring sooner at higher temperatures. We hypothesize that this burst represents an intermediate pool of metabolites, probably early metabolites in the methylerythritol 4-phosphate pathway, accumulated upstream of dimethylallyl diphosphate (DMADP). The amount of this early metabolite(s) averaged 2.9 times the amount of plastidic DMADP. DMADP increased with temperature up to 35°C before starting to decrease; in contrast, the isoprene synthase rate constant increased up to 40°C, the highest temperature at which it could be assessed. During a rapid temperature switch from 30°C to 40°C, isoprene emission increased transiently. It was found that an increase in isoprene synthase activity is primarily responsible for this transient increase in emission levels, while DMADP level stayed constant during the switch. One hour after switching to 40°C, the amount of DMADP fell but the rate constant for isoprene synthase remained constant, indicating that the high temperature falloff in isoprene emission results from a reduction in the supply of DMADP rather than from changes in isoprene synthase activity.

  4. Method to analyze remotely sensed spectral data

    DOEpatents

    Stork, Christopher L [Albuquerque, NM; Van Benthem, Mark H [Middletown, DE

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  5. 40 CFR 1039.120 - What emission-related warranty requirements apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of operation and years, whichever comes first. You may offer an emission-related warranty more... Any speed 1,500 hours or two years, whichever comes first. Constant speed 19 ≤kW comes first. Constant speed 19 ≤kW <37 Less than 3,000 rpm 3...

  6. A ferroelectric model for the low emissivity highlands on Venus

    NASA Technical Reports Server (NTRS)

    Shepard, Michael K.; Arvidson, Raymond E.; Brackett, Robert A.; Fegley, Bruce, Jr.

    1994-01-01

    A model to explain the low emissivity venusian highlands is proposed utilizing the temperature-dependent dielectric constant of ferroelectric minerals. Ferroelectric minerals are known to occur in alkaline and carbonite rocks, both of which are plausible for Venus. Ferroelectric minerals possess extremely high dielectric constants (10(exp 5)) over small temperature intervals and are only required in minor (much less than 1%) abundances to explain the observed emissivities. The ferroelectric model can account for: (1) the observed reduction in emissivity with increased altitude, (2) the abrupt return to normal emissivities at highest elevations, and (3) the variations in the critical elevation observed from region to region.

  7. Phenomenological Description of Acoustic Emission Processes Occurring During High-Pressure Sand Compaction

    NASA Astrophysics Data System (ADS)

    Delgado-Martín, Jordi; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja

    2016-04-01

    Compaction, pore collapse and grain crushing have a significant impact over the hydrodynamic properties of sand formations. The assessment of the crushing stress threshold constitutes valuable information in order to assess the behavior of these formations provided that it can be conveniently identified. Because of the inherent complexities of the direct observation of sand crushing, different authors have developed several indirect methods, being acoustic emission a promising one. However, previous researches have evidenced that there are different processes triggering acoustic emissions which need to be carefully accounted. Worth mentioning among them are grain bearing, grain to container friction, intergranular friction and crushing. The work presented here addresses this purpose. A broadband acoustic emission sensor (PA MicroHF200) connected to a high-speed data acquisition system and control software (AeWIN for PCI1 2.10) has been attached to a steel ram and used to monitor the different processes occurring during the oedometric compaction of uniform quartz sand up to an axial load of about 110 MPa and constant temperature. Load was stepwise applied using a servocontrolled hydraulic press acting at a constant load rate. Axial strain was simultaneously measured with the aid of a LDT device. Counts, energy, event duration, rise time and amplitude were recorded along each experiment and after completion selected waveforms were transformed from the time to the frequency domain via FFT transform. Additional simplified tests were performed in order to isolate the frequency characteristics of the dominant processes occurring during sand compaction. Our results show that, from simple tests, it is possible to determine process-dependent frequency components. When considering more complex experiments, many of the studied processes overlap but it is still possible to identify when a particular one dominates as well as the likely onset of crushing.

  8. A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Yu; Shao, Lang; Wu, Xue-Feng; Huang, Yong-Feng; Zhang, Bing; Ryde, Felix; Yu, Hoi-Fung

    2018-02-01

    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB–SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index {β }o{CI}, electron spectral indices p CI, etc.) using color indices. Overall, we conclude that ∼90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.

  9. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  10. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  11. Origin of the Central Constant Emission Component of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corocoran, M. F.; Gull, T.; Ishibashi, K.; Pittard, J. M.; Hillier, D. J.; Damineli, A.; Davidson, K.; Nielsen, K. E.; Owocki, S.; hide

    2010-01-01

    The X-ray campaign observation of the wind-wind colliding (WWC) binary system, Eta Carinae, targeted at its periastron passage in 2003, presented a detailed view of the flux and spectral variations of the X-ray minimum phase. One of the discoveries in this campaign was a central constant emission (CCE) component very near the central WWC source (Hamaguchi et al. 2007, ApJ, 663, 522). The CCE component was noticed between 1-3 keY during the X-ray minima and showed no variation on either short timescales within any observation or long timescales of up to 10 years. Hamaguchi et al. (2007) discussed possible origins as collisionally heated shocks from the fast polar winds from Eta Car or the fast moving outflow from the WWC with the ambient gas, or shocked gas that is intrinsic to the wind of Eta Car. During the 2009 periastron passage, we launched another focussed observing campaign of Eta Carinae with the Chandra, XMM-Newton and Suzaku observatories, concentrating on the X-ray faintest phase named the deep X-ray minimum. Thanks to multiple observations during the deep X-ray minimum, we found that the CCE spectrum extended up to 10 keV, indicating presence of hot plasma of kT approx.4-6 keV. This result excludes two possible origins that assume relatively slow winds (v approx. 1000 km/s) and only leaves the possibility that the CCE plasma is wind blown bubble at the WWC downstream. The CCE spectrum in 2009 showed a factor of 2 higher soft band flux as the CCE spectrum in 2003, while the hard band flux was almost unchanged. This variation suggests decrease in absorption column along the line of sight. We compare this result with recent increase in V-band magnitude of Eta Carinae and discuss location of the CCE plasma.

  12. Broad Low-Intensity Wings in the Emission-Line Profiles of Four Wolf-Rayet Galaxies

    NASA Astrophysics Data System (ADS)

    Méndez, David I.; Esteban, César

    1997-10-01

    High-resolution spectroscopic observations have been obtained for the Wolf-Rayet galaxies He 2-10, II Zw 40, POX 4, and Tol 35. Several subregions have been selected in each slit position in order to investigate possible spatial variations in the line profiles, radial velocities, and ionization conditions of the gas. The most remarkable feature of the spectra is the presence of asymmetric broad low-intensity wings in the profiles of the brightest emission lines. These spectral features are detected farther out from the star-forming knots, showing linear dimensions between 300 pc and 4.1 kpc. The maximum expansion velocity measured for this gas is between 120 and 340 km s-1 and appears to be quite constant along the slit for all the objects. Additional general properties of the spectra are (1) the quoted emission-line ratios are similar in the narrow and broad components, (2) no systematic differences of the behavior of the broad and narrow components have been found along the major and minor axis of the galaxies, and (3) the spatial distribution of the ionized gas is peaked centrally. Different mechanisms capable of producing the observed broad spectral features are discussed: cloud-cloud collisions in virialized gas, ``academic'' superbubbles, champagne flows, and superbubble blowout. It is concluded that superbubble blowout expanding over a cloudy medium can explain the observational properties in a reasonable manner.

  13. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

    EPA Science Inventory

    The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

  14. Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.

    1988-06-01

    The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

  15. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  16. Nanosecond fluorescence microscopy. Emission kinetics of fura-2 in single cells.

    PubMed Central

    Keating, S M; Wensel, T G

    1991-01-01

    A microscope based time-correlated single photon counting instrument has been constructed to measure fluorescence intensity and emission anisotropy decays from fluorophores in single cells on a nanosecond time scale. The sample is excited and the emission collected using epi-illumination optics with frequency-doubled pulses from the cavity-dumped output of a synchronously pumped dye laser serving as an excitation source. Collection of decays from a single cell is possible due to the presence of an iris in the emission path that can be reduced to less than the diameter of a single cell. Using the instrument the decay of 60 nM 1,6-diphenyl-1,3,5-hexatriene was measured, demonstrating that adequate data for lifetime analysis can be recorded from fewer 10(3) molecules of the fluorophore in an illuminated volume of 23 fl. In addition, the intensity and anisotropy decays of fura-2 in single adherent cells and in suspensions of fura-2 loaded cells in suspension, although the relative amplitudes and decay constants vary somewhat from cell to cell. The results indicate that a significant but variable fraction of fura-2 is bound to relatively immobile macromolecular components in these cells. PMID:2015383

  17. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  18. Grain Temperature and Infrared Emission from Carbon Dust of Mixed Composition

    NASA Astrophysics Data System (ADS)

    Bartlett, S.; Duley, W. W.

    1996-06-01

    The equilibrium temperature of carbonaceous dust grains whose composition is consistent with IR spectra of diffuse cloud and dense cloud dust has been calculated using random covalent network (RCN) solutions for amorphous dust having a mixed graphite, diamond, and polymeric hydrocarbon composition. An effective medium approximation has been adopted to describe optical and thermal constants for dust compositions consistent with IR absorption spectra. A small amount of sp2 hybridized carbon in the form of aromatic rings is found to have a significant effect in reducing equilibrium temperature in dust with high diamond/polymer content. This formalism has also been used to calculate nonequilibrium emission spectra of very small grains (VSGs) subjected to stochastic heating in the interstellar radiation field. Such grains are found to emit strongly in sharp IR bands associated with C-H bonds at 3.4 μm and longer wavelengths. The effect of varying graphite/diamond/hydrocarbon composition on nonequilibrium emission by VSGs can also be described using this formalism. The ratio of emission at 12 and 25 μm is found to be high for VSGs with a large fraction of diamond or polymeric hydrocarbon but decreases dramatically for dust with a large sp2 aromatic component.

  19. Kinematics of Extremely Metal-poor Galaxies: Evidence for Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Méndez-Abreu, J.

    2017-01-01

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s-1. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The Hα line wings show a number of faint emission features with amplitudes around a few per cent of the main Hα component, and wavelength shifts between 100 and 400 km s-1. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  20. A tool to separate optical/infrared disc and jet emission in X-ray transient outbursts: the colour-magnitude diagrams of XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Russell, D. M.; Maitra, D.; Dunn, R. J. H.; Fender, R. P.

    2011-09-01

    It is now established that thermal disc emission and non-thermal jet emission can both play a role at optical/infrared (OIR) wavelengths in X-ray transients. The spectra of the jet and disc components differ, as do their dependence on mass accretion properties. Here we demonstrate that the OIR colour-magnitude diagrams (CMDs) of the evolution of the X-ray transient XTE J1550-564 in outburst can be used to separate the disc from the jet. Monitoring in two wavebands is all that is required. This outburst in 2000 was well studied, and both disc and jet were known to contribute. During the outburst the data follow a well-defined path in the CMD, describing what would be expected from a heated single-temperature blackbody of approximately constant area, except when the data appear redder than this track. This is due to the non-thermal jet component which dominates the OIR moreso during hard X-ray states at high luminosities, and which is quenched in the soft state. The CMD therefore shows state-dependent hysteresis, in analogy with (but not identical to) the well-established X-ray hardness-intensity diagram of black hole transients. The blackbody originates in the X-ray illuminated, likely unwarped, outer accretion disc. We show that the CMD can be approximately reproduced by a model that assumes various correlations between X-ray, OIR disc and OIR jet fluxes. We find evidence for the OIR jet emission to be decoupled from the disc near the peak of the hard state.

  1. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxymore » midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.« less

  2. Acoustic emission characteristics of a single cylinder diesel generator at various loads and with a failing injector

    NASA Astrophysics Data System (ADS)

    Dykas, Brian; Harris, James

    2017-09-01

    Acoustic emission sensing techniques have been applied in recent years to dynamic machinery with varying degrees of success in diagnosing various component faults and distinguishing between operating conditions. This work explores basic properties of acoustic emission signals measured on a small single cylinder diesel engine in a laboratory setting. As reported in other works in the open literature, the measured acoustic emission on the engine is mostly continuous mode and individual burst events are generally not readily identifiable. Therefore, the AE are processed into the local (instantaneous) root mean square (rms) value of the signal which is averaged over many cycles to obtain a mean rms AE in the crank angle domain. Crank-resolved spectral representation of the AE is also given but rigorous investigation of the AE spectral qualities is left to future study. Cycle-to-cycle statistical dispersion of the AE signal is considered to highlight highly variable engine processes. Engine speed was held constant but load conditions are varied to investigate AE signal sensitivity to operating condition. Furthermore, during the course of testing the fuel injector developed a fault and acoustic emission signals were captured and several signal attributes were successful in distinguishing this altered condition. The sampling and use of instantaneous rms acoustic emission signal demonstrated promise for non-intrusive and economical change detection of engine injection, combustion and valve events.

  3. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research

    NASA Astrophysics Data System (ADS)

    Lindinger, W.; Hansel, A.; Jordan, A.

    1998-02-01

    A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.

  4. Planck 2015 results. X. Diffuse component separation: Foreground maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  5. Planck 2015 results: X. Diffuse component separation: Foreground maps

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-09-20

    We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less

  6. Interferometric observations of non-maser SiO emission from circumstellar envelopes of AGB stars - Acceleration regions and SiO depletion

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Bieging, John H.

    1993-01-01

    High- and medium-resolution images of SiO J = 2-1(V = 0) from the circumstellar envelopes (CSEs) of three oxygen-rich stars, Chi Cyg, RX Boo, and IK Tau, were obtained. The SIO images were found to be roughly circular, implying that the CSEs are spherically symmetric on angular-size scales of about 3-9 arcsec. The observed angular half-maximum intensity source radius is nearly independent of the LSR velocity for all three CSEs. Chi Cyg and RX Boo are argued to be less than 450 pc distant, and have mass-loss rates larger than about 10 exp -6 solar mass/yr. In Chi Cyg and RX Boo, the line profiles at the peak of the brightness distribution are rounded, typical of optically-thick emission from a spherical envelope expanding with a constant velocity. In the IK Tau line profiles, an additional narrower central component is present, probably a result of emission from an inner circumstellar shell with a significantly smaller expansion velocity than the extended envelope.

  7. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    PubMed

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  8. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 During its Third Reactivation

    NASA Technical Reports Server (NTRS)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Furst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; hide

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(exp 7) cm, which translates to a surface dipole field B approximately 9 x 10(exp 10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  9. Multiepoch VLBI observations of 4C 39.25 - Superluminal motion amid stationary structure

    NASA Technical Reports Server (NTRS)

    Shaffer, David B.; Marscher, Alan P.; Marcaide, Jon; Romney, Jonathan D.

    1987-01-01

    Eight VLBI maps of the quasar 4C 39.25 are presented, covering the time interval November 1979 to July 1985. During this period the compact components at the eastern and western ends of the source remained roughly stationary with respect to each other. A third component emerged from the western component in 1982 and proceeded to move (relative to the other two components) eastward at a rate of 0.16 + or - 0.02 marcsec per year. This corresponds to an average apparent speed between 3.2c and 8.4c for Hubble's constant between 100 and 50 km/s Mpc and q0 between 1 and 0. This superluminal motion contrasts with the stationary structure observed in the 1970s and also still observed between the eastern and western ends of the source. Possible explanations include superluminal feeding of a stationary compact counterpart to a classical radio lobe, an obstacle in a relativistic jet, a relativistic jet which alternatively expands and contracts owing to gradients in the confining pressure, and gravitational lensing of the compact radio emission.

  10. Exhaust emission survey of an F100 afterburning turbofan engine at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E.; Cullom, R. R.

    1981-01-01

    Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.

  11. The effect of magnetic topography on high-latitude radio emission at Neptune

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; Warwick, James W.; Romig, J. H.

    1992-01-01

    Occultation by a local elevation on the surface of constant magnetic field is proposed as a new interpretation for the unusual properties of Neptune high-latitude emission. Abrupt changes in intensity and polarization of this broadband smooth radio emission were observed as the Voyager 2 spacecraft passed near the north magnetic pole before closest approach. The observed sequence of cutoffs with polarization reversal would not occur during descent of the spacecraft through regular surfaces of increasing magnetic field. The sequence can be understood in terms of constant-frequency (constant-field) surfaces that are not only offset from the planet center but are locally highly distorted by an elevation that occults the outgoing extraordinary-mode beam. The required occulter is similar to the field enhancement observed directly by the magnetometer team when Voyager reached lower altitude farther to the west. Evidence is presented that the sources of the high-altitude emission are located near the longitude of the minimum-B anomaly associated with the dipole offset and that the local elevation of constant-B surfaces extends eastward from the longitude where it is directly measured by the magnetometer to the longitude where occultation of the remote radio source is observed. Together, the radio and magnetometer experiments indicate that the constant-frequency surfaces are distorted by an elevation that extends 0.3 rad in the longitudinal direction.

  12. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  13. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials

    NASA Astrophysics Data System (ADS)

    Kemmlein, Sabine; Hahn, Oliver; Jann, Oliver

    The emissions of selected flame retardants were measured in 1- and 0.02-m 3 emission test chambers and 0.001-m 3 emission test cells. Four product groups were of interest: insulating materials, assembly foam, upholstery/mattresses, and electronics equipment. The experiments were performed under constant environmental conditions (23°C, 50% RH) using a fixed sample surface area and controlled air flow rates. Tris (2-chloro-isopropyl)phosphate (TCPP) was observed to be one of the most commonly emitted organophosphate flame retardants in polyurethane foam applications. Depending on the sample type, area-specific emission rates (SER a) of TCPP varied between 20 ng m -2 h -1 and 140 μg m -2 h -1. The emissions from electronic devices were measured at 60°C to simulate operating conditions. Under these conditions, unit specific emission rates (SER u) of organophosphates were determined to be 10-85 ng unit -1 h -1. Increasing the temperature increased the emission of several flame retardants by up to a factor of 500. The results presented in this paper indicate that emissions of several brominated and organophosphate flame retardants are measurable. Polybrominated diphenylethers exhibited an SER a of between 0.2 and 6.6 ng m -2 h -1 and an SER u of between 0.6 and 14.2 ng unit -1 h -1. Because of sink effects, i.e., sorption to chamber components, the emission test chambers and cells used in this study have limited utility for substances low vapour pressures, especially the highly brominated compounds; hexabromocyclododecane had an SER a of between 0.1 and 29 ng m -2 h -1 and decabromodiphenylether was not detectable at all.

  14. Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Fuentes, Antonio; Gómez, José L.; Martí, José M.; Perucho, Manel

    2018-06-01

    We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets, which are characterized by their dominant type of energy: internal, kinetic, or magnetic. Each model is threaded by a helical magnetic field with a pitch angle of 45° and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear, presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle, due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of 26° are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.

  15. Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Pappas, Thomas; Kanti, Panagiota

    2017-12-01

    We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  16. NICER Detection of Strong Photospheric Expansion during a Thermonuclear X-Ray Burst from 4U 1820–30

    NASA Astrophysics Data System (ADS)

    Keek, L.; Arzoumanian, Z.; Chakrabarty, D.; Chenevez, J.; Gendreau, K. C.; Guillot, S.; Güver, T.; Homan, J.; Jaisawal, G. K.; LaMarr, B.; Lamb, F. K.; Mahmoodifar, S.; Markwardt, C. B.; Okajima, T.; Strohmayer, T. E.; in ’t Zand, J. J. M.

    2018-04-01

    The Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS) observed strong photospheric expansion of the neutron star in 4U 1820–30 during a Type I X-ray burst. A thermonuclear helium flash in the star’s envelope powered a burst that reached the Eddington limit. Radiation pressure pushed the photosphere out to ∼200 km, while the blackbody temperature dropped to 0.45 keV. Previous observations of similar bursts were performed with instruments that are sensitive only above 3 keV, and the burst signal was weak at low temperatures. NICER's 0.2–12 keV passband enables the first complete detailed observation of strong expansion bursts. The strong expansion lasted only 0.6 s, and was followed by moderate expansion with a 20 km apparent radius, before the photosphere finally settled back down at 3 s after the burst onset. In addition to thermal emission from the neutron star, the NICER spectra reveal a second component that is well fit by optically thick Comptonization. During the strong expansion, this component is six times brighter than prior to the burst, and it accounts for 71% of the flux. In the moderate expansion phase, the Comptonization flux drops, while the thermal component brightens, and the total flux remains constant at the Eddington limit. We speculate that the thermal emission is reprocessed in the accretion environment to form the Comptonization component, and that changes in the covering fraction of the star explain the evolution of the relative contributions to the total flux.

  17. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  18. The Rhythm of Fairall 9. I. Observing the Spectral Variability With XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Lohfink, A. M.; Reynolds, S. C.; Pinto, C.; Alston, W.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A.C; Hailey, C. J.; Harrison, F. A.; hide

    2016-01-01

    We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.510 keV band remain constant with time in spite of large variations in flux. This behavior implies an unchanging source geometry and the same emission processes continuously at work at the timescale probed. With the constraints from NuSTAR on the broad-band spectral shape, it is clear that the soft excess in this source is a superposition of two different processes, one being blurred ionized reflection in the innermost parts of the accretion disk, and the other a continuum component such as a spatially distinct Comptonizing region. Alternatively, a more complex primary Comptonization component together with blurred ionized reflection could be responsible.

  19. Fourier transform infrared emission spectra of MnH and MnD

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  20. Spectroscopy of selected metal-containing diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Sigma+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH, and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant oe for MnH was found to be 1546.84518(65) cm-1, the equilibrium rotational constant Be was found to be 5.6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1.7308601(47) A. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 mum region using a Fourier transform spectrometer. Many bands were observed for the A'3phi- X3phi electronic transition of CoH and CoD. In addition, a new [13.3]4 electronic state was found by observing the [13.3]4-X3phi3 and [13.3]4- X3phi4 transitions in the spectrum of CoD. Analysis of the transitions with DeltaO = 0, +/-1 provided more accurate values of spin-orbit splittings between O = 4 and O = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800--11 300 cm-1 were recorded at a resolution of 0.04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1Sigma+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, lambda, and Fermi contact parameter, bF, in the ground X9Sigma- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

  1. Spectroscopy of selected metal-containing diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7[sigma]+ electronic state. The vibration-rotation bands from v = 1 to 0 to v = 3 to 2 for MnH, and from v = 1 to 0 to v = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant [omega]e for MnH was found to be 1546. 84518(65) cm-1, the equilibrium rotational constant Be was found to be 5. 6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1. 7308601(47) ?. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 _m region using a Fourier transform spectrometer. Many bands were observed for the A'3?-X3? electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- X3?3 and [13. 3]4-X3?4 transitions in the spectrum of CoD. Analysis of the transitions with [delta][omega] = 0, ?1 provided more accurate values of spin-orbit splittings between [omega] = 4 and [omega] = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm-1 were recorded at a resolution of 0. 04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1[sigma]+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, [lambda], and Fermi contact parameter, bF, in the ground X9[sigma]- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

  2. Sensitivity of blackbody effective emissivity to wavelength and temperature: By genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejigu, E. K.; Liedberg, H. G.

    A variable-temperature blackbody (VTBB) is used to calibrate an infrared radiation thermometer (pyrometer). The effective emissivity (ε{sub eff}) of a VTBB is dependent on temperature and wavelength other than the geometry of the VTBB. In the calibration process the effective emissivity is often assumed to be constant within the wavelength and temperature range. There are practical situations where the sensitivity of the effective emissivity needs to be known and correction has to be applied. We present a method using a genetic algorithm to investigate the sensitivity of the effective emissivity to wavelength and temperature variation. Two matlab® programs are generated:more » the first to model the radiance temperature calculation and the second to connect the model to the genetic algorithm optimization toolbox. The effective emissivity parameter is taken as a chromosome and optimized at each wavelength and temperature point. The difference between the contact temperature (reading from a platinum resistance thermometer or liquid in glass thermometer) and radiance temperature (calculated from the ε{sub eff} values) is used as an objective function where merit values are calculated and best fit ε{sub eff} values selected. The best fit ε{sub eff} values obtained as a solution show how sensitive they are to temperature and wavelength parameter variation. Uncertainty components that arise from wavelength and temperature variation are determined based on the sensitivity analysis. Numerical examples are considered for illustration.« less

  3. Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas1[w

    PubMed Central

    Underwood, Beverly A.; Tieman, Denise M.; Shibuya, Kenichi; Dexter, Richard J.; Loucas, Holly M.; Simkin, Andrew J.; Sims, Charles A.; Schmelz, Eric A.; Klee, Harry J.; Clark, David G.

    2005-01-01

    In many flowering plants, such as petunia (Petunia × hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile organic compounds (VOCs) are regulated by ethylene. Expression of benzoic acid/salicylic acid carboxyl methyltransferase (PhBSMT1 and 2) mRNA is temporally and spatially down-regulated in floral organs in a manner consistent with current models for postpollination ethylene synthesis in petunia corollas. Emission of methylbenzoate and other VOCs after pollination and exogenous ethylene treatment parallels a reduction in PhBSMT1 and 2 mRNA levels. Under cyclic light conditions (day/night), PhBSMT mRNA levels are rhythmic and precede emission of methylbenzoate by approximately 6 h. When shifted into constant dark or light conditions, PhBSMT mRNA levels and subsequent methylbenzoate emission correspondingly decrease or increase to minimum or maximum levels observed during normal conditions, thus suggesting that light may be a more critical influence on cyclic emission of methylbenzoate than a circadian clock. Transgenic PhBSMT RNAi flowers with reduced PhBSMT mRNA levels show a 75% to 99% decrease in methylbenzoate emission, with minimal changes in other petunia VOCs. These results implicate PhBSMT1 and 2 as genes responsible for synthesis of methylbenzoate in petunia. PMID:15849311

  4. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less

  6. Exciplex-like emission from a closely-spaced, orthogonally-sited anthracenyl-boron dipyrromethene (Bodipy) molecular dyad.

    PubMed

    Benniston, Andrew C; Harriman, Anthony; Whittle, Victoria L; Zelzer, Mischa; Harrington, Ross W; Clegg, William

    2010-07-30

    A molecular dyad, , has been prepared that incorporates a boron dipyrromethene (Bodipy) group functionalized at the meso position with an anthracenyl unit. Emission from the dyad contains contributions from both localized fluorescence from the Bodipy unit and exciplex-like emission associated with an intramolecular charge-transfer state. The peak position, intensity and lifetime of this exciplex emission are solvent dependent and the shift in the emission maximum shows a linear relationship to the solvent polarity function (Deltaf). The calculated dipole moment for the exciplex is 22.5 +/- 2.2 D. The radiative rate constant (k(RAD)) for exciplex emission decreases progressively with increasing solvent polarity. In this latter case, k(RAD) shows an obvious dependence on the energy gap between the exciplex state and the first-excited singlet state resident on the Bodipy unit. The emission characteristics for dissolved in perfluorooctane are used to characterize the refractive index and dielectric constant of the solvent.

  7. Spectral emissivities and optical constants of electromagnetically levitated liquid metals as functions of temperature and wavelength

    NASA Technical Reports Server (NTRS)

    Krishnan, S.; Hauge, R. H.; Margrave, J. L.

    1989-01-01

    The development of a noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomittant with radiance brightness. Using this approach, the optical properties of electromagnetically levitated liquid metals Cu, Ag, Au, Ni, Pd, Pt, and Zr were measured in situ at four wavelengths and up to 600 K superheat in the liquid. The data suggest an increase in the emissivity of the liquid compared with the incandescent solid. The data also show moderate temperature dependence of the spectral emissivity. A few measurements of the optical properties of undercooled liquid metals were also conducted. The data for both solids and liquids show excellent agreement with available values in the literature for the spectral emissivities as well as the optical constants.

  8. Emissions from U.S. waste collection vehicles.

    PubMed

    Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela

    2013-05-01

    This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.

  9. Influence of emissivity on behavior of metallic dust particles in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less

  10. Dynamics of Relaxation Processes of Spontaneous Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Murphy, William James

    The dynamical response of spontaneous otoacoustic emissions (SOAEs) to suppression by ipsilateral pulsed external tones of different frequencies and levels is investigated in nine female subjects under normal conditions and in four female subjects during periods when aspirin is being administered. A simple Van der Pol limit-cycle oscillator driven by an external tone is used as an interpretive model. Typical results for both the onset of, and recovery from suppression yield 1/r_1 (where -r_1 is the negative linear component of the damping function) in the range of 2-25 msec. In accordance with the predictions of the model: (a) the relaxation time for the onset of suppression increases with the amount of suppression induced by the external tone, (b) the values of r _1 and the amplitudes of the unsuppressed emissions exhibit an inverse correlation, (c) the values inferred for r_1 are not significantly dependent on the frequency of the pulsed suppressor tone and (d) the inferred r_1 values are not significantly dependent upon the amount of suppression. In investigations involving subjects under aspirin administration, the changes in the relaxation time constants indicate that the main effect of aspirin administration is to reduce the negative damping parameter r_1. The salicylate is apparently not metabolized in some subjects whose emissions are negligibly affected by aspirin administration. A modification of the single-oscillator model is used to describe pulsed suppression data obtained from a primary SOAE (2545 Hz) which is suppressed by a neighboring secondary emission (2895 Hz). The response of the SOAE amplitude during pulsed suppression is modeled by a pair of Van der Pol limit-cycle oscillators with the primary oscillator linearly coupled to the displacement of the secondary higher-frequency one. The relaxation time constants for the onset of, and recovery from, suppression are 4.5 and 4.8 msec, respectively, for the primary SOAE and 7.5 and 10.5 msec for the secondary one. Aspirin administration reduces the magnitude of the overshoot by reducing the level of the higher frequency SOAE and thereby eliminating the suppression of the lower frequency one.

  11. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  12. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less

  13. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.

    PubMed

    Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A

    2011-03-22

    A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.

  14. Detection of boron nitride radicals by emission spectroscopy in a laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Dutouquet, C.; Acquaviva, S.; Hermann, J.

    2001-06-01

    Several vibrational bands of boron nitride radicals have been observed in a plasma produced by pulsed-laser ablation of a boron nitride target in low-pressure nitrogen or argon atmospheres. Using time- and space-resolved emission spectroscopic measurements with a high dynamic range, the most abundant isotopic species B 11N have been detected. The emission bands in the spectral range from 340 to 380 nm belong to the Δυ =-1, 0, +1 sequences of the triplet system (transition A 3Π-X 3Π). For positive identification, the molecular emission bands have been compared with synthetic spectra obtained by computer simulations. Furthermore, B 10N emission bands have been reproduced by computer simulation using molecular constants which have been deduced from the B 11N constants. Nevertheless, the presence of the lower abundant isotopic radical B 10N was not proved due the noise level which masked the low emission intensity of the B 10N band heads.

  15. Large differences in land use emission quantifications implied by definition discrepancies

    NASA Astrophysics Data System (ADS)

    Stocker, B. D.; Joos, F.

    2015-03-01

    The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review the conceptual differences of eLUC quantification methods and apply an Earth System Model to demonstrate that what is claimed to represent total eLUC differs by up to ~20% when quantified from ESM vs. offline vegetation models. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies and global carbon budget accountings should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.

  16. Quantifying differences in land use emission estimates implied by definition discrepancies

    NASA Astrophysics Data System (ADS)

    Stocker, B. D.; Joos, F.

    2015-11-01

    The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.

  17. Different auditory feedback control for echolocation and communication in horseshoe bats.

    PubMed

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  18. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

    PubMed Central

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137

  19. Cl(-) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum.

    PubMed Central

    Muneyuki, Eiro; Shibazaki, Chie; Wada, Yoichiro; Yakushizin, Manabu; Ohtani, Hiroyuki

    2002-01-01

    The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms. PMID:12324398

  20. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Auxiliary Emission Control Device (AECD) means any element of design which senses temperature, vehicle speed.... Critical emission-related components are those components which are designed primarily for emission control... control system is a unique group of emission control devices, auxiliary emission control devices, engine...

  1. Real-time black carbon emission factors of light-duty vehicles tested on a chassis dynamometer

    NASA Astrophysics Data System (ADS)

    Forestieri, S. D.; Cappa, C. D.; Kuwayama, T.; Collier, S.; Zhang, Q.; Kleeman, M. J.

    2012-12-01

    Eight light-duty gasoline vehicles were tested on a Chassis dynamometer using the California Unified Driving Cycle (UDC) at the Haagen-Smit vehicle test facility at the California Air Resources Board (CARB) in El Monte, CA during September 2011. In addition, one light-duty gasoline vehicle, one ultra low-emission vehicle, one diesel passenger vehicle, and one gasoline direct injection vehicle were tested on a constant velocity driving cycle. Vehicle exhaust was diluted through CARB's CVS tunnel and a secondary dilution system in order to examine particulate matter (PM) emissions at atmospherically relevant concentrations (5-30 μg-m3). A variety of real-time instrumentation was used to characterize how the major PM components vary during a typical driving cycle, which includes a cold start phase followed by a hot stabilized running phase. Aerosol absorption coefficients were obtained at 532 nm and 405 nm with a time resolution of 2 seconds from a photo-acoustic spectrometer. These absorption coefficients were then converted to black carbon (BC) concentrations via a mass absorption coefficient. Non-refractory organic and inorganic PM and CO2 concentrations were quantified with a time resolution of 10 seconds using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Real-time BC and CO2 concentrations allowed for the determination of BC emission factors (EFs), providing insights into the variability of BC EFs during different phases of a typical driving cycle and aiding in the modeling BC emissions.

  2. Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain

    NASA Astrophysics Data System (ADS)

    Moreno-Gutiérrez, J.; Durán-Grados, V.; Uriondo, Z.; Ángel Llamas, J.

    2012-08-01

    A reliable and up-to-date maritime emission inventory is essential for atmospheric scientists quantifying the impact of shipping. The objective of this study is to estimate the atmospheric emissions of SO2, NOx, CO2 and PM10 by international merchant shipping in 2007 in the Strait of Gibraltar, Spain, including the Algeciras Bay by two methods. Two methods (both bottom-up) have been used in this study: 1. Establishing engine power-based emission factors (g kWh-1, EPA) or the mass of pollutant per work performed by the engine for each of the relevant components of the exhaust gas from diesel engines and power for each ship. 2. Establishing fuel-based emission factors (kg emitted/t of fuel) or mass of pollutant per mass of combusted fuel for each of the relevant components of the exhaust gas and a fuel-consumption inventory (IMO). In both methods, the means to estimate engine power and fuel-consumption inventories are the same. The exhaust from boilers and incinerators is regarded as a small contributor and excluded. In total, an estimated average of 1 389 111.05 t of CO2, 23 083.09 t of SO2, 32 005.63 t of NOx and 2972 t of PM10 were emitted from January 2007 until December 2007 by international and domestic shipping. The estimated total fuel consumption amounts to 437 405.84 t. The major differences between the estimates generated by the two methods are for NOx (16% in certain cases) and CO (up to 23%). A total difference for all compounds of 3038 t (approximately 2%) has been found between the two methods but it is not areasonable estimate of uncertainty. Therefore, the results for both methods may be considered acceptable because the actual uncontrolled deviations appear in the changes in emission factors that occur for a given engine with age. These deviations are often difficult to quantify and depend on individual shipboard service and maintenance routines. Emission factors for CO and NOx are not constant and depend on engine condition. For example, tests conducted by the authors of this paper demonstrate that when an engine operates under normal in-service conditions, the emissions are within limits. However, with a small fault in injection timing, the NOx emission exceeds the limits (30% higher value in some cases). A fault in the maintenance of the injection nozzles increases the CO emission (15% higher value in some cases).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khader, S. Abdul, E-mail: khadersku@gmail.com; Sankarappa, T., E-mail: sankarappa@rediffmail.com; Muneeswaran, M.

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO{sub 3} (BT) and highly magneto-strictive magnetic component Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4}(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hzmore » to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.« less

  4. Experimental evaluation of main emissions during coal processing waste combustion.

    PubMed

    Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A

    2018-02-01

    The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consistingmore » of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.« less

  6. 40 CFR 63.620 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of this subpart apply to the following emission points which are components of a granular triple... to the following emission points which are components of a granular triple superphosphate storage... emission points which are components of a diammonium and/or monoammonium phosphate process line: reactors...

  7. 40 CFR 63.620 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of this subpart apply to the following emission points which are components of a granular triple... to the following emission points which are components of a granular triple superphosphate storage... emission points which are components of a diammonium and/or monoammonium phosphate process line: reactors...

  8. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  9. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Manuel F.; Xara, Susana M.; Delgado, Julanda

    2009-01-15

    The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1 h at 1273 K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to amore » filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300 K taking into account the composition of the batteries. This analysis was done for most of potential reactions between components in the batteries as well as between them and the surrounding atmosphere and it reasonably agrees the experimental results. The results obtained show the role of alkaline batteries at the acid gases cleaning process, through the neutralization reactions of some of their components. Therefore, LCA of spent AA alkaline batteries at the municipal solid waste (MSW) incineration process must consider this contribution.« less

  10. DENSE OPTICAL AND NEAR-INFRARED MONITORING OF CTA 102 DURING HIGH STATE IN 2012 WITH OISTER: DETECTION OF INTRA-NIGHT ''ORPHAN POLARIZED FLUX FLARE''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Ryosuke; Fukazawa, Yasushi; Tanaka, Yasuyuki T.

    2013-05-10

    CTA 102, classified as a flat spectrum radio quasar at z = 1.037, produced an exceptionally bright optical flare in 2012 September. Following the Fermi Large Area Telescope detection of enhanced {gamma}-ray activity, we closely monitored this source in the optical and near-infrared bands for the 10 subsequent nights using 12 telescopes in Japan and South Africa. On MJD 56197 (2012 September 27, four to five days after the peak of bright {gamma}-ray flare), polarized flux showed a transient increase, while total flux and polarization angle (PA) remained almost constant during the ''orphan polarized-flux flare.'' We also detected an intra-nightmore » and prominent flare on MJD 56202. The total and polarized fluxes showed quite similar temporal variations, but the PA again remained constant during the flare. Interestingly, the PAs during the two flares were significantly different from the jet direction. The emergence of a new emission component with a high polarization degree (PD) up to 40% would be responsible for the observed two flares, and such a high PD indicates the presence of a highly ordered magnetic field at the emission site. We argue that the well-ordered magnetic field and even the observed directions of the PA, which is grossly perpendicular to the jet, are reasonably accounted for by transverse shock(s) propagating down the jet.« less

  11. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data.

    PubMed

    De la Cruz, Florentino B; Barlaz, Morton A

    2010-06-15

    The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, k(lab), for the major biodegradable MSW components were used to derive field-scale decay rates (k(field)) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04 yr(-1), k(field) was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029 yr(-1), for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard waste and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.

  12. Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1992-01-01

    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.

  13. Microbubbles and Blood Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions

    PubMed Central

    Goertz, David E.; Hynynen, Kullervo

    2015-01-01

    Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853

  14. On the Foundation of Equipartition in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan

    2018-03-01

    A widely accepted paradigm is that equipartition (eqp) between the energy density of cosmic rays (CRs) and the energy density of the magnetic field cannot be sustained in supernova remnants (SNRs). However, our 3D hydrodynamic supercomputer simulations, coupled with a nonlinear diffusive shock acceleration model, provide evidence that eqp may be established at the end of the Sedov phase of evolution in which most SNRs spend the longest portions of their lives. We introduce the term “constant partition” for any constant ratio between the CR energy density and the energy density of the magnetic field in an SNR, while the term “equipartition” should be reserved for the case of approximately the same values of the energy density (also, it is constant partition in the order of magnitude) of ultra-relativistic electrons only (or CRs in total) and the energy density of the magnetic field. Our simulations suggest that this approximate constant partition exists in all but the youngest SNRs. We speculate that since evolved SNRs at the end of the Sedov phase of evolution can reach eqp between CRs and magnetic fields, they may be responsible for initializing this type of eqp in the interstellar medium. Additionally, we show that eqp between the electron component of CRs and the magnetic field may be used for calculating the magnetic field strength directly from observations of synchrotron emission from SNRs. The values of magnetic field strengths in SNRs given here are approximately 2.5 times lower than values calculated by Arbutina et al.

  15. Combination of a Copper-Ion Selective Electrode and Fluorometric Titration for the Determination of Copper(II) Ion Conditional Stability Constants of Humic Substances.

    PubMed

    Chen, Juan; Chen, Hao; Zhang, Xing-wen; Lei, Kun; Kenny, Jonathan E

    2015-11-01

    A fluorescence quenching model using copper(II) ion (Cu(2+)) ion selective electrode (Cu-ISE) is developed. It uses parallel factor analysis (PARAFAC) to model fluorescence excitation-emission matrices (EEMs) of humic acid (HA) samples titrated with Cu(2+) to resolve fluorescence response of fluorescent components to Cu(2+) titration. Meanwhile, Cu-ISE is employed to monitor free Cu(2+) concentration ([Cu]) at each titration step. The fluorescence response of each component is fit individually to a nonlinear function of [Cu] to find the Cu(2+) conditional stability constant for that component. This approach differs from other fluorescence quenching models, including the most up-to-date multi-response model that has a problematic assumption on Cu(2+) speciation, i.e., an assumption that total Cu(2+) present in samples is a sum of [Cu] and those bound by fluorescent components without taking into consideration the contribution of non-fluorescent organic ligands and inorganic ligands to speciation of Cu(2+). This paper employs the new approach to investigate Cu(2+) binding by Pahokee peat HA (PPHA) at pH values of 6.0, 7.0, and 8.0 buffered by phosphate or without buffer. Two fluorescent components (C1 and C2) were identified by PARAFAC. For the new quenching model, the conditional stability constants (logK1 and logK2) of the two components all increased with increasing pH. In buffered solutions, the new quenching model reported logK1 = 7.11, 7.89, 8.04 for C1 and logK2 = 7.04, 7.64, 8.11 for C2 at pH 6.0, 7.0, and 8.0, respectively, nearly two log units higher than the results of the multi-response model. Without buffer, logK1 and logK2 decreased but were still high (>7) at pH 8.0 (logK1 = 7.54, logK2 = 7.95), and all the values were at least 0.5 log unit higher than those (4.83 ~ 5.55) of the multi-response model. These observations indicate that the new quenching model is more intrinsically sensitive than the multi-response model in revealing strong fluorescent binding sites of PPHA in different experimental conditions. The new model was validated by testing it with a mixture of two fluorescing Cu(2+) chelating organic compounds, i.e., l-tryptophan and salicylic acid mixed with one non-fluorescent binding compound oxalic acid titrated with Cu(2+) at pH 5.0.

  16. 40 CFR 63.4890 - What emission limits must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organic HAP-free coating technology can be used on the metal furniture components. The request must be... Standards for Hazardous Air Pollutants: Surface Coating of Metal Furniture Emission Limitations § 63.4890... emission limit for specific metal furniture components or type of components for which you believe the...

  17. Rapid gamma-ray flux variability during the 2013 March Crab Nebula flare

    DOE PAGES

    Mayer, Michael; Buehler, Rolf; Hays, Elizabeth; ...

    2013-09-11

    Here, we report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) • 10 –6 cm –2 s –1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and impliesmore » a ~20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.« less

  18. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, M.; Buehler, R.; Hays, E.

    2013-10-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10{sup –6} cm{sup –2} s{sup –1} on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies amore » ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.« less

  19. Hydrogen transport behavior of metal coatings for plasma-facing components

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  20. THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan

    2011-03-15

    Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less

  1. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight

    NASA Astrophysics Data System (ADS)

    Hiryu, Shizuko; Katsura, Koji; Lin, Liang-Kong; Riquimaroux, Hiroshi; Watanabe, Yoshiaki

    2005-12-01

    Biosonar behavior was examined in Taiwanese leaf-nosed bats (Hipposideros terasensis; CF-FM bats) during flight. Echolocation sounds were recorded using a telemetry microphone mounted on the bat's head. Flight speed and three-dimensional trajectory of the bat were reconstructed from images taken with a dual high-speed video camera system. Bats were observed to change the intensity and emission rate of pulses depending on the distance from the landing site. Frequencies of the dominant second harmonic constant frequency component (CF2) of calls estimated from the bats' flight speed agreed strongly with observed values. Taiwanese leaf-nosed bats changed CF2 frequencies depending on flight speed, which caused the CF2 frequencies of the Doppler-shifted echoes to remain constant. Pulse frequencies were also estimated using echoes returning directly ahead of the bat and from its sides for two different flight conditions: landing and U-turn. Bats in flight may periodically alter their attended angles from the front to the side when emitting echolocation pulses.

  2. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Mantenieks, M. A.; Parsons, M. L.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  3. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  4. Surface Plasmon Waves on Thin Metal Films.

    NASA Astrophysics Data System (ADS)

    Craig, Alan Ellsworth

    Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.

  5. Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order

    DOE PAGES

    Mamo, Kiminad A.; Yee, Ho-Ung

    2016-03-24

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this “P-odd photon emission rate” in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of the P-odd emission rate at leading order consists of three parts: (1) Comptonmore » and pair annihilation processes with hard momentum exchange, (2) soft t- and u-channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. In conclusion, we present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.« less

  6. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  7. Electromagnetic ion cyclotron waves in the helium branch induced by multiple electromagnetic ion cyclotron triggered emissions

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark

    2011-09-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  8. Revised methane emissions from livestock in China

    NASA Astrophysics Data System (ADS)

    Yu, J.; Peng, S.; Chang, J.; Ciais, P.; Dumas, P.; Lin, X.; Piao, S.

    2017-12-01

    Livestock is the largest anthropogenic methane (CH4) source at the global scale. Previous inventories of this source for China were based on the accounting of livestock populations and constant emission factors (EFs) per head. Here, we re-evaluate how livestock CH4 emissions from China have changed over the last three decades, considering increasing population, body weight and milk production per head which cause EF to change with time, and decreasing average life span (ALS) of livestock. Our results show that annual CH4 emissions by livestock have increased from 4.5 to 11.8 Tg CH4 yr-1 over the period 1980-2013. The increasing trend in emissions (0.25 Tg CH4 yr-2) over this period is 12% larger than the estimate using constant EFs and ALS. The increasing livestock population, production per head and decreasing ALS contributed +91%, +28% and -19% to the increase in CH4 emissions from livestock, respectively. This implies that temporal changes in EF and ALS of livestock cannot be overlooked in inventories, especially in countries like China where livestock production systems are experiencing rapid transformations.

  9. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in climate over long timescales.

  10. Assumptions about footprint layer heights influence the quantification of emission sources: a case study for Cyprus

    NASA Astrophysics Data System (ADS)

    Hüser, Imke; Harder, Hartwig; Heil, Angelika; Kaiser, Johannes W.

    2017-09-01

    Lagrangian particle dispersion models (LPDMs) in backward mode are widely used to quantify the impact of transboundary pollution on downwind sites. Most LPDM applications count particles with a technique that introduces a so-called footprint layer (FL) with constant height, in which passing air tracer particles are assumed to be affected by surface emissions. The mixing layer dynamics are represented by the underlying meteorological model. This particle counting technique implicitly assumes that the atmosphere is well mixed in the FL. We have performed backward trajectory simulations with the FLEXPART model starting at Cyprus to calculate the sensitivity to emissions of upwind pollution sources. The emission sensitivity is used to quantify source contributions at the receptor and support the interpretation of ground measurements carried out during the CYPHEX campaign in July 2014. Here we analyse the effects of different constant and dynamic FL height assumptions. The results show that calculations with FL heights of 100 and 300 m yield similar but still discernible results. Comparison of calculations with FL heights constant at 300 m and dynamically following the planetary boundary layer (PBL) height exhibits systematic differences, with daytime and night-time sensitivity differences compensating for each other. The differences at daytime when a well-mixed PBL can be assumed indicate that residual inaccuracies in the representation of the mixing layer dynamics in the trajectories may introduce errors in the impact assessment on downwind sites. Emissions from vegetation fires are mixed up by pyrogenic convection which is not represented in FLEXPART. Neglecting this convection may lead to severe over- or underestimations of the downwind smoke concentrations. Introducing an extreme fire source from a different year in our study period and using fire-observation-based plume heights as reference, we find an overestimation of more than 60  % by the constant FL height assumptions used for surface emissions. Assuming a FL that follows the PBL may reproduce the peak of the smoke plume passing through but erroneously elevates the background for shallow stable PBL heights. It might thus be a reasonable assumption for open biomass burning emissions wherever observation-based injection heights are not available.

  11. Extended nebular emission in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.

    2015-02-01

    The morphological, spectroscopic and kinematical properties of the warm interstellar medium ( wim ) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer a precious opportunity for advancing our understanding in this respect. We use deep IFS data from CALIFA (califa.caha.es) to study the wim over the entire extent and optical spectral range of 32 nearby ETGs. We find that all ETGs in our sample show faint (Hα equivalent width EW(Hα)~0.5 ... 2 Å) extranuclear nebular emission extending out to >=2 Petrosian50 radii. Confirming and strengthening our conclusions in Papaderos et al. (2013, hereafter P13) we argue that ETGs span a broad continuous sequence with regard to the properties of their wim , and they can be roughly subdivided into two characteristic classes. The first one (type i) comprises ETGs with a nearly constant EW(Hα)~1-3 Å in their extranuclear component, in quantitative agreement with (even though, no proof for) the hypothesis of photoionization by the post-AGB stellar component being the main driver of extended wim emission. The second class (type ii) consists of virtually wim -evacuated ETGs with a large Lyman continuum (Ly c) photon escape fraction and a very low (<=0.5 Å) EW(Hα) in their nuclear zone. These two ETG classes appear indistinguishable from one another by their LINER-specific emission-line ratios. Additionally, here we extend the classification by P13 by the class i+ which stands for a subset of type i ETGs with low-level star-forming activity in contiguous spiral-arm like features in their outermost periphery. These faint features, together with traces of localized star formation in several type i&i+ systems point to a non-negligible contribution from young massive stars to the global ionizing photon budget in ETGs.

  12. The physical driver of the optical Eigenvector 1 in Quasar Main Sequence

    NASA Astrophysics Data System (ADS)

    Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor

    2017-11-01

    Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.

  13. Classification of light sources and their interaction with active and passive environments

    NASA Astrophysics Data System (ADS)

    El-Dardiry, Ramy G. S.; Faez, Sanli; Lagendijk, Ad

    2011-03-01

    Emission from a molecular light source depends on its optical and chemical environment. This dependence is different for various sources. We present a general classification in terms of constant-amplitude and constant-power sources. Using this classification, we have described the response to both changes in the local density of states and stimulated emission. The unforeseen consequences of this classification are illustrated for photonic studies by random laser experiments and are in good agreement with our correspondingly developed theory. Our results require a revision of studies on sources in complex media.

  14. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    NASA Astrophysics Data System (ADS)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  15. Conversion of isotropic fluorescence into a long-range non-diverging beam

    NASA Astrophysics Data System (ADS)

    Zhang, Douguo; Zhu, Liangfu; Chen, Junxue; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Zhan, Qiwen; Kuang, Cuifang; Liu, Xu; Lakowicz, Joseph R.

    2018-04-01

    Fluorescent samples typically emit isotropically in all directions. Large lenses and other optical components are needed to capture a significant fraction of the emission, and complex confocal microscopes are required for high resolution focal-plane imaging. It is known that Bessel beams have remarkable properties of being able to travel over long distances, over 1000 times the wavelength, without diverging, and hence are called non-diffracting beams. In previous reports the Bessel beams were formed by an incident light source, typically with plane-wave illumination on a circular aperture. It was not known if Bessel beams could form from fluorescent light sources. We demonstrate transformation of the emission from fluorescent polystyrene spheres (FPS) into non-diverging beams which propagate up to 130 mm (13 cm) along the optical axis with a constant diameter. This is accomplished using a planar metal film, with no nanoscale features in the X-Y plane, using surface plasmon-coupled emission. Using samples which contain many FPS in the field-of-view, we demonstrate that an independent Bessel beam can be generated from any location on the metal film. The extremely long non-diffracted propagation distances, and self-healing properties of Bessel beams, offer new opportunities in fluorescence sensing and imaging.

  16. Spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity enhancement and inhomogeneous interface degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V. N.; Iafrate, G. J.

    2014-02-07

    A theory for the spontaneous emission (SE) of terahertz radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity, while undergoing elastic scattering is presented. The Bloch electron is accelerated under the influence of a superimposed external constant electric field and an internal inhomogeneous electric field, while radiating into a microcavity. The analysis of the SE accounts for both the spectral structure of nonharmonic miniband components and the Bloch oscillation degradation effects arising from elastic scattering due to SL interface roughness. The interface roughness effects are decomposed into contributions arising from independent planarmore » and cross-correlated neighboring planar interfaces; parametric numerical estimates show that the cross-correlated contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate. It is shown that the degradation effects from SL interface roughness can be more than compensated for by the enhancements derived from microcavity-based tuning of the emission frequency to the cavity density of states peak. The theoretical approach developed herein has general applicability beyond its use for elastic scattering due to interface roughness. As well, the results obtained in this analysis can be useful in the development of SL-based Bloch-oscillator terahertz devices.« less

  17. Characterizing the nature of subpulse drifting in pulsars

    NASA Astrophysics Data System (ADS)

    Basu, Rahul; Mitra, Dipanjan

    2018-04-01

    We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.

  18. PAH air pollution at a Portuguese urban area: carcinogenic risks and sources identification.

    PubMed

    Slezakova, K; Pires, J C M; Castro, D; Alvim-Ferraz, M C M; Delerue-Matos, C; Morais, S; Pereira, M C

    2013-06-01

    This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng m(-3), surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10(-6)) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98 × 10(-7) in PM10 and 1.06 × 10(-6) in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.

  19. Multi-spectroscopic investigation on the complexation of tetracycline with dissolved organic matter derived from algae and macrophyte.

    PubMed

    Bai, Leilei; Zhao, Zhen; Wang, Chunliu; Wang, Changhui; Liu, Xin; Jiang, Helong

    2017-11-01

    Interactions of antibiotics with algae-derived dissolved organic matter (ADOM) and macrophyte-derived dissolved organic matter (MDOM) are of vital importance to the transport and ecotoxicity of antibiotics in eutrophic freshwater lakes. Multi-spectroscopic techniques were used to investigate the complexation of tetracycline (TTC) with ADOM and MDOM collected from Lake Taihu (China). The 3 fluorescent components, tyrosine-, tryptophan-, and humic-like component, were identified by excitation emission matrix spectra with parallel factor analysis. Their fluorescence was quenched at different degree by TTC titration through static quenching. The complexation of TTC induced conformational changes in DOM fractions. Synchronous fluorescence spectra combined with two dimensional correlation spectroscopy further suggested that the formation of TTC-DOM complexes occurred on the sequential order of tryptophan-like→tyrosine-like→humic-like component. The effective quenching constants of tryptophan- and tyrosine-like component were similar, higher than those of humic-like component. The strong binding ability and abundant content of protein-like substances indicated their prominent role in the TTC-DOM complexation. Fourier transform infrared spectroscopy further revealed that the heterogeneous functional groups, including amide I and II, aromatics, and aliphatics, were responsible for the complexation. These results highlight the significant impact of the overgrowth of algae and macrophyte on the environmental behavior of antibiotics in waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Performance and component frontal areas of a hypothetical two-spool turbojet engine for three modes of operation

    NASA Technical Reports Server (NTRS)

    Dugan, James F , Jr

    1955-01-01

    Engine performance is better for constant outer-spool mechanical-speed operation than for constant inner-spool mechanical-speed operation over most of the flight range considered. Combustor and afterburner frontal areas are about the same for the two modes. Engine performance for a mode characterized by a constant outer-spool equivalent speed over part of the flight range and a constant outer-spool mechanical speed over the rest of the flight range is better that that for constant outer-spool mechanical speed operation. The former mode requires larger outer-spool centrifugal stresses and larger component frontal areas.

  1. Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff's law

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Kwok, R.

    1993-01-01

    In this paper the polarimetric emission parameters for anisotropic media are derived using the generalized Kirchhoff's law for media with a uniform temperature and the fluctuation-dissipation theory for media with a temperature profile. Both finite-size objects and half-space media are considered. When the object has a uniform temperature across its body, the Kirchhoff's law, based on the condition of energy conservation in thermal equilibrium is generalized to obtain the emission parameters of an anisotropic medium, which can be interpreted as the absorptivity or the absorption cross section of the complementary object with a permittivity that is the transpose of the original object. When the medium has a nonuniform temperature distribution, the fluctuation-dissipation theory is applied for deriving the covariances between vector components of the thermal currents and, consequently, the covariances of the polarizations of electric fields radiated by the thermal currents. To verify the formulas derived from the fluctuation-dissipation theory, we let the temperature of the object be a constant and show that the results reduce to those obtained from the generalized Kirchhoff's law.

  2. Theoretical and experimental study of the electronic states and spectra of LiSb

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2018-05-01

    Gas phase emission spectra of the hitherto unknown free radical LiSb were measured in the NIR range with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which antimony vapor in argon carrier gas was passed through a microwave discharge and mixed with lithium vapor in an observation tube. A number of blue-degraded bands observed in the range 6200-7800 cm-1 are assigned to transitions from four excited states A21, A30+, A40- and a2 to the X10+ and/or X21 components of the X3Σ- ground state. The 0-0 bands of six transitions were measured at high spectral resolution and rotationally analysed. The rotational and vibrational analyses have yielded the spectroscopic parameters of all six states. In order to aid in the analysis of the experimental data, a series of relativistic configuration interaction calculations has been carried out to obtain potential energy curves and spectroscopic constants for the low-lying states of LiSb as well as electric-dipole transition moments and radiative lifetimes.

  3. Roles of Meteorology in Changes of Air Pollutants Concentrations in China from 2010 to 2015

    NASA Astrophysics Data System (ADS)

    Wang, P.; Kota, S. H.; Hu, J.; Ying, Q.; Zhang, H.

    2017-12-01

    Tremendous efforts have been made to control the severe air pollution in China in recent years. However, no significant improvement was observed according to annual fine particulate matter (PM2.5) concentrations and the concentrations in severe air pollution events in winter. This is partially due to the role of meteorology, which affects the emission, transport, transformation, and deposition of air pollutants. In this study, simulation of air pollutants over China was conducted for six years from 2010 to 2015 with constant anthropogenic emissions to verify the changes of air pollutants due to meteorology changes only. Model performance was validated by comparing with meteorological observations and air pollutants measures from various sources. Four different regions/cities were selected to understand the changes in wind, mixing layer height, temperature, and relative humanity at different seasons. The changes in concentrations of pollutants including PM2.5 and its chemical components and ozone were analyzed and associated with meteorological changes. This study would provide information for designing effective control strategies in different areas with the consideration of meteorological and climate changes.

  4. Real-world emissions and calculated reactivities of organic species from motor vehicles

    NASA Astrophysics Data System (ADS)

    Sagebiel, John C.; Zielinska, Barbara; Pierson, William R.; Gertler, Alan W.

    To obtain real-world motor vehicle emission rates for the hydrocarbon ozone precursors, a series of experiments was conducted in the Fort McHenry Tunnel, Baltimore, Maryland and in the Tuscarora Mountain Tunnel, Pennsylvania. Air samples collected in the tunnels were analyzed for approximately 200 non-methane hydrocarbon (NMHC) species up to C 20, and formaldehyde. Emission rates were determined from tunnel inlet and outlet fluxes. Traffic composition analysis allowed emissions to be split into light-duty (LD; mostly spark-ignition) and heavy-duty (HD; mostly diesel) contributions. LD emissions of NMHC at Tuscarora were 293 mg/veh-mile, with paraflins constituting 35%, olefins 23%, aromatics 42%, and 6 mg/veh-mile of formaldehyde. At Fort McHenry, LD hydrocarbon emissions were 615 mg/veh-mile, with 38% paraffins, 18% olefins, and 44% aromatics, and 7 mg/veh-mile of formaldehyde. In both tunnels, HD emissions were approximately double LD emissions, but with higher percent paraffins, lower percent olefins, and an order of magnitude more formaldehyde. Through use of reactivity adjustment factors, the reactivity of the NMHC emissions with respect to ozone formation was assessed. Reactivity followed emissions, with HD emissions approximately twice the reactivity of LD emissions (on a per vehicle-mile basis). The mass specific reactivity (g-O 3/g-emission) was nearly constant among all vehicles. The effect of grade (assessed at Fort McHenry) was approximately a factor of 2 for both emissions and reactivity. However, since fuel-specific emissions (g-emission/gallon fuel consumed for LD and HD vehicles were nearly independent of grade at Fort McHenry, the fuel-specific ozone reactivity (g-O 3/gallon fuel consumed) was also nearly constant over the down- and up-grades.

  5. Luminescence of the (O2(a(1)Δ(g)))2 collisional complex in the temperature range of 90-315 K: Experiment and theory.

    PubMed

    Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.

  6. Galactic foreground contributions to the 5-year Wilkinson Microwave Anisotropy Probe maps

    NASA Astrophysics Data System (ADS)

    Macellari, N.; Pierpaoli, E.; Dickinson, C.; Vaillancourt, J. E.

    2011-12-01

    We compute the cross-correlation between intensity and polarization from the 5-year Wilkinson Microwave Anisotropy Probe (WMAP5) data in different sky regions with respect to template maps for synchrotron, dust and free-free emission. We derive the frequency dependence and polarization fraction for all three components in 48 different sky regions of HEALPIX (Nside= 2) pixelization. The anomalous emission associated with dust is clearly detected in intensity over the entire sky at the K (23-GHz) and Ka (33-GHz) WMAP bands, and is found to be the dominant foreground at low Galactic latitudes, between b =-40° and +10°. The synchrotron spectral index obtained from the K and Ka WMAP bands from an all-sky analysis is βs=-3.32 ± 0.12 for intensity and βs=-3.01 ± 0.03 for polarized intensity. The polarization fraction of the synchrotron emission is constant in frequency and increases with latitude from ≈5 per cent near the Galactic plane up to ≈40 per cent in some regions at high latitudes; the average value for |b| < 20° is 8.6 ± 1.7 (stat) ± 0.5 (sys) per cent, while for |b| > 20°, it is 19.3 ± 0.8 (stat) ± 0.5 (sys) per cent. Anomalous dust and free-free emissions appear to be relatively unpolarized. Monte Carlo simulations showed that there were biases of the method due to cross-talk between the components, at up to ≈5 per cent in any given pixel, and ≈1.5 per cent on average, when the true polarization fraction is low (a few per cent or less). Nevertheless, the average polarization fraction of dust-correlated emission at the K band is 3.2 ± 0.9 (stat) ± 1.5 (sys) per cent or less than 5 per cent at 95 per cent confidence. When comparing real data with simulations, eight regions show a detected polarization above the 99th percentile of the distribution from simulations with no input foreground polarization, six of which are detected at above 2σ and display polarization fractions between 2.6 and 7.2 per cent, except for one anomalous region, which has 32 ± 12 per cent. The dust polarization values are consistent with the expectation from spinning dust emission, but polarized dust emission from magnetic-dipole radiation cannot be ruled out. Free-free emission was found to be unpolarized with an upper limit of 3.4 per cent at 95 per cent confidence.

  7. Assessing the effect of different treatments on decomposition rate of dairy manure.

    PubMed

    Khalil, Tariq M; Higgins, Stewart S; Ndegwa, Pius M; Frear, Craig S; Stöckle, Claudio O

    2016-11-01

    Confined animal feeding operations (CAFOs) contribute to greenhouse gas emission, but the magnitude of these emissions as a function of operation size, infrastructure, and manure management are difficult to assess. Modeling is a viable option to estimate gaseous emission and nutrient flows from CAFOs. These models use a decomposition rate constant for carbon mineralization. However, this constant is usually determined assuming a homogenous mix of manure, ignoring the effects of emerging manure treatments. The aim of this study was to measure and compare the decomposition rate constants of dairy manure in single and three-pool decomposition models, and to develop an empirical model based on chemical composition of manure for prediction of a decomposition rate constant. Decomposition rate constants of manure before and after an anaerobic digester (AD), following coarse fiber separation, and fine solids removal were determined under anaerobic conditions for single and three-pool decomposition models. The decomposition rates of treated manure effluents differed significantly from untreated manure for both single and three-pool decomposition models. In the single-pool decomposition model, AD effluent containing only suspended solids had a relatively high decomposition rate of 0.060 d(-1), while liquid with coarse fiber and fine solids removed had the lowest rate of 0.013 d(-1). In the three-pool decomposition model, fast and slow decomposition rate constants (0.25 d(-1) and 0.016 d(-1) respectively) of untreated AD influent were also significantly different from treated manure fractions. A regression model to predict the decomposition rate of treated dairy manure fitted well (R(2) = 0.83) to observed data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Very long baseline interferometric observations of the hydroxyl masers in VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Reid, M. J.; Muhleman, D. O.

    1978-01-01

    Results are presented for spectral-line VLBI observations of the OH emission from VY CMa. The main-line (1665 and 1667 MHz) emission was mapped with an angular resolution of 0.02 arcsec by analyzing interferometer phase data. The main-line emission comes from many maser components of apparent size less than 0.03 arcsec which are separated by up to 0.5 arcsec. New maser features near the center of the OH spectra were detected and found to lie within the region encompassed by the low-velocity OH emission. The 1612-MHz emission was mapped by Fourier inversion of the VLBI data from two baselines. All spatially isolated maser components appeared smaller than 0.15 arcsec; however, the maser emission is very complex at most velocities. Maser components within a velocity range of 1.3 km/s are often separated by more than 1 arcsec, while components more than 10 km/s apart in each emission complex are often coincident to 0.2 arcsec.

  9. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  10. Extended Dust Emission from Nearby Evolved Stars

    NASA Astrophysics Data System (ADS)

    Dharmawardena, Thavisha E.; Kemper, Francisca; Scicluna, Peter; Wouterloot, Jan G. A.; Trejo, Alfonso; Srinivasan, Sundar; Cami, Jan; Zijlstra, Albert; Marshall, Jonathan P.

    2018-06-01

    We present JCMT SCUBA-2 450{μ m} and 850{μ m} observations of 14 Asymptotic Giant Branch (AGB) stars (9 O-rich, 4 C-rich and 1 S-type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with Herschel/PACS observations at 70{μ m} and 160{μ m} and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 {μ m} emission ranges from 0.01 to 0.16 pc with an average of ˜40% of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature (T), spectral index of dust emissivity (β) and dust column density (Σ) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.

  11. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    PubMed

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Ionic channels and nerve membrane constituents. Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers.

    PubMed

    Villegas, R; Barnola, F V

    1972-01-01

    Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na(+) channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10(-6)M STX was 2.2 A(2)/cholesterol molecule at 25 degrees C. From surface pressure measurements at constant cholesterol area (39 A(2)/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10(-7)M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na(+) channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.

  13. Structural, dielectric and ferroelectric studies of (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 magnetoelectric nano-composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Muneeswaran, M.; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive magnetic component Mg0.25Cu0.25Zn0.5Fe2O4(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  14. On the Utility of the Molecular Oxygen Dayglow Emissions as Proxies for Middle Atmospheric Ozone

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Olander, Daphne S.

    1995-01-01

    Molecular oxygen dayglow emissions arise in part from processes related to the Hartley band photolysis of ozone. It is therefore possible to derive daytime ozone concentrations from measurements of the volume emission rate of either dayglow. The accuracy to which the ozone concentration can be inferred depends on the accuracy to which numerous kinetic and spectroscopic rate constants are known, including rates which describe the excitation of molecular oxygen by processes that are not related to the ozone concentration. We find that several key rate constants must be known to better than 7 percent accuracy in order to achieve an inferred ozone concentration accurate to 15 percent from measurements of either dayglow. Currently, accuracies for various parameters typically range from 5 to 100 percent.

  15. Inventory of methane emissions from livestock in China from 1980 to 2013

    NASA Astrophysics Data System (ADS)

    Yu, Jiashuo; Peng, Shushi; Chang, Jinfeng; Ciais, Philippe; Dumas, Patrice; Lin, Xin; Piao, Shilong

    2018-07-01

    Livestock is the largest anthropogenic methane (CH4) source at the global scale. Previous inventories of this source for China were based on the accounting of livestock populations and constant emission factors (EFs) per head. Here, we re-evaluate how livestock CH4 emissions have changed from China over the last three decades, considering increasing population, body weight and milk production per head which cause EF to change with time, and decreasing average life span (ALS) of livestock. Our results show that annual CH4 emissions by livestock have increased from 4.5 to 11.8 Tg CH4 yr-1 over the period 1980-2013. The increasing trend in emissions (0.25 Tg CH4 yr-2) over this period is ∼12% larger than that if using constant EFs and ALS. The increasing livestock population, production per head and decreasing ALS contributed +91%, +28% and -19% to the increase in CH4 emissions from livestock, respectively. This implies that the temporal changes in EF and ALS of livestock cannot be overlooked in inventories, especially in countries like China where livestock production systems are experiencing rapid transformations.

  16. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    PubMed

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics

  17. Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part I: macro-components and mass closure.

    PubMed

    Perrino, C; Catrambone, M; Dalla Torre, S; Rantica, E; Sargolini, T; Canepari, S

    2014-03-01

    The seasonal variability in the mass concentration and chemical composition of atmospheric particulate matter (PM10 and PM2.5) was studied during a 2-year field study carried out between 2010 and 2012. The site of the study was the area of Ferrara (Po Valley, Northern Italy), which is characterized by frequent episodes of very stable atmospheric conditions in winter. Chemical analyses carried out during the study allowed the determination of the main components of atmospheric PM (macro-elements, ions, elemental carbon, organic matter) and a satisfactory mass closure was obtained. Accordingly, chemical components could be grouped into the main macro-sources of PM: soil, sea spray, inorganic compounds from secondary reactions, vehicular emission, organics from domestic heating, organics from secondary formation, and other sources. The more significant seasonal variations were observed for secondary inorganic species in the fine fraction of PM; these species were very sensitive to air mass age and thus to the frequency of stable atmospheric conditions. During the winter ammonium nitrate, the single species with the highest concentration, reached concentrations as high as 30 μg/m(3). The intensity of natural sources was fairly constant during the year; increases in natural aerosols were linked to medium and long-range transport episodes. The ratio of winter to summer concentrations was roughly 2 for combustion product, close to 3 for secondary inorganic species, and between 2 and 3 for organics. The winter increase of organics was due to poorer atmospheric dispersion and to the addition of the emission from domestic heating. A similar winter to summer ratio (around 3) was observed for the fine fraction of PM.

  18. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. II. NEBULAR PROPERTIES OF THE DISK AND INNER WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.

    2009-12-01

    In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T approx 10{sup 4} K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm{sup -3} (implying very high thermal pressures), local small spatial-scale variations, and a falloff in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favor the escape of individual cluster winds that ultimately power themore » large-scale superwind. Our findings, when combined with the body of literature built up over the last decade on the state of the interstellar medium (ISM) in M82, imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low-filling factors (<1 pc, n {sub e} approx> 10{sup 4} cm{sup -3}) to larger filling factor, less dense gas. The most compact clouds seem to be found in the cores of the star cluster complexes, whereas the cloud sizes in the inter-complex region are larger. These dense clouds are bathed with an intense radiation field and embedded in an extensive high temperature (T approx> 10{sup 6} K), X-ray-emitting ISM that is a product of the high star formation rates in the starburst zones of M82. The near-constant state of the ionization state of the approx10{sup 4} K gas throughout the M82 starburst zone can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. In Paper I, we found that the observed emission lines are composed of multiple components, including a broad (FWHM approx 150-350 km s{sup -1}) feature that we associate with emission from turbulent mixing layers on the surfaces of the gas clouds, resulting from the interaction of the fast wind outflows from the synchrotron self-Comptons. The large number of compact clouds and wind sources provides an ideal environment for broad line emission, and explains the large observed broad/narrow-line flux ratios. We have examined in more detail the discrete outflow channel identified within the inner wind in Paper I. The channel appears as a coherent, expanding cylindrical structure of length >120 pc and width 35-50 pc. The walls maintain an approximately constant (but subsonic) expansion velocity of approx60 km s{sup -1}, and are defined by peaks and troughs in the densities of the different line components. We hypothesize that as the hot wind fluid flows down the channel cavity, it interacts with the cooler, denser walls of the channel and with entrained material within the flow to produce broad-line emission, while the walls themselves emit primarily the narrow lines. We use the channel to examine further the relationship between the narrow and broad component emitting gas within the inner wind. Within the starburst energy injection zone, we find that turbulent motions (as traced by the broad component) appear to play an increasing role with height. Finally, we have argued that a point-like knot identified in GMOS position 4, exhibiting blueshifted (by approx140 km s{sup -1}), broad (approx<350 km s{sup -1}) Halpha emission and enhanced [S II]/Halpha and [N II]/Halpha ratios, is most likely an ejected luminous blue variable-type object.« less

  19. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  20. Development of emission factors for polycarbonate processing.

    PubMed

    Rhodes, Verne L; Kriek, George; Lazear, Nelson; Kasakevich, Jean; Martinko, Marie; Heggs, R P; Holdren, M W; Wisbith, A S; Keigley, G W; Williams, J D; Chuang, J C; Satola, J R

    2002-07-01

    Emission factors for selected volatile organic compounds (VOCs) and particulate emissions were developed while processing eight commercial grades of polycarbonate (PC) and one grade of a PC/acrylonitrile-butadiene-styrene (ABS) blend. A small commercial-type extruder was used, and the extrusion temperature was held constant at 304 degrees C. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere/million pounds of polymer resin processed [ppm (wt/wt)]. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar PC processing operations.

  1. Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant

    NASA Astrophysics Data System (ADS)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2018-03-01

    This article proposes a gauge-origin independent formalism of the nuclear magnetic shielding constant in the two-component relativistic framework based on the unitary transformation. The proposed scheme introduces the gauge factor and the unitary transformation into the atomic orbitals. The two-component relativistic equation is formulated by block-diagonalizing the Dirac Hamiltonian together with gauge factors. This formulation is available for arbitrary relativistic unitary transformations. Then, the infinite-order Douglas-Kroll-Hess (IODKH) transformation is applied to the present formulation. Next, the analytical derivatives of the IODKH Hamiltonian for the evaluation of the nuclear magnetic shielding constant are derived. Results obtained from the numerical assessments demonstrate that the present formulation removes the gauge-origin dependence completely. Furthermore, the formulation with the IODKH transformation gives results that are close to those in four-component and other two-component relativistic schemes.

  2. Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth

    DOE PAGES

    Mitchell, Logan E.; Lin, John C.; Bowling, David R.; ...

    2018-03-05

    Cities are concentrated areas of CO 2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO 2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO 2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO 2 trends to changes in emissions, since we did not find longterm trends in atmospheric mixing proxies. Three contrasting CO 2 trends emerged across urban types: negative trends atmore » a residentialindustrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO 2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of populationwithin the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO 2, implying a nonlinear relationshipwith CO 2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO 2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.« less

  3. Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth

    NASA Astrophysics Data System (ADS)

    Mitchell, Logan E.; Lin, John C.; Bowling, David R.; Pataki, Diane E.; Strong, Courtenay; Schauer, Andrew J.; Bares, Ryan; Bush, Susan E.; Stephens, Britton B.; Mendoza, Daniel; Mallia, Derek; Holland, Lacey; Gurney, Kevin R.; Ehleringer, James R.

    2018-03-01

    Cities are concentrated areas of CO2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO2 trends to changes in emissions, since we did not find long-term trends in atmospheric mixing proxies. Three contrasting CO2 trends emerged across urban types: negative trends at a residential-industrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of population within the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO2, implying a nonlinear relationship with CO2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.

  4. Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Logan E.; Lin, John C.; Bowling, David R.

    Cities are concentrated areas of CO 2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO 2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO 2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO 2 trends to changes in emissions, since we did not find longterm trends in atmospheric mixing proxies. Three contrasting CO 2 trends emerged across urban types: negative trends atmore » a residentialindustrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO 2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of populationwithin the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO 2, implying a nonlinear relationshipwith CO 2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO 2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.« less

  5. A Deep Chandra ACIS Study of NGC 4151. III. The Line Emission and Spectral Analysis of the Ionization Cone

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-11-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 keV ~ 1040 erg s-1) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be lsim12% of the extended emission. Presence of both low- and high-ionization spectral components and extended emission in the X-ray image perpendicular to the bicone indicates leakage of nuclear ionization, likely filtered through warm absorbers, instead of being blocked by a continuous obscuring torus. The ratios of [O III]/soft X-ray flux are approximately constant (~15) for the 1.5 kpc radius spanned by these measurements, indicating similar relative contributions from the low- and high-ionization gas phases at different radial distances from the nucleus. If the [O III] and X-ray emission arise from a single photoionized medium, this further implies an outflow with a wind-like density profile. Using spatially resolved X-ray features, we estimate that the mass outflow rate in NGC 4151 is ~2 M ⊙ yr-1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 1041 erg s-1, approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  6. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...

  7. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...

  8. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  9. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  10. XMM-Newton Observations of NGC 507: Supersolar Metal Abundances in the Hot Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2004-10-01

    We present the results of the X-ray XMM-Newton observations of NGC 507, a dominant elliptical galaxy in a small group of galaxies, and report supersolar metal abundances of both Fe and α-elements in the hot interstellar medium (ISM) of this galaxy. These results are robust in that we considered all possible systematic effects in our analysis. We find ZFe=2-3 times solar inside the D25 ellipse of NGC 507. This is the highest ZFe reported so far for the hot halo of an elliptical galaxy; this high iron abundance is fully consistent with the predictions of stellar evolution models, which include the yield of both Type II and Type Ia supernovae (SNe). Our analysis shows that abundance measurements are critically dependent on the selection of the proper emission model. The spatially resolved, high-quality XMM-Newton spectra provide enough statistics to formally require at least three emission components in each of four circumnuclear concentric shells (within 5' or 100 kpc): two soft thermal components indicating a range of temperatures in the hot ISM plus a harder component, consistent with the integrated output of low-mass X-ray binaries (LMXBs) in NGC 507. The two-component (thermal+LMXB) model customarily used in past studies yields a much lower ZFe, consistent with previous reports of subsolar metal abundances. This model, however, gives a significantly worse fit to the data (F-test probability<0.0001). The abundance of α-elements (most accurately determined by Si) is also found to be supersolar. The α-element-to-Fe abundance ratio is close to the solar ratio, suggesting that ~70% of the iron mass in the hot ISM originated from Type Ia SNe. The α-element-to-Fe abundance ratio remains constant out to at least 100 kpc, indicating that Types II and Ia SN ejecta are well mixed on a scale much larger than the extent of the stellar body.

  11. Numerical and experimental investigation of a beveled trailing-edge flow field and noise emission

    NASA Astrophysics Data System (ADS)

    van der Velden, W. C. P.; Pröbsting, S.; van Zuijlen, A. H.; de Jong, A. T.; Guan, Y.; Morris, S. C.

    2016-12-01

    Efficient tools and methodology for the prediction of trailing-edge noise experience substantial interest within the wind turbine industry. In recent years, the Lattice Boltzmann Method has received increased attention for providing such an efficient alternative for the numerical solution of complex flow problems. Based on the fully explicit, transient, compressible solution of the Lattice Boltzmann Equation in combination with a Ffowcs-Williams and Hawking aeroacoustic analogy, an estimation of the acoustic radiation in the far field is obtained. To validate this methodology for the prediction of trailing-edge noise, the flow around a flat plate with an asymmetric 25° beveled trailing edge and obtuse corner in a low Mach number flow is analyzed. Flow field dynamics are compared to data obtained experimentally from Particle Image Velocimetry and Hot Wire Anemometry, and compare favorably in terms of mean velocity field and turbulent fluctuations. Moreover, the characteristics of the unsteady surface pressure, which are closely related to the acoustic emission, show good agreement between simulation and experiment. Finally, the prediction of the radiated sound is compared to the results obtained from acoustic phased array measurements in combination with a beamforming methodology. Vortex shedding results in a strong narrowband component centered at a constant Strouhal number in the acoustic spectrum. At higher frequency, a good agreement between simulation and experiment for the broadband noise component is obtained and a typical cardioid-like directivity is recovered.

  12. The Multi-component X-ray Emission of 3C 273

    NASA Astrophysics Data System (ADS)

    Soldi, S.; Türler, M.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    3C 273 is the brightest quasar in the sky and among the most extensively observed and studied AGN, therefore one of the most suitable targets for a long-term, multi-frequency study. The superposition of a thermal Comptonisation component, similar to that observed in Seyfert galaxies, and of a non-thermal component, related to the jet emission, seems to explain some of the spectral and timing properties of the X-ray emission of 3C 273. Yet, during some observations this dichotomy has not been observed and the variability properties could also be consistent with a single-component scenario, characterised by two parameters varying independently. In order to understand the nature of the X-ray emission in 3C 273, a series of observations up to 80-100 keV, possibly catching the source in different flux states, are essential. Simbol-X will be able to study the emission of 3C 273 in the broad 0.5-80 keV band with high sensitivity, allowing us to disentangle the emission from different spectral components, with 20-30 ks long observations. In addition, the shape and the origin of the high-energy emission of this quasar will be further constrained thanks to the AGILE and Fermi satellites, monitoring the γ-ray sky in the MeV-GeV energy domain.

  13. Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago

    NASA Astrophysics Data System (ADS)

    Milando, Chad; Huang, Lei; Batterman, Stuart

    2016-03-01

    PM2.5 concentrations throughout much of the U.S. have decreased over the last 15 years, but emissions and concentration trends can vary by location and source type. Such trends should be understood to inform air quality management and policies. This work examines trends in emissions, concentrations and source apportionments in two large Midwest U.S. cities, Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, apportionments from positive matrix factorization (PMF) receptor modeling, and quantile regression. Over the study period, county-wide data suggest emissions from point sources decreased (Detroit) or held constant (Chicago), while emissions from on-road mobile sources were constant (Detroit) or increased (Chicago), however changes in methodology limit the interpretation of inventory trends. Ambient concentration data also suggest source and apportionment trends, e.g., annual median concentrations of PM2.5 in the two cities declined by 3.2-3.6%/yr (faster than national trends), and sulfate concentrations (due to coal-fired facilities and other point source emissions) declined even faster; in contrast, organic and elemental carbon (tracers of gasoline and diesel vehicle exhaust) declined more slowly or held constant. The PMF models identified nine sources in Detroit and eight in Chicago, the most important being secondary sulfate, secondary nitrate and vehicle emissions. A minor crustal dust source, metals sources, and a biomass source also were present in both cities. These apportionments showed that the median relative contributions from secondary sulfate sources decreased by 4.2-5.5% per year in Detroit and Chicago, while contributions from metals sources, biomass sources, and vehicles increased from 1.3 to 9.2% per year. This first application of quantile regression to trend analyses of speciated PM2.5 data reveals that source contributions to PM2.5 varied as PM2.5 concentrations decreased, and that the fraction of PM2.5 due to emissions from vehicles and other local emissions has increased. Each data source has uncertainties, but emissions, monitoring and PMF data provide complementary information that can help to discern trends and identify contributing sources. Study results emphasize the need to target specific sources in policies and regulations aimed at decreasing PM2.5 concentrations in urban areas.

  14. Observation of EX Hydrae with ASCA

    NASA Technical Reports Server (NTRS)

    Ishida, Manabu; Mukai, Koji; Osborne, Julian P.

    1994-01-01

    We have observed the intermediate polar EX Hya with Advanced Satellite for Cosmology and Astrophysics (ASCA), and have clearly detected He-like and H-like K alpha emission lines from Mg to Fe. The intensity ratios of these pairs of lines are not compatible with an isothermal plasma, and a temperature distribution can no longer be parameterized by the conventional two emission component model. We have successfully decomposed iron line emission into thermal plasma component and flourescent component. The equivalent width of the flourescent component is approximately 80 eV.

  15. Interpreting the spectral behavior of MWC 314

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Miroshnichenko, A. S.; Rossi, C.; Friedjung, M.; Marilli, E.; Muratorio, G.; Busà, I.

    2016-01-01

    Context. MWC 314 is one of the most luminous stars in the Milky Way. Its fundamental parameters are similar to those of luminous blue variables (LBVs), although no large photometric variations have been recorded. Moreover, it shows no evidence of either a dust shell or a relevant spectral variability. Aims: The main purpose of this work is to clarify the origin of the radial velocity and line profile variations exhibited by absorption and emission lines. Methods: We analyzed the radial velocity (RV) variations displayed by the absorption lines from the star's atmosphere using high-resolution optical spectra and fitting the RV curve with an eccentric orbit model. We also studied the RV and profile variations of some permitted and forbidden emission lines of metallic ions with a simple geometric model. The behavior of the Balmer and He I lines has also been investigated. Results: Fourier analysis applied to the RV of the absorption lines clearly shows a 60-day periodicity. A dense coverage of the RV curve allowed us to derive accurate orbital parameters. The RV of the Fe II emission lines varies in the same way, but with a smaller amplitude. Additionally, the intensity ratio of the blue/red peaks of these emission lines correlates with the RV variations. The first three members of the Balmer series as well as [N II] lines display a nearly constant RV and no profile variations in phase with the orbital motion instead. The He I λ5876 Å line shows a strongly variable profile with broad and blue-shifted absorption components that reach velocities of ≤-1000 km s-1 in some specific orbital phases. Conclusions: Our data and analysis provide strong evidence that the object is a binary system composed of a supergiant B[e] star and an undetected companion. The emission lines with a non-variable RV could originate in a circumbinary region. For the Fe II emission lines, we propose a simple geometrical two-component model where a compact source of Fe II emission, moving around the center of mass, is affected by a static extra absorption that originates from a larger area. Finally, the blue-shifted absorption in the He I λ5876 Å line could be the result of density enhancements in the primary star wind that is flowing towards the companion, and which is best observed when projected over the disk of the primary star. Based on observations made at the 0.91 m of Catania Observatory, the OHP telescopes and the 1.83 m telescope of the Asiago Observatory.

  16. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. High Spatial Resolution Mid-IR Imaging of V838 Monocerotis: Evidence of New Circumstellar Dust Creation

    NASA Technical Reports Server (NTRS)

    Wisniewski, John P.; Clampin, Mark; Bjorkman, Karen S.; Barry, Richard K.

    2008-01-01

    We report high spatial resolution 11.2 and 18.1 mm imaging of V838 Monocerotis obtained with Gemini Observatory's Michelle instrument in 2007 March. Strong emission is observed from the unresolved stellar core of V838 Mon in our Gemini imagery and is confirmed by Spitzer MIPS 24 micron imaging obtained in 2007 April. The 2007 flux density of the unresolved mid-infrared emission component is approx.2 times brighter than that observed in 2004. No clear change in the net amount of 24 mm extended emission is observed between the 2004 and 2007 epoch Spitzer imagery. We interpret these data as evidence that V838 Mon has experienced a new circumstellar dust creation event. We suggest that this newly created dust has condensed from the expanding ejecta produced from V838 Mon's 2002 outburst events and is most likely clumpy. We speculate that one (or more) of these clumps might have passed through the line of sight in late 2006, producing the brief multiwavelength photometric event reported by H. Bond in 2006 and U. Munari et al. in 2007b. We detect no evidence of extended emission above a level of approx.1 mJy at 11.2 microns and approx.7 mJy at 18.1 microns over radial distances of 1860-93,000 AU (0.3" - 15.0") from the central source. Using the simple assumption that ejecta material expands at a constant velocity of 300-500 km/s, this gap of thermal emission suggests that no significant prior circumstellar dust production events have occurred within the past approx.900-1500 yr.

  18. INVERSE COMPTON X-RAY EMISSION FROM TeV BLAZAR MRK 421 DURING A HISTORICAL LOW-FLUX STATE OBSERVED WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Jun; Stawarz, Łukasz, E-mail: kataoka.jun@waseda.jp

    2016-08-10

    We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3–40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γmore » ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4 σ level in the 40–79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ -ray continuum of the blazar constrained by Fermi -LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.« less

  19. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...

  20. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...

  1. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), general type of fuel system (i.e., carburetor or fuel injection), catalyst system (e.g., none, oxidization... control systems are emission control components or systems (and fuel metering systems) that have completed... emission control components or systems (and fuel metering systems) that do not qualify as proven emission...

  2. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  3. Ultrafast photoinduced electron transfer in the micelle and the gel phase of a PEO-PPO-PEO triblock copolymer

    NASA Astrophysics Data System (ADS)

    Mandal, Ujjwal; Ghosh, Subhadip; Dey, Shantanu; Adhikari, Aniruddha; Bhattacharyya, Kankan

    2008-04-01

    Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to coumarin dyes is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123) by picosecond and femtosecond emission spectroscopies. The rate of PET in a P123 micelle and gel is found to be nonexponential and faster than the slow components of solvation dynamics. In a P123 micelle and gel, PET occurs on multiple time scales ranging from a subpicosecond time scale to a few nanoseconds. In the gel phase, the highest rate constant (9.3×109M-1s-1) of ET for C152 is about two times higher than that (3.8×109M-1s-1) observed in micelle phase. The ultrafast components of electron transfer (ET) exhibits a bell shaped dependence with the free energy change which is similar to the Marcus inversion. Possible reasons for slower PET in P123 micelle compared to other micelles and relative to P123 gel are discussed.

  4. Characterization of soluble microbial products in a drinking water biological aerated filter.

    PubMed

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics.

  5. Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Hryniewicz, K.; Różańska, A.; Czerny, B.; Ferland, G. J.

    2018-03-01

    The requirement of an intermediate-line component in the recently observed spectra of several active galactic nuclei (AGNs) points to the possible existence of a physically separate region between the broad-line region (BLR) and narrow-line region (NLR). In this paper we explore the emission from the intermediate-line region (ILR) by using photoionization simulations of the gas clouds distributed radially from the center of the AGN. The gas clouds span distances typical for the BLR, ILR, and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. The structure of a single cloud is calculated under the assumption of constant pressure. We show that the slope of the power-law radial profile of the cloud density does not affect the existence of the ILR in major types of AGNs. We found that the low-ionization iron line, Fe II, appears to be highly sensitive to the presence of dust and therefore becomes a potential tracer of dust content in line-emitting regions. We show that the use of a disk-like cloud density profile computed for the upper part of the atmosphere of the accretion disk reproduces the observed properties of the line emissivities. In particular, the distance of the Hβ line inferred from our model agrees with that obtained from reverberation mapping studies in the Sy1 galaxy NGC 5548.

  6. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  7. TEMPORAL AND SPATIAL ANALYSES OF SPECTRAL INDICES OF NONTHERMAL EMISSIONS DERIVED FROM HARD X-RAYS AND MICROWAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asai, Ayumi; Kiyohara, Junko; Takasaki, Hiroyuki

    2013-02-15

    We studied electron spectral indices of nonthermal emissions seen in hard X-rays (HXRs) and microwaves. We analyzed 12 flares observed by the Hard X-Ray Telescope aboard Yohkoh, Nobeyama Radio Polarimeters, and the Nobeyama Radioheliograph (NoRH), and compared the spectral indices derived from total fluxes of HXRs and microwaves. Except for four events, which have very soft HXR spectra suffering from the thermal component, these flares show a gap {Delta}{delta} between the electron spectral indices derived from HXRs {delta} {sub X} and those from microwaves {delta}{sub {mu}} ({Delta}{delta} = {delta} {sub X} - {delta}{sub {mu}}) of about 1.6. Furthermore, from themore » start to the peak times of the HXR bursts, the time profiles of the HXR spectral index {delta} {sub X} evolve synchronously with those of the microwave spectral index {delta}{sub {mu}}, keeping the constant gap. We also examined the spatially resolved distribution of the microwave spectral index by using NoRH data. The microwave spectral index {delta}{sub {mu}} tends to be larger, which means a softer spectrum, at HXR footpoint sources with stronger magnetic field than that at the loop tops. These results suggest that the electron spectra are bent at around several hundreds of keV, and become harder at the higher energy range that contributes the microwave gyrosynchrotron emission.« less

  8. Influence of soil conditions on dissolved organic matter leached from forest and wetland soils: a controlled growth chamber study.

    PubMed

    Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun

    2016-03-01

    This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.

  9. Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles.

    DTIC Science & Technology

    1984-12-01

    Attack a Emissivity G Parameter Vector Pn Measurement Vector at nth Time Point p Density 0 Stefan-Boltzmann Constant 6 Transition Matrix APc Scaling...for. The radiation is modeled using the Stefan-Boltzmann Law, q = 60(U 4 - U, 4 ) (A-9) where 8 radiative emissivity a Stefan-Bol tzmann constant U...w00 I- 000 0 0111c :0 i zZ Z-4lwr I- E . - t J K - IL HHO "W 6i 0WZWZWO&000OW *0 . 0 - .- - -4 4 1"- 1 Lii w LiiU Li LI Li Lij Liw w ~ o 0 0wm ~wW6~w d

  10. Luminescence of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex in the temperature range of 90-315 K: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratiomore » monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k{sub 2} and k{sub 3} close to one another.« less

  11. Precision control of eluted activity from a Sr/Rb generator for cardiac positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; deKemp, R A

    2004-01-01

    A rubidium-82 (/sup 82/Rb) elution system is described for use with clinical positron emission tomography. The system is self-calibrating with 1.4% repeatability, independent of generator activity and elution flow rate. Saline flow is switched between a /sup 82/Sr//sup 82/Rb generator and a bypass line to achieve a constant activity elution of /sup 82/Rb. In the present study, pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control algorithm is developed which produces a constant activity elution within the constraints of long feedback delay and short elution time. Accurate constant-activity elutions of 10-70% of the total generator activity were demonstrated using the threshold comparison control. The adaptive-corrective control of the PWM valve provided a substantial improvement in precision of the steady-state output.

  12. Effects of biodiesel made from swine and chicken fat residues on carbon monoxide, carbon dioxide, and nitrogen oxide emissions.

    PubMed

    Feddern, Vivian; Cunha Junior, Anildo; De Prá, Marina C; Busi da Silva, Marcio L; Nicoloso, Rodrigo da S; Higarashi, Martha M; Coldebella, Arlei; de Abreu, Paulo G

    2017-07-01

    The effects of two alternative sources of animal fat-derived biodiesel feedstock on CO 2 , CO, NO x tailpipe emissions as well as fuel consumption were investigated. Biodiesel blends were produced from chicken and swine fat waste (FW-1) or floating fat (FW-2) collected from slaughterhouse wastewater treatment processes. Tests were conducted in an unmodified stationary diesel engine operating under idling conditions in attempt to simulate slow traffic in urban areas. Significant reductions in CO (up to 47% for B100; FW-2) and NO x (up to 20% for B5; FW-2 or B100; FW-1) were attained when using biodiesel fuels at the expense of 5% increase in fuel consumption. Principal component analysis (PCA) was performed to elucidate possible associations among gas (CO 2 , CO, and NO x ) emissions, cetane number and iodine index with different sources of feedstock typically employed in the biodiesel industry. NO x , cetane number and iodine index were inversely proportional to CO 2 and biodiesel concentration. High NO x emissions were reported from high iodine index biodiesel derived especially from forestry, fishery and some agriculture feedstocks, while the biodiesel derived from animal sources consistently presented lower iodine index mitigating NO x emissions. The obtained results point out the applicability of biodiesel fuels derived from fat-rich residues originated from animal production on mitigation of greenhouse gas emissions. The information may encourage practitioners from biodiesel industry whilst contributing towards development of sustainable animal production. Emissions from motor vehicles can contribute considerably to the levels of greenhouse gases in the atmosphere. The use of biodiesel to replace or augment diesel can not only decrease our dependency on fossil fuels but also help decrease air pollution. Thus, different sources of feedstocks are constantly being explored for affordable biodiesel production. However, the amount of carbon monoxide (CO), carbon dioxide (CO 2 ), and/or nitrogen oxide (NO x ) emissions can vary largely depending on type of feedstock used to produce biodiesel. In this work, the authors demonstrated animal fat feasibility in replacing petrodiesel with less impact regarding greenhouse gas emissions than other sources.

  13. Fire environment effects on particulate matter emission factors in southeastern U.S. pine-grasslands

    NASA Astrophysics Data System (ADS)

    Robertson, Kevin M.; Hsieh, Yuch P.; Bugna, Glynnis C.

    2014-12-01

    Particulate matter (PM) emission factors (EFPM), which predict particulate emissions per biomass consumed, have a strong influence on event-based and regional PM emission estimates and inventories. PM < 2.5 μm aerodynamic diameter (PM2.5), regulated for its impacts to human health and visibility, is of special concern. Although wildland fires vary widely in their fuel conditions, meteorology, and fire behavior which might influence combustion reactions, the EFPM2.5 component of emission estimates is typically a constant for the region or general fuel type being assessed. The goal of this study was to use structural equation modeling (SEM) to identify and measure effects of fire environment variables on EFPM2.5 in U.S. pine-grasslands, which contribute disproportionately to total U.S. PM2.5 emissions. A hypothetical model was developed from past literature and tested using 41 prescribed burns in northern Florida and southern Georgia, USA with varying years since previous fire, season of burn, and fire direction of spread. Measurements focused on EFPM2.5 from flaming combustion, although a subset of data considered MCE and smoldering combustion. The final SEM after adjustment showed EFPM2.5 to be higher in burns conducted at higher ambient temperatures, corresponding to later dates during the period from winter to summer and increases in live herbaceous vegetation and ambient humidity, but not total fine fuel moisture content. Percentage of fine fuel composed of pine needles had the strongest positive effect on EFPM2.5, suggesting that pine timber stand volume may significantly influence PM2.5 emissions. Also, percentage of fine fuel composed of grass showed a negative effect on EFPM2.5, consistent with past studies. Results of the study suggest that timber thinning and frequent prescribed fire minimize EFPM2.5 and total PM2.5 emissions on a per burn basis, and that further development of PM emission models should consider adjusting EFPM2.5 as a function of common land use variables, including pine timber stocking, surface vegetation composition, fire frequency, and season of burn.

  14. EXPERIMENTAL EVALUATION OF FUEL OIL ADDITIVES FOR REDUCING EMISSIONS AND INCREASING EFFICIENCY OF BOILERS

    EPA Science Inventory

    The report gives results of an evaluation of the effectiveness of combustion-type fuel oil additives to reduce emissions and increase efficiency in a 50-bhp (500 kw) commercial oil-fired packaged boiler. Most additive evaluation runs were made during continuous firing, constant-l...

  15. 40 CFR 610.43 - Chassis dynamometer procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the following modifications will be employed: (i) No evaporative emission loss, as specified by 40 CFR... no earlier than 36 hours before the emission test. (iii) While the test fuel must meet the... specified in § 600.111. (c) Steady state tests. Constant speed, road load tests may be conducted to help...

  16. 40 CFR 610.43 - Chassis dynamometer procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the following modifications will be employed: (i) No evaporative emission loss, as specified by 40 CFR... no earlier than 36 hours before the emission test. (iii) While the test fuel must meet the... specified in § 600.111. (c) Steady state tests. Constant speed, road load tests may be conducted to help...

  17. 40 CFR 610.43 - Chassis dynamometer procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the following modifications will be employed: (i) No evaporative emission loss, as specified by 40 CFR... no earlier than 36 hours before the emission test. (iii) While the test fuel must meet the... specified in § 600.111. (c) Steady state tests. Constant speed, road load tests may be conducted to help...

  18. 40 CFR 610.43 - Chassis dynamometer procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the following modifications will be employed: (i) No evaporative emission loss, as specified by 40 CFR... no earlier than 36 hours before the emission test. (iii) While the test fuel must meet the... specified in § 600.111. (c) Steady state tests. Constant speed, road load tests may be conducted to help...

  19. 40 CFR 610.43 - Chassis dynamometer procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the following modifications will be employed: (i) No evaporative emission loss, as specified by 40 CFR... no earlier than 36 hours before the emission test. (iii) While the test fuel must meet the... specified in § 600.111. (c) Steady state tests. Constant speed, road load tests may be conducted to help...

  20. 40 CFR 1054.650 - What special provisions apply for adding or changing governors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Alternatively, if your emission controls depend on maintaining a consistent air-fuel ratio, you may demonstrate... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... governed to control engine speeds consistent with the constant-speed operation reflected by the duty cycles...

  1. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

    USDA-ARS?s Scientific Manuscript database

    Bottom-up estimates of riverine nitrous oxide (N2O) emissions developed by the Intergovernmental Panel on Climate Change (IPCC) assume a constant emission factor (EF5r) that predicts N2O production from anthropogenic nitrogen inputs. This relation ignores any direct stream water biochemical charact...

  2. Does 'anchor sleep' entrain circadian rhythms? Evidence from constant routine studies.

    PubMed Central

    Minors, D S; Waterhouse, J M

    1983-01-01

    Experiments have been performed in an isolation unit to investigate the effects of abnormal sleep-waking schedules upon circadian rhythms of renal excretion and deep-body temperature. In confirmation of previous work, nychthemeral rhythms appeared to be 'anchored' to a 24 h period if 4 h sleep was taken regularly each day, even though another 4 h was taken irregularly. The endogenous components were investigated by assessing circadian rhythmicity under constant routine conditions, that is, when rhythmic influences in the environment and sleep-waking pattern had been minimized. Analysis of the constant routine data indicated the presence of a rhythmic component which had been stabilized to a period of 24 h by the 'anchor sleep'. In addition, a delayed component was also present. The starting time of the constant routines produced a direct effect upon the rhythms, which was presumed to result from removing the 'masking' effect that sleep normally exerts upon rhythms. There was some evidence that the relative importance of the masking effect and the delayed component depended upon the variable under consideration. The implications of these findings, in terms of the effects of anchor sleep, the presence of more than one internal clock and the usefulness of constant routines, are discussed. PMID:6663508

  3. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  4. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    NASA Astrophysics Data System (ADS)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000 variants per set of fixed input parameters. The shape and coefficients of CCRAF equations are derived from regression analyses of historic data and expert assessments. There are two types of random components in CCRAF - one reflects a year-to-year fluctuations around the expected value of a given variable (e.g., standard error of the annual GDP growth) and another is fixed within each CCRAF variant and represents some essential constants within a "world" represented by that variant (e.g., the value of climate sensitivity). Both types of random components are drawn from pre-defined probability distributions functions developed based on historic data or expert assessments. Preliminary CCRAF results emphasize the relative importance of uncertainties associated with the conversion of GHG and particulate emissions into radiative forcing and quantifying climate change effects at the regional level. A separates analysis involves an "adaptive decision-making", which optimizes the expected future policy effects given the estimated probabilistic uncertainties. As uncertainty for some variables evolve over the time steps, the decisions also adapt. This modeling approach is feasible only with explicit modeling of uncertainties.

  5. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  6. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608

  7. Suzaku Observations of Thermal and Non-Thermal X-Ray Emission from the Middle-Aged Supernova Remnant G156.2+5.7

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Hwang, Una; Yamaguchi, Hiroya; Mori, Koji; Tsunemi, Hiroshi

    2008-01-01

    We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius approx.50'). Using the Suzaku satellite, we observed this SNR in three pointings; partially covering the northwestern (NW) rim, the eastern (E) rim, and the central portion of this SNR. In the NW rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the E rim we find no significant hard-tail emission. The soft emission is well fitted by either a one-component or two-component non-equilibrium ionization (NEI) model. In the NW and E rims, a one-component (the swept-up interstellar medium) NEI model well represents the soft emission. On the other hand, in the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than the one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 Solar Mass. The origin of the hard-tail emission detected in the NW rim and the central portion of the SNR is highly likely non-thermal synchrotron emission from relativistic electrons. In the NW rim, the relativistic electrons seems to be accelerated by a forward shock with a slow velocity of APPROX.500 km/sec.

  8. [Resolving characteristic of CDOM by excitation-emission matrix spectroscopy combined with parallel factor analysis in the seawater of outer Yangtze Estuary in Autumn in 2010].

    PubMed

    Yan, Li-Hong; Chen, Xue-Jun; Su, Rong-Guo; Han, Xiu-Rong; Zhang, Chuan-Song; Shi, Xiao-Yong

    2013-01-01

    The distribution and estuarine behavior of fluorescent components of chromophoric dissolved organic matter in the seawater of outer Yangtze Estuary were determined by fluorescence excitation emission matrix spectra combined with parallel factor analysis. Six individual fluorescent components were identified by PARAFAC models, including three terrestrial humic-like components C1 [330 nm/390(430) nm], C2 (390 nm/480 nm), C3 (360 nm/440 nm), marine biological production component C5 (300 nm/400 nm) and protein-like components C4 (290 nm/350 nm) and C6 (275 nm/300 nm). The results indicated that C1, C2, and C3 showed a conservative mixing behavior in the whole estuarine region, especially in high-salinity region. And the fluorescence intensity proportion of C1 and C3 decreased with increase of salinity and fluorescence intensity proportion of C2 kept constant with increase of salinity in the whole estuarine region. While C4 showed conservative mixing behavior in low-salinity region and non-conservative mixing behavior in high-salinity region, and fluorescence intensity proportion of C4 increased with increase of salinity. However, C5 and C6 showed a non-conservative mixing behavior and fluorescence intensity proportion increased with increase of salinity in high-salinity region. Significantly spatial difference was recorded for CDOM absorption coefficient in the coastal region and in the open water areas with the highest value in coastal region and the lowest value in the open water areas. The scope of absorption coefficient and absorption slope was higher in coastal region than that in the open water areas. Significantly positive correlations were found between CDOM absorption coefficient and the fluorescence intensities of C1, C2, C3, and C4, but no significant correlation was found between C5 and C6, suggesting that the river inputs contributed to the coastal areas, while CDOM in the open water areas was affected by terrestrial inputs and phytoplankton degradation.

  9. Assembling a biogenic hydrocarbon emissions inventory for the SCOS97-NARSTO modeling domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, M.T.; Winer, A.M.; Karlik, J.

    1998-12-31

    To assist in developing ozone control strategies for Southern California, the California Air Resources Board is developing a biogenic hydrocarbon (BHC) emissions inventory model for the SCOS97-NARSTO domain. The basis for this bottom-up model is SCOS97-NARSTO-specific landuse and landcover maps, leafmass constants, and BHC emission rates. In urban areas, landuse maps developed by the Southern California Association of Governments, San Diego Association of Governments, and other local governments are used while in natural areas, landcover and plant community databases produced by the GAP Analysis Project (GAP) are employed. Plant identities and canopy volumes for species in each landuse and landcovermore » category are based on the most recent botanical field survey data. Where possible, experimentally determined leafmass constant and BHC emission rate measurements reported in the literature are used or, for those species where experimental data are not available, values are assigned based on taxonomic methods. A geographic information system is being used to integrate these databases, as well as the most recent environmental correction algorithms and canopy shading factors, to produce a spatially- and temporally-resolved BHC emission inventory suitable for input into the Urban Airshed Model.« less

  10. Effect of a fuel activation device (FAD) on particulate matter and black carbon emissions from a diesel locomotive engine.

    PubMed

    Park, Duckshin; Lee, Taejeong; Lee, Yongil; Jeong, Wonseog; Kwon, Soon-Bark; Kim, Dongsool; Lee, Kiyoung

    2017-01-01

    Emission reduction is one of the most efficient control measures in fuel-powered locomotives. The purpose of this study was to determine the reduction in particulate matter (PM) and black carbon (BC) emissions following the installation of a fuel activation device (FAD). The FAD was developed to enhance fuel combustion by atomizing fuel and to increase the surface area per unit volume of injected fuel. Emission reduction by the FAD was evaluated by installing a FAD in an operating diesel locomotive in Mongolia. The test was conducted on a train operating on a round-trip 238-km route between Ulaanbaatar and Choir stations in Mongolia. The fuel consumption rate was slightly reduced following the FAD installation. The FAD installation decreased PM and BC emissions in the diesel locomotive, especially coarse PM. The PM 10 reductions achieved after FAD installation were 58.0, 69.7, and 34.2% for the constant velocity, stopping, and acceleration stages of the train's operation, respectively. The BC reduction rates were 29.5, 52.8, and 27.4% for the constant velocity, stopping, and acceleration stages, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Simple But Comprehensive Methodology To Determine Gas-Phase Emissions Of Motor Vehicles With Extractive FTIR Spectrometry

    NASA Astrophysics Data System (ADS)

    Reyes, F. M.; Jaczilevich, A.; Grutter, M. A.; Huerta, M. A.; Rincón, P.; Rincón, R.; González, R.

    2004-12-01

    In this contribution, a methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. With this innovative experimental set-up, it is possible to obtain real-time emissions of the combustion products without the need of dilution or sample collection. Key pollutants such as CO, CO2, H2CO, CH4, NO, N2O, NH3, SO2, CH3OH, acetylene, ethylene, ethane and total hydrocarbons, most of which are not regulated nor measured by current emissions control programs, can be accurately monitored with a single instrument. An FTIR spectrometer is used for the analysis of a constant flow of sample gas from the tail-pipe into a stainless-steel cylindrical cell of constant volume.(1) The cell is heated to 185 °C to avoid condensation, the pressure is kept constant and a multi-pass optical arrangement(2)is used to transmit the modulated infrared beam several times to improve the sensitivity. The total flow from the exhaust used for calculating the emission can be continuously determined from the differential pressure measurements from a "Pitot" tube calibrated against a hot-wire devise. This simple methodology is proposed for performing state-of-the-art evaluations on the emission behavior of new technologies, reformulated fuels and emission control devices. The results presented here were performed on a dynamometer running FTP-75 and driving cycles typical for Mexico City.(3,4) References 1. Grutter M. "Multi-Gas Analysis using FTIR Spectroscopy over Mexico City." Atmosfera 16, 1-16 (2003). 2. White J.U. "Long optical paths of large aperture. J. Opt. Soc. Am., 32, 285-288 (1942). 3. Santiago Cruz L. and P.I. Rincón. "Instrumentation of the Emission Control Laboratory at the Engineering School of the National Autonomous University of Mexico." Instrumentation and Development 4, 19-24, (2000). 4. González Oropeza R. and A. Galván Zacarías. "Desarrollo de ciclos de manejo característicos de la Ciudad de México." Memorias del IX Congreso Anual, Soc. Mex. de Ing. Mec. 535-544 (2003).

  12. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  13. The Position/Structure Stability of Four ICRF2 Sources

    NASA Technical Reports Server (NTRS)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan; Boboltz, Dave; Oyama, Tomoaki; Honma, Mareki

    2010-01-01

    Four compact radio sources in the International Celestial Reference Frame (ICRF2) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6-GHz, and with VERA at 23-GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF2. Conclusions are: (1) 43-GHz VLBI high-resolution observations are often needed to determine the location of the radio core. (2) Over the observing period, the relative positions among the four radio cores were constant to 0.02 mas, suggesting that once the true radio core is identified, it remains stationary in the sky to this accuracy. (3) The emission in 0556+238, one of the four sources investigated and one of the 295 ICRF2 defining sources, was dominated by a strong component near the core and moved 0.1 mas during the year. (4) Comparison of the VLBA images at 43, 23, and 8.6-GHz with the ICRF2 positions suggests that the 8-GHz structure is often dominated by a bright non-core component. The measured ICRF2 position can be displaced more than 0.5 mas from the radio core and partake in the motion of the bright jet component.

  14. 40 CFR 1060.120 - What emission-related warranty requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of sale to the ultimate purchaser with the requirements of this part. (2) It is free from defects in... emission-related warranty must be valid for at least two years from the point of first retail sale. (c) Components covered. The emission-related warranty covers all components whose failure would increase the...

  15. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you....-directed production volume of configurations that have emission rates at or below the FCL must be at least...

  16. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you....-directed production volume of configurations that have emission rates at or below the FCL must be at least...

  17. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  18. Evidence for Diverse Optical Emission from Gamma-Ray Burst Sources

    NASA Astrophysics Data System (ADS)

    Pedersen, H.; Jaunsen, A. O.; Grav, T.; Østensen, R.; Andersen, M. I.; Wold, M.; Kristen, H.; Broeils, A.; Näslund, M.; Fransson, C.; Lacy, M.; Castro-Tirado, A. J.; Gorosabel, J.; Rodríguez Espinosa, J. M.; Pérez, A. M.; Wolf, C.; Fockenbrock, R.; Hjorth, J.; Muhli, P.; Hakala, P.; Piro, L.; Feroci, M.; Costa, E.; Nicastro, L.; Palazzi, E.; Frontera, F.; Monaldi, L.; Heise, J.

    1998-03-01

    Optical Transients from gamma-ray burst sources, in addition to offering a distance determination, convey important information about the physics of the emission mechanism, and perhaps also about the underlying energy source. As the gamma-ray phenomenon is extremely diverse, with timescales spanning several orders of magnitude, some diversity in optical counterpart signatures appears plausible. We have studied the optical transient that accompanied the gamma-ray burst of 1997 May 8, GRB 970508. Observations conducted at the 2.5 m Nordic Optical Telescope (NOT) and the 2.2 m telescope at the German-Spanish Calar Alto observatory (CAHA) cover the time interval starting 3 hr 5 minutes to 96 days after the high-energy event. This brackets all other published observations, including radio. When analyzed in conjunction with optical data from other observatories, evidence emerges for a composite light curve. The first interval, from 3 to 8 hr after the event, was characterized by a constant or slowly declining brightness. At a later moment, the brightness started increasing rapidly, and reached a maximum approximately 40 hr after the GRB. From that moment, the GRB brightness decayed approximately as a power law of index -1.21. The last observation, after 96 days, mR = 24.28 +/- 0.10, is brighter than the extrapolated power law, and hints that a constant component, mR = 25.50 +/- 0.40, is present. The optical transient is unresolved (FWHM 0.83") at the faintest magnitude level. The brightness of the optical transient, its duration, and the general shape of the light curve set this source apart from the single other optical transient known, that of the 1997 February 28 event.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope ( HST )/Space Telescope Imaging Spectrograph at 0.58 μ m and HST /Wide Field Camera 3 (WFC 3) at 1.16 μ m, and three in thermal emission from Spitzer /Multiband Imaging Photometer for Spitzer (MIPS) at 24 μ m, Herschel /PACS at 70 μ m, and Atacama Large Millimeter/submillimeter Arraymore » at 870 μ m. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.« less

  20. 40 CFR 1033.645 - Non-OEM component certification program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... needs of your component. (iv) An engineering analysis (including test data in some cases) demonstrating to us that your component will not cause emissions to increase. The analysis must address both low-hour and end-of-useful life emissions. The amount of information required for this analysis is less...

  1. 40 CFR 1033.645 - Non-OEM component certification program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... needs of your component. (iv) An engineering analysis (including test data in some cases) demonstrating to us that your component will not cause emissions to increase. The analysis must address both low-hour and end-of-useful life emissions. The amount of information required for this analysis is less...

  2. Deconstructing the Spectrum of the Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2000-01-01

    The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.

  3. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Brown, L.; Armstrong Brown, S.; Jarvis, S. C.; Syed, B.; Goulding, K. W. T.; Phillips, V. R.; Sneath, R. W.; Pain, B. F.

    Nitrous oxide emission from UK agriculture was estimated, using the IPCC default values of all emission factors and parameters, to be 87 Gg N 2O-N in both 1990 and 1995. This estimate was shown, however, to have an overall uncertainty of 62%. The largest component of the emission (54%) was from the direct (soil) sector. Two of the three emission factors applied within the soil sector, EF1 (direct emission from soil) and EF3 PRP (emission from pasture range and paddock) were amongst the most influential on the total estimate, producing a ±31 and +11% to -17% change in emissions, respectively, when varied through the IPCC range from the default value. The indirect sector (from leached N and deposited ammonia) contributed 29% of the total emission, and had the largest uncertainty (126%). The factors determining the fraction of N leached (Frac LEACH) and emissions from it (EF5), were the two most influential. These parameters are poorly specified and there is great potential to improve the emission estimate for this component. Use of mathematical models (NCYCLE and SUNDIAL) to predict Frac LEACH suggested that the IPCC default value for this parameter may be too high for most situations in the UK. Comparison with other UK-derived inventories suggests that the IPCC methodology may overestimate emission. Although the IPCC approach includes additional components to the other inventories (most notably emission from indirect sources), estimates for the common components (i.e. fertiliser and animals), and emission factors used, are higher than those of other inventories. Whilst it is recognised that the IPCC approach is generalised in order to allow widespread applicability, sufficient data are available to specify at least two of the most influential parameters, i.e. EF1 and Frac LEACH, more accurately, and so provide an improved estimate of nitrous oxide emissions from UK agriculture.

  4. Noise Levels and Data Analyses for Small Prop-Driven Aircraft

    DTIC Science & Technology

    1983-08-01

    assumption is that the acoustical emission characteristics of the test aircraft remain constant over the 3000 feet between sites. 7.1 Intensity metric...assumed that acoustical emission characteristics of the aircraft are nominally the same as the aircraft passes over the two measurement locations. As...associated with the emission of AIM. Table 12-2 lists the aircraft tested, number of samples, and the mean and standard deviation of the acoustical angle. The

  5. Using solubility and Henry`s law constant data for ketones in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaws, C.L.; Sheth, S.D.; Han, M.

    When a chemical spill occurs in water, the extent of chemical contamination is determined by the chemical`s solubility in the water. If contaminated water comes into contact with air, such as in a pond or a storage vessel, the contaminant`s emissions into the air can be determined based upon Henry`s law constant for that particular constituent. A high Henry`s law constant value translates into a greater emissions level. The engineering design and operation of strippers to remove contaminants from water require data for both water solubility and Henry`s law constant. A new correlation developed by researchers at Lamar University providesmore » reliable values down to very, very low concentrations for the solubility of ketones in water. The correlation is based on the boiling point temperature of the ketone and can be used for engineering studies involving health, safety and environmental considerations. Results for water solubility and Henry`s law constant are provided here for a wide variety of ketones. Representative values are about 249,000 parts per million (ppm) per weight (wt) for methyl ethyl ketone (C{sub 4}H{sub 8}O) and 360 ppm/wt for 5-nonanone (C{sub 9}H{sub 18}O).« less

  6. Shock tube measurements of growth constants in the branched-chain ethane-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Brabbs, T. A.; Snyder, C. A.

    1985-01-01

    Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants.

  7. A real-time bioluminescent HTS method for measuring protein kinase activity influenced neither by ATP concentration nor by luciferase inhibition.

    PubMed

    Lundin, Arne; Eriksson, Jonas

    2008-08-01

    The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.

  8. Common substructure in otoacoustic emission spectra of land vertebrates

    NASA Astrophysics Data System (ADS)

    Manley, Geoffrey A.; Köppl, Christine; Bergevin, Christopher

    2015-12-01

    In humans, a similar spectral periodicity is found in all otoacoustic emission types and in threshold fine structure. This may reflect travelling wave phase and reflectance from "structural roughness" in the organ of Corti, or entrainment and suppressive interactions between emissions. To further understand these phenomena, we have examined spontaneous otoacoustic emission (SOAE) spectra in 9 lizard species and the barn owl and find a comparable periodicity. Importantly, the frequency spacing between SOAE peaks was independent of the physical spacing and of the frequency space constants in hearing organs. In 9 lizard species, median spectral gaps lay between 219 and 461 Hz, with no correlation to papillar length (0.3 to 2.1 mm). Similarly in much longer organs: In humans (35 mm), SOAE spectral gaps vary up to 220 Hz at 4 kHz; in the barn owl (11 mm), the median SOAE peak spacing was 395Hz. In the barn owl, a very large space constant between 5 and 10 kHz (5 mm/octave) contrasts with stable SOAE spacing between 1 and 11 kHz. Similar SOAE spectral gaps across all species suggests they represent a basic frequency grating revealing local phase-dependent interactions between active hair cells, a feature not determined by macro-structural anatomy. Emission spectral spacing is independent of cochlear length, of the frequency space constant, of the existence of travelling waves or of a tectorial membrane. Our data suggest that there are greater similarities between frequency selectivity reflected at the level of the hair cells' spontaneous mechanical output (OAEs) than there are at the level of the auditory nerve, where macro-structural anatomy links hair-cell activity differentially to the neural output. Apparently, all hair-cell arrays show a similar frequency substructure not directly replicated in neural tuning.

  9. Chemi-luminescence measurements of hyperthermal Xe{sup +}/Xe{sup 2+}+ NH{sub 3} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince, Benjamin D.; Steiner, Colby P.; Chiu, Yu-Hui

    2012-04-14

    Luminescence spectra are recorded for the reactions of Xe{sup +}+ NH{sub 3} and Xe{sup 2+}+ NH{sub 3} at energies ranging from 11.5 to 206 eV in the center-of-mass (E{sub cm}) frame. Intense features of the luminescence spectra are attributed to the NH (A {sup 3}{Pi}{sub i}-X {sup 3}{Sigma}{sup -}), hydrogen Balmer series, and Xe I emission observable for both primary ions. Evidence for charge transfer products is only found through Xe I emission for both primary ions and NH{sup +} emission for Xe{sup 2+} primary ions. For both primary ions, the absolute NH (A-X) cross section increases with collision energymore » before leveling off at a constant value, approximately 9 x 10{sup -18} cm{sup 2}, at about 50 eV while H-{alpha} emission increases linearly with collision energy. The nascent NH (A) populations derived from the spectral analysis are found to be independent of collision energy and have a constant rotational temperature of 4200 K.« less

  10. Hydrogen emission in meteors as a potential marker for the exogenous delivery of organics and water

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Mandell, Avram M.

    2004-01-01

    We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected <20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.

  11. Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Francisco; Bond, Tami C.; Riemer, Nicole

    Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCNmore » activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 10 16 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation ( s sat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This homogenizing effect requires the components to be truly co-emitted, rather than sequentially emitted.« less

  12. Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion

    NASA Astrophysics Data System (ADS)

    Mena, Francisco; Bond, Tami C.; Riemer, Nicole

    2017-08-01

    Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCN activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 1016 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation (ssat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This homogenizing effect requires the components to be truly co-emitted, rather than sequentially emitted.

  13. Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion

    DOE PAGES

    Mena, Francisco; Bond, Tami C.; Riemer, Nicole

    2017-08-07

    Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCNmore » activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 10 16 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation ( s sat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This homogenizing effect requires the components to be truly co-emitted, rather than sequentially emitted.« less

  14. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  15. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2011-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approximately 1.5 keY, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approximately 140 K by a relatively dense, hot plasma that also gives rise to the hot X-my emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-my emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) x solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  16. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  17. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Astrophysics Data System (ADS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 × 10-2 M ⊙, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  18. Assessment of environmentally friendly fuel emissions from in-use vehicle exhaust: low-blend iso-stoichiometric GEM mixture as example.

    PubMed

    Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel

    2017-05-01

    Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend having no oxygen in a fleet of 12 in-use vehicles. Vehicles that had suffer a normal deterioration of emissions and do not react to oxygenation, and new vehicles with more sophisticated air/fuel control systems do not improve combustion.

  19. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  20. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  1. Directional infrared temperature and emissivity of vegetation: Measurements and models

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Castello, S.; Balick, L. K.

    1994-01-01

    Directional thermal radiance from vegetation depends on many factors, including the architecture of the plant canopy, thermal irradiance, emissivity of the foliage and soil, view angle, slope, and the kinetic temperature distribution within the vegetation-soil system. A one dimensional model, which includes the influence of topography, indicates that thermal emissivity of vegetation canopies may remain constant with view angle, or emissivity may increase or decrease as view angle from nadir increases. Typically, variations of emissivity with view angle are less than 0.01. As view angle increases away from nadir, directional infrared canopy temperature usually decreases but may remain nearly constant or even increase. Variations in directional temperature with view angle may be 5C or more. Model predictions of directional emissivity are compared with field measurements in corn canopies and over a bare soil using a method that requires two infrared thermometers, one sensitive to the 8 to 14 micrometer wavelength band and a second to the 14 to 22 micrometer band. After correction for CO2 absorption by the atmosphere, a directional canopy emissivity can be obtained as a function of view angle in the 8 to 14 micrometer band to an accuracy of about 0.005. Modeled and measured canopy emissivities for corn varied slightly with view angle (0.990 at nadir and 0.982 at 75 deg view zenith angle) and did not appear to vary significantly with view angle for the bare soil. Canopy emissivity is generally nearer to unity than leaf emissivity may vary by 0.02 with wavelength even though leaf emissivity. High spectral resolution, canopy thermal emissivity may vary by 0.02 with wavelength even though leaf emissivity may vary by 0.07. The one dimensional model provides reasonably accurate predictions of infrared temperature and can be used to study the dependence of infrared temperature on various plant, soil, and environmental factors.

  2. Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland.

    PubMed

    Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs

    2005-11-01

    Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.

  3. Quantifying the air quality-CO2 tradeoff potential for airports

    NASA Astrophysics Data System (ADS)

    Ashok, Akshay; Dedoussi, Irene C.; Yim, Steve H. L.; Balakrishnan, Hamsa; Barrett, Steven R. H.

    2014-12-01

    Aircraft movements on the airport surface are responsible for CO2 emissions that contribute to climate change and other emissions that affect air quality and human health. While the potential for optimizing aircraft surface movements to minimize CO2 emissions has been assessed, the implications of CO2 emissions minimization for air quality have not been quantified. In this paper, we identify conditions in which there is a tradeoff between CO2 emissions and population exposure to O3 and secondary PM2.5 - i.e. where decreasing fuel burn (which is directly proportional to CO2 emissions) results in increased exposure. Fuel burn and emissions are estimated as a function of thrust setting for five common gas turbine engines at 34 US airports. Regional air quality impacts, which are dominated by ozone and secondary PM2.5, are computed as a function of airport location and time using the adjoint of the GEOS-Chem chemistry-transport model. Tradeoffs between CO2 emissions and population exposure to PM2.5 and O3 occur between 2-18% and 5-60% of the year, respectively, depending on airport location, engine type, and thrust setting. The total duration of tradeoff conditions is 5-12 times longer at maximum thrust operations (typical for takeoff) relative to 4% thrust operations (typical for taxiing). Per kilogram of additional fuel burn at constant thrust setting during tradeoff conditions, reductions in population exposure to PM2.5 and O3 are 6-13% and 32-1060% of the annual average (positive) population exposure per kilogram fuel burn, where the ranges encompass the medians over the 34 airports. For fuel burn increases due to thrust increases (i.e. for constant operating time), reductions in both PM2.5 and O3 exposure are 1.5-6.4 times larger in magnitude than those due to increasing fuel burn at constant thrust (i.e. increasing operating time). Airports with relatively high population exposure reduction potentials - which occur due to a combination of high duration and magnitude of tradeoff conditions - are identified. Our results are the first to quantify the extent of the tradeoff between CO2 emissions and air quality impacts at airports. This raises the possibility of reducing the air quality impacts of airports beyond minimizing fuel burn and/or optimizing for minimum net environmental impact.

  4. Discernment of lint trash in raw cotton using multivariate analysis of excitation-emission luminescence spectra

    USDA-ARS?s Scientific Manuscript database

    Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...

  5. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  6. Solar flare impulsive phase emission observed with SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermalmore » structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.« less

  7. A SIMPLE CONNECTION BETWEEN THE NEAR- AND MID-INFRARED EMISSION OF GALAXIES AND THEIR STAR FORMATION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mentuch, Erin; Abraham, Roberto G.; Zibetti, Stefano

    2010-12-20

    We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Pixels from each galaxy are grouped into regions of increasingly red near-infrared colors. As expected, the majority of pixels are shown to have relatively constant NIR flux ratios (log{sub 10} I{sub 3.6}/I{sub 1.25} = -0.30 {+-} 0.07 and log{sub 10} I{sub 4.5}/I{sub 3.6} = -0.19 {+-} 0.02), representing the blackbody continuum emission of main sequence stars. However, pixels with red NIR colors correspond to pixels with higher H{sub {alpha}} emission andmore » dust extinction. We show that the NIR colors are correlated to both quantities, with the strongest correlation to the intrinsic H{sub {alpha}} emission. In addition, in regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25 {mu}m, 3.6 {mu}m, 4.5 {mu}m, 5.6 {mu}m, 8.0 {mu}m and 24 {mu}m) scales linearly with the intrinsic intensity of H{alpha} emission, and thus with the star formation rate (SFR) within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star formation. This is surprising because the shorter wavelength bands in our study (1.25 {mu}m-5.6 {mu}m) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or polycyclic aromatic hydrocarbon (PAH) molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2 {mu}m-5 {mu}m and PAH emission at 5.6 {mu}m and 8.0 {mu}m scales linearly with warm dust emission at 24 {mu}m and the intrinsic H{alpha} emission. Since both are tied to the SFR, our analysis shows that the NIR excess continuum emission and PAH emission at {approx}1-8 {mu}m can be added to spectral energy distribution models in a very straightforward way, by simply adding an additional component to the models that scales linearly with SFR.« less

  8. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze

    2018-01-01

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.

  9. Ω-slow Solutions and Be Star Disks

    NASA Astrophysics Data System (ADS)

    Araya, I.; Jones, C. E.; Curé, M.; Silaj, J.; Cidale, L.; Granada, A.; Jiménez, A.

    2017-09-01

    As the disk formation mechanism(s) in Be stars is(are) as yet unknown, we investigate the role of rapidly rotating radiation-driven winds in this process. We implemented the effects of high stellar rotation on m-CAK models accounting for the shape of the star, the oblate finite disk correction factor, and gravity darkening. For a fast rotating star, we obtain a two-component wind model, I.e., a fast, thin wind in the polar latitudes and an Ω-slow, dense wind in the equatorial regions. We use the equatorial mass densities to explore Hα emission profiles for the following scenarios: (1) a spherically symmetric star, (2) an oblate star with constant temperature, and (3) an oblate star with gravity darkening. One result of this work is that we have developed a novel method for solving the gravity-darkened, oblate m-CAK equation of motion. Furthermore, from our modeling we find that (a) the oblate finite disk correction factor, for the scenario considering the gravity darkening, can vary by at least a factor of two between the equatorial and polar directions, influencing the velocity profile and mass-loss rate accordingly, (b) the Hα profiles predicted by our model are in agreement with those predicted by a standard power-law model for following values of the line-force parameters: 1.5≲ k≲ 3,α ˜ 0.6, and δ ≳ 0.1, and (c) the contribution of the fast wind component to the Hα emission line profile is negligible; therefore, the line profiles arise mainly from the equatorial disks of Be stars.

  10. LOPES-3D - vectorial measurements of radio emission from cosmic ray induced air showers

    NASA Astrophysics Data System (ADS)

    Huber, D.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2013-05-01

    LOPES-3D is able to measure all three components of the electric field vector of the radio emission from air showers. This allows a better comparison with emission models. The measurement of the vertical component increases the sensitivity to inclined showers. By measuring all three components of the electric field vector LOPES-3D demonstrates by how much the reconstruction accuracy of primary cosmic ray parameters increases. Thus LOPES-3D evaluates the usefulness of vectorial measurements for large scale applications.

  11. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  12. Time resolved analysis of Fermi gamma-ray bursts with fast-and slow-cooled synchrotron photon models

    DOE PAGES

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; ...

    2014-02-27

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. Therefore, the GRB spectrum is modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. Inmore » order to produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. Additionally, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.« less

  13. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission rates by at least two-fold compared to emissions derived from field measurements. The isoprene emission algorithm proposed by Guenther et al. (1993), applied at the leaf level, provides relatively good agreement compared to measurements. Field measurements indicate that isoprene emissions change with leaf ontogeny and differ amongst tree species. Emission rates defined as function of foliage development stage and plant species need to be introduced in the hydrocarbon emission algorithms. Extensive model evaluation and more hydrocarbon emission measurement;: from different plant species are required to fully assess the appropriateness of this emission calculation approach for Canadian forests.

  14. Diesel Goes Digital to Save Energy, Lower Emissions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Forty years ago, actuators requiring constant energy to help power the Apollo spacecraft in space were replaced by magnetically holding and releasing, electronically controlled valves. Today, these same magnetic, electronic valves are on the verge of replacing entire camshaft systems in cars and trucks on Earth, thus leading to a whole new generation of low-emission engines.

  15. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  16. Investigating Electrostatic Precipitator Design Parameters for Efficient Control of Particulate Matter in Thermal Power Plant: A Case Study

    NASA Astrophysics Data System (ADS)

    Rai, P.; Gautam, N.; Chandra, H.

    2018-06-01

    This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.

  17. Investigating Electrostatic Precipitator Design Parameters for Efficient Control of Particulate Matter in Thermal Power Plant: A Case Study

    NASA Astrophysics Data System (ADS)

    Rai, P.; Gautam, N.; Chandra, H.

    2018-02-01

    This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.

  18. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less

  19. Shock tube measurements of growth constants in the branched chain formaldehyde-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1982-01-01

    Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.

  20. Luminescence quenching of tris(2,2'-bipyridine)ruthenium(II) by 2,6-dimethylphenol and 4-bromo-2,6-dimethylphenol in sol-gel-processed silicate thin films.

    PubMed

    Altamirano, M; Senz, A; Gsponer, H E

    2004-02-15

    The luminescence properties of tris(1,2-bipyridine)ruthenium(II) (Ru(bpy)(3)(2+)), included in different organically modified silicate gel matrixes were investigated. Spin and dip-coated thin films were prepared from methyltrimethoxysilane (MTMOS) and methyltriethoxysilane (MTEOS). A blue shift in the emission spectrum of the MLCT excited state of Ru(bpy)(3)(2+) with respect to the aqueous solution was observed in all the films, practically independent of the reaction pH used to prepare the "sol," silane-derived precursor, and procedure used (dip-coating or spin-coating) to obtain the film. A bimodal distribution of probe sites in the films was obtained from modeling of the emission decays by a double exponential and from application of the exponential series method. The parameters of the decay components depended principally on the thermal treatment used in the processing of the films. The lifetimes decreased with the increase in the drying temperature of the films; at the same time, the emission spectra showed a red shift and the luminescence efficiency decreased. A luminescence quenching of the ruthenium complex in the films by 4-bromo-2,6-dimethylphenol and 2,6-dimethylphenol in aerated aqueous solution at pH 12 in contact with the film was also observed. The quenching plots obtained from luminescence intensities or luminescence intensity decay measurements showed a downward curvature. These plots could be fitted satisfactorily by a sum of two Stern-Volmer terms with quenching constants K(SV1) and K(SV2) associated with two different binding sites of the ruthenium complex. This result is indicative of the matrix microheterogeneity in the films and is fully consistent with the biexponential nature of the luminescence intensity decay profiles. The Stern-Volmer parameter values for both sites in the films suggest that only a low percentage of the probe is accessible to the quencher and its respective constant K(SV1) is lower than in water.

  1. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system.

    PubMed

    Beckers, Liza-Marie; Busch, Wibke; Krauss, Martin; Schulze, Tobias; Brack, Werner

    2018-05-15

    Sites of wastewater discharge are hotspots for pollution of freshwaters with organic micropollutants and are often associated with adverse effects to aquatic organisms. The assessment, monitoring and managment of these hotspots is challenged by variations in the pollutant mixture composition due to season, weather conditions and random spills. In this study, we unraveled temporal exposure patterns in organic micropollutant mixtures from wastewater discharge and analyzed respective acute and sublethal risks for aquatic organisms. Samples were taken from two components of a separate sewer system i) a wastewater treatment plant (WWTP) and ii) a rain sewer of a medium size town as well as from the receiving river in different seasons. Rain sewer samples were separately collected for rain and dry - weather conditions. We analyzed 149 compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By considering the pollution dynamics in the point sources, we reduced the complexity of pollutant mixtures by k-means clustering to a few emission groups representing temporal and weather-related pollution patterns. From these groups, we derived biological quality element (BQE) - specific risk patterns. In most cases, one main risk driving emission group and a few individual risk driving compounds were identified for each BQE. While acute risk for fish was quite low, algae were exposed to seasonally emitted herbicides (terbuthylazine, spiroxamine) and crustaceans to randomly spilled insecticides (diazinon, dimethoate). Sublethal risks for all BQE were strongly influenced by constantly emitted pollutants, above all, pharmaceuticals. Variability of risks in the river was mainly driven by water discharge of the river rather than by season or peak events. Overall, the studied WWTP represented the major pollution source with a specific emission of agricultural compounds. However, the investigated rain sewer showed to be a constant pollution source due to illicit connections and was an important entry route for high loads of insecticides and biocides due to spills or incorrect disposal. By considering these pollution and risk dynamics, monitoring strategies may be optimized with a special focus on times of low flow conditions in the river, rain events and seasonally emitted risk drivers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  3. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

    PubMed

    Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred

    2015-11-01

    We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

  4. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  5. Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil

    NASA Astrophysics Data System (ADS)

    Andrade, Fatima; Orsini, Celso; Maenhaut, Willy

    Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.

  6. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  7. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  8. Start-Stop Moment Optimization of Range Extender and Control Strategy Design for Extended -Range Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Han, Bing-yuan; Bei, Shao-yi

    2017-10-01

    Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, researched constant power control strategy of range extender in extended-range model, to target range as constraint condition, combined with different driving cycle conditions, by correcting battery SOC for range extender start-stop moment, optimized the control strategy of range extender, and established the vehicle and range extender start-stop control simulation model. Selected NEDC and UDDS conditions simulation results show that: under certain target mileage, the range extender running time reduced by 37.2% and 28.2% in the NEDC condition, and running time UDDS conditions were reduced by 40.6% and 33.5% in the UDDS condition, reached the purpose of meeting the vehicle mileage and reducing consumption and emission.

  9. Analysis of payload bay magnetic fields due to dc power multipoint and single point ground configurations

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1976-01-01

    An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.

  10. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  11. Preservation of York Minster historic limestone by hydrophobic surface coatings.

    PubMed

    Walker, Rachel A; Wilson, Karen; Lee, Adam F; Woodford, Julia; Grassian, Vicki H; Baltrusaitis, Jonas; Rubasinghege, Gayan; Cibin, Giannantonio; Dent, Andrew

    2012-01-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO(2) emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO(2)/H(2)O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

  12. Use of constant wavelength synchronous spectrofluorimetry for identification of polycyclic aromatic hydrocarbons in air particulate samples

    NASA Astrophysics Data System (ADS)

    Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.

    2013-05-01

    We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture.

  13. Preservation of York Minster historic limestone by hydrophobic surface coatings

    NASA Astrophysics Data System (ADS)

    Walker, Rachel A.; Wilson, Karen; Lee, Adam F.; Woodford, Julia; Grassian, Vicki H.; Baltrusaitis, Jonas; Rubasinghege, Gayan; Cibin, Giannantonio; Dent, Andrew

    2012-11-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from `breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO2/H2O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

  14. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    PubMed

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barret, Didier, E-mail: didier.barret@irap.omp.eu; CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of themore » lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.« less

  16. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  17. The inception of star cluster formation revealed by [C II] emission around an Infrared Dark Cloud

    NASA Astrophysics Data System (ADS)

    Bisbas, Thomas G.; Tan, Jonathan C.; Csengeri, Timea; Wu, Benjamin; Lim, Wanggi; Caselli, Paola; Güsten, Rolf; Ricken, Oliver; Riquelme, Denise

    2018-07-01

    We present SOFIA-upGREAT observations of [C II] emission of Infrared Dark Cloud (IRDC) G035.39-00.33, designed to trace its atomic gas envelope and thus test models of the origins of such clouds. Several velocity components of [C II] emission are detected, tracing structures that are at a wide range of distances in the Galactic plane. We find a main component that is likely associated with the IRDC and its immediate surroundings. This strongest emission component has a velocity similar to that of the 13CO(2-1) emission of the IRDC, but offset by ˜3 km s-1 and with a larger velocity width of ˜9 km s-1. The spatial distribution of the [C II] emission of this component is also offset predominantly to one side of the dense filamentary structure of the IRDC. The C II column density is estimated to be of the order of ˜1017-1018 cm-2. We compare these results to the [C II] emission from numerical simulations of magnetized, dense gas filaments formed from giant molecular cloud (GMC) collisions, finding similar spatial and kinematic offsets. These observations and modellingof [C II] add further to the evidence that IRDC G035.39-00.33 has been formed by a process of GMC-GMC collision, which may thus be an important mechanism for initiating star cluster formation.

  18. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  19. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.

  20. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  1. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  2. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  3. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  4. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the formmore » Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.« less

  5. The Ability of Atmospheric Data to Reduce Disagreements in Wetland Methane Flux Estimates over North America

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Andrews, A. E.; Benmergui, J. S.; Commane, R.; Dlugokencky, E. J.; Janssens-Maenhout, G.; Melton, J. R.; Michalak, A. M.; Sweeney, C.; Worthy, D. E. J.

    2015-12-01

    Existing estimates of methane fluxes from wetlands differ in both magnitude and distribution across North America. We discuss seven different bottom-up methane estimates in the context of atmospheric methane data collected across the US and Canada. In the first component of this study, we explore whether the observation network can even detect a methane pattern from wetlands. We find that the observation network can identify a methane pattern from Canadian wetlands but not reliably from US wetlands. Over Canada, the network can even identify spatial patterns at multi-provence scales. Over the US, by contrast, anthropogenic emissions and modeling errors obscure atmospheric patterns from wetland fluxes. In the second component of the study, we then use these observations to reconcile disagreements in the magnitude, seasonal cycle, and spatial distribution of existing estimates. Most existing estimates predict fluxes that are too large with a seasonal cycle that is too narrow. A model known as LPJ-Bern has a spatial distribution most consistent with atmospheric observations. By contrast, a spatially-constant model outperforms the distribution of most existing flux estimates across Canada. The results presented here provide several pathways to reduce disagreements among existing wetland flux estimates across North America.

  6. Jet Mixing and Emission Characteristics of Transverse Jets in Annular and Cylindrical Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1995-01-01

    Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.

  7. Scenarios over the past 3 decades: air quality impact of European legislation

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G. G. A.; Guizzardi, D.; Schaaf, E.; Muntean, M.; Dentener, F. J.; Sindelarova, K.; Granier, C.

    2014-12-01

    The impacts of air pollution span from local to global, affecting human health, climate, visibility and ecosystems. Several actions at national, regional and global scale have been adopted to reduce pollutant emission levels. In our work we make use of the EDGAR_ v4.3 emission database to compare today's pollutant levels with ex-post scenarios developed to assess the impact and effectiveness of legislation over the last 3 decades on air quality and climate. Differently from most of literature works addressing future air quality, here we focus on historical global anthropogenic emissions (years 1970-2010) of several gaseous and particulate air pollutants (SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC) and past emission scenarios to demonstrate the role that policy has played in improving air quality. Three scenarios have been developed and compared to today's situation (year 2010), assuming the lack of abatement measures, the complete stagnation of technology (no reduction measures applied and constant emission factors from 1970), and a constant fuel mixture (with a more prominent role for coal in the 1970s). Special focus is dedicated to the power generation sector, manufacturing industry and road transport activities since these were mostly influenced by official regulations in the EU. Global SO2 emissions from transport dropped down by 8.5 times due to the deployment of low S content fuels; NOx and CO emissions are indeed a function of combustion efficiency and therefore decreased with the introduction of new technologies, while NH3 emitted by road transport increased in Europe by 18% due to the introduction of catalyzers. Finally, particulate matter emissions are mainly abated by the installation of End-of-Pipe measures (e.g. filters) especially in the energy and transport sectors.

  8. Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core

    NASA Technical Reports Server (NTRS)

    Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.

    1994-01-01

    We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is relatively constant over approximately 14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (less than 5 solar luminosity) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust.

  9. The Connection between Different Tracers of the Diffuse Interstellar Medium: Kinematics

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, S. R.; Flagey, Nicolas; Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Lambert, D. L.

    2018-05-01

    Using visible, radio, microwave, and submillimeter data, we study several lines of sight toward stars generally closer than 1 kpc on a component-by-component basis. We derive the component structure seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH+, and CN and compare it to emission from H I, CO and its isotopologues, and C+ from the GOT C+ survey. The correspondence between components in emission and absorption helps create a more unified picture of diffuse atomic and molecular gas in the interstellar medium. We also discuss how these tracers are related to the CO-dark H2 gas probed by C+ emission and discuss the kinematic connections among the species observed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahadi, S., E-mail: su4idi@yahoo.com; Puspito, N. T.; Ibrahim, G.

    Determination of onset time precursors of strong earthquakes (Mw > 5) and distance (d < 500 km) using geomagnetic data from Geomagnetic station KTB, Sumatra and two station references DAV, Philippine and DAW, Australia. separate techniques are required in its determination. Not the same as that recorded in the kinetic wave seismograms can be determined by direct time domain. Difficulties associated with electromagnetic waves seismogenic activities require analysis of the transformed signal in the frequency domain. Determination of the frequency spectrum will determine the frequency of emissions emitted from the earthquake source. The aim is to analyze the power amplitudemore » of the ULF emissions in the horizontal component (H) and vertical component (Z). Polarization power ratio Z/H is used for determining the sign of earthquake precursors controlled by the standard deviation. The pattern recognition polarization ratio should be obtained which can differentiate emissions from seismogenic effects of geomagnetic activity. ULF emission patterns generated that seismogenic effect has duration > 5 days and the dominance of emission intensity recorded at the Z component and for the dominance of the emission intensity of geomagnetic activity recorded in the component H. The result shows that the onset time is determined when the polarization power ratio Z/H standard deviation over the limit (p ± 2 σ) which has a duration of > 5 days.« less

  11. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles

    PubMed Central

    Beck, John J.; Light, Douglas M.; Gee, Wai S.

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8 PMID:22588282

  12. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  13. Choice with frequently changing food rates and food ratios.

    PubMed

    Baum, William M; Davison, Michael

    2014-03-01

    In studies of operant choice, when one schedule of a concurrent pair is varied while the other is held constant, the constancy of the constant schedule may exert discriminative control over performance. In our earlier experiments, schedules varied reciprocally across components within sessions, so that while food ratio varied food rate remained constant. In the present experiment, we held one variable-interval (VI) schedule constant while varying the concurrent VI schedule within sessions. We studied five conditions, each with a different constant left VI schedule. On the right key, seven different VI schedules were presented in seven different unsignaled components. We analyzed performances at several different time scales. At the longest time scale, across conditions, behavior ratios varied with food ratios as would be expected from the generalized matching law. At shorter time scales, effects due to holding the left VI constant became more and more apparent, the shorter the time scale. In choice relations across components, preference for the left key leveled off as the right key became leaner. Interfood choice approximated strict matching for the varied right key, whereas interfood choice hardly varied at all for the constant left key. At the shortest time scale, visit patterns differed for the left and right keys. Much evidence indicated the development of a fix-and-sample pattern. In sum, the procedural difference made a large difference to performance, except for choice at the longest time scale and the fix-and-sample pattern at the shortest time scale. © Society for the Experimental Analysis of Behavior.

  14. MAP Propulsion System Thermal Design

    NASA Technical Reports Server (NTRS)

    Mosier, Carol L.

    2003-01-01

    The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.

  15. An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.

    2002-01-01

    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths greater than 3.5$ microns hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all--sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.

  16. NEAR-INFRARED SPECTROSCOPY OF THE TYPE IIn SN 2010jl: EVIDENCE FOR HIGH VELOCITY EJECTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borish, H. Jacob; Huang, Chenliang; Chevalier, Roger A.

    2015-03-01

    The Type IIn supernova SN 2010jl was relatively nearby and luminous, allowing detailed studies of the near-infrared (NIR) emission. We present 1-2.4 μm spectroscopy over the age range of 36-565 days from the earliest detection of the supernova. On day 36, the H lines show an unresolved narrow emission component along with a symmetric broad component that can be modeled as the result of electron scattering by a thermal distribution of electrons. Over the next hundreds of days, the broad components of the H lines shift to the blue by 700 km s{sup –1}, as is also observed in optical lines.more » The narrow lines do not show a shift, indicating they originate in a different region. He I λ10830 and λ20587 lines both show an asymmetric broad emission component, with a shoulder on the blue side that varies in prominence and velocity from –5500 km s{sup –1} on day 108 to –4000 km s{sup –1} on day 219. This component may be associated with the higher velocity flow indicated by X-ray observations of the supernova. The absence of the feature in the H lines suggests that this is from a He-rich ejecta flow. The He I λ10830 feature has a narrow P Cygni line, with absorption extending to ∼100 km s{sup –1} and strengthening over the first 200 days, and an emission component which weakens with time. At day 403, the continuum emission becomes dominated by a blackbody spectrum with a temperature of ∼1900 K, suggestive of dust emission.« less

  17. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  18. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: broad, multiple components indicate aspherical explosion cores

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Ashall, C.; Pian, E.; Stritzinger, M. D.; Gall, C.; Phillips, M. M.; Höflich, P.; Hsiao, E.

    2018-05-01

    The nebular-epoch spectrum of the rapidly declining, `transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct emission components, one redshifted and one blueshifted. These components are similar in mass but have slightly different degrees of ionization. They recede from one another at a line-of-sight speed larger than the sum of the combined expansion velocities of their emitting cores, thereby acting as two independent nebulae. While this configuration appears to be consistent with the scenario of two white dwarfs colliding, it may also indicate an off-centre delayed detonation explosion of a near-Chandrasekhar-mass white dwarf. In either case, broad emission line widths and a rapidly evolving light curve can be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC 1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two-component model yields somewhat better results than a single-component model. Most of the mass ejected is in one component, however, which suggests that SN 2011iv was the result of the off-centre ignition of a Chandrasekhar-mass white dwarf.

  19. Herschel PACS and SPIRE Observations of Blazar PKS 1510-089: A Case for Two Blazar Zones

    DOE PAGES

    Nalewajko, Krzysztof; Sikora, Marek; Madejski, Greg M.; ...

    2012-11-06

    In this paper, we present the results of observations of blazar PKS 1510–089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS, and Submillimeter Array. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power law with a spectral index of α ≃ 0.7. Our Herschel observations were preceded by two "orphan" gamma-ray flares. The near-infrared data reveal the high-energy cutoff in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in suchmore » a model the luminosity ratio of the external-Compton (EC) and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire data set. Finally, in this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-parsec scale, while the gamma-ray emission is associated with the EC component produced in the broad-line region at the sub-parsec scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.« less

  20. Measurements of thermal infrared spectral reflectance of frost, snow, and ice

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; D'Aria, Dana M.; Wald, Andrew

    1994-01-01

    Because much of Earth's surface is covered by frost, snow, and ice, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of ice. We have measured directional hemispherical reflectance spectra of frost, snow, and ice from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to packing or grain welding; while snow emissivity increases due to the presence of meltwater.

  1. High-energy emissions from the gamma-ray binary LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S.

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1more » GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.« less

  2. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  3. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  4. Study of the normal emissivity of molybdenum during thermal oxidation process

    NASA Astrophysics Data System (ADS)

    Xu, Yihan; Li, Longfei; Yu, Kun; Liu, Yufang

    2018-04-01

    The infrared normal spectral emissivity of the oxidized molybdenum was measured during thermal oxidation process, and the integral emissivity was calculated from the data of spectral emissivity. It is found that the surface oxidation has a remarkable effect on the spectral emissivity of molybdenum, and the spectral emissivity curves become more fluctuant with the increase in oxidation time. The integral emissivity grows exponentially with the oxidation time at 773 K, remains almost constant at 823 K, and fluctuates at 873 and 923 K. The X-ray fluorescence spectrometer, the X-ray diffraction, and the scanning electron microscopy were employed to analyze the changes in surface composition and surface morphology. The results show that the most probable reason for the variation of integral emissivity is the change in surface roughness caused by the variation in the size and shape of oxide particle on specimen surface.

  5. Examination of the formation process of pre-solvated and solvated electron in n-alcohol using femtosecond pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Toigawa, Tomohiro; Gohdo, Masao; Norizawa, Kimihiro; Kondoh, Takafumi; Kan, Koichi; Yang, Jinfeng; Yoshida, Yoichi

    2016-06-01

    The formation process of pre-solvated and solvated electron in methanol (MeOH), ethanol (EtOH), n-butanol (BuOH), and n-octanol (OcOH) were investigated using a fs-pulse radiolysis technique by observing the pre-solvated electron at 1400 nm. The formation time constants of the pre-solvated electrons were determined to be 1.2, 2.2, 3.1, and 6.3 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation time constants of the solvated electrons were determined to be 6.7, 13.6, 22.2, and 32.9 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation dynamics and structure of the pre-solvated and solvated electrons in n-alcohols were discussed based on relation between the obtained time constant and dielectric relaxation time constant from the view point of kinetics. The observed formation time constants of the solvated electrons seemed to be strongly correlated with the second component of the dielectric relaxation time constants, which are related to single molecule motion. On the other hand, the observed formation time constants of the pre-solvated electrons seemed to be strongly correlated with the third component of the dielectric relaxation time constants, which are related to dynamics of hydrogen bonds.

  6. Importance of Biotic vs Abiotic Controls on VOC Emissions from Ponderosa Pine

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; Harley, P. C.; Monson, R. K.

    2011-12-01

    The emissions of VOCs, including monoterpenes (MTs) and 2-methyl-3-buten-2-ol (MBO), from ponderosa pine can be important contributors to the regional production of ozone and secondary organic aerosols in the Western United States. The goal of this study was to better characterize the influences of biotic and abiotic factors on the emissions of these compounds. Using PTR-MS coupled with measurements of photosynthesis and stomatal conductance (gs) we generated light and temperature curves from intact needles of mature ponderosa pine trees and used abscisic acid (ABA) to reduce gs and photosynthesis under constant light and temperature conditions. Stomatal conductance and photosynthesis were almost perfectly correlated during all our measurements, so we were unable to separate their influences. We found that increasing temperature by 10 oC increased emissions of both MTs and MBO by 80-120% even though gs and photosynthesis were reduced by ~50%. Light curves performed at 30 oC showed that gs and photosynthesis exhibited a strong control over MT and MBO emissions although the effect was more pronounced for MBO than MT emissions. In most cases a 60% reduction in gs and photosynthesis caused a ~50% reduction in MBO emissions and a 5-20% reduction in MT emissions. Using ABA we were able to induce stomatal closure while maintaining a constant light and temperature environment and we found that stomatal closure due to ABA caused declines in MT and MBO emissions that were similar in magnitude to those seen in the light curves. When compared at the same light and temperature conditions, individuals with lower gs and photosynthesis did not necessarily have lower emissions than those with higher gs and photosynthesis, indicating that gs and photosynthesis may not be good predictors of emissions between individuals, but within each individual the instantaneous changes in gs and photosynthesis did appear to exert control over the emissions of VOCs. These data show that plant physiology is an important constraint in regulating the instantaneous emissions of VOCs, but also that the relationships are modified by external temperature, probably through the increased volatility of the VOCs.

  7. Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3 +:GdTaO4

    NASA Astrophysics Data System (ADS)

    Zhang, Qingli; Sun, Guihua; Ning, Kaijie; Shi, Chaoshu; Liu, Wenpeng; Sun, Dunlu; Yin, Shaotang

    2016-11-01

    The Judd-Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F-L formula gives larger values in the wavelength range with reabsorption. Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51502292, 51272254, 51102239, 61205173, and 61405206).

  8. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Sakamoto, Takanori

    2017-09-01

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at >5σ with bimodal distributions of luminosity and duration, I.e., extended (with a timescale of ≲103 s) and plateau emission (with a timescale of ≳103 s), which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ˜0.01-1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, the future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.

  9. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Sakamoto, Takanori; Ioka, Kunihito, E-mail: kisaka@phys.aoyama.ac.jp, E-mail: tsakamoto@phys.aoyama.ac.jp, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift /BAT and XRT data. The light curves are found to consist of two distinct components at >5 σ with bimodal distributions of luminosity and duration, i.e., extended (with a timescale of ≲10{sup 3} s) and plateau emission (with a timescale of ≳10{sup 3} s),more » which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ∼0.01–1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET /HXM, INTEGRAL /SPI-ACS, Fermi /GBM, MAXI /GSC, Swift /BAT, XRT, the future ISS-Lobster /WFI, Einstein Probe /WXT, and eROSITA .« less

  10. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses temperature... components are those components which are designed primarily for emission control, or whose failure may... system as a means of providing electrical energy. Element of design means any control system (i.e...

  11. 40 CFR 1068.501 - How do I report emission-related defects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Electronic control units, aftertreatment devices, fuel-metering components, EGR-system components, crankcase...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR HIGHWAY, STATIONARY, AND NONROAD PROGRAMS Reporting Defects and Recalling Engines/Equipment § 1068.501 How do I report emission-related defects? This...

  12. 40 CFR 1068.501 - How do I report emission-related defects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Electronic control units, aftertreatment devices, fuel-metering components, EGR-system components, crankcase...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR HIGHWAY, STATIONARY, AND NONROAD PROGRAMS Reporting Defects and Recalling Engines/Equipment § 1068.501 How do I report emission-related defects? This...

  13. 40 CFR 1068.501 - How do I report emission-related defects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Electronic control units, aftertreatment devices, fuel-metering components, EGR-system components, crankcase...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR HIGHWAY, STATIONARY, AND NONROAD PROGRAMS Reporting Defects and Recalling Engines/Equipment § 1068.501 How do I report emission-related defects? This...

  14. Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite

    NASA Astrophysics Data System (ADS)

    Li, Bing Qiuyi; Einstein, Herbert H.

    2017-09-01

    We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.

  15. Application of band-target entropy minimization to infrared emission spectroscopy and the reconstruction of pure component emissivities from thin films and liquid samples.

    PubMed

    Cheng, Shuying; Rajarathnam, D; Meiling, Tan; Garland, Marc

    2006-05-01

    Thermal emission spectral data sets were collected for a thin solid film (parafilm) and a thin liquid film (isopropanol) on the interval of 298-348 K. The measurements were performed using a conventional Fourier transform infrared (FT-IR) spectrometer with external optical bench and in-house-designed emission cell. Both DTGS and MCT detectors were used. The data sets were analyzed with band-target entropy minimization (BTEM), which is a pure component spectral reconstruction program. Pure component emissivities of the parafilm, isopropanol, and thermal background were all recovered without any a priori information. Furthermore, the emissivities were obtained with increased signal-to-noise ratios, and the signals due to absorbance of thermal radiation by gas-phase moisture and CO2 were significantly reduced. As expected, the MCT results displayed better signal-to-noise ratios than the DTGS results, but the latter results were still rather impressive given the low temperatures used in this study. Comparison is made with spectral reconstruction using the orthogonal projection approach-alternating least squares (OPA-ALS) technique. This contribution introduces the primary equation for emission spectral reconstruction using BTEM and discusses some of the unusual characteristics of thermal emission and their impact on the analysis.

  16. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    PubMed

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NO x emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  18. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  19. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions

    PubMed Central

    Mountain, Raymond D.; Harvey, Allan H.

    2015-01-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009

  20. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions.

    PubMed

    Mountain, Raymond D; Harvey, Allan H

    2015-10-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.

  1. On the conditions for nonlinear growth in magnetospheric chorus and triggered emissions

    NASA Astrophysics Data System (ADS)

    Gołkowski, Mark; Gibby, Andrew R.

    2017-09-01

    The nonlinear whistler mode instability associated with magnetospheric chorus and VLF triggered emissions continues to be poorly understood. Following up on formulations of other authors, an analytical exploration of the stability of the phenomenon from a new vantage point is given. This exploration derives an additional requirement on the anisotropy of the energetic electron distribution relative to the linear treatment of the instability, and shows that the nonlinear instability is most favorable to increasing growth rate when electrons become initially trapped in the wave potential of a constant frequency wave. These results imply that the initiation of the nonlinear instability at the equator requires a positive frequency sweep rate, while the initiation of the instability by a constant frequency triggering wave must occur at a location downstream of the geomagnetic equator.

  2. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  3. White OLED with a single-component europium complex.

    PubMed

    Law, Ga-Lai; Wong, Ka-Leung; Tam, Hoi-Lam; Cheah, Kok-Wai; Wong, Wing-Tak

    2009-11-16

    A new direction for white organic light-emitting devices is shown, fabricated from a novel europium complex; this single component contains a double emission center of bluish-green and red, combined to a give a pure white emission (CIE x = 0.34 and y = 0.35).

  4. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  5. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  6. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  7. Turbomachine monitoring system and method

    DOEpatents

    Delvaux, John McConnell

    2016-02-23

    In an embodiment, a system includes a turbomachine having a first turbomachine component including a first mechanoluminescent material. The first turbomachine component is configured to produce a first light emission upon exposure to a mechanical stimulus sufficient to cause mechanoluminescence by the first mechanoluminescent material. The system also includes a turbomachine monitoring system configured to monitor the structural health of the first component based on detection of the first light emission.

  8. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al.[Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated bymore » an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quan-tum yield, emittance, and emission models needed by beam optics codes are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5008600« less

  9. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    DOE PAGES

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; ...

    2018-01-28

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al.[Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated bymore » an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quan-tum yield, emittance, and emission models needed by beam optics codes are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5008600« less

  10. On the unsteady decline of atmospheric CFC-11: Bumps in the road to ozone recovery or variations in atmospheric transport and/or loss?

    NASA Astrophysics Data System (ADS)

    Montzka, Stephen; Dutton, Geoff; Yu, Pengfei; Portmann, Bob; Ray, Eric; Daniel, John; Moore, Fred; Nance, David; Hall, Brad; Siso, Carolina; Miller, Ben; Mondeel, Debra; Kuijpers, Lambert; Hu, Lei; Elkins, James

    2017-04-01

    Atmospheric mole fractions of the ozone-depleting and greenhouse gas CFC-11 have declined since 1995 owing to global controls on production associated with the fully adjusted and amended Montreal Protocol on Substances that Deplete the Ozone Layer. From 2002 to 2012, CFC-11 mole fractions in both hemispheres decreased at a near-constant rate of 2.2 ± 0.2 ppt/yr. Assuming a constant atmospheric loss frequency, these results suggest that CFC-11 emissions did not decrease over this 11-yr period. This conclusion is difficult to reconcile with an idealized model of emissions being sustained by leaks from a shrinking reservoir of CFC-11 (reported global production has been negligible since 2007). Even more surprising, from 2013 to 2015 the atmospheric decline slowed appreciably (mean global rate was -1.3 ± 0.1 ppt/yr) and the hemispheric difference (N - S) increased by 50%. Here we consider the implications of these atmospheric changes. When analyzed with a simple 3-box model and constant loss frequency or a 3-D climate model (WACCM) with specified dynamics, the observations suggest global CFC-11 emissions in 2014-2015 that were 30% (15 Gg/yr) larger in 2014 and 2015 compared to the 2002-2012 mean. Are emissions of this globally controlled Class 1 ozone-depleting substance actually increasing despite global reported production being negligible for nearly a decade? Or do anomalies observed for multiple trace gases during these periods suggest significant changes in stratospheric loss and mixing processes that are not captured by global models using estimates of actual meteorology?

  11. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  12. Forty years of improvements in European air quality: the role of EU policy-industry interplay

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C.

    2015-07-01

    The EDGAR (Emissions Database for Global Atmospheric Research) v4.3 global anthropogenic emissions inventory of several gaseous (SO2, NOx, CO, non-methane volatile organic compounds (NMVOCs) and NH3) and particulate (PM10, PM2.5, black and organic carbon (BC and OC)) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emission scenarios to quantify the roles and contributions of changes in fuels consumption, technology, end-of-pipe emission reduction measures and their resulting impact on health and crop yields. This database presents changes in activity data, fuels and air pollution abatement technology for the past 4 decades, using international statistics and following guidelines for bottom-up emission inventory at the Tier 1 and Tier 2 levels with region-specific default values. With two further retrospective scenarios we assess (1) the impact of the technology and end-of-pipe (EOP) reduction measures in the European Union (EU) by considering a stagnation of technology with constant emission factors from 1970 and with no further abatement measures and improvement in European emissions standards, but fuel consumption occurring at historical pace, and (2) the impact of increased fuel consumption by considering unchanged energy use with constant fuel consumption since 1970, but technological development and end-of-pipe reductions. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, the manufacturing industry and road transport), which are subject of multi-pollutant EU Air Quality regulations. If technology and European EOP reduction measures had stagnated at 1970 levels, EU air quality in 2010 would have suffered from 129 % higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions, demonstrating the large role of technology in reducing emissions in 2010. However, if fuel consumption had remained constant starting in 1970, the EU would have benefited from current technology and emission control standards, with reductions in NOx by even 13 % more. Such further savings are not observed for SO2 and PM2.5. If the EU consumed the same amount of fuels as in 1970 but with the current technology and emission control standards, then the emissions of SO2 and PM2.5 would be 42 % respectively 10 % higher. This scenario shows the importance for air quality of abandoning heavy residual fuel oil and shifting fuel types (from, e.g., coal to gas) in the EU. A reduced-form TM5-FASST (Fast Screening Scenario Tool based on the global chemical Transport Model 5) is applied to calculate regional and global levels of aerosol and ozone concentrations and to assess the impact of air quality improvements on human health and crop yield loss, showing substantial impacts of export of EU technologies and standards to other world regions.

  13. Meterwavelength Single-pulse Polarimetric Emission Survey. IV. The Period Dependence of Component Widths of Pulsars

    NASA Astrophysics Data System (ADS)

    Skrzypczak, Anna; Basu, Rahul; Mitra, Dipanjan; Melikidze, George I.; Maciesiak, Krzysztof; Koralewska, Olga; Filothodoros, Alexandros

    2018-02-01

    The core component width in normal pulsars, with periods (P) > 0.1 s, measured at the half-power point at 1 GHz, has a lower boundary line (LBL) that closely follows the P ‑0.5 scaling relation. This result is of fundamental importance for understanding the emission process and requires extended studies over a wider frequency range. In this paper we have carried out a detailed study of the profile component widths of 123 normal pulsars observed in the Meterwavelength Single-pulse Polarimetric Emission Survey at 333 and 618 MHz. The components in the pulse profile were separated into core and conal classes. We found that at both frequencies, the core, as well as the conal component widths versus period, had a LBL that followed the P ‑0.5 relation with a similar lower boundary. The radio emission in normal pulsars has been observationally shown to arise from a narrow range of heights around a few hundred kilometers above the stellar surface. In the past the P ‑0.5 relation has been considered as evidence for emission arising from last open dipolar magnetic field lines. We show that the P ‑0.5 dependence only holds if the trailing and leading half-power points of the component are associated with the last open field line. In such a scenario we do not find any physical motivation that can explain the P ‑0.5 dependence for both core and conal components as evidence for dipolar geometry in normal pulsars. We believe the period dependence is a result of a currently unexplained physical phenomenon.

  14. The X-ray Emitting Components towards l = 111 deg: The Local Hot Bubble and Beyond

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have obtained an XMM-Newton spectrum of the diffuse X-ray emission towards (l, b) = (111.14,1.11), a line of sight with a relatively simple distribution of absorbing clouds; > 9 x 10(exp 19)/sq cm at R>170 pc, a 6 x 10(exp 21)/sq cm molecular cloud at 2.5-3.3 kpc, and a total column of 1.2 x 10(exp 22)/sq cm. We find that the analysis of the XMM-Newton spectrum in conjunction with the RASS spectral energy distribution for the same direction requires three thermal components to be well fit: a "standard" Local Hot Bubble component with kT = 0.089, a component beyond the molecular cloud with kT = 0.59, and a component before the molecular cloud with kT = 0.21. The strength of the O VII 0.56 keV line from the Local Hot Bubble, 2.1+/-0.7 photons/sq cm/s/sr, is consistent with other recent measures. The 0.21 keV component has an emission measure of 0.0022+/-0.0006 pc and is not localized save as diffuse emission within the Galactic plane; it is the best candidate for a pervasive hot medium. The spatial separation of the approx. 0.2 keV component from the approx. 0.6 keV component suggests that the spectral decompositions of the emission from late-type spiral disks found in the literature do represent real temperature components rather than reflecting more complex temperature distributions.

  15. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com

    2016-05-21

    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less

  16. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabagiu, Sorina, E-mail: sgarabagiu@itim-cj.ro

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The interaction was studied using UV-vis and fluorescence spectroscopy. Black-Right-Pointing-Pointer Gold nanoparticles quench the fluorescence emission of hemoglobin solution. Black-Right-Pointing-Pointer The binding and thermodynamic constants were calculated. Black-Right-Pointing-Pointer Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV-vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longermore » wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern-Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.« less

  17. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Administrator's satisfaction that the engine will function properly only if the component or... section are defined as critical emission-related components. (i) Catalytic convertor. (ii) Electronic... which satisfy one of the conditions defined in paragraphs (j)(2)(i) through (j)(2)(vi) of this section...

  18. Passive microwave observations of the Wedell Sea during austral winter and early spring

    NASA Technical Reports Server (NTRS)

    Grenfell, T. C.; Comiso, J. C.; Lange, M. A.; Eicken, H.; Wensnahan, M. R.

    1994-01-01

    The results of multispectral passive microwave observations (6.7 to 90-GHz) are presented from the cruises of the FS Polarstern in the Weddell Sea from July to December 1986. This paper includes primarily the analysis of radiometric observations taken at ice station sites. Averaged emissivity spectra for first-year (FY) ice were relatively constant throughout the experiment and were not statistically different from FY ice signatures in the Arctic. Detailed ice characterization was carried out at each site to compare the microwave signatures of the ice with the physical properties. Absorption optical depths of FY ice were found to be sufficiently high that only the structure in the upper portions of the ice contributed significantly to interstation emissivity variations. The emissivities at 90-GHz, e(90), had the greatest variance. Both e(90) at vertical polarization and GR(sub e)(90, 18.7)(defined as (e(sub V)(90)-e(sub V)(18.7))/e(sub V)(90 + e(sub V)(18.7)) depended on the scattering optical depth which is a function of the snow grain diameter and layer thickness. The variance showed a latitude dependence and is probably due to an increase in the strength of snow metamorphism nearer the northern edge of the ice pack. The contribution of variations of near-surface brine volume to the emissivity was not significant over the range of values encountered at the station sites. Emissivity spectra are presented for a range of thin ice types. Unsupervised principal component analysis produced three significant eigenvectors and showed a separation among four different surface types: open water, thin ice, FY ice, and FY ice with a thick snow cover. A comparison with SMMR satellite data showed that average ice concentrations derived from the ship's ice watch log were consistent with the satellite concentrations. The surface based emissivities for FY ice were also compared with emissivities calculated from scanning multichannel microwave radiometer (SMMR) satellite radiances. Best agreement was found at 6.7 and 10-GHz, while at 18 and 37-GHz, SMMR emissivities were slightly lower than surface based results. For the three lower frequencies agreement was found within a confidence limit of 95% and for 37-GHz within about 90%.

  19. Control of mechanical systems by the mixed "time and expenditure" criterion

    NASA Astrophysics Data System (ADS)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    The optimal controlled motion of a mechanical system, that is determined by the linear system ODE with constant coefficients and piecewise constant control components, is considered. The number of control switching points and the heights of control steps are considered as preset. The optimized functional is combination of classical time criteria and "Expenditure criteria", that is equal to the total area of all steps of all control components. In the absence of control, the solution of the system is equal to the sum of components (frequency components) corresponding to different eigenvalues of the matrix of the ODE system. Admissible controls are those that turn to zero (at a non predetermined time moment) the previously chosen frequency components of the solution. An algorithm for the finding of control switching points, based on the necessary minimum conditions for mixed criteria, is proposed.

  20. Study on multimodal transport route under low carbon background

    NASA Astrophysics Data System (ADS)

    Liu, Lele; Liu, Jie

    2018-06-01

    Low-carbon environmental protection is the focus of attention around the world, scientists are constantly researching on production of carbon emissions and living carbon emissions. However, there is little literature about multimodal transportation based on carbon emission at home and abroad. Firstly, this paper introduces the theory of multimodal transportation, the multimodal transport models that didn't consider carbon emissions and consider carbon emissions are analyzed. On this basis, a multi-objective programming 0-1 programming model with minimum total transportation cost and minimum total carbon emission is proposed. The idea of weight is applied to Ideal point method for solving problem, multi-objective programming is transformed into a single objective function. The optimal solution of carbon emission to transportation cost under different weights is determined by a single objective function with variable weights. Based on the model and algorithm, an example is given and the results are analyzed.

  1. IUE detection of bursts of H Ly-alpha emission from Saturn

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.; Atreya, S. K.; Lane, A. L.

    1981-01-01

    A new investigation is reported of the potential sources of Ly-alpha emission in a series of observations of the Saturnian system carried out between January and July 1980 using the short wavelength spectrograph of the IUE Observatory. It is noted that north-south maps of the Ly-alpha emission across the planet disk show pronounced spatial asymmetries in emission brightness. These asymmetries vary to a marked extent on a time scale of days and are interpreted as bursts of Ly-alpha emission of as much as 1 kR brightness averaged over a 6 x 10 arcsec area, above a constant planetary emission level of 700-800 R. In fact, the Ly-alpha emission peaks manifest themselves as essentially point source features in these data; it is pointed out that if the emitting region is smaller than the 6 x 10 arcsec instrumental resolution, the surface brightness must be proportionally higher.

  2. Nonexistence of degenerate horizons in static vacua and black hole uniqueness

    NASA Astrophysics Data System (ADS)

    Khuri, Marcus; Woolgar, Eric

    2018-02-01

    We show that in any spacetime dimension D ≥ 4, degenerate components of the event horizon do not exist in static vacuum configurations with positive cosmological constant. We also show that without a cosmological constant asymptotically flat solutions cannot possess a degenerate horizon component. Several independent proofs are presented. One proof follows easily from differential geometry in the near-horizon limit, while others use Bakry-Émery-Ricci bounds for static Einstein manifolds.

  3. Five Years of Mid-Infrared Evolution of the Remnant of SN 1987A: The Encounter Between the Blast Wave and the Dusty Equatorial Ring

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, I. John; De Buizer, James M.; Gehrz, Robert D.; Park, Sangwook; Polomski, Elisha F.; hide

    2010-01-01

    We have used the Spitzer satellite to monitor the laid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output, is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from approximately 180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of 5 x 10(exp 6) K and approximately 3 x 10(exp 4) per cubic centimeter, respectively. The mass of the radiating dust is approximately 1.2 x 10(exp -6) solar mass on day 7554, and scales linearly with IR flux. Comparison of the IR data with the soft X-ray flux derived from Chandra observations shows that the IR-to-X-ray flux ratio, IRX, is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of IRX is most consistent with the scenario that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased by a factor of approximately 5 with a time dependence of t(sup '0.87 plus or minus 0.20), t' being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER, as also suggested by X-ray observations. The constant spectral shape of they IR, emission provides strong constraints on the density and temperature of the shocked gas in which the interaction takes place. The IR spectra also suggest the presence of a secondary population of very small, hot (T greater than or equal to 350 K), featureless dust. If these grains spatially coexists with the silicates, then they must have shorter lifetimes. The data show slightly different rates of increase of their respective fluxes, lending some support to this hypothesis. However, the origin of this emission component and the exact nature of its relation to the silicate emission is still a major unsolved puzzle.

  4. Soil moisture, dielectric permittivity and emissivity of soil: effective depth of emission measured by the L-band radiometer ELBARA

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote Sensing AG) and the physical temperature of the soil surface measured by infrared sensor. As the input data for S-PM: volumes of soil components, mineralogical composition, organic matter content, specific surface area and bulk density of the soil were used. Water contents in the model are iteratively changed, until emissivities calculated from the S-PM reach the best agreement with emissivities measured by the radiometer. Final water content will correspond to the soil moisture measured by the radiometer. Then, the examined soil profile will be virtually divided into thin slices where moisture, temperature and thermal properties will be measured and simultaneously modelled via S-PM. In the next step, the slices will be "added" starting from top (soil surface), until the effective soil moisture will be equal to the soil moisture measured by ELBARA. The thickness of obtained stack will be equal to desired "penetration depth". Moreover, it will be verified further by measuring the moisture content using thermal inertia. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.

  5. Probing midplane CO abundance and gas temperature with DCO+ in the protoplanetary disk around HD 169142

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Fedele, D.; Hogerheijde, M. R.; Favre, C.; Walsh, C.; Bruderer, S.; Miotello, A.; Murillo, N. M.; Klaassen, P. D.; Henning, Th.; van Dishoeck, E. F.

    2018-06-01

    Context. Physical and chemical processes in protoplanetary disks affect the disk structure and the midplane environment within which planets form. The simple deuterated molecular cation DCO+ has been proposed to act as a tracer of the disk midplane conditions. Aims: This work aims to understand which midplane conditions are probed by the DCO+ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO+ formation pathways to gas temperature and CO abundance. Methods: The DCO+ J = 3-2 transition was observed with Atacama Large Millimeter/submillimeter Array at a spatial resolution of 0.3'' (35 AU at 117 pc). We modeled the DCO+ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO+ through the cold deuterium fractionation pathway via H2D+. Parameterized models are used to modify the gas temperature and CO abundance structure of the disk midplane to test their effect on DCO+ production. Contributions from the warm deuterium fractionation pathway via CH2D+ are approximated using a constant abundance in the intermediate disk layers. Results: The DCO+ line is detected in the HD 169142 disk with a total integrated line flux of 730 ± 73 mJy km s-1. The radial intensity profile reveals a warm, inner component of the DCO+ emission at radii ≲30 AU and a broad, ring-like structure from 50-230 AU with a peak at 100 AU just beyond the edge of the millimeter grain distribution. Parameterized models show that alterations to the midplane gas temperature and CO abundance are both needed to recover the observed DCO+ radial intensity profile. The alterations are relative to the fiducial physical structure of the literature model constrained by dust and CO observations. The best-fit model contains a shadowed, cold midplane in the region z/r < 0.1 with an 8 K decrease in Tgas and a factor of five CO depletion just beyond the millimeter grains (r = 83 AU), and a 2 K decrease in Tgas for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO+ abundance of 2.0 × 10-12 between 30-70 K and contributes >85% to the DCO+ emission at r < 83 AU in the best-fit model. Conclusions: The DCO+ emission probes a reservoir of cold material in the HD 169142 outer disk that is not probed by the millimeter continuum, the spectral energy distribution, nor the emission from the 12 CO, 13 CO, or C18O J = 2-1 lines. The DCO+ emission is a sensitive probe of gas temperature and CO abundance near the disk midplane and provides information about the outer disk beyond the millimeter continuum distribution that is largely absent in abundant gaseous tracers such as CO isotopologues. The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A106

  6. Diffuse Ionized Gas in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, L. D.; Balser, Dana S.; Wenger, Trey V.; Bania, T. M.

    2017-11-01

    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from {\\ell }=18^\\circ to 40° using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from H II region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100 {km} {{{s}}}-1 associated with the luminous H II region W43, and the other centered around 45 {km} {{{s}}}-1 not associated with any large H II region. Our analysis suggests that the two velocity components near W43 may be caused by noncircular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ˜6 kpc for the 100 {km} {{{s}}}-1 component and ˜12 kpc for the 45 {km} {{{s}}}-1 component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0 μm emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete H II regions and the intensity of the RRL emission from the DIG. This implies that the soft ultraviolet photons responsible for creating the infrared emission have a similar origin as the harder ultraviolet photons required for the RRL emission. The 8.0 μm emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.

  7. Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

    NASA Astrophysics Data System (ADS)

    Kido, Hiroyuki; Nakahara, Masaya; Hashimoto, Jun; Barat, Dilmurat

    In order to clarify the turbulent burning velocity of multi-component fuel mixtures, both lean and rich two-component fuel mixtures, in which methane, propane and hydrogen were used as fuels, were prepared while maintaining the laminar burning velocity approximately constant. A distinct difference in the measured turbulent burning velocity at the same turbulence intensity is observed for two-component fuel mixtures having different addition rates of fuel, even the laminar burning velocities are approximately the same. The burning velocities of lean mixtures change almost constantly as the rate of addition changes, whereas the burning velocities of the rich mixtures show no such tendency. This trend can be explained qualitatively based on the mean local burning velocity, which is estimated by taking into account the preferential diffusion effect for each fuel component. In addition, a model of turbulent burning velocity proposed for single-component fuel mixtures may be applied to two-component fuel mixtures by considering the estimated mean local burning velocity of each fuel.

  8. Ammonia emissions from dairy production in Wisconsin.

    PubMed

    Harper, L A; Flesch, T K; Powell, J M; Coblentz, W K; Jokela, W E; Martin, N P

    2009-05-01

    Ammonia gas is the only significant basic gas that neutralizes atmospheric acid gases produced from combustion of fossil fuels. This reaction produces an aerosol that is a component of atmospheric haze, is implicated in nitrogen (N) deposition, and may be a potential human health hazard. Because of the potential impact of NH3 emissions, environmentally and economically, the objective of this study was to obtain representative and accurate NH3 emissions data from large dairy farms (>800 cows) in Wisconsin. Ammonia concentrations and climatic measurements were made on 3 dairy farms during winter, summer, and autumn to calculate emissions using an inverse-dispersion analysis technique. These study farms were confinement systems utilizing freestall housing with nearby sand separators and lagoons for waste management. Emissions were calculated from the whole farm including the barns and any waste management components (lagoons and sand separators), and from these components alone when possible. During winter, the lagoons' NH3 emissions were very low and not measurable. During autumn and summer, whole-farm emissions were significantly larger than during winter, with about two-thirds of the total emissions originating from the waste management systems. The mean whole-farm NH3 emissions in winter, autumn, and summer were 1.5, 7.5, and 13.7% of feed N inputs emitted as NH3-N, respectively. Average annual emission comparisons on a unit basis between the 3 farms were similar at 7.0, 7.5, and 8.4% of input feed N emitted as NH3-N, with an annual average for all 3 farms of 7.6 +/- 1.5%. These winter, summer, autumn, and average annual NH3 emissions are considerably smaller than currently used estimates for dairy farms, and smaller than emissions from other types of animal-feeding operations.

  9. Imaging observations of lower thermospheric O(1S) and O2 airglow emissions from STS 9 - Implications of height variations

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.

    1989-01-01

    The lower thermospheric nightglow in the Southern Hemisphere was observed with the Atmospheric Emissions Photometric Imager during the Spacelab 1 mission in December, 1983. Observations of emission from O(1S) at 2972 and 5577A, O2 at 7620 A, OH near 6300 A, and the combined emission from the three upper states of O2 which lead to the Herzberg I and II and Chamberlain band emissions in B and near UV are discussed. The altitudes of peak emission heights are determined, showing that the peak heights are not constant with latitude. It is found that airglow heights varied with latitude by as much as 8 km. The observed airglow height pattern near the equator is similar to that of Wasser and Donahue (1979).

  10. Plasma process control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  11. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  12. Improvement of the conductive network of positive electrodes and the performance of Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Morimoto, Katsuya; Nakayama, Kousuke; Maki, Hideshi; Inoue, Hiroshi; Mizuhata, Minoru

    2017-06-01

    The pretreatment to modify the valence of cobalt by discharging at 0.2 C rate for 7.5 h before the first initial activation charge process is effective in improving the surface electronic conductivity among fine particles of positive electrode active materials. The discharge curves indicate the same locus within 1800 cycles, and the capacity of the pretreated battery is stable for over 4000 cycles. However, in-situ cell pretreatment with constant current has negative influence on other components. During the constant current pretreatment, the cell voltage rapidly falls to -0.5 V in the first 10 s of in-situ pretreatment. Therefore, we investigate the pretreatment by supplying a constant voltage to the battery instead of a constant current, and find the effective condition to improve the electrochemical performance and not to have any influence on other components of the battery.

  13. Pheromone lures to monitor sparse populations of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae)

    Treesearch

    David G. Grimble

    1988-01-01

    Four types of spruce budworm pheromone lures were field-tested in sparse spruce budworm populations in Maine. BioLures® with constant pheromone emission rates less than 1.0, ca. 1.0-1.5, and ca. 15.0 micrograms of pheromone per day were compared to polyvinyl chloride (PVC) lures with rapidly decreasing pheromone emission rates. Mean trap catch was roughly proportional...

  14. Nanostructured GdxZn1-xO thin films by nebulizer spray pyrolysis technique: Role of doping concentration on the structural and optical properties

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Suresh, P.; Suresh, R.; Ragavendar, M.

    2013-07-01

    Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 °C using the NSP technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 Å and c = 5.2018 Å with hexagonal structure and preferential orientation along (0 0 2) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (ɛr and ɛi) and optical conductivities (σr and σi) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.

  15. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    NASA Astrophysics Data System (ADS)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  16. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  17. Relation between metric and decametric noise storm sources and microwave S-component emissions

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    Various activities are reported by taking into account the properties of the active region and its relationship to low frequency burst emissions observed by the IMP-6 satellite. The relation of metric noise continuum storms (200 MHz) with the S-component of microwave emissions (2800 MHz) are examined. Taking the results analyzed, a model on the growth of radio noise continuum sources in metric and decametric frequencies and its relation to microwave and other solar active phenomena are considered.

  18. Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions.

    PubMed

    Zhou, Chenkun; Tian, Yu; Khabou, Oussama; Worku, Michael; Zhou, Yan; Hurley, Joseph; Lin, Haoran; Ma, Biwu

    2017-11-22

    Single-component white-emitting phosphors are highly promising to simplify the fabrication of optically pumped white light-emitting diodes. To achieve white emission, precise control of the excited state dynamics is required for a single-component system to generate emissions with different energies in the steady state. Here, we report a new class of white phosphors based on manganese (Mn)-doped one-dimensional (1D) organic lead bromide perovskites. The bright white emission is the combination of broadband blue emission from the self-trapped excited states of the 1D perovskites and red emission from the doped Mn 2+ ions. Because of the indirect nature of the self-trapped excited states in 1D perovskites, there is no energy transfer from these states to the Mn 2+ ions, resulting in an efficient dual emission. As compared to the pristine 1D perovskites with bluish-white emission, these Mn-doped 1D perovskites exhibit much higher color rendering index of up to 87 and photoluminescence quantum efficiency of up to 28%.

  19. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  20. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  1. HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.

    2014-01-01

    We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.

  2. GW Orionis: Inner disk readjustments in a triple system

    NASA Astrophysics Data System (ADS)

    Fang, M.; Sicilia-Aguilar, A.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Eiroa, C.; Müller, A.

    2014-10-01

    Context. Disks are expected to dissipate quickly in binary or multiple systems. Investigating such systems can improve our knowledge of the disk dispersal. The triple system GW Ori, still harboring a massive disk, is an excellent target. Aims: We study the young stellar system GW Ori, concentrating on its accretion, wind activity and disk properties. Methods: We use high-resolution optical spectra of GW Ori to do spectral classification and derive the radial velocities (RV). We analyze the wind and accretion activity using the emission lines in the spectra. We also use U-band photometry, which has been collected from the literature, to study the accretion variability of GW Ori. We characterize the disk properties of GW Ori by modeling its spectral energy distribution (SED). Results.By comparing our data to the synthetical spectra, we classify GW Ori as a G8 star. Based on the RVs derived from the optical spectra, we confirm the previous result as a close companion in GW Ori with a period of ~242 days and an orbital semi-major axis of ~1 AU. The RV residuals after the subtraction of the orbital solution with the equivalent widths (EW) of accretion-related emission lines vary with periods of 5-6.7 days during short-time intervals, which are caused by the rotational modulation. The Hα and Hβ line profiles of GW Ori can be decomposed in two central-peaked emission components and one blue-shifted absorption component. The blue-shifted absorption components are due to a disk wind modulated by the orbital motion of the close companion. Therefore, the systems like GW Ori can be used to study the extent of disk winds. We find that the accretion rates of GW Ori are rather constant but can occasionally be enhanced by a factor of 2-3. We reproduce the SED of GW Ori by using disk models with gaps ~25-55 AU in size. A small population of tiny dust particles within the gap produces the excess emission at near-infrared bands and the strong and sharp silicate feature at 10 μm. The SED of GW Ori exhibits dramatic changes on timescales of ~20 yr in the near-infrared bands, which can be explained as the change in the amount and distribution of small dust grains in the gap. We collect a sample of binary/multiple systems with disks in the literature and find a strong positive correlation between their gap sizes and separations from the primaries to companions, which is generally consistent with the prediction from the theory. Table 4 is available in electronic form at http://www.aanda.org

  3. An ASCA observation of the Castor system

    NASA Technical Reports Server (NTRS)

    Gotthelf, Eric V.; Jalota, Lalit; Mukai, Koji; White, Nicholas E.

    1994-01-01

    We report on a day-long ASCA broadband (1-10 keV) spectro-imaging observation of the X-ray emission from the Castor multibinary system. Significant flares were detected from both the flare star system YY Gem (Castor C) and from Castor AB located 73 sec away. Using an optimal viewing geometry and image restoration techniques, we are able to spatially resolve the emission from the two X-ray components. Broadband flare activity from Castor AB is confirmed, and quiescent flux is detected. The quiescent spectrum of YY Gem is a complex blend of emission lines across the ASCA bandpass which requires multitemperature components or two-temperature variable metal-poor abundances (approximately 5-10 below solar) to obtain a satisfactory fit to both the Mewe-Kaastra and Raymond-Smith models. The flare spectrum is consistent with an increase in the emissivity of the hotter component.

  4. Exoelectronic emission of particles of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

  5. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you.... (e) Identify the CO2 FCLs with which you are certifying engines in the engine family; also identify...

  7. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric constant at both resonance and off resonance frequencies. The effective piezoelectric constant can be alternated by varying the size of each component, the degree of the pre-curvature of the positive strain components, the thickness of each layer in the multilayer stacks, and the piezoelectric constant of the material used. Because all of the elements are piezoelectric components, Stacked HYBATS can serve as projector and receiver for underwater detection. The performance of this innovation can be enhanced by improving the piezoelectric properties.

  8. Snowmelt and Surface Freeze/Thaw Timings over Alaska derived from Passive Microwave Observations using a Wavelet Classifier

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.

    2015-12-01

    Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are reported for Alaska and the North-West Canadian Arctic for the period 2002 to 2015.

  9. 40 CFR 86.206-94 - Equipment required; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tests. Exhaust from gasoline-fueled vehicles is tested for gaseous emissions using the Constant Volume Sampler (CVS) concept (§ 86.209). Equipment necessary and specifications appear in §§ 86.208 through 86...

  10. Greenhouse gas emissions modeling : a tool for federal facility decommissioning

    DOT National Transportation Integrated Search

    2010-10-21

    The Federal Aviation Administration (FAA) facility inventory is constantly changing as newer systems supplant older infrastructure in response to technological advances. Transformational change embodied by the FAAs Next Generation Air Transportati...

  11. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker.

    PubMed

    Alieva, Roza R; Belogurova, Nadezhda V; Petrova, Alena S; Kudryasheva, Nadezhda S

    2014-05-01

    Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.

  12. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Barcos-Muñoz, Loreto; Costagliola, Francesco; Evans, Aaron S.; Harada, Nanase; Martín, Sergio; Wiedner, Martina; Wilner, David

    2017-11-01

    We analyze the 3 mm emission of the ultraluminous infrared galaxy Arp 220 for the spatially resolved structure and the spectral properties of the merger nuclei. ALMA archival data at ˜0.″05 resolution are used for extensive visibility fitting and deep imaging of the continuum emission. The data are fitted well by two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in the individual nuclei are similar in shape and extent, ˜100-150 pc, to the centimeter wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures ({T}{{b}}) more than twice higher than those in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak {T}{{b}}≈ 530 K and an FWHM of about 20 pc. This component is estimated to have a bolometric luminosity on the order of {10}12.5 {L}⊙ and a 20 pc scale luminosity surface density {10}15.5 {{L}}⊙ {{{k}}{{p}}{{c}}}-2. A luminous active galactic nucleus is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus—a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (I≈ 60^\\circ ) western nuclear disk.

  13. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    NASA Astrophysics Data System (ADS)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  14. The NuSTAR View of the Non-Thermal Emission from PSR J0437-4715

    NASA Technical Reports Server (NTRS)

    Guillot, S.; Kaspi, V. M.; Archibald, R. F.; Bachetti, M.; Flynn, C.; Jankowski, F.; Bailes, M.; Boggs, S.; Christensen, F. E.; Craig, W. W.; hide

    2016-01-01

    We present a hard X-ray Nuclear Spectroscopic Telescope Array (NuSTAR) observation of PSR J0437-4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period approximately 5.76 ms are observed with a significance of 3.7sigma, at energies up to 20 keV above which the NuSTAR background dominates. We measure a photon index gamma = 1.50 +/- 0.25(90 per cent confidence) for the power-law fit to the non-thermal emission. It had been shown that spectral models with two or three thermal components fit the XMM-Newton spectrum of PSR J0437-4715, depending on the slope of the power-law component, and the amount of absorption of soft X-rays. The new constraint on the high-energy emission provided by NuSTAR removes ambiguities regarding the thermal components of the emission below 3 keV. We performed a simultaneous spectral analysis of the XMM-Newton and NuSTAR data to confirm that three thermal components and a power law are required to fit the 0.3-20 keV emission of PSR J0437-4715. Adding a ROSAT-PSPC spectrum further confirmed this result and allowed us to better constrain the temperatures of the three thermal components. A phase resolved analysis of the NuSTAR data revealed no significant change in the photon index of the high-energy emission. This NuSTAR observation provides further impetus for future observations with the NICER mission (Neutron Star Interior Composition Explorer) whose sensitivity will provide much stricter constraints on the equation of state of nuclear matter by combining model fits to the pulsars phase-folded light curve with the pulsars well-defined mass and distance from radio timing observations.

  15. Polarized curvature radiation in pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  16. STUDYING THE INTERSTELLAR MEDIUM AND THE INNER REGION OF NPS/LOOP 1 WITH SHADOW OBSERVATIONS TOWARD MBM36

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursino, E.; Galeazzi, M.; Liu, W., E-mail: galeazzi@physics.miami.edu

    2016-01-01

    We analyzed data from a shadow observation of the high density molecular cloud MBM36 (l ∼ 4°, b ∼ 35°) with Suzaku. MBM36 is located in a region that emits relatively weakly in the 3/4 keV band compared to the surrounding North Polar Spur (NPS)/Loop 1 structure and the Galactic Bulge (GB). The contrast between high and low density targets in the MBM36 area allows one to separate the local and distant contributors to the soft diffuse X-ray background, providing a much better characterization of the individual components compared to single pointing observations. We identify two non-local thermal components, one at kT ≈ 0.12 keV andmore » one at kT ≈ 0.29 keV. The colder component matches well with models of emission from the higher latitude region of the GB. The emission of the warmer component is in agreement with models predicting that the NPS is due to a hypershell from the center of the Milky Way. Geometrical and pressure calculations rule out a nearby bubble as responsible for the emission associated with the NPS. Any Galactic Halo/circumgalactic halo emission, if present, is outshined by the other components. We also report an excess emission around 0.9 keV, likely due to an overabundance of Ne ix.« less

  17. Signs of magnetic acceleration and multizone emission in GRB 080825C

    DOE PAGES

    Moretti, Elena; Axelsson, Magnus

    2016-03-03

    One of the major results from the study of gamma-ray bursts with the Fermi Gamma-ray Space Telescope has been the confirmation that several emission components can be present in the energy spectrum. In this paper, we reanalyse the spectrum of GRB 080825C using data from the Fermi-Large Area Telescope (LAT) and Gamma-ray Burst Monitor instruments. Although fairly weak, it is the first gamma-ray burst detected by the Fermi-LAT. We improve on the original analysis by using the LAT Low Energy events covering the 30–100 MeV band. We find evidence of an additional component above the main emission peak (modelled usingmore » a Band function) with a significance of 3.5σ in two out of the four time bins. The component is well fitted by a Planck function, but shows unusual behaviour: the peak energy increases in the prompt emission phase, reaching energies of several MeV. This is the first time such a trend has been seen, and implies that the origin of this component is different from those previously detected. We suggest that the two spectral components likely arise in different regions of the outflow, and that strong constraints can be achieved by assuming one of them originates from the photosphere. Finally, the most promising model appears to be that the high-energy peak is the result of photospheric emission in a Poynting flux dominated outflow where the magnetization increases with time.« less

  18. Characterization of Forest Opacity Using Multi-Angular Emission and Backscatter Data

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2010-01-01

    This paper discusses the results from a series of field experiments using ground-based L-band microwave active/passive sensors. Three independent approaches are employed to the microwave data to determine vegetation opacity of coniferous trees. First, a zero-order radiative transfer model is fitted to multi-angular microwave emissivity data in a least-square sense to provide "effective" vegetation optical depth. Second, a ratio between radar backscatter measurements with the corner reflector under trees and in an open area is calculated to obtain "measured" tree propagation characteristics. Finally, the "theoretical" propagation constant is determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). The results indicate that "effective" values underestimate attenuation values compared to both "theoretical" and "measured" values.

  19. CO Component Estimation Based on the Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki; Takeuchi, Tsutomu T.; Fukui, Yasuo

    2014-01-01

    Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independent component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.

  20. CO component estimation based on the independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki

    2014-01-01

    Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independentmore » component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.« less

  1. ORFEUS spectroscopy of the O BT VI lines in symbiotic stars and the Raman scattering process

    NASA Astrophysics Data System (ADS)

    Schmid, H. M.; Krautter, J.; Appenzeller, I.; Barnstedt, J.; Dumm, T.; Fromm, A.; Gölz, M.; Grewing, M.; Gringel, W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Krämer, G.; Lindenberger, A.; Mandel, H.; Mürset, U.; Schild, H.; Schmutz, W.; Widmann, H.

    1999-08-01

    We present orfeus spectra of the O vi lambda lambda 1032,1038 emission lines in the symbiotic stars AG Dra, V1016 Cyg, RR Tel, CD-43(deg) 14304, AG Peg and Z And. The O vi emission lines can convert into broad and highly polarized emission lines at lambda 6825 and lambda 7082 in a Raman scattering process by neutral hydrogen. From a comparison of direct and Raman scattered radiation we extract new information on the scattering geometry in symbiotic systems. The nebular O vi emission lines are in all objects redshifted by about +40 km s(-1) . This can be explained as a radiative line transfer effect in a slowly expanding emission region. A comparable redshift is measured in the Raman scattered O vi lines. In AG Peg the O vi emissions show beside a narrow nebular line a broad component from a fast stellar wind outflow. Many interstellar absorption lines of molecular hydrogen are detected, particularly near the O vi lambda 1038 component. With model calculations we investigate their impact on the O vi lines. From the dereddened line fluxes of the direct and Raman scattered O vi lines we derive the scattering efficiency, which is defined as photon flux ratio N_Raman/N_O VI. The efficiencies derived for RR Tel, V1016 Cyg and Z And indicate that about 30% of the released O vi lambda 1032 photons interact with the neutral scattering region. The efficiencies for AG Dra and CD-43(deg14304) are much higher, which may suggest that the O vi nebulosity is embedded in a H(0) -region. The D-type system RR Tel shows strong line profile differences between the direct O vi emission, which is single-peaked, and the Raman scattered emission, which is double-peaked. This indicates that the neutral scattering region in RR Tel ``sees'' different O vi line profiles, implying that the O vi nebulosity is far from spherically symmetric. In a tentative model we suggest for RR Tel an O vi flow pattern where material streams from the cool giant towards the hot component, which further accelerates the gas radially. For the S-type systems AG Dra, CD-43(deg14304) and Z And the line profile differences between the direct and the Raman scattered O vi emissions are less pronounced. This may suggest that the O vi profiles depend less on the emission direction than in the D-type system RR Tel. For AG Peg we detect for the first time the Raman scattered emission at lambda 6825. The Raman line shows a narrow, nebular component as the O vi line, but no equivalent emission to the broad O vi wind component. The higher conversion efficiency for the narrow component indicates that the nebular O vi emission is significantly closer to the cool giant than the hot, mass losing component, and strongly supports previous colliding wind models for this object. Based on observations taken during the orfeus-spas i and orfeus-spas ii space shuttle missions, and ground based data collected at the ESO 2.2m and 3.6m telescopes at La Silla, Chile, and the 4.2m William Herschel Telescope at La Palma, Canary Islands. ESO observations were granted for the programs 52.7-040 and 58.D-0866.

  2. Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO2, H2O and dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Newland, M. J.; Rickard, A. R.; Vereecken, L.; Muñoz, A.; Ródenas, M.; Bloss, W. J.

    2015-08-01

    Isoprene is the dominant global biogenic volatile organic compound (VOC) emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs), which have recently been shown to be potentially important oxidants for SO2 and NO2 in the atmosphere; however the significance of this chemistry for SO2 processing (affecting sulfate aerosol) and NO2 processing (affecting NOx levels) depends critically upon the fate of the SCIs with respect to reaction with water and decomposition. Here, we have investigated the removal of SO2 in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene-derived SCIs with H2O. Under excess SO2 conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (±0.03). The observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + H2O) / k(SCI + SO2), of 3.1 (±0.5) × 10-5 for isoprene-derived SCIs. The relative rate constant for k(SCI decomposition) / k(SCI+SO2) is 3.0 (±3.2) × 1011 cm-3. Uncertainties are ±2σ and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprene-derived SCIs are unlikely to make a substantial contribution to gas-phase SO2 oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO2 removal in the isoprene-ozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCIs and dimethyl sulfide (DMS); the observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + DMS) / k(SCI + SO2), of 3.5 (±1.8). This result suggests that SCIs may contribute to the oxidation of DMS in the atmosphere and that this process could therefore influence new particle formation in regions impacted by emissions of unsaturated hydrocarbons and DMS.

  3. ALMA Reveals Metals yet No Dust within Multiple Components in CR7

    NASA Astrophysics Data System (ADS)

    Matthee, J.; Sobral, D.; Boone, F.; Röttgering, H.; Schaerer, D.; Girard, M.; Pallottini, A.; Vallini, L.; Ferrara, A.; Darvish, B.; Mobasher, B.

    2017-12-01

    We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]{}158μ {{m}} line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by ≈ 150 km s‑1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by ≈ 300 and ≈80 km s‑1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity {L}{IR}({T}d=35 {{K}})< 3.1× {10}10 {L}ȯ . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 {M}ȯ yr‑1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and {L}[{{C}{{II}}]}, implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7's clumps have metallicities of 0.1< {{Z}}/{{{Z}}}ȯ < 0.2. The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites.

  4. Exploring the Bermuda triangle of homonuclear diatomic spectroscopy: The electronic spectrum and structure of Ge2

    NASA Astrophysics Data System (ADS)

    Hostutler, David A.; Li, Haiyang; Clouthier, Dennis J.; Wannous, Ghassan

    2002-03-01

    The optical spectrum of jet-cooled Ge2 has been observed for the first time. Laser-induced fluorescence (LIF) and wavelength resolved emission spectra were recorded using the pulsed discharge technique with a tetramethylgermane precursor. Analysis of the spectra yielded the vibrational constants ωe″=287.9(47), ωexe″=0.81(55), ωeye″=0.0037(18), ωe'=189.0(15), ωexe'=6.41(30), and Te'=20 610.8(16) cm-1. High-resolution rotationally resolved spectra of several bands of 74Ge2 show two strong P and R branches and two very weak Q branches. We have assigned the band system as a Hund's case (c) Ω'=1-Ω″=1 transition from the ground 3Σg- state to a 3Σu- excited state. The bond lengths derived from the rotational constants are r0″=2.3680(1) Å and re'=2.5244(18) Å, an ˜0.16 Å increase on electronic excitation. Arguments are presented for assigning the transition to a σg2πu2→σg2πuπg electron promotion, although the observed increase in the bond length is much less than predicted by previous ab initio calculations. The absence of the 0u+-0g+ component in the spectra has been attributed to an excited state predissociation.

  5. Excited vibrational level rotational constants for SiC2: A sensitive molecular diagnostic for astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Müller, Holger S. P.

    2015-11-01

    Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v3 = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm-1 and 3 MHz, respectively in some cases. In addition, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3ν3, the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v3 = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v3 ≤ 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the ν3 mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity.

  6. EU mitigation potential of harvested wood products.

    PubMed

    Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo

    2015-12-01

    The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).

  7. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    NASA Technical Reports Server (NTRS)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  8. Vortex Formation During Unsteady Boundary-Layer Separation

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  9. Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)

    2001-01-01

    Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.

  10. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

  11. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  12. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of the fluctuations with a delta I/I method produces consistent results.

  13. Pollutant emissions from flat-flame burners at high pressures

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  14. Introductory study of the chemical behavior of jet emissions in photochemical smog. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Whitten, G. Z.; Hogo, H.

    1976-01-01

    Jet aircraft emissions data from the literature were used as initial conditions for a series of computer simulations of photochemical smog formation in static air. The chemical kinetics mechanism used in these simulations was an updated version which contains certain parameters designed to account for hydrocarbon reactivity. These parameters were varied to simulate the reaction rate constants and average carbon numbers associated with the jet emissions. The roles of surface effects, variable light sources, NO/NO2 ratio, continuous emissions, and untested mechanistic parameters were also assessed. The results of these calculations indicate that the present jet emissions are capable of producing oxidant by themselves. The hydrocarbon/nitrous oxides ratio of present jet aircraft emissions is much higher than that of automobiles. These two ratios appear to bracket the hydrocarbon/nitrous oxides ratio that maximizes ozone production. Hence an enhanced effect is seen in the simulation when jet exhaust emissions are mixed with automobile emissions.

  15. Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.

    PubMed

    Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T

    2007-08-01

    We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.

  16. Photon emission from quark-gluon plasma out of equilibrium

    NASA Astrophysics Data System (ADS)

    Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles

    2018-01-01

    The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.

  17. Studies on Automobile Clutch Release Bearing Characteristics with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Guoliang; Chen, Xiaoyang

    Automobile clutch release bearings are important automotive driveline components. For the clutch release bearing, early fatigue failure diagnosis is significant, but the early fatigue failure response signal is not obvious, because failure signals are susceptible to noise on the transmission path and to working environment factors such as interference. With an improvement in vehicle design, clutch release bearing fatigue life indicators have increasingly become an important requirement. Contact fatigue is the main failure mode of release rolling bearing components. Acoustic emission techniques in contact fatigue failure detection have unique advantages, which include highly sensitive nondestructive testing methods. In the acoustic emission technique to detect a bearing, signals are collected from multiple sensors. Each signal contains partial fault information, and there is overlap between the signals' fault information. Therefore, the sensor signals receive simultaneous source information integration is complete fragment rolling bearing fault acoustic emission signal, which is the key issue of accurate fault diagnosis. Release bearing comprises the following components: the outer ring, inner ring, rolling ball, cage. When a failure occurs (such as cracking, pitting), the other components will impact damaged point to produce acoustic emission signal. Release bearings mainly emit an acoustic emission waveform with a Rayleigh wave propagation. Elastic waves emitted from the sound source, and it is through the part surface bearing scattering. Dynamic simulation of rolling bearing failure will contribute to a more in-depth understanding of the characteristics of rolling bearing failure, because monitoring and fault diagnosis of rolling bearings provide a theoretical basis and foundation.

  18. Thermal components in the early X-ray afterglows of GRBs: likely cocoon emission and constraints on the progenitors

    NASA Astrophysics Data System (ADS)

    Valan, Vlasta; Larsson, Josefin; Ahlgren, Björn

    2018-02-01

    The early X-ray afterglows of gamma-ray bursts (GRBs) are usually well described by absorbed power laws. However, in some cases, additional thermal components have been identified. The origin of this emission is debated, with proposed explanations including supernova shock breakout, emission from a cocoon surrounding the jet, as well as emission from the jet itself. A larger sample of detections is needed in order to place constraints on these different models. Here, we present a time-resolved spectral analysis of 74 GRBs observed by Swift X-ray Telescope in a search for thermal components. We report six detections in our sample, and also confirm an additional three cases that were previously reported in the literature. The majority of these bursts have a narrow range of blackbody radii around ˜2 × 1012 cm, despite having a large range of luminosities (Lpeak ˜ 1047-1051 erg s-1). This points to an origin connected to the progenitor stars, and we suggest that emission from a cocoon breaking out from a thick wind may explain the observations. For two of the bursts in the sample, an explanation in terms of late prompt emission from the jet is instead more likely. We also find that these thermal components are preferentially detected when the X-ray luminosity is low, which suggests that they may be hidden by bright afterglows in the majority of GRBs.

  19. A spectroscopic search for colliding stellar winds in O-type close binary systems. III - 29 UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Wiggs, Michael S.; Gies, Douglas R.

    1993-01-01

    The orbital-phase variations in the optical emission lines and UV P Cygni lines of the massive O-type binary 29 UW Canis Majoris are investigated in a search for evidence of colliding winds. High SNR spectra of the H-alpha and He I 6678-A emission lines are presented, and radial velocity curves for several features associated with the photosphere of the more luminous primary star are given. The H-alpha features consists of a P Cygni component that shares the motion of the primary, and which probably originates at the base of its wind, and a broad, stationary emission component. It is proposed that the broad emission forms in a plane midway between the stars where the winds collide. A simple geometric model is used to show that this placement of the broad component can explain the lack of orbital velocity shifts, the near-constancy of the emission strength throughout the orbit, the large velocities associated with the H-alpha wings, and the constancy of the velocity range observed.

  20. Two component X-ray emission from RS CVn binaries

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; White, N. E.; Holt, S. S.; Becker, R. H.

    1980-01-01

    A summary of results from the solid state spectrometer on the Einstein Observatory for 7 RS CVn binaries is presented. The spectra of all require two emission components, evidenced by line emission characteristic of plasma at 4 to 8 x 10 to the 6th power and bremsstrahlung characteristic of 20 to 100 x 10 to the 6th power K. The data are interpreted in terms of magnetic coronal loops similar to those seen on the Sun, although with different characteristic parameters. The emission regions could be defined by separate magnetic structures. For pressure less than approximately 10 dynes/sq cm the low temperature plasma would be confined within the stellar radii, while the high temperature plasma would, for the synchronous close binaries, fill the binary orbits. However, for loop pressures exceeding 100 dynes/sq cm, the high temperature components would also be confined to within the stellar radii, in loops covering only small fractions of the stellar surfaces. While the radio properties and the occurrence of X-ray flares suggest the larger emission regions, the observations of time variations leave the ambiguity unresolved.

  1. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  2. ALMA Detection of Extended [C II] Emission in Himiko at z = 6.6

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; Smit, R.; Amorín, R.

    2018-02-01

    Himiko is one of the most luminous Lyα emitters at z = 6.595. It has three star-forming clumps detected in the rest-frame UV, with a total SFR = 20 M ⊙ yr‑1. We report the Atacama Large Millimeter/submillimeter Array (ALMA) detection of the [C II]158 μm line emission in this Galaxy with a significance of 8σ. The total [C II] luminosity (L [C II] = 1.2 × 108 L ⊙) is fully consistent with the local L [C II]–SFR relation. The ALMA high-angular resolution reveals that the [C II] emission is made of two distinct components. The brightest [C II] clump is extended over 4 kpc and is located on the peak of the Lyα nebula, which is spatially offset by 1 kpc relative to the brightest UV clump. The second [C II] component is spatially unresolved (size <2 kpc) and coincident with one of the three UV clumps. While the latter component is consistent with the local L [C II]–SFR relation, the other components are scattered above and below the local relation. We shortly discuss the possible origin of the [C II] components and their relation with the star-forming clumps traced by the UV emission.

  3. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  4. Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Dallilar, Y.; Garner, A.; Eikenberry, S.; Veledina, A.; Gandhi, P.

    2018-06-01

    We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r΄- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.

  5. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... either emission-related or non-emission-related and each of these can be classified as either scheduled... component whose sole or primary purpose is to reduce emissions or whose failure will significantly degrade emissions control and whose function is not integral to the design and performance of the engine.) (iv) For...

  6. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... either emission-related or non-emission-related and each of these can be classified as either scheduled... component whose sole or primary purpose is to reduce emissions or whose failure will significantly degrade emissions control and whose function is not integral to the design and performance of the engine.) (iv...

  7. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high correlation between PM10 emissions from these sources and ambient key components levels (R2= 0.61-0.98).

  8. Fourier-space combination of Planck and Herschel images

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Stutz, A.; Henning, Th.; Keto, E.; Ballesteros-Paredes, J.; Robitaille, T.

    2017-08-01

    Context. Herschel has revolutionized our ability to measure column densities (NH) and temperatures (T) of molecular clouds thanks to its far infrared multiwavelength coverage. However, the lack of a well defined background intensity level in the Herschel data limits the accuracy of the NH and T maps. Aims: We aim to provide a method that corrects the missing Herschel background intensity levels using the Planck model for foreground Galactic thermal dust emission. For the Herschel/PACS data, both the constant-offset as well as the spatial dependence of the missing background must be addressed. For the Herschel/SPIRE data, the constant-offset correction has already been applied to the archival data so we are primarily concerned with the spatial dependence, which is most important at 250 μm. Methods: We present a Fourier method that combines the publicly available Planck model on large angular scales with the Herschel images on smaller angular scales. Results: We have applied our method to two regions spanning a range of Galactic environments: Perseus and the Galactic plane region around l = 11deg (HiGal-11). We post-processed the combined dust continuum emission images to generate column density and temperature maps. We compared these to previously adopted constant-offset corrections. We find significant differences (≳20%) over significant ( 15%) areas of the maps, at low column densities (NH ≲ 1022 cm-2) and relatively high temperatures (T ≳ 20 K). We have also applied our method to synthetic observations of a simulated molecular cloud to validate our method. Conclusions: Our method successfully corrects the Herschel images, including both the constant-offset intensity level and the scale-dependent background variations measured by Planck. Our method improves the previous constant-offset corrections, which did not account for variations in the background emission levels. The image FITS files used in this paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A65

  9. Three dielectric constants and orientation order parameters in nematic mesophases

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung Guen; Jeong, Seung Yeon; Kumar, Satyendra; Park, Min Sang; Park, Jung Ok; Srinivasarao, M.; Shin, Sung Tae

    2011-03-01

    Temperature dependence of the three components ɛ1 , ɛ2 , and ɛ3 of dielectric constant and orientation order parameters in the nematic phase of mesogens with rod, banana, and zero-order dendritic shape were measured using the in-plane and vertical switching geometries, and micro-Raman technique. Results on the well-known uniaxial (Nu) nematogens, E7 and 5CB, revealed two components ɛ1 = ~ɛ| | and ɛ2 = ~ɛ3 = ~ɛ⊥ , as expected. The three dielectric constants were different for two azo substituted (A131 and A103) and an oxadiazole based (ODBP-Ph-C12) bent core mesogens, and a Ge core tetrapode. In some cases, two of the components became the same indicating a loss of biaxiality at temperatures coinciding with the previously reported Nu to biaxial nematic transition. This interpretation is substantiated by micro-Raman measurements of the uniaxial and biaxial nematic order parameters. Supported by the US Department of Energy, Basic Energy Sciences grant ER46572 and by Samsung Electronics Corporation.

  10. On the origin of the 40-120 micron emission of galaxy disks: A comparison with H-alpha fluxes

    NASA Technical Reports Server (NTRS)

    Persson, Carol J. Lonsdale; Helou, George

    1987-01-01

    A comparison of 40 to 120 micron Infrared Astronomy Satellite (IRAS) fluxes with published H alpha and UBV photometry shows that the far infrared emission of galaxy disks consists of at least two components: a warm one associated with OB stars in HII-regions and young star-forming complexes, and a cooler one from dust in the diffuse, neutral interstellar medium, heated by the more general interstellar radiation field of the old disk population (a cirrus-like component). Most spiral galaxies are dominated by emission from the cooler component in this model. A significant fraction of the power for the cool component must originate with non-ionizing stars. For a normal spiral disk there is a substantial uncertainty in a star formation rate derived using either the H alpha or the far infrared luminosity.

  11. The Extragalactic Radio Background

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2011-01-01

    The existence of an isotropic component of the high-latitude radio sky has been recognized for nearly fifty years, but has typically been assumed to be Galactic in origin. We use recent radio observations to test whether the observed high-latitude component could originate within either an extended Galactic halo or a more local "bubble" structure. The lack of significant polarization from the isotropic component, combined with the lack of significant correlation with the Galactic far-infrared emission, rule out an origin within the Galaxy. We conclude that an extragalactic origin is the only viable alternative for the bulk of the isotropic high-latitude emission. The extragalactic component is 2-3 times brighter than local (Galactic) emission towards the Galactic poles and is consistent with a power law in frequency with amplitude T(sub r) = 24.1 plus or minus 2.1 K and spectral index beta = -2.599 plus or minus 0.036 evaluated at reference frequency 310 MHz.

  12. CGRO/BATSE Data Support the New Paradigm For GRB Prompt Emission and the New L-i(nTh)-E-peak,i(nTh,rest) Relation

    NASA Technical Reports Server (NTRS)

    Guiriec, S.; Gonzalez, M.M.; Sacahui, J.R.; Kouveliotou, C.; Gehrels, N.; McEnery, J.

    2016-01-01

    The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma RayObservatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV-gamma-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F(in)(Th), and its corresponding nuFnu spectral peak energy,Epeak,inTh (i.e., FinThEpeak,inTh ), which has a similar index when fitted to a PL as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non-thermal component, LinTh, and its corresponding nuFnu spectral peak energy in the rest frame, Epeak,iNT,rest (i.e.,LinThEpeak,iNT,rest). We estimated the redshifts of GRBs 941017 and 970111 using GRB 990123 with z = 1.61as a reference. The estimated redshift for GRB 941017 is typical for long GRBs and the estimated redshift for GRB970111 is right in the range of the expected values for this burst.

  13. New theory for Mode I crack-tip dislocation emission

    NASA Astrophysics Data System (ADS)

    Andric, Predrag; Curtin, W. A.

    2017-09-01

    A material is intrinsically ductile under Mode I loading when the critical stress intensity KIe for dislocation emission is lower than the critical stress intensity KIc for cleavage. KIe is usually evaluated using the approximate Rice theory, which predicts a dependence on the elastic constants and the unstable stacking fault energy γusf for slip along the plane of dislocation emission. Here, atomistic simulations across a wide range of fcc metals show that KIe is systematically larger (10-30%) than predicted. However, the critical (crack tip) shear displacement is up to 40% smaller than predicted. The discrepancy arises because Mode I emission is accompanied by the formation of a surface step that is not considered in the Rice theory. A new theory for Mode I emission is presented based on the ideas that (i) the stress resisting step formation at the crack tip creates "lattice trapping" against dislocation emission such that (ii) emission is due to a mechanical instability at the crack tip. The new theory is formulated using a Peierls-type model, naturally includes the energy to form the step, and reduces to the Rice theory (no trapping) when the step energy is small. The new theory predicts a higher KIe at a smaller critical shear displacement, rationalizing deviations of simulations from the Rice theory. Specific predictions of KIe for the simulated materials, usually requiring use of the measured critical crack tip shear displacement due to complex material non-linearity, show very good agreement with simulations. An analytic model involving only γusf, the surface energy γs, and anisotropic elastic constants is shown to be quite accurate, serves as a replacement for the analytical Rice theory, and is used to understand differences between Rice theory and simulation in recent literature. The new theory highlights the role of surface steps created by dislocation emission in Mode I, which has implications not only for intrinsic ductility but also for crack tip twinning and fracture due to chemical interactions at the crack tip.

  14. Ground-state IVR of jet-cooled p-alkylphenols and p-alkylanilines studied by stimulated emission ion dip and stimulated Raman-UV optical double-resonance spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebata, T.; Ito, M.

    1992-04-16

    This paper reports the intramolecular vibrational redistribution (IVR) of the jet-cooled p-alkylphenols and p-alkylanilines in S{sub 0} state by using stimulated emission ion dip and stimulated raman-UV optical double-resonance spectroscopy. The IVR rate constants of several vibrational levels localized in the benzene ring are estimated. 31 refs., 12 figs., 4 tabs.

  15. Detection of the thermal component in GRB 160107A

    NASA Astrophysics Data System (ADS)

    Kawakubo, Yuta; Sakamoto, Takanori; Nakahira, Satoshi; Yamaoka, Kazutaka; Serino, Motoko; saoka, Yoichi; Cherry, Michael L.; Matsukawa, Shohei; Mori, Masaki; Nakagawa, Yujin; Ozawa, Shunsuke; Penacchioni, Ana V.; Ricciarini, Sergio B.; Tezuka, Akira; Torii, Shoji; Yamada, Yusuke; Yoshida, Atsumasa

    2018-01-01

    We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ˜45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0^{+0.3}_{-0.2} keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism.

  16. The Compact Radio Sources in the Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Colbert, E. J. M.; Wilson, A. S.; Ulvestad, J. S.

    1998-09-01

    We report VLBA images of the nucleus of the Seyfert galaxy NGC 1068 at 1.7, 5, and 15 GHz, with resolutions between 3 and 10 mas (0.2-0.7 pc) and a sensitivity of ~106 K at all three frequencies. Our goals are to study the morphology of the radio emission at subparsec resolution and to investigate thermal gas in the putative obscuring disk or torus and in the narrow-line region clouds through free-free absorption of the radio emission. All four known radio components in the central arcsecond (S2, S1, C, and NE, from south to north) have been detected at either 1.7 or 5 GHz, or both. No radio emission was detected at 15 GHz. Component S1 is probably associated with the active nucleus, with radio emission originating from the inner edge of the obscuring torus according to Gallimore et al. Our observed flux densities at 1.7 and 5 GHz are in agreement with their thermal bremsstrahlung emission model, and we find that the nuclear radiation may be strong enough to heat the gas in S1 to the required temperature of ~4 × 106 K. The bremsstrahlung power would be 0.15(frefl/0.01) times the bolometric luminosity of the nucleus between 1014.6 and 1018.4 Hz (where frefl is the fraction of radiation reflected into our line of sight by the electron-scattering mirror) and so the model is energetically reasonable. We also discuss two other models for S1 that also match the observed radio spectrum: electron scattering by the torus of radio emission from a compact synchrotron self-absorbed source and synchrotron radiation from the torus itself. Components NE and S2 have spectra consistent with optically thin synchrotron emission, without significant absorption. Both of these components are elongated roughly perpendicular to the larger scale radio jet, suggesting that their synchrotron emission is related to transverse shocks in the jet or to bow shocks in the external medium. Component C has a nonthermal spectrum absorbed at low frequency. This absorption is consistent with free-free absorption by plasma with conditions typical of narrow-line region clouds.

  17. Health and Climate Impacts of Ocean-Going Vessels in East Asia

    NASA Technical Reports Server (NTRS)

    Liu, Huan; Fu, Mingliang; Jin, Xinxin; Shang, Yi; Shindell, Drew; Faluvegi, Greg; Shindell, Cary; He, Kebin

    2016-01-01

    East Asia has the most rapidly growing shipping emissions of both CO2 and traditional air pollutants, but the least in-depth analysis. Full evaluation of all pollutants is needed to assess the impacts of shipping emissions. Here, using an advanced method based on detailed dynamic ship activity data, we show that shipping emissions in East Asia accounted for 16% of global shipping CO2 in 2013, compared to only 4-7% in 2002-2005. Increased emissions lead to large adverse health impacts, with 14,500-37,500 premature deaths per year. Global mean radiative forcing from East Asian shipping is initially negative, but would become positive after approximately eight years for constant current emissions. As a large fraction of vessels are registered elsewhere, joint efforts are necessary to reduce emissions and mitigate the climate and health impacts of shipping in the region.

  18. Impacts of energy consumption and emissions on the trip cost without late arrival at the equilibrium state

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Shang, Hua-Yan

    2017-08-01

    In this paper, we apply a car-following model, fuel consumption model, emission model and electricity consumption model to explore the influences of energy consumption and emissions on each commuter's trip costs without late arrival at the equilibrium state. The numerical results show that the energy consumption and emissions have significant impacts on each commuter's trip cost without late arrival at the equilibrium state. The fuel cost and emission cost prominently enhance each commuter's trip cost and the trip cost increases with the number of vehicles, which shows that considering the fuel cost and emission cost in the trip cost will destroy the equilibrium state. However, the electricity cost slightly enhances each commuter's trip cost, but the trip cost is still approximately a constant, which indicates that considering the electricity cost in the trip cost does not destroy the equilibrium state.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamigo, M.; Grillo, C.; Ettori, S.

    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1–2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of themore » X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1–2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.« less

  20. Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1-2403

    NASA Astrophysics Data System (ADS)

    Bonamigo, M.; Grillo, C.; Ettori, S.; Caminha, G. B.; Rosati, P.; Mercurio, A.; Annunziatella, M.; Balestra, I.; Lombardi, M.

    2017-06-01

    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1-2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of the X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1-2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.

  1. BLEACHING MECHANISM OF ORGANIC PHOTOTROPIC SUBSTANCES USED IN RUBY LASERS AS SWITCHES,

    DTIC Science & Technology

    The bleaching process of organic phototropic switches under the effect of ruby laser emission was examined. The effect of the atomic constants of solutions on the bleaching process is evaluated. (Author)

  2. Fluorescence of sanguinarine: fundamental characteristics and analysis of interconversion between various forms.

    PubMed

    Janovská, Marika; Kubala, Martin; Simánek, Vilím; Ulrichová, Jitka

    2009-09-01

    The quaternary isoquinoline alkaloid, sanguinarine (SG) plays an important role in both traditional and modern medicine, exhibiting a wide range of biological activities. Under physiological conditions, there is an equilibrium between the quaternary cation (SG+) and a pseudobase (SGOH) forms of SG. In the gastrointestinal tract, SG is converted to dihydrosanguinarine (DHSG). All forms exhibit bright fluorescence. However, their spectra overlap, which limited the use of powerful techniques based on fluorescence spectroscopy/microscopy. Our experiments using a combination of steady-state and time-resolved techniques enabled the separation of individual components. The results revealed that (a) the equilibrium constant between SG+ and SGOH is pKa = 8.06, while fluorescence of DHSG exhibited no changes in the pH range 5-12, (b) the SGOH has excitation/emission spectra with maxima at 327/418 nm and excited-state lifetime 3.2 ns, the spectra of the SG+ have maxima at 475/590 nm and excited-state lifetime 2.4 ns. The DHSG spectra have maxima at 327/446 nm and 2-exponential decay with components 4.2 and 2.0 ns, (c) NADH is able to convert SG to DHSG, while there is no apparent interaction between NADH and DHSG. These techniques are applicable for monitoring the SG to DHSG conversion in hepatocytes.

  3. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; McCormick, Robert L; Baumgardner, Marc E.

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durabilitymore » issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.« less

  4. Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry

    DOE PAGES

    Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo; ...

    2017-10-24

    Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less

  5. Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo

    Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less

  6. Reservoir water level drawdown as a novel, substantial, and manageable control on methane release to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, J.; Deemer, B. R.; Birchfield, M. K.

    2014-12-01

    Reservoirs constitute a globally important source of atmospheric methane (CH4). Although it is reasonably well-established that hydrostatic and barometric pressure can influence rates of CH4 release from lake and tidal sediments, the relationship between water-level manipulation and CH4 release from man-made impoundments has not been quantified or characterized. Furthermore, cross-system controls on CH4 production and release to the atmosphere have not been established. We collected CH4 emission (diffusion and ebullition) data for 8 reservoirs in the U.S. Pacific Northwest that are subject to a range of trophic conditions and water level management regimes. Our aim was to: (1) characterize CH4 emissions from these systems, and (2) quantify effects of water level management and eutrophication on CH4 fluxes. Results indicate very high fluxes, in some cases the highest reported reservoir emission rates, and a strong correspondence between lake level reduction and CH4 emissions, including quantitatively important bursts of CH4 bubbling. In one reservoir, drawdown-associated CH4 fluxes accounted for over 25% of annual CH4 emissions in a period of just 16 days (4% of the year). Average CH4 ebullition rates in a reservoir managed for hydropower peaking were nearly three-fold higher than in a paired upstream reservoir managed to maintain a constant water level (528 mg CH4 m-2 d-1 and 187 mg CH4 m-2 d-1 respectively). Highest gas fluxes were observed during the water level drawdown component of the hydropower peaking cycle (14.3 g CH4 m-2 d-1). In addition we observe a strong, positive relationship between eutrophication (as indicated by surface Chl a concentrations) and CH4 production (r2 = 0.88; P<0.001) and between eutrophication and the sensitivity of CH4 emissions to drawdown (r2 = 0.84; P<0.001). This work suggests that manipulation of water levels can significantly affect CH4 emissions from reservoirs to the atmosphere, and that sampling programs that miss drawdown periods may substantially underestimate CH4 fluxes. It also suggests that controlling nutrient loading may reduce greenhouse gas fluxes from surface waters to the atmosphere.

  7. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    DOE PAGES

    Ballantyne, A. P.; Andres, R.; Houghton, R.; ...

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr ₋1 in the 1960s to 0.3 Pg C yr ₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr ₋1 in the 1960s to almost 1.0 Pg C yr ₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO 2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.« less

  8. Hydrodynamic Simulation of the Cosmological X-Ray Background

    NASA Astrophysics Data System (ADS)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with current observations in a simulation that incorporates cooling, star formation, and only modest feedback. A clear prediction of our model is that the unresolved portion of the soft XRB will remain mostly unresolved even as observations reach deeper point-source sensitivity.

  9. Anatomy of the AGN in NGC 5548. IX. Photoionized emission features in the soft X-ray spectra

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Gu, Liyi; Costantini, E.; Kriss, G. A.; Bianchi, S.; Branduardi-Raymont, G.; Behar, E.; Di Gesu, L.; Ponti, G.; Petrucci, P.-O.; Ebrero, J.

    2018-04-01

    The X-ray narrow emission line region (NELR) of the archetypal Seyfert 1 galaxy NGC 5548 has been interpreted as a single-phase photoionized plasma that is absorbed by some of the warm absorber components. This scenario requires those overlaying warm absorber components to have larger distance (to the central engine) than the X-ray NELR, which is not fully consistent with the distance estimates found in the literature. Therefore, we reanalyze the high-resolution spectra obtained in 2013-2014 with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton to provide an alternative interpretation of the X-ray narrow emission features. We find that the X-ray narrow emission features in NGC 5548 can be described by a two-phase photoionized plasma with different ionization parameters (logξ = 1.3 and 0.1) and kinematics (vout = -50 and -400 km s-1), and no further absorption by the warm absorber components. The X-ray and optical NELR might be the same multi-phase photoionized plasma. Both X-ray and optical NELR have comparable distances, asymmetric line profiles, and the underlying photoionized plasma is turbulent and compact in size. The X-ray NELR is not the counterpart of the UV/X-ray absorber outside the line of sight because their distances and kinematics are not consistent. In addition, X-ray broad emission features that we find in the spectrum can be accounted for by a third photoionized emission component. The RGS spectrum obtained in 2016 is analyzed as well, where the luminosity of most prominent emission lines (the O VII forbidden line and O VIII Lyα line) are the same (at a 1σ confidence level) as in 2013-2014.

  10. Super-emitters in natural gas infrastructure are caused by abnormal process conditions

    NASA Astrophysics Data System (ADS)

    Zavala-Araiza, Daniel; Alvarez, Ramón A.; Lyon, David R.; Allen, David T.; Marchese, Anthony J.; Zimmerle, Daniel J.; Hamburg, Steven P.

    2017-01-01

    Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.

  11. Disentangling X-Ray Emission Processes In Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    This grant is to support analysis of data from the X-ray Multi-mirror Mission (XMM). Specifically, we have been awarded time to observe two young neutron stars, B1823-13 and B1046-58, whose X-ray emission is expected to be a complicated combination of emission from an associated supernova remnant, from a wind-powered synchrotron nebula, from magnetospheric pulsations, and from the surface of the neutron star itself. It is only with XMM's unique combination of spectral, temporal and angular resolution that all these different processes can be separated and studied. Observations of B1823-13 have been conducted and analyzed. We interpret the data as follows: The unpulsed extended non-thermal nature of the central core argues that the extended source of emission corresponds to synchrotron emission from a nebula powered by the pulsar. The temperature of the diffuse component is too high to be interpreted as thermal emission; we rather argue that this extended component is non-thermal emission from a surrounding supernova remnant shell.

  12. Energy-dependent intensity variation of the persistent X-ray emission of magnetars observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yujin; Ebisawa, Ken; Enoto, Teruaki

    2018-03-01

    The emission mechanism of magnetars is still controversial even though various observational and theoretical studies have been made. In order to investigate mechanisms of both the persistent X-ray emission and the burst emission of the magnetars, we propose a model in which the persistent X-ray emission consists of numerous micro-bursts of various sizes. If this model is correct, root mean square (rms) intensity variations of the persistent emission would exceed the values expected from the Poisson distribution. Using Suzaku archive data of 11 magnetars (22 observations), the rms intensity variations were calculated from 0.2 keV to 70 keV. As a result, we found significant excess rms intensity variations from all 11 magnetars. We suppose that numerous micro-bursts constituting the persistent X-ray emission cause the observed variations, suggesting that the persistent X-ray emission and the burst emission have identical emission mechanisms. In addition, we found that the rms intensity variations clearly increase toward higher energy bands for four magnetars (six observations). The energy-dependent rms intensity variations imply that the soft thermal component and the hard X-ray component are emitted from different regions far apart from each other.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Michelle; Page, Lyman; Dunkley, Joanna

    In 1969 Edward Conklin measured the anisotropy in celestial emission at 8 GHz with a resolution of 16.{sup 0}2 and used the data to report a detection of the cosmic microwave background dipole. Given the paucity of 8 GHz observations over large angular scales and the clear evidence for non-power-law Galactic emission near 8 GHz, a new analysis of Conklin's data is informative. In this paper, we compare Conklin's data to that from Haslam et al. (0.4 GHz), Reich and Reich (1.4 GHz), and the Wilkinson Microwave Anisotropy Probe (WMAP; 23-94 GHz). We show that the spectral index between Conklin'smore » data and the 23 GHz WMAP data is {beta} = -1.7 {+-} 0.1, where we model the emission temperature as T{proportional_to}{nu}{sup {beta}}. Free-free emission has {beta} Almost-Equal-To - 2.15 and synchrotron emission has {beta} Almost-Equal-To - 2.7 to -3. Thermal dust emission ({beta} Almost-Equal-To 1.7) is negligible at 8 GHz. We conclude that there must be another distinct non-power-law component of diffuse foreground emission that emits near 10 GHz, consistent with other observations in this frequency range. By comparing to the full complement of data sets, we show that a model with an anomalous emission component, assumed to be spinning dust, is preferred over a model without spinning dust at 5{sigma} ({Delta}{chi}{sup 2} = 31). However, the source of the new component cannot be determined uniquely.« less

  14. Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stone, R. G.

    1989-01-01

    A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.

  15. LX Persei, an eclipsing binary with H and K emission

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.

    1974-01-01

    The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.

  16. What Can TRAPPIST-1 Tell Us About Radiation From M-Dwarf Chromospheres And Coronae

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey

    2017-05-01

    The recent discovery of 7 planets orbiting the nearby star TRAPPIST-1 (Gillon et al. Nature 2017) and the discovery that this M8 V host star has very weak chromospheric compared to coronal emission (Bourrier et al. A+A 2017) raises the broader question of the relation of chromospheres to coronae in host stars. This question is important because chromospheric emission, primarily in the Lyman-alpha line, controls photochemical reactions in the outer atmospheres of exoplanets, whereas coronal X-ray emission and associated coronal mass ejections play critical roles in atmospheric mass loss. Both chromospheric and coronal emission from the host star can, therefore, determine whether a planet is habitable. I will show that the amount of emission in the Lyman-alpha line is proportional to that in X-rays for F-K dwarf stars, but that chromospheric emission becomes relatively weak in the early M dwarfs and very weak in the late-M dwarfs such as TRAPPIST-1.Stellar emission lines formed in a star's chromosphere and transition region can be separated into narrow and broad Gaussian components with the broad components formed by microflaring events or high speed flows. I will show how the broad component activity indicator depends on stellar effective temperature and age.I will also describe the results concerning star-planet interactions obtained by MUSCLES Treasury Survey team.

  17. Water distribution in shocked regions of the NGC 1333-IRAS 4A protostellar outflow

    NASA Astrophysics Data System (ADS)

    Santangelo, G.; Nisini, B.; Codella, C.; Lorenzani, A.; Yıldız, U. A.; Antoniucci, S.; Bjerkeli, P.; Cabrit, S.; Giannini, T.; Kristensen, L. E.; Liseau, R.; Mottram, J. C.; Tafalla, M.; van Dishoeck, E. F.

    2014-08-01

    Context. Water is a key molecule in protostellar environments because its line emission is very sensitive to both the chemistry and the physical conditions of the gas. Observations of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observatory have highlighted the complexity of H2O line profiles, in which different kinematic components can be distinguished. Aims: The goal is to study the spatial distribution of H2O, in particular of the different kinematic components detected in H2O emission, at two bright shocked regions along IRAS 4A, one of the strongest H2O emitters among the Class 0 outflows. Methods: We obtained Herschel-PACS maps of the IRAS 4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38'' at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. A large velocity gradient (LVG) analysis was performed to determine the excitation conditions of the gas. Results: We detect four H2O lines and CO (16-15) at the two selected shocked positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the LVG analysis of the H2O emission suggests that the compact (about 3'', corresponding to about 700 AU) component is associated with a hot (T ~ 1000 K) gas with densities nH2 ~ (1-4) × 105 cm-3, whereas the extended (10''-17'', corresponding to 2400-4000 AU) one traces a warm (T ~ 300-500 K) and dense gas (nH2 ~ (3-5) × 107 cm-3). Finally, using the CO (16-15) emission observed at R2 and assuming a typical CO/H2 abundance of 10-4, we estimate the H2O/H2 abundance of the warm and hot components to be (7-10) × 10-7 and (3-7) × 10-5. Conclusions: Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow. PACS maps and HIFI spectra (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A125

  18. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor

    DOE PAGES

    Maingi, R.; Hu, J. S.; Sun, Z.; ...

    2018-01-05

    Here, we report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previousmore » ELM elimination results via Li injection into the lower carbon divertor in EAST. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs, highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.« less

  19. Twelve years of IUE spectra of the interacting binary VV Cephei

    NASA Technical Reports Server (NTRS)

    Bauer, W. H.; Stencel, R. E.; Neff, D. H.

    1991-01-01

    All well-exposed high-resolution IUE spectra obtained of the eclipsing binary system VV Cephei (M2Iabep + B) are examined. High-temperature absorption features attributable to the hot companion were detected, indicating that the companion (or the inner regions of its accretion disk) are not as hot as a B1-B2 star. Doubling of Fe II (UV 1) lines, with an additional narrow component redshifted by about 60 km/sec, occurs only when the B star is behind the plane of the sky containing the M supergiant, suggesting the existence of mass transfer from the red to the blue star. Absorption features from neutral elements weaken dramatically during egress, while those from ionized elements remain at nearly constant strength. During egress from primary eclipse, the Mg II resonance doublet shows asymmetric double-peaked emission indicative of formation in an expanding chromosphere. It is concluded that the outer atmosphere of the M supergiant is highly clumped.

  20. Preservation of York Minster historic limestone by hydrophobic surface coatings

    PubMed Central

    Walker, Rachel A.; Wilson, Karen; Lee, Adam F.; Woodford, Julia; Grassian, Vicki H.; Baltrusaitis, Jonas; Rubasinghege, Gayan; Cibin, Giannantonio; Dent, Andrew

    2012-01-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from ‘breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO2/H2O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation. PMID:23198088

  1. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor

    NASA Astrophysics Data System (ADS)

    Maingi, R.; Hu, J. S.; Sun, Z.; Tritz, K.; Zuo, G. Z.; Xu, W.; Huang, M.; Meng, X. C.; Canik, J. M.; Diallo, A.; Lunsford, R.; Mansfield, D. K.; Osborne, T. H.; Gong, X. Z.; Wang, Y. F.; Li, Y. Y.; EAST Team

    2018-02-01

    We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST (Hu et al 2015 Phys. Rev. Lett. 114 055001). These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs (Lang et al 2017 Nucl. Fusion 57 016030), highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.

  2. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, R.; Hu, J. S.; Sun, Z.

    Here, we report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previousmore » ELM elimination results via Li injection into the lower carbon divertor in EAST. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs, highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.« less

  3. An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Córsico, Alejandro H.; Althaus, Leandro G.; Bertolami, Marcelo M. Miller

    We employ an asteroseismic model of L19-2, a relatively massive ( M {sub *} ∼ 0.75 M {sub ⊙}) and hot ( T {sub eff} ∼ 12 100 K) pulsating DA (H-rich atmosphere) white dwarf star (DAV or ZZ Ceti variable), and use the observed values of the temporal rates of period change of its dominant pulsation modes (Π ∼ 113 s and Π ∼ 192 s), to derive a new constraint on the mass of the axion, the hypothetical non-barionic particle considered as a possible component of the dark matter of the Universe. If the asteroseismic model employed ismore » an accurate representation of L19-2, then our results indicate hints of extra cooling in this star, compatible with emission of axions of mass m {sub a} cos{sup 2}β ∼< 25 meV or an axion-electron coupling constant of g {sub ae} ∼< 7 × 10{sup −13}.« less

  4. Optical Characterization of Component Wear and Near-Field Plasma of the Hermes Thruster

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Kamhawi, Hani

    2015-01-01

    Optical emission spectral (OES) data are presented which correlate trends in sputtered species and the near-field plasma with the Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster operating condition. The relative density of singly-ionized xenon (Xe II) is estimated using a collisional-radiative model. OES data were collected at three radial and several axial locations downstream of the thruster's exit plane. These data were deconvolved to show the structure for the near-field plasma as a function of thruster operating condition. The magnetic field is shown to have a much greater affect on plasma structure than the discharge voltage with the primary ionization/acceleration zone boundary being similar for all nominal operating voltages at constant power. OES measurement of sputtered boron shows that the HERMeS thruster is magnetically shielded across its operating envelope. Preliminary assessment of carbon sputtered from the keeper face suggest it increases significantly with operating voltage, but the uncertainty associated with these measurements is very high.

  5. Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodology.

    PubMed

    Shi, Li; Wei, Dong; Ngo, Huu Hao; Guo, Wenshan; Du, Bin; Wei, Qin

    2015-10-01

    This study assessed the biosorption of anaerobic granular sludge (AGS) and its capacity as a biosorbent to remove Pb(II) and methylene blue (MB) from multi-components aqueous solution. It emerged that the biosorption data fitted well to the pseudo-second-order and Langmuir adsorption isotherm models in both single and binary systems. In competitive biosorption systems, Pb(II) and MB will suppress each other's biosorption capacity. Spectroscopic analysis, including Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy were integrated to explain this interaction. Hydroxyl and amine groups in AGS were the key functional groups for sorption. Three-dimensional excitation-emission matrix (3D-EEM) implied that two main protein-like substances were identified and quenched when Pb(II) or MB were present. Response surface methodology (RSM) confirmed that the removal efficiency of Pb(II) and MB reached its peak when the concentration ratios of Pb(II) and MB achieved a constant value of 1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. MT Ser, a binary blue subdwarf

    NASA Astrophysics Data System (ADS)

    Shimanskii, V. V.; Borisov, N. V.; Sakhibullin, N. A.; Sheveleva, D. V.

    2008-06-01

    We have classified and determined the parameters of the evolved close binary MT Ser. Our moderate-resolution spectra covering various phases of the orbital period were taken with the 6-m telescope of the Special Astrophysical Observatory. The spectra of MT Ser freed from the contribution of the surrounding nebula Abell 41 contained no emission lines due to the reflection effect. The radial velocities measured from lines of different elements showed them to be constant on a time scale corresponding to the orbital period. At the same time, we find effects of broadening for the HeII absorption lines, due to the orbital motion of two hot stars of similar types. As a result, we classify MT Ser as a system with two blue subdwarfs after the common-envelope stage. We estimate the component masses and the distance to the object from the Doppler broadening of the HeII lines. We demonstrate that the age of the ambient nebula, Abell 41, is about 35 000 years.

  7. The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2007-01-01

    This study was motivated by a goal to understand the mixing and emissions in the rich-burn/quick-mix/lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported in this paper was a reacting jet-in-crossflow experiment at atmospheric pressure in a cylindrical duct. The jets were injected from the perimeter of the duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of 57. The size of individual orifices was decreased as their number increased to maintain a constant total area. The jet-to-mainstream mass-flow ratio was held constant at 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer may not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheat did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of a RQL combustor may comprise over 70% of the total air flow, the overall NOx emission levels were found to be more sensitive to mainstream air preheat than to jet stream air preheat.

  8. Mixing of Multiple Jets with a Confined Subsonic Crossflow: Part III--The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdemann, James D.; Chang, Clarence T.

    2008-01-01

    This study was motivated by a goal to understand the mixing and emissions in the Rich-burn/Quick-mix/Lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported herein was a reacting jet-in-crossflow experiment at atmospheric pressure. The jets were injected from the perimeter of a cylindrical duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of J = 57. The size of individual orifices was decreased as the number of orifices increased to maintain a constant total area; the jet-to-mainstream mass-flow ratio was constant at MR = 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer might not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheating both main and jet air did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of an RQL combustor may comprise over 70 percent of the total air flow, the overall NOx emission levels were found to be more sensitive to main stream air preheat than to jet stream air preheat.

  9. Generation of spectrally stable continuous-wave emission and ns pulses with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier.

    PubMed

    Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G

    2014-10-06

    We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

  10. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  11. A physical model of the infrared-to-radio correlation in galaxies

    NASA Technical Reports Server (NTRS)

    Helou, G.; Bicay, M. D.

    1993-01-01

    We explore the implications of the IR-radio correlation in star-forming galaxies, using a simple physical model constrained by the constant global ratio q of IR to radio emission and by the radial falloff of this ratio in disks of galaxies. The modeling takes into account the diffusion, radiative decay, and escape of cosmic-ray electrons responsible for the synchrotron emission, and the full range of optical depths to dust-heating photons. We introduce two assumptions: that dust-heating photons and radio-emitting cosmic-ray electrons are created in constant proportion to each other as part of the star formation activity, and that gas and magnetic field are well coupled locally, expressed as B proportional to n exp beta, with beta between 1/3 and 2/3. We conclude that disk galaxies would maintain the observed constant ratio q under these assumptions if the disk scale height h(0) and the escape scale length l(esc) for cosmic-ray electrons followed a relation of the form l(esc) proportional to h(0) exp 1/2; the IR-to-radio ratio will then depend very weakly on interstellar density, and, therefore, on magnetic field strength or mean optical depth.

  12. The contribution of microbunching instability to solar flare emission in the GHz to THz range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre

    2014-07-01

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving risemore » to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.« less

  13. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    PubMed

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The 2014 X-Ray Minimum of Eta Carinae as Seen by Swift

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Liburd, J.; Morris, D.; Russell, C. M. P.; Hamaguchi, K.; Gull, T. R.; Madura, T. I.; Teodoro, M.; Moffat, A. F. J.; Richardson, N. D.

    2017-01-01

    We report on Swift X-ray Telescope observations of Eta Carinae ( Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimumperiastron passage. These observations show that Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer (RXTE), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the central constant emission component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P X equals 2023.7 +/- 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii lambda 4686 emission. The middle of the Deep Minimum interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii 4686 line variations.

  15. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  16. Acidic and alkaline precipitation components in the mesoscale range under the aspect of meteorological factors and the emissions

    NASA Astrophysics Data System (ADS)

    Marquardt, W.; Ihle, P.

    At two sites in the north of the G.D.R. 80-100 km distant from industry rain from individual precipitation events was collected by automatic samplers and relevant ionic species were analyzed. The sampler is described. The cloud routes at the 850 hPa level were traced back 1 day and then seven sectors were formed for each collection site taking into consideration geographical aspects and features of the emission pattern for the rea concerned. Investigating the precipitation components as a function of the emission pattern knowledge of meteorological input parameters are required. The influence of these parameters is reported. Contrary to the combustion of other fossil fuels, in the case of brown coal combustion a considerable emission of neutralizing components (especially CaO) occurs, counteracting the formation of "acid rain". This effect is clearly proven by means of individual examples and average considerations, i.e. the formation of acid rain does not only depend on the SO 2 and NO x emissions. The wet deposition of all types of ions at the measuring site for every emission sector was calculated by means of precipitation statistics. Using these investigations reference points with regard to border crossing transport are given.

  17. Global warming: China’s contribution to climate change

    NASA Astrophysics Data System (ADS)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  18. Optical Properties of ZnCdS:I Orange and ZnSTe:I White Thin Film Phosphor for High Ra White LED

    NASA Astrophysics Data System (ADS)

    Fujii, Satoshi; Tasaki, Norio; Shinomura, Naohiko; Kurai, Satoshi; Yamada, Yoichi; Taguchi, Tsunemasa

    In order to develop visible thin film phosphors, we have for the first time prepared ZnCdS and ZnSTe doped with Iodine (I) using low-pressure MOCVD method. ZnCdS:I, of which Cd composition was calibrated to match the lattice constant to that of substrate and the band gap to absorption peak, showed a orange broad emission consist of yellow near band edge emission and red SA emission. Isoelectronic Te in ZnS indicates strong blue-green emissions, whilst I donor impurity in ZnS shows strong red SA emissions. A typical ZnSTe:I thin film shows two broad emission bands locating at around 500 and 680 nm, respectively, indicating Ra˜90. It was shown that high Ra thin film phosphor can be realized by single material (ZnSTe:I), and that MOCVD method is capable for controlling the thickness and doping profile to obtain uniform white emission pattern.

  19. Physics based calculation of the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2009-01-01

    We assume that the coupling between particles and photons is defined by a surface area and a temperature, and that the square of the temperature is the inverse of the surface area ({Dirac_h}=c= 1). By making assumptions regarding stimulated emission and effects associated with the finite length of a string that forms the particle surface, the fine structure constant is calculated to be {approx}1/137.04. The corresponding calculated fundamental unit of charge is 1.6021 x 10{sup -19} C.

  20. Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation.

    PubMed

    Maccarrone, M; Fantini, C; Agrò, A F; Rosato, N

    1998-11-11

    Electroporation involves the application of an electric pulse that creates transient aqueous channels (electropores) across the lipid bilayer membranes. Here, we describe an instrument set up suitable to record ultraweak light emission from human erythroleukemia K562 cells during and immediately after delivery of electric pulses. Most of light was emitted in the first seconds after each pulse, following a complex decay which can be fitted by a double exponential equation characterized by two different time constants (T1 and T2), both in the order of seconds. T1 was approximately 10-fold shorter than T2 and both time constants were dependent on field strength of the electric pulse. The effect of various antioxidants on the amount of emitted photons and on T1 and T2 values was investigated, in order to shed some light on the chemical species responsible for cellular luminescence.

  1. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-06

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  2. High Precision Wavelength Monitor for Tunable Laser Systems

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Childers, Brooks A. (Inventor)

    2002-01-01

    A solid-state apparatus for tracking the wavelength of a laser emission has a power splitter that divides the laser emission into at least three equal components. Differing phase shifts are detected and processed to track variations of the laser emission.

  3. 40 CFR 89.117 - Test fleet selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...

  4. [The influence of acute hypoxia on motility of rats in the open field test under the conditions of an altered photoperiod].

    PubMed

    Sopova, I Iu

    2014-01-01

    The influence of acute hypoxia on the motility of rats under the conditions of an altered photoperiod in the open field test was studied. Thus, keeping the animals in constant darkness after the modeling of acute hypoxia leads to the depression of locomotive and exploratory components of the behavior. At the same time the animals that were kept under the conditions of constant light show a change in the correlation between the components of motility after the action of hypoxia.

  5. Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes

    USGS Publications Warehouse

    Hurwitz, S.; Lowenstern, J. B.; Heasler, H.

    2007-01-01

    We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher frequencies with better spatial coverage would be required. Our analysis also suggests that it might be more feasible to detect large-scale heating or cooling of the hydrothermal system by tracking changes in gas and steam flux than by tracking changes in river solute flux.

  6. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface temperatures and sea-ice trends. This reduction of persistent high-latitude model biases suggests that the current unrealistic representation of surface emissivity in model component radiation routines may be an important contributing factor to cold-pole biases.

  7. Structural health monitoring methodology for aircraft condition-based maintenance

    NASA Astrophysics Data System (ADS)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  8. Compact All-Fiber Optical Faraday Components Using 65-wt%-Terbium-Doped Fiber with a Record Verdet Constant of -32 rad/(Tm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L.; Jiang, S.; Maricante, J.R.

    2010-06-04

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be –32 rad/(Tm), which is 27 × larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics–based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fibermore » isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 ± 4°.« less

  9. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm).

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-06-07

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .

  10. Following subtraction of the dipole anisotropy and components of the detected emission arising from

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Following subtraction of the dipole anisotropy and components of the detected emission arising from dust (thermal emission), hot gas (free-free emission), and charged particles interacting with magnetic fields (synchrotron emission) in the Milky Way Galaxy, the cosmic microwave background (CMB) anisotropy can be seen. CMB anisotropy - tiny fluctuations in the sky brightness at a level of a part in one hundred thousand - was first detected by the COBE DMR instrument. The CMB radiation is a remnant of the Big Bang, and the fluctuations are the imprint of density contrast in the early Universe (see slide 24 caption). This image represents the anisotropy detected in data collected during the first two years of DMR operation. Ultimately the DMR was operated for four years. See slide 19 caption for information about map smoothing and projection.

  11. One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Lefa, E.; Dimitrakoudis, S.; Mastichiadis, A.

    2014-02-01

    Aims: We investigate the role of the second synchrotron self-Compton (SSC) photon generation to the multiwavelength emission from the compact regions of sources that are characterized as misaligned blazars. For this, we focus on the nearest high-energy emitting radio galaxy Centaurus A and we revisit the one-zone SSC model for its core emission. Methods: We have calculated analytically the peak luminosities of the first and second SSC components by first deriving the steady-state electron distribution in the presence of synchrotron and SSC cooling, and then by using appropriate expressions for the positions of the spectral peaks. We have also tested our analytical results against those derived from a numerical code where the full emissivities and cross-sections were used. Results: We show that the one-zone SSC model cannot account for the core emission of Centaurus A above a few GeV, where the peak of the second SSC component appears. We thus propose an alternative explanation for the origin of the high-energy (≳0.4 GeV) and TeV emission, where these are attributed to the radiation emitted by a relativistic proton component through photohadronic interactions with the photons produced by the primary leptonic component. We show that the required proton luminosities are not extremely high, i.e. ~1043 erg/s, provided that the injection spectra are modelled by a power law with a high value of the lower energy cutoff. Finally, we find that the contribution of the core emitting region of Cen A to the observed neutrino and ultra-high-energy cosmic-ray fluxes is negligible.

  12. Variation of the H-Beta Emission Lines of Yy-Geminorum - Part Two - Change of Sectorial Structures of Active Regions

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Ichimura, K.

    Sixty-three image-tube spectrograms of YY Gem (4 Å mm-1, λλ4820-4900 Å) are analyzed to yield the radial-velocity curves and the variations in the intensities and the widths of Hβ emission lines during the quiescent phase at epochs 1980 February 11-16, 1981 January 14-15, and 1981 March 11. The emission-line intensity of component A varied in a single-wave mode over an orbital period, with an apparent phase drift, -0.006019 fraction of the period per day from one epoch to another. The pattern of the intensity variation of component B changed within a few years. The ratio of the amplitudes of radial-velocity curves (KA/KB) of Hβ emission was found to be 0.91 in February 1980 but 1.01 in January 1981. This modulation in the ratio is interpreted as the results of the varying inhomogeneous distributions of emission intensities over the stellar surfaces which are inferred from the observed intensity variations under the assumption of synchronous rotation. A ratio KA/KB = 1.00±001 is proposed as the actual value which would be observed if the effects of inhomogeneities were negligible. The double-wave mode of the line-width variation over a period, which was found by Kodaira and Ichimura (1980), persisted for component A but changed into a single-wave mode for component B. No appreciable changes were detected in the average levels of both the intensity and width of Hβ emission lines within the last few years.

  13. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    PubMed Central

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-01-01

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta. PMID:28231112

  14. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    PubMed

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  15. Emissions Of Greenhouse Gases From Rice Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Aslam K. Khalil

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice.more » The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.« less

  16. Optical spectrum variations of IL Cep A

    NASA Astrophysics Data System (ADS)

    Ismailov, N. Z.; Khalilov, O. V.; Bakhaddinova, G. R.

    2016-02-01

    The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The H β emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.

  17. Observation of Nonthermal Emission from the Supernova Remnant IC443 with RXTE

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Keohane, J. W.; Reimer, O.

    2002-01-01

    In this paper we present analysis of X-ray spectra from the supernova remnant IC443 obtained using the PCA on RXTE. The spectra in the 3 - 20 keV band are well fit by a two-component model consisting of thermal and nonthermal components. We compare these results with recent results of other X-ray missions and discuss the need for a cut-off in the nonthermal spectrum. Recent Chandra and XMM-Newton observations suggest that much of the nonthermal emission from IC443 can be attributed to a pulsar wind nebula. We present the results of our search for periodic emission in the RXTE PCA data. We then discuss the origin o f the nonthermal component and its possible association with the unidentified EGRET source.

  18. Suzaku Observations of the Broad-Line Radio Galaxy 3C390.3

    NASA Technical Reports Server (NTRS)

    Sambruna, rita

    2007-01-01

    We present the results of a 100ks Suzaku observation of the BLRG 3C390.3. The observations were performed to attempt to disentangle the contributions to the X-ray emission of this galaxy from an AGN and a jet component, via variability and/or the spectrum. The source was detected at high energies up to 80 keV, with a complex 0.3--80keV spectrum. Preliminary analysis of the data shows significant flux variability, with the largest amplitudes at higher energies. Deconvolution of the spectrum shows that, besides a standard Seyfert-like spectrum dominating the 0.3--8keV emission, an additional, hard power law component is required, dominating the emission above 10 keV. We attribute this component to a variable jet.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urbanmore » area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.« less

  20. Looking at A 0535+26 at low luminosities with NuSTAR

    NASA Astrophysics Data System (ADS)

    Ballhausen, Ralf; Pottschmidt, Katja; Fürst, Felix; Wilms, Jörn; Tomsick, John A.; Schwarm, Fritz-Walter; Stern, Daniel; Kretschmar, Peter; Caballero, Isabel; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Zhang, William W.

    2017-12-01

    We report on two NuSTAR observations of the high-mass X-ray binary A 0535+26 taken toward the end of its normal 2015 outburst at very low 3-50 keV luminosities of 1.4 × 1036 erg s-1 and 5 × 1035 erg s-1, which are complemented by nine Swift observations. The data clearly confirm indications seen in earlier data that the source's spectral shape softens as it becomes fainter. The smooth exponential rollover at high energies seen in the first observation evolves to a much more abrupt steepening of the spectrum at 20-30 keV. The continuum evolution can be nicely described with emission from a magnetized accretion column, modeled using the compmag model modified by an additional Gaussian emission component for the fainter observation. Between the two observations, the optical depth changes from 0.75 ± 0.04 to , the electron temperature remains constant, and there is an indication that the column decreases in radius. Since the energy-resolved pulse profiles remain virtually unchanged in shape between the two observations, the emission properties of the accretion column reflect the same accretion regime. This conclusion is also confirmed by our result that the energy of the cyclotron resonant scattering feature (CRSF) at 45 keV is independent of the luminosity, implying that the magnetic field in the region in which the observed radiation is produced is the same in both observations. Finally, we also constrain the evolution of the continuum parameters with the rotational phase of the neutron star. The width of the CRSF could only be constrained for the brighter observation. Based on Monte Carlo simulations of CRSF formation in single accretion columns, its pulse phase dependence supports a simplified fan beam emission pattern. The evolution of the CRSF width is very similar to that of the CRSF depth, which is, however, in disagreement with expectations.

Top