Investigation of dynamic characteristics of a turbine-propeller engine
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L; Jacques, James R
1951-01-01
Time constants that characterize engine speed response of a turbine-propeller engine over the cruising speed range for various values of constant fuel flow and constant blade angle were obtained both from steady-state characteristics and from transient operation. Magnitude of speed response to changes in fuel flow and blade angle was investigated and is presented in the form of gain factors. Results indicate that at any given value of speed in the engine cruising speed range, time constants obtained both from steady-state characteristics and from transient operation agree satisfactorily for any given constant fuel flow, whereas time constants obtained from transient operation exceed time constants obtained from steady-state characteristics by approximately 14 percent for any given blade angle.
Application of velocity filtering to optical-flow passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1992-01-01
The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
Interrupted flow reference energy mean emission levels for the FHWA Traffic Noise Model
DOT National Transportation Integrated Search
1997-01-01
This report presents the measurement, data reduction and analysis of individual vehicle sound level and speed data for non-constant speed situations. These situations are referred to as interrupted flow conditions and include acceleration from stop s...
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Barron, Andrew; Srinivasan, Mandyam V
2006-03-01
There is now increasing evidence that honey bees regulate their ground speed in flight by holding constant the speed at which the image of the environment moves across the eye (optic flow). We have investigated the extent to which ground speed is affected by headwinds. Honey bees were trained to enter a tunnel to forage at a sucrose feeder placed at its far end. Ground speeds in the tunnel were recorded while systematically varying the visual texture of the tunnel, and the strength of headwinds experienced by the flying bees. We found that in a flight tunnel bees used visual cues to maintain their ground speed, and adjusted their air speed to maintain a constant rate of optic flow, even against headwinds which were, at their strongest, 50% of a bee's maximum recorded forward velocity. Manipulation of the visual texture revealed that headwind is compensated almost fully even when the optic flow cues are very sparse and subtle, demonstrating the robustness of this visual flight control system. We discuss these findings in the context of field observations of flying bees.
Modeling the effect of varying swim speeds on fish passage through velocity barriers
Castro-Santos, T.
2006-01-01
The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Marangoni elasticity of flowing soap films
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Mandre, Shreyas
2017-08-01
We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.
Experimental parametric study of jet vortex generators for flow separation control
NASA Technical Reports Server (NTRS)
Selby, Gregory
1991-01-01
A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.
Studies of the Speed Stability of a Tandem Helicopter in Forward Flight
NASA Technical Reports Server (NTRS)
Tapscott, Robert J; Amer, Kenneth B
1956-01-01
Flight-test measurements, related analytical studies, and corresponding pilots' opinions of the speed stability of tandem-rotor helicopter are presented. An undesirable instability, evidenced by rearward stick motion with increasing forward speed at constant power, is indicated to be caused by variations with speed of the front-rotor downwash at the rear rotor. An analytical expression for predicting changes in speed stability caused by changes in rotor geometry is derived and constants for use with the analytical expression are presented in chart form. Means for improving stability with speed are studied both analytically and experimentally. The test results also give some information as to the flow conditions at the rear rotor.
Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number
NASA Technical Reports Server (NTRS)
Smits, A. J.; Bogdonoff, S. M.
1984-01-01
A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.
Ye, Haoyu; Ignatova, Svetlana; Peng, Aihua; Chen, Lijuan; Sutherland, Ian
2009-06-26
This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system-hexane-ethyl acetate-methanol-water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.
Analysis of tonal noise generating mechanisms in low-speed axial-flow fans
NASA Astrophysics Data System (ADS)
Canepa, Edward; Cattanei, Andrea; Zecchin, Fabio Mazzocut
2016-08-01
The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans. A nine blade rotor has been operated at free discharge conditions and in four geometrical configurations in which different kinds of tonal noise generating mechanisms are present: large-scale inlet turbulent structures, tip-gap flow, turbulent wakes, and rotor-stator interaction. The measurements have been taken in a hemi-anechoic chamber at constant rotational speed and, in order to vary the acoustic source strength, during low angular acceleration, linear speed ramps. In order to avoid erroneous quantitative evaluations if the acoustic propagation effects are not considered, the acoustic response functions of the different test configurations have been computed by means of the spectral decomposition method. Then, the properties of the tonal noise generating mechanisms have been studied. To this aim, the constant-Strouhal number SPL, obtained by means of measurements taken during the speed ramps, have been compared with the propagation function. Finally, the analysis of the phase of the acoustic pressure has allowed to distinguish between random and deterministic tonal noise generating mechanisms and to collect information about the presence of important propagation effects.
NASA Astrophysics Data System (ADS)
Martin, Calin Iulian
2017-12-01
We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f-plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ1 adjacent to the surface situated above another layer of constant non-zero vorticity γ2≠γ1 adjacent to the bed. For certain vorticities γ1,γ2, we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows. This article is part of the theme issue 'Nonlinear water waves'.
The dynamic interaction of a marine hydrokinetic turbine with its environment
NASA Astrophysics Data System (ADS)
Kolekar, Nitin; Banerjee, Arindam
2014-11-01
Unlike wind turbines, marine hydrokinetic and tidal turbines operate in a bounded flow environment where flow is constrained between deformable free surface and fixed river/sea bed. The proximity to free surface modifies the wake dynamics behind the turbine. Further, size & shape of this wake is not constant but depends on multiple factors like flow speed, turbine blade geometry, and rotational speed. In addition, the turbulence characteristics of incoming flow also affects the flow field and hence the performance. The current work aims at understanding the dynamic interaction of a hydrokinetic turbine (HkT) with free surface and flow turbulence through experimental investigations. Results will be presented from experimental study carried out in an open channel test facility at Lehigh University with a three bladed, constant chord, zero twist HkT under various operating conditions. Froude number (ratio of characteristic flow velocity to gravitational wave velocity) is used to characterize the effect of free surface proximity on turbine performance. Experimental results will be compared with analytical models based on blade element momentum theory. Characterization of wake meandering and flow around turbine will be performed using a stereo-Particle Image Velocimetry technique.
Hazardous Chemical Pump Tests.
1980-07-01
hydraulic flow rate is the product of the pump speed and the pump displacement. The pump displacement for each respective pump was constant throughout...speed - rpm T - torque - ft lbs 7= 3.1416 By substituting the product of pump speed and pump displacement for the hydraulic flow rate (Q=NO) in the above...FF:iipr’: iL 40 H FLUID F-’UMPED; FPl H FVIi T’E1l ’HJO I...S Lu FL: H KFITE C F~~:ri FIGURE 2 CC E MT 2, Fi C F . c ;E’C F11 *:;_cl PF fog O ~ \\ 4 1
NASA Astrophysics Data System (ADS)
Miller, Victor; Jens, Elizabeth T.; Mechentel, Flora S.; Cantwell, Brian J.; Stanford Propulsion; Space Exploration Group Team
2014-11-01
In this work, we present observations of the overall features and dynamics of flow and combustion in a slab-type hybrid rocket combustor. Tests were conducted in the recently upgraded Stanford Combustion Visualization Facility, a hybrid rocket combustor test platform capable of generating constant mass-flux flows of oxygen. High-speed (3 kHz) schlieren and OH chemiluminescence imaging were used to visualize the flow. We present imaging results for the combustion of two different fuel grains, a classic, low regression rate polymethyl methacrylate (PMMA), and a high regression rate paraffin, and all tests were conducted in gaseous oxygen. Each fuel grain was tested at multiple free-stream pressures at constant oxidizer mass flux (40 kg/m2s). The resulting image sequences suggest that aspects of the dynamics and scaling of the system depend strongly on both pressure and type of fuel.
Martin, Calin Iulian
2018-01-28
We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f -plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ 1 adjacent to the surface situated above another layer of constant non-zero vorticity γ 2 ≠ γ 1 adjacent to the bed. For certain vorticities γ 1 , γ 2 , we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Mansouri, Mahdi; Salamonsen, Robert F.; Lim, Einly; Akmeliawati, Rini; Lovell, Nigel H.
2015-01-01
In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach. PMID:25849979
How humans use visual optic flow to regulate stepping during walking.
Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B
2017-09-01
Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Geisenheyner, Robert M.; Berdysz, Joseph J.
1948-01-01
An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.
30 CFR 18.65 - Flame test of hose.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... variable-speed electric fan and an ASME flow nozzle (16-81/2 inches reduction) to attain constant air velocities at any speed between 50-500 feet a minute. (4) An electric timer or stopwatch to measure the...
In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.
Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T
1997-10-01
The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.
Transduction in Drosophila olfactory receptor neurons is invariant to air speed
Zhou, Yi
2012-01-01
In the vertebrate nose, increasing air speed tends to increase the magnitude of odor-evoked activity in olfactory receptor neurons (ORNs), given constant odor concentration and duration. It is often assumed that the same is true of insect olfactory organs, but this has not been directly tested. In this study, we examined the effect of air speed on ORN responses in Drosophila melanogaster. We constructed an odor delivery device that allowed us to independently vary concentration and air speed, and we used a fast photoionization detector to precisely measure the actual odor concentration at the antenna while simultaneously recording spikes from ORNs in vivo. Our results demonstrate that Drosophila ORN odor responses are invariant to air speed, as long as odor concentration is kept constant. This finding was true across a >100-fold range of air speeds. Because odor hydrophobicity has been proposed to affect the air speed dependence of olfactory transduction, we tested a >1,000-fold range of hydrophobicity values and found that ORN responses are invariant to air speed across this full range. These results have implications for the mechanisms of odor delivery to Drosophila ORNs. Our findings are also significant because flies have a limited ability to control air flow across their antennae, unlike terrestrial vertebrates, which can control air flow within their nasal cavity. Thus, for the fly, invariance to air speed may be adaptive because it confers robustness to changing wind conditions. PMID:22815404
Couple stress fluid flow in a rotating channel with peristalsis
NASA Astrophysics Data System (ADS)
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin
2014-12-01
We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
Geometric scaling of artificial hair sensors for flow measurement under different conditions
NASA Astrophysics Data System (ADS)
Su, Weihua; Reich, Gregory W.
2017-03-01
Artificial hair sensors (AHSs) have been developed for prediction of the local flow speed and aerodynamic force around an airfoil and subsequent application in vibration control of the airfoil. Usually, a specific sensor design is only sensitive to the flow speeds within its operating flow measurement region. This paper aims at expanding this flow measurement concept of using AHSs to different flow speed conditions by properly sizing the parameters of the sensors, including the dimensions of the artificial hair, capillary, and carbon nanotubes (CNTs) that make up the sensor design, based on a baseline sensor design and its working flow condition. In doing so, the glass fiber hair is modeled as a cantilever beam with an elastic foundation, subject to the distributed aerodynamic drag over the length of the hair. Hair length and diameter, capillary depth, and CNT height are scaled by keeping the maximum compressive strain of the CNTs constant for different sensors under different speed conditions. Numerical studies will demonstrate the feasibility of the geometric scaling methodology by designing AHSs for aircraft with different dimensions and flight conditions, starting from the same baseline sensor. Finally, the operating bandwidth of the scaled sensors are explored.
Photoacoustic thermal flowmetry with a single light source
NASA Astrophysics Data System (ADS)
Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie
2017-09-01
We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.
On the compressible Taylor?Couette problem
NASA Astrophysics Data System (ADS)
Manela, A.; Frankel, I.
We consider the linear temporal stability of a Couette flow of a Maxwell gas within the gap between a rotating inner cylinder and a concentric stationary outer cylinder both maintained at the same temperature. The neutral curve is obtained for arbitrary Mach (Ma) and arbitrarily small Knudsen (Kn) numbers by use of a continuum model and is verified via comparison to direct simulation Monte Carlo results. At subsonic rotation speeds we find, for the radial ratios considered here, that the neutral curve nearly coincides with the constant-Reynolds-number curve pertaining to the critical value for the onset of instability in the corresponding incompressible-flow problem. With increasing Mach number, transition is deferred to larger Reynolds numbers. It is remarkable that for a fixed Reynolds number, instability is always eventually suppressed beyond some supersonic rotation speed. To clarify this we examine the variation with increasing (Ma) of the reference Couette flow and analyse the narrow-gap limit of the compressible TC problem. The results of these suggest that, as in the incompressible problem, the onset of instability at supersonic speeds is still essentially determined through the balance of inertial and viscous-dissipative effects. Suppression of instability is brought about by increased rates of dissipation associated with the elevated bulk-fluid temperatures occurring at supersonic speeds. A useful approximation is obtained for the neutral curve throughout the entire range of Mach numbers by an adaptation of the familiar incompressible stability criteria with the critical Reynolds (or Taylor) numbers now based on average fluid properties. The narrow-gap analysis further indicates that the resulting approximate neutral curve obtained in the (Ma, Kn) plane consists of two branches: (i) the subsonic part corresponding to a constant ratio (Ma/Kn) (i.e. a constant critical Reynolds number) and (ii) a supersonic branch which at large Ma values corresponds to a constant product Ma Kn. Finally, our analysis helps to resolve some conflicting views in the literature regarding apparently destabilizing compressibility effects.
Passive turbulent flamelet propagation
NASA Technical Reports Server (NTRS)
Ashurst, William T.; Ruetsch, G. R.; Lund, T. S.
1994-01-01
We analyze results of a premixed constant density flame propagating in three-dimensional turbulence, where a flame model developed by Kerstein, et al. (1988) has been used. Simulations with constant and evolving velocity fields are used, where peculiar results were obtained from the constant velocity field runs. Data from the evolving flow runs with various flame speeds are used to determine two-point correlations of the fluctuating scalar field and implications for flamelet modeling are discussed.
PLASMA FLOWS AT VOYAGER 2 AWAY FROM THE MEASURED SUPRATHERMAL PRESSURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D. J.; Schwadron, N. A., E-mail: dmccomas@swri.edu
2014-11-01
Plasma flows measured by Voyager 2 show a clear rotation away from radially outward with increasing penetration into the inner heliosheath while the overall flow speed remains roughly constant. However, the direction of rotation is far more into the transverse, and less into the polar direction, than predicted. No current model reproduces the key observational results of (1) the direction of flow rotation or (2) constancy of the flow speed. Here we show that the direction is consistent with flow away from the region of maximum pressure in the inner heliosheath, ∼20° south of the upwind direction, as measured bymore » the Interstellar Boundary Explorer (IBEX). Further, we show that the dominance of the suprathermal ion pressure in the inner heliosheath measured by IBEX can explain both the observed flow rotation and constancy of the flow speed. These results indicate the critical importance of suprathermal ions in the physics of the inner heliosheath and have significant implications for understanding this key region of the heliosphere's interstellar interaction and astrophysical plasmas more broadly.« less
On the gas dynamics of a rotating impeller
NASA Technical Reports Server (NTRS)
Busemann, Adolf
1956-01-01
It is shown that for a compressible flow with constant entropy the pressure rise maintains the direct relation to the circulation around the blades existing for incompressible flow. In contrast, however, the torque, and with it the power consumption, is increased because of sound waves traveling to infinity already at subsonic circumferential speeds.
Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.
Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas
2011-12-01
As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Burtt, Jack R; Jackson, Robert J
1951-01-01
A typical inlet axial-flow compressor inlet stage, which was designed on the basis of constant total enthalpy with symmetrical velocity diagram at all radii, was investigated. At a tip speed of 1126 feet per second, a peak pressure ratio of 1.28 was obtained at an efficiency of 0.76. At a tip speed, the highest practical flow was 28 pounds per second per square foot frontal area with an efficiency of 0.78. Data for a rotor relative inlet Mach number range of from 0.5 to 0.875 indicates that the critical value for any stage radial element is approximately 0.80 for the stage investigated.
The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1939-01-01
The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provornikova, E.; Opher, M.; Izmodenov, V. V.
We investigate the role of the 11 yr solar cycle variations in the solar wind (SW) parameters on the flows in the heliosheath using a new three-dimensional time-dependent model of the interaction between the SW and the interstellar medium. For boundary conditions in the model we use realistic time and the latitudinal dependence of the SW parameters obtained from SOHO/SWAN and interplanetary scintillation data for the last two solar cycles (1990-2011). This data set generally agrees with the in situ Ulysses measurements from 1991 to 2009. For the first ∼30 AU of the heliosheath the time-dependent model predicts constant radialmore » flow speeds at Voyager 2 (V2), which is consistent with observations and different from the steady models that show a radial speed decrease of 30%. The model shows that V2 was immersed in SW with speeds of 500-550 km s{sup –1} upstream of the termination shock before 2009 and in wind with upstream speeds of 450-500 km s{sup –1} after 2009. The model also predicts that the radial velocity along the Voyager 1 (V1) trajectory is constant across the heliosheath, contrary to observations. This difference in observations implies that additional effects may be responsible for the different flows at V1 and V2. The model predicts meridional flows (VN) higher than those observed because of the strong bluntness of the heliosphere shape in the N direction in the model. The modeled tangential velocity component (VT) at V2 is smaller than observed. Both VN and VT essentially depend on the shape of the heliopause.« less
Runout and fine-sediment deposits of axisymmetric turbidity currents
NASA Astrophysics Data System (ADS)
Dade, W. Brian; Huppert, Herbert E.
1995-09-01
We develop a model that describes the runout behavior and resulting deposit of a radially spreading, suspension-driven gravity current on a surface of negligible slope. Our analysis considers the separate cases of constant-volume and constant-flux sources. It incorporates expressions for the conservation of volume, a Froude number condition at the current front, and the evolution of the driving suspension due to settling of particles to the underlying bed. The model captures the key features of a range of experimental observations. The analysis also provides important scaling relationships between the geometry of a deposit and the source conditions for the deposit-forming flow, as well as explicit expressions for flow speed and deposit thickness as functions of radial distance from the source. Among the results of our study we find that, in the absence of information regarding flow history, the geometries of relatively well-sorted deposits generated by flows with source conditions of constant volume or constant flux are virtually indistinguishable. The results of our analysis can be used by geologists in the interpretation of some geologically important gravity-surge deposits. Using our analytical results, we consider three previously studied, radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic Ocean. From gross geometry and grain size of the turbidites alone we estimate for the respective deposit-forming events that upon entry into the basin the initial sediment concentrations were approximately 3% by volume and the total volumes were roughly between 30 km3 and 100 km3. Each of the suspension-driven flows is inferred to have spread into the basin with a characteristic speed of 3-5 m s-1, and reached its ultimate runout length of about 60-75 km while laying down a deposit over a period of about 10-12 hours.
Technology Horizons: A Vision for Air Force Science and Technology 2010-30
2011-09-01
software, hardware, and networks, it is now recognized as en- compassing the entire system that couples information flow and decision processes across...acceleration, and scramjet cruise. Inward turning inlets and a dual- flow path design allow high volumetric efficiency, and high cruise speed provides...the same time, emerging “third- stream engine architectures” can enable constant-mass- flow engines that can provide further reductions in fuel
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
Numerical simulation of hydrodynamic processes beneath a wind-driven water surface
NASA Astrophysics Data System (ADS)
Tsai, Wu-ting
Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.
Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel
2014-09-01
Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow during exercise without causing pulmonary venous congestion. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
2010-05-15
flow and decision processes across the air and space domains. It thus comprises traditional wired and fiber-optic computer networks based on...dual flow path design allow high volumetric efficiency, and high cruise speed provides significantly increased survivability. Vertical takeoff...emerging “third-stream engine architectures” can enable for constant mass flow engines that can provide further reductions in fuel consumption. A wide
Distribution of self-propelled organisms in fluid flows
NASA Astrophysics Data System (ADS)
Neufeld, Zoltan
2006-11-01
We study the distribution of microorganisms represented as self-propelled particles in a moving fluid medium. The particles are advected by the flow and, in addition, they swim in a direction controlled by external factors. Two cases are considered: 1. passive spheroidal particles, that swim with constant speed but the swimming direction is reoriented by the viscous torque acting on the spheroid due to the local velocity field, and 2. chemotactic particles, whose swimming speed is oriented and proportional to the gradient of the concentration of a chemoattractant. We show that the combined effects of chaotic mixing and chemotaxis or flow reorientation leads to aggregation of the particles along a complex manifold. We analyse the properties of the aggregates and the efficiency of chemotaxis in flows with strongly non-uniform fluctuating distribution of the chemottractant.
NASA Astrophysics Data System (ADS)
Barbulescu, M.; Erdélyi, R.
2018-06-01
Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.
Effect of Several Factors on the Cooling of a Radial Engine in Flight
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin
1936-01-01
Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.
Budgerigar flight in a varying environment: flight at distinct speeds?
Schiffner, Ingo; Srinivasan, Mandyam V
2016-06-01
How do flying birds respond to changing environments? The behaviour of budgerigars, Melopsittacus undulatus, was filmed as they flew through a tapered tunnel. Unlike flying insects-which vary their speed progressively and continuously by holding constant the optic flow induced by the walls-the birds showed a tendency to fly at only two distinct, fixed speeds. They switched between a high speed in the wider section of the tunnel, and a low speed in the narrower section. The transition between the two speeds was abrupt, and anticipatory. The high speed was close to the energy-efficient, outdoor cruising speed for these birds, while the low speed was approximately half this value. This is the first observation of the existence of two distinct, preferred flight speeds in birds. A dual-speed flight strategy may be beneficial for birds that fly in varying environments, with the high speed set at an energy-efficient value for flight through open spaces, and the low speed suited to safe manoeuvring in a cluttered environment. The constancy of flight speed within each regime enables the distances of obstacles and landmarks to be directly calibrated in terms of optic flow, thus facilitating simple and efficient guidance of flight through changing environments. © 2016 The Author(s).
Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton
2015-02-01
The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Pulsed Flows Along a Cusp Structure Observed with SOO/AIA
NASA Technical Reports Server (NTRS)
Thompson, Barbara; Demoulin, P.; Mandrini, C. H.; Mays, M. L.; Ofman, L.; Driel-Gesztelyi, L. Van; Viall, N. M.
2011-01-01
We present observations of a cusp-shaped structure that formed after a flare and coronal mass ejection on 14 February 2011. Throughout the evolution of the cusp structure, blob features up to a few Mm in size were observed flowing along the legs and stalk of the cusp at projected speeds ranging from 50 to 150 km/sec. Around two dozen blob features, on order of 1 - 3 minutes apart, were tracked in multiple AlA EUV wavelengths. The blobs flowed outward (away from the Sun) along the cusp stalk, and most of the observed speeds were either constant or decelerating. We attempt to reconstruct the 3-D magnetic field of the evolving structure, discuss the possible drivers of the flows (including pulsed reconnect ion and tearing mode instability), and compare the observations to studies of pulsed reconnect ion and blob flows in the solar wind and the Earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; Kolekar, Nitin
2015-11-01
The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird, Emily; Kornfeldt, Torill; Dacke, Marie
2010-05-01
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
Two-dimensional potential flow past a smooth wall with partly constant curvature
NASA Technical Reports Server (NTRS)
Koppenfels, Werner Von
1941-01-01
The speed of a two-dimensional flow potential flow past a smooth wall, which evinces a finite curvature jump at a certain point and approximates to two arcs in the surrounding area, has a vertical tangent of inflection in the critical point as a function of the arc length of the boundary curve. This report looks at a general theorem of the local character of the conformal function at the critical point as well as the case of the finite curvature jump.
NASA Astrophysics Data System (ADS)
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
Implementation of Temperature Sequential Controller on Variable Speed Drive
NASA Astrophysics Data System (ADS)
Cheong, Z. X.; Barsoum, N. N.
2008-10-01
There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.
Rotor Re-Design for the SSME Fuel Flowmeter
NASA Technical Reports Server (NTRS)
Marcu, Bogdan
1999-01-01
The present report describes the process of redesigning a new rotor for the SSME Fuel Flowmeter. The new design addresses the specific requirement of a lower rotor speed which would allow the SSME operation at 1 15% rated power level without reaching a blade excitation by the wakes behind the hexagonal flow straightener upstream at frequencies close to the blade natural frequency. A series of calculations combining fleet flowmeters test data, airfoil fluid dynamics and CFD simulations of flow patterns behind the flowmeter's hexagonal straightener has led to a blade twist design alpha = alpha (radius) targeting a kf constant of 0.8256. The kf constant relates the fuel volume flow to the flowmeter rotor speed, for this particular value 17685 GPM at 3650 RPM. Based on this angle distribution, two actual blade designs were developed. A first design using the same blade airfoil as the original design targeted the new kf value only. A second design using a variable blade chord length and airfoil relative thickness targeted simultaneously the new kf value and an optimum blade design destined to provide smooth and stable operation and a significant increase in the blade natural frequency associated with the first bending mode, such that a comfortable margin could be obtained at 115% RPL. The second design is a result of a concurrent engineering process, during which several iterations were made in order to achieve a targeted blade natural frequency associated with the first bending mode of 1300 Hz. Water flow tests preliminary results indicate a kf value of 0.8179 for the f-irst design, which is within 1% of the target value. The second design rotor shows a natural frequency associated with the first bending mode of 1308 Hz, and a water-flow calibration constant of kf 0.8169.
NASA Technical Reports Server (NTRS)
Lin, K. M.; Moore, F. K.
1976-01-01
A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field.
Leukocyte adhesion: High-speed cells with ABS.
van der Merwe, P A
1999-06-03
In order to decide where to exit blood vessels and enter tissues, leukocytes roll along endothelial surfaces. Recent studies suggest that an 'automatic braking system' (ABS), involving selectin cell-adhesion molecules, enables leukocytes to roll at a fairly constant velocity despite large variations in blood flow rate.
Process viscometry in flows of non-Newtonian fluids using an anchor agitator
NASA Astrophysics Data System (ADS)
Jo, Hae Jin; Jang, Hye Kyeong; Kim, Young Ju; Hwang, Wook Ryol
2017-11-01
In this work, we present a viscosity measurement technique for inelastic non-Newtonian fluids directly in flows of anchor agitators that are commonly used in highly viscous fluid mixing particularly with yield stress. A two-blade anchor impeller is chosen as a model flow system and Carbopol 940 solutions and Xanthan gum solutions with various concentrations are investigated as test materials. Following the Metzner-Otto correlation, the effective shear rate constant and the energy dissipation rate constant have been estimated experimentally by establishing (i) the relationship between the power number and the Reynolds number using a reference Newtonian fluid and (ii) the proportionality between the effective shear rate and the impeller speed with a reference non-Newtonian fluid. The effective viscosity that reproduces the same amount of the energy dissipation rate, corresponding to that of Newtonian fluid, has been obtained by measuring torques for various impeller speeds and the accuracy in the viscosity prediction as a function of the shear rate has been compared with the rheological measurement. We report that the process viscometry with the anchor impeller yields viscosity estimation within the relative error of 20% with highly shear-thinning fluids.
Fluid power network for centralized electricity generation in offshore wind farms
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2014-06-01
An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network.
Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames
2015-06-01
e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than
AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT II, MECHANICAL TRANSMISSIONS.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) PURPOSE OF TRANSMISSIONS, (2) RATIO DIFFERENCE, (3) CONSTANT MESH TRANSMISSIONS, (4) FOUR-SPEED TRUCK TRANSMISSION POWER FLOW, AND (5) TRANSMISSION TROUBLESHOOTING.…
Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System
2015-10-01
fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is
NASA Technical Reports Server (NTRS)
Clemmons, D. R.
1973-01-01
An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.
Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke
2018-03-01
We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.
Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion
Niehorster, Diederick C.
2017-01-01
How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272
Ballistic range experiments on superbooms generated by refraction
NASA Technical Reports Server (NTRS)
Sanai, M.; Toong, T.-Y.; Pierce, A. D.
1976-01-01
The enhanced sonic boom or supersonic boom generated as a result of atmospheric refraction in threshold Mach number flights was recreated in a ballistic range by firing projectiles at low supersonic speeds into a stratified medium obtained by slowly injecting carbon dioxide into air. The range was equipped with a fast-response dynamic pressure transducer and schlieren photographic equipment, and the sound speed variation with height was controlled by regulating the flow rate of the CO2. The schlieren observations of the resulting flow field indicate that the generated shocks are reflected near the sonic cutoff altitude where local sound speed equals body speed, provided such an altitude exists. Maximum shock strength occurs very nearly at the point where the incident and reflected shocks join, indicating that the presence of the reflected shock may have an appreciable effect on the magnitude of the focus factor. The largest focus factor detected was 1.7 and leads to an estimate that the constant in the Guiraud-Thery scaling law should have a value of 1.30.
Metastable sound speed in gas-liquid mixtures
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.
1979-01-01
A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.
Inflow velocities of cold flows streaming into massive galaxies at high redshifts
NASA Astrophysics Data System (ADS)
Goerdt, Tobias; Ceverino, Daniel
2015-07-01
We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.
NASA Astrophysics Data System (ADS)
Anderson, Kevin; Lin, Jun T.; Wong, Alexander J.
2017-11-01
Research findings of an experimental and numerical investigation of windage losses in the small annular air gap region between the stator and rotor of a high speed electric motor are presented herein. The experimental set-up is used to empirically measure the windage losses in the motor by measuring torque and rotational speed. The motor rotor spins at roughly 30,000 rpm and the rotor sets up windage losses on the order of 100 W. Axial air flow of 200 L/min is used to cool the motor, thus setting up a pseudo Taylor-Couette Poiseuille type of flow. Details of the experimental test apparatus, instrumentation and data acquisition are given. Experimental data for spin-down (both actively and passively cooled) and calibration of bearing windage losses are discussed. A Computational Fluid Dynamics (CFD) model is developed and used to predict the torque speed curve and windage losses in the motor. The CFD model is correlated with the experimental data. The CFD model is also used to predict the formation of the Taylor-Couette cells in the small gap region of the high speed motor. Results for windage losses, spin-down time constant, bearing losses, and torque of the motor versus cooling air mass flow rate and rotational speed are presented in this study. Mechanical Engineering.
Effective solidity in vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Parker, Colin M.; Leftwich, Megan C.
2016-11-01
The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.
Effect of speed matching on fundamental diagram of pedestrian flow
NASA Astrophysics Data System (ADS)
Fu, Zhijian; Luo, Lin; Yang, Yue; Zhuang, Yifan; Zhang, Peitong; Yang, Lizhong; Yang, Hongtai; Ma, Jian; Zhu, Kongjin; Li, Yanlai
2016-09-01
Properties of pedestrian may change along their moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study the speed matching effect (a pedestrian adjusts his velocity constantly to the average velocity of his neighbors) and its influence on the density-velocity relationship (a pedestrian adjust his velocity to the surrounding density), known as the fundamental diagram of the pedestrian flow. By the means of the cellular automaton, the simulation results fit well with the empirical data, indicating the great advance of the discrete model for pedestrian dynamics. The results suggest that the system velocity and flow rate increase obviously under a big noise, i.e., a diverse composition of pedestrian crowd, especially in the region of middle or high density. Because of the temporary effect, the speed matching has little influence on the fundamental diagram. Along the entire density, the relationship between the step length and the average pedestrian velocity is a piecewise function combined two linear functions. The number of conflicts reaches the maximum with the pedestrian density of 2.5 m-2, while decreases by 5.1% with the speed matching.
Visualization of the separation and subsequent transition near the leading edge of airfoils
NASA Technical Reports Server (NTRS)
Arena, A. V.; Mueller, T. J.
1978-01-01
A visual study was performed using the low speed smoke wind tunnels with the objective of obtaining a better understanding of the structure of leading edge separation bubbles on airfoils. The location of separation, transition and reattachment for a cylindrical nose constant-thickness airfoil model were obtained from smoke photographs and surface oil flow techniques. These data, together with static pressure distributions along the leading edge and upper surface of the model, produced the influence of Reynolds number, angle of attack, and trailing edge flap angle on the size and characteristics of the bubble. Additional visual insight into the unsteady nature of the separation bubble was provided by high speed 16 mm movies. The 8 mm color movies taken of the surface oil flow supported the findings of the high speed movies and clearly showed the formation of a scalloped spanwise separation line at the higher Reynolds number.
Stage Effects on Stalling and Recovery of a High-Speed 10-Stage Axial- Flow Compressor
1990-06-01
facility C Specific heat of air at constant pressureP Cx Axial velocity DC Direct current DAC Data acquisition computer DCS Design corrected compressor ...was designed to inve3tigate the component performance of an axial -flow compressor while stalling and operating in rotating stall. No attempt was made...Temperatures were measured from a probe configuration similar to the to - pressure design . 68 Table 4.2 Compressor instrumentation RADIAL PROPERTY AXIAL
PIV and LDA measurements of the wake behind a wind turbine model
NASA Astrophysics Data System (ADS)
Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.
2014-06-01
In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.
Evaluating scale-up rules of a high-shear wet granulation process.
Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S
2015-07-01
This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient
NASA Astrophysics Data System (ADS)
Peterson, C. J.; Vukasinovic, B.; Glezer, A.
2017-11-01
The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.
Computer program for definition of transonic axial-flow compressor blade rows
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1975-01-01
Particular type of blade element used has two segments which have centerlines and surfaces described by constant change of angle with path distance on cone. Program is result of rework of earlier program to give major gains in accuracy, reliability and speed. It also covers more steps of overall compressor design procedure.
NASA Astrophysics Data System (ADS)
Thurrell, Adrian; Pelah, Adar
2005-03-01
We report on recent experiments to investigate the Arthrovisual Locomotor Effect (ALE), a mechanism based on non-visual signals postulated to discount or remove the self-generated visual motion signals during locomotion. It is shown that perceptual matches made by standing subjects to a constant motion optic flow stimulus that is viewed while walking on a treadmill are linearly reduced by walking speed, a measure of the reported ALE. The degree of reduction in perceived speed depends on the similarity of the motor activity to natural locomotion, thus for the four activities tested, ALE strength is ranked as follows: Walking > Cycling > Hand Pedalling > Finger Tapping = 0. Other variations and important controls for the ALE are described.
Non-self-similar viscous gravity currents
NASA Astrophysics Data System (ADS)
Sutherland, Bruce R.; Cote, Kristen; Hong, Youn Sub Dominic; Steverango, Luke; Surma, Chris
2018-03-01
Lock-release experiments are performed focusing upon the evolution of near-pure glycerol flowing into fresh water. If the lock height is sufficiently tall, the current is found to propagate for many lock lengths close to the speed predicted for energy-conserving moderately non-Boussinesq gravity currents. The current then slows to a near stop as the current head ceases to be elevated relative to its tail and the current as a whole forms a wedge shape. By contrast, an experiment of near-pure glycerol advancing under air exhibits the well-known slowing of the current such that the front position increases as a one-fifth power of time. The evolution of a viscous gravity current in water is also qualitatively different from that for a high-Reynolds number gravity current which transitions smoothly from a constant speed to self-similar to viscous regime. The reason a viscous gravity current flowing under water moves initially at near-constant speed is not due to a lubrication layer forming below the current. Rather it is due to the return flow of water into the lock establishing a current with an elevated head that is taller than the viscous boundary layer depth near the current nose. The flow near the top of the head advances to the nose where it comes into contact with the tank bottom. Meanwhile the ambient fluid is pushed up and over the head rather than being drawn underneath it. The front slows rapidly to a near stop as the head height reduces to that comparable to the boundary layer depth underneath the head. The initial speed and entrainment into the current are shown to depend upon the ratio, Rℓ, of the starting current height to the characteristic boundary layer depth. In particular, entrainment via the turbulent shear flow over the head is found to increase the volume by less than 10 % during its evolution if Rℓ≲10 but increases by as much as 100 % for high-Reynolds number gravity currents. A conceptual model is developed that captures the transition from an inertially driven current to its sudden near stop by viscous forces.
Finite-size effects on bacterial population expansion under controlled flow conditions
NASA Astrophysics Data System (ADS)
Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico
2017-03-01
The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.
Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions
NASA Astrophysics Data System (ADS)
Flack, Karen; Lust, Ethan; Bailin, Ben
2017-11-01
Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.
Design of 9.271-pressure-ratio 5-stage core compressor and overall performance for first 3 stages
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1986-01-01
Overall aerodynamic design information is given for all five stages of an axial flow core compressor (74A) having a 9.271 pressure ratio and 29.710 kg/sec flow. For the inlet stage group (first three stages), detailed blade element design information and experimental overall performance are given. At rotor 1 inlet tip speed was 430.291 m/sec, and hub to tip radius ratio was 0.488. A low number of blades per row was achieved by the use of low-aspect-ratio blading of moderate solidity. The high reaction stages have about equal energy addition. Radial energy varied to give constant total pressure at the rotor exit. The blade element profile and shock losses and the incidence and deviation angles were based on relevant experimental data. Blade shapes are mostly double circular arc. Analysis by a three-dimensional Euler code verified the experimentally measured high flow at design speed and IGV-stator setting angles. An optimization code gave an optimal IGV-stator reset schedule for higher measured efficiency at all speeds.
High-speed imaging of traveling waves in a granular material during silo discharge.
Börzsönyi, Tamás; Kovács, Zsolt
2011-03-01
We report experimental observations of sound waves in a granular material during resonant silo discharge called silo music. The grain motion was tracked by high-speed imaging while the resonance of the silo was detected by accelerometers and acoustic methods. The grains do not oscillate in phase at neighboring vertical locations, but information propagates upward in this system in the form of sound waves. We show that the wave velocity is not constant throughout the silo but considerably increases toward the lower end of the system, suggesting increased pressure in this region, where the flow changes from cylindrical to converging flow. In the upper part of the silo the wave velocity matches the sound velocity measured in the same material when standing (in the absence of flow). Grain oscillations show a stick-slip character only in the upper part of the silo.
Operation of Darrieus turbines in constant circulation framework
NASA Astrophysics Data System (ADS)
Gorle, J. M. R.; Chatellier, L.; Pons, F.; Ba, M.
2017-07-01
Analytical and computational studies of flow across a low-speed marine turbine of Darrieus type with pitching blades have been carried out for flowfield and performance evaluation. The objective of this study is to develop efficient blade pitching laws to arrest or control the vortex shedding from the blades during turbine's operation. This is achieved by imparting an arbitrary constant amount of circulation to the blades, where Kelvin's theorem is respected. This paper presents the extension of the application of conformal mapping to produce the time-dependent flow over a rotating turbine blade in order to develop a quantified relationship between the blade's orientation with respect to the rotor's tangent and its rotational motion. The flow development is based on the analytical treatment given to potential flow formulation through Laurent series decomposition, where the Kutta condition is satisfied. The pitch control law and the analytical modeling of the hydrodynamic forces acting on the blade are derived based on Kelvin's theorem for the conservation of circulation. The application of this pitch control law in the real flow conditions is however limited due to viscous losses and rotational effects. Therefore, a 2D computational fluid dynamics (CFD) study with the shear stress transport (SST) k -ω turbulence model has been performed to examine the flow across a 4-bladed turbine model. While validating the analytical work, the numerical investigation reveals the applicability and limitations of circulation-controlled blade pitching laws in real flow conditions. In particular, a reference equivalent angle of attack is defined, which must be contained in a tight range in order to effectively prevent vortex shedding at a given tip-speed ratio.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; Lust, Ethan; Flack, Karen
2015-11-01
Near wake flow field results are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. The 2D PIV measurements were obtained in the USNA 380 ft tow tank for two inflow conditions. The first case had steady inflow conditions, i.e. the turbine was towed at a constant carriage speed (Utow = 1.68 m/s) and the second case had a constant carriage speed and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. The underwater PIV system is comprised of two submersible housings with forward looking submersible containing laser sheet forming optics, and the side looking submersible includes a camera and remote focus/aperture electronics. The resulting individual field of view for this experiment was nominally 30x30 cm2. Near wake mapping is accomplished by ``tiling'' individual fields of view with approximately 5 cm overlap. All measurements were performed at the nominal tip speed ratio (TSR) of 7. The mapping is accomplished in a vertical streamwise plane (x-z plane) centered on the turbine nacelle and the image pair captures were phase locked to two phases: reference blade horizontal and reference blade vertical. Results presented include distribution of mean velocities, Reynolds stresses, 2D turbulent kinetic energy. The discussion will focus on comparisons between steady and unsteady case. Further discussion will include comparisons between the current high resolution PIV measurements and the previous point measurements with the same turbine at different lateral planes in the same flow conditions.
Direct simulation of isothermal-wall supersonic channel flow
NASA Technical Reports Server (NTRS)
Coleman, Gary N.
1993-01-01
The motivation for this work is the fact that in turbulent flows where compressibility effects are important, they are often poorly understood. A few examples of such flows are those associated with astrophysical phenomena and those found in combustion chambers, supersonic diffusers and nozzles, and over high-speed airfoils. For this project, we are primarily interested in compressibility effects near solid surfaces. Our main objective is an improved understanding of the fundamentals of compressible wall-bounded turbulence, which can in turn be used to cast light upon modeling concepts such as the Morkovin hypothesis and the Van Driest transformation. To this end, we have performed a direct numerical simulation (DNS) study of supersonic turbulent flow in a plane channel with constant-temperature walls. All of the relevant spatial and temporal scales are resolved so that no sub grid scale or turbulence model is necessary. The channel geometry was chosen so that finite Mach number effects can be isolated by comparing the present results to well established incompressible channel data. Here the fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl number, and power-law temperature-dependent viscosity. Isothermal-wall boundary conditions are imposed so that a statistically stationary state may be obtained. The flow is driven by a uniform (in space) body force (rather than a mean pressure gradient) to preserve stream wise homogeneity, with the body force defined so that the total mass flux is constant.
Voyager observations of the interaction of the heliosphere with the interstellar medium
Richardson, John D.
2012-01-01
This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero. PMID:25685423
Voyager observations of the interaction of the heliosphere with the interstellar medium.
Richardson, John D
2013-05-01
This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero.
Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution
NASA Astrophysics Data System (ADS)
Stein, Victor P.; Kaltenbach, Hans-Jakob
2016-09-01
Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.
Castro-Santos, T.
2005-01-01
Migrating fish traversing velocity barriers are often forced to swim at speeds greater than their maximum sustained speed (Ums). Failure to select an appropriate swim speed under these conditions can prevent fish from successfully negotiating otherwise passable barriers. I propose a new model of a distance-maximizing strategy for fishes traversing velocity barriers, derived from the relationships between swim speed and fatigue time in both prolonged and sprint modes. The model predicts that fish will maximize traversed distance by swimming at a constant groundspeed against a range of flow velocities, and this groundspeed is equal to the negative inverse of the slope of the swim speed-fatigue time relationship for each mode. At a predictable flow velocity, they should switch from the optimal groundspeed for prolonged mode to that for sprint mode. Data from six migratory fish species (anadromous clupeids: American shad Alosa sapidissima, alewife A. pseudoharengus and blueback herring A. aestivalis; amphidromous: striped bass Morone saxatilis; and potomodromous species: walleye (previously known as Stizostedion vitrium) and white sucker Catostomus commersonii) were used to explore the ability of fish to approximate the predicted distance-maximizing behaviors, as well as the consequences of deviating from the optima. Fish volitionally sprinted up an open-channel flume against fixed flow velocities of 1.5-4.5 m s-1, providing data on swim speeds and fatigue times, as well as their groundspeeds. Only anadromous clupeids selected the appropriate distance-maximizing groundspeed at both prolonged and sprint modes. The other three species maintained groundspeeds appropriate to the prolonged mode, even when they should have switched to the sprint optima. Because of this, these species failed to maximize distance of ascent. The observed behavioral variability has important implications both for distributional limits and fishway design.
Ott, Florian; Pohl, Ladina; Halfmann, Marc; Hardiess, Gregor; Mallot, Hanspeter A
2016-07-01
When estimating ego-motion in environments (e.g., tunnels, streets) with varying depth, human subjects confuse ego-acceleration with environment narrowing and ego-deceleration with environment widening. Festl, Recktenwald, Yuan, and Mallot (2012) demonstrated that in nonstereoscopic viewing conditions, this happens despite the fact that retinal measurements of acceleration rate-a variable related to tau-dot-should allow veridical perception. Here we address the question of whether additional depth cues (specifically binocular stereo, object occlusion, or constant average object size) help break the confusion between narrowing and acceleration. Using a forced-choice paradigm, the confusion is shown to persist even if unambiguous stereo information is provided. The confusion can also be demonstrated in an adjustment task in which subjects were asked to keep a constant speed in a tunnel with varying diameter: Subjects increased speed in widening sections and decreased speed in narrowing sections even though stereoscopic depth information was provided. If object-based depth information (stereo, occlusion, constant average object size) is added, the confusion between narrowing and acceleration still remains but may be slightly reduced. All experiments are consistent with a simple matched filter algorithm for ego-motion detection, neglecting both parallactic and stereoscopic depth information, but leave open the possibility of cue combination at a later stage.
Investigation of acceleration characteristics of a single-spool turbojet engine
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L; Pack, George J
1953-01-01
Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.
An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Parker, Colin M.
The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot-wire measurement locations are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine. Changing the tip-speed ratio leads to substantial wake variation possibly because changing the tip-speed ratio changes the dynamic solidity. In this work, we achieve a similar change in dynamic solidity by varying the D/c ratio and holding the tip-speed ratio constant. This change leads to very similar characteristic shifts in the wake, such as a greater blockage effect, including averaged flow reversal in the case of high dynamic solidity (D/c = 3). The phase-averaged vortex identification shows that both the blockage effect and the wake structures are similarly affected by a change in dynamic solidity. At lower dynamic solidity, pairs of vortices are shed into the wake directly downstream of the turbine. For all three models, a vortex chain is shed into the shear layer at the edge of the wake where the blade is processing into the freestream.
Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert J.
Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical power, and electrical power output of a complete power take-off (PTO) system are utilized to determine the rotor hydrodynamic efficiency (maximum of 17%) and total system efficiency (maximum of 9%). A lab-based dynamometry method yields individual component and total PTO efficiencies, shown to have high variability and strong influence on total system efficiency. Dynamic efficiencies of PTO components can effect the overall efficiency of a turbine system, a result from field characterization. Thus, the ability to evaluate such components and their potential effects on turbine performance prior to field deployment is desirable. Before attempting control experiments with actual turbines, hardware-in-the-loop testing on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored to better understand power take-off response. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same cross-flow turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed; torque methods required accurate characterization of the motors while speed methods utilized encoder feedback and more accurately tracked turbine dynamics. In a demonstration of an EEM for evaluating a hydrokinetic turbine implementation, a controller is used to track the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with simulation but to deviate at high frequencies. The efficacy of an electromechanical emulator as an accurate representation of a fielded turbine is evaluated. A commercial horizontally-oriented cross-flow turbine is dynamically emulated on hardware to investigate control strategies and grid integration. A representative inflow time-series with a mean of 2 m/s is generated from high-resolution flow measurements of a riverine site and is used to drive emulation. Power output during emulation under similar input and loading conditions yields agreement with field measurements to within 3% at high power, near-optimal levels. Constant tip-speed ratio and constant speed proportional plus integral control schemes are compared to optimal nonlinear control and constant resistance regulation. All controllers yield similar results in terms of overall system efficiency. The emulated turbine is more responsive to turbulent inflow than the field turbine, as the model utilized to drive emulation does not account for a smoothing effect of turbulent fluctuations over the span of the fielded turbine's rotors. The turbine has a lower inertia than the demand of an isolated grid, indicating a secondary source of power with a similar frequency response is necessary if a single turbine cannot meet the entire demand. (Abstract shortened by UMI.).
Michelan, Rogério; Zimmer, Thiago R; Rodrigues, José A D; Ratusznei, Suzana M; de Moraes, Deovaldo; Zaiat, Marcelo; Foresti, Eugenio
2009-03-01
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees -inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO3/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees -inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees -inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3)m3).
Experimental Investigation of Reynolds Number Effects on Test Quality in a Hypersonic Expansion Tube
NASA Astrophysics Data System (ADS)
Rossmann, Tobias; Devin, Alyssa; Shi, Wen; Verhoog, Charles
2017-11-01
Reynolds number effects on test time and the temporal and spatial flow quality in a hypersonic expansion tube are explored using high-speed pressure, infrared optical, and Schlieren imaging measurements. Boundary layer models for shock tube flows are fairly well established to assist in the determination of test time and flow dimensions at typical high enthalpy test conditions. However, the application of these models needs to be more fully explored due to the unsteady expansion of turbulent boundary layers and contact regions separating dissimilar gasses present in expansion tube flows. Additionally, expansion tubes rely on the development of a steady jet with a large enough core-flow region at the exit of the acceleration tube to create a constant velocity region inside of the test section. High-speed measurements of pressure and Mach number at several locations within the expansion tube allow for the determination of an experimental x-t diagram. The comparison of the experimentally determined x-t diagram to theoretical highlights the Reynolds number dependent effects on expansion tube. Additionally, spatially resolved measurements of the Reynolds number dependent, steady core-flow in the expansion tube viewing section are shown. NSF MRI CBET #1531475, Lafayette College, McCutcheon Foundation.
Time-dependent recovery of microcrack damage and seismic wave speeds in deformed limestone
NASA Astrophysics Data System (ADS)
Brantut, Nicolas
2015-12-01
Limestone samples were deformed up to 5% inelastic axial strain at an effective confining pressure Peff=50 MPa in the cataclastic flow regime and subsequently maintained under constant static stress conditions (either isostatic of triaxial) for extended periods of time while elastic wave speeds and permeability were continuously monitored. During deformation, both seismic wave speeds and permeability decrease with increasing strain, due to the growth of subvertical microcracks and inelastic porosity reduction. During the static hold period under water-saturated conditions, the seismic wave speeds recovered gradually, typically by around 5% (relative to their initial value) after 2 days, while permeability remained constant. The recovery in wave speed increases with increasing confining pressure but decreases with increasing applied differential stress. The recovery is markedly lower when the samples are saturated with an inert fluid as opposed to water. The evolution in wave speed is interpreted quantitatively in terms of microcrack density, which shows that the post-deformation recovery is associated with a decrease in effective microcrack length, typically of the order to 10% after 2 days. The proposed mechanism for the observed damage recovery is microcrack closure due to a combination of backsliding on wing cracks driven by time-dependent friction and closure due to pressure solution at contacts between propping particles or asperities and microcrack walls. The recovery rates observed in the experiments, and the proposed underlying mechanisms, are compatible with seismological observations of seismic wave speed recovery along faults following earthquakes.
NASA Astrophysics Data System (ADS)
Brantut, N.
2015-12-01
Limestone samples were deformed up to 5% inelastic axial strain at an effective confining pressure P_{eff}=50 MPa, in the cataclastic flow regime, and subsequently maintained under constant static stress conditions for extended periods of time while elastic wave speeds and permeability were continously monitored. During deformation, both seismic wave speeds and permeability decrease with increasing strain, due to the growth of sub-vertical microcracks and inelastic porosity reduction. During the static hold period under water-satured conditions, the seismic wave speeds recovered gradually, typically by around 5% (relative to their initial value) after two days, while permeability remained constant. The recovery in wave speed increases with increasing confining pressure, but decreases with increasing applied differential stress. The recovery is markedly lower when the samples are saturated with an inert fluid as opposed to water. The evolution in wave speed is interpreted quantitatively in terms of microcrack density, which shows that the post-deformation recovery is associated with an decrease in effective microcrack length, typically of the order to 10% after two days. The proposed mechanism for the observed damage recovery is microcrack closure due to a combination of backsliding on wing cracks driven by time-dependent friction and closure due to pressure-solution at contacts between propping particles or asperities and microcrack walls. The recovery rates observed in the experiments, and the proposed underlying mechanisms, are compatible with seismological observations of seismic wave speed recovery along faults following earthquakes.
Methods of measurement signal acquisition from the rotational flow meter for frequency analysis
NASA Astrophysics Data System (ADS)
Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek
One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.
Pump tank divider plate for sump suction sodium pumps
George, John A.; Nixon, Donald R.
1977-01-01
A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.
A novel modeling approach to the mixing process in twin-screw extruders
NASA Astrophysics Data System (ADS)
Kennedy, Amedu Osaighe; Penlington, Roger; Busawon, Krishna; Morgan, Andy
2014-05-01
In this paper, a theoretical model for the mixing process in a self-wiping co-rotating twin screw extruder by combination of statistical techniques and mechanistic modelling has been proposed. The approach was to examine the mixing process in the local zones via residence time distribution and the flow dynamics, from which predictive models of the mean residence time and mean time delay were determined. Increase in feed rate at constant screw speed was found to narrow the shape of the residence time distribution curve, reduction in the mean residence time and time delay and increase in the degree of fill. Increase in screw speed at constant feed rate was found to narrow the shape of the residence time distribution curve, decrease in the degree of fill in the extruder and thus an increase in the time delay. Experimental investigation was also done to validate the modeling approach.
Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae
Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L. Christoffer
2012-01-01
Summary The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0–7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, Std, is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The Std is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance. PMID:23259057
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of Turbulence-Measuring Equipment
NASA Technical Reports Server (NTRS)
Kovasznay, Leslie S G
1954-01-01
Hot wire turbulence-measuring equipment has been developed to meet the more stringent requirements involved in the measurement of fluctuations in flow parameters at supersonic velocities. The higher mean speed necessitates the resolution of higher frequency components than at low speed, and the relatively low turbulence level present at supersonic speed makes necessary an improved noise level for the equipment. The equipment covers the frequency range from 2 to about 70,000 cycles per second. Constant-current operation is employed. Compensation for hot-wire lag is adjusted manually using square-wave testing to indicate proper setting. These and other features make the equipment adaptable to all-purpose turbulence work with improved utility and accuracy over that of older types of equipment. Sample measurements are given to demonstrate the performance.
Surface shear stress dependence of gas transfer velocity parameterizations using DNS
NASA Astrophysics Data System (ADS)
Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.
2016-10-01
Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0
Mean-flow measurements of the flow field diffusing bend
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.
1982-01-01
Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
Comparison between variable and constant rotor speed operation on WINDMEL-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji
1996-10-01
On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.
NASA Technical Reports Server (NTRS)
Dugan, James F , Jr
1955-01-01
Engine performance is better for constant outer-spool mechanical-speed operation than for constant inner-spool mechanical-speed operation over most of the flight range considered. Combustor and afterburner frontal areas are about the same for the two modes. Engine performance for a mode characterized by a constant outer-spool equivalent speed over part of the flight range and a constant outer-spool mechanical speed over the rest of the flight range is better that that for constant outer-spool mechanical speed operation. The former mode requires larger outer-spool centrifugal stresses and larger component frontal areas.
Experimental observations of granular debris flows
NASA Astrophysics Data System (ADS)
Ghilardi, P.
2003-04-01
Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.
Study on an undershot cross-flow water turbine
NASA Astrophysics Data System (ADS)
Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro
2014-06-01
This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.
NASA Technical Reports Server (NTRS)
Nelson, Herbert C; Rainey, Ruby A; Watkins, Charles E
1954-01-01
Linearized theory for compressible unsteady flow is used to derive the velocity potential and lift and moment coefficients in the form of oscillating rectangular wing moving at a constant supersonic speed. Closed expressions for the velocity potential and lift and moment coefficients associated with pitching and translation are given to seventh power of the frequency. These expressions extend the range of usefulness of NACA report 1028 in which similar expressions were derived to the third power of the frequency of oscillation. For example, at a Mach number of 10/9 the expansion of the potential to the third power is an accurate representation of the potential for values of the reduced frequency only up to about 0.08; whereas the expansion of the potential to the seventh power is an accurate representation for values of the reduced frequency up to about 0.2. The section and total lift and moment coefficients are discussed with the aid of several figures. In addition, flutter speeds obtained in the Mach number range from 10/9 to 10/6 for a rectangular wing of aspect ratio 4.53 by using section coefficients derived on the basis of three-dimensional flow are compared with flutter speeds for this wing obtained by using coefficients derived on the basis of two-dimensional flow.
Aeroacoustic model of a modulation fan with pitching blades as a sound generator.
Du, Lin; Jing, Xiaodong; Sun, Xiaofeng; Song, Weihua
2014-10-01
This paper is to develop an aeroacoustic model for a type of modulation fan termed as rotary subwoofer that is capable of radiating low-frequency sound at high sound pressure levels. The rotary subwoofer is modeled as a baffled monopole whose source strength is specified by the fluctuating mass flow rate produced by the pitching blades that rotate at constant speed. An immersed boundary method is established to simulate the detailed unsteady flow around the blades and also to estimate the source strength for the prediction of the far-field sound pressure level (SPL). The numerical simulation shows that the rotary subwoofer can output oscillating air flow that is in phase with the pitching motion of the blades. It is found that flow separation is more likely to occur on the pitching blades at higher modulation frequency, resulting in the reduction of the radiated SPL. Increasing the maximum blade excursion is one of the most effective means to enhance the sound radiation, but this effect can also be compromised by the flow separation. As the modulation frequency increases, correspondingly increasing the rotational speed or using larger blade solidity is beneficial to suppressing the flow separation and thus improving the acoustic performance of the rotary subwoofer.
Bacterial populations growth under co- and counter-flow condition
NASA Astrophysics Data System (ADS)
Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico
2014-11-01
For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.
Theoretical and Computational Studies of Stability, Transition and Flow Control in High-Speed Flows
2011-02-22
A. H. Nayfeh. Nonparallel stability of boundary layers with pressure gradients and suction. Technical Report AGARD - CP -224, 1977. [Squ33] H. B. Squire...only. µ = µr ( T Tr )3/2 Tr + Ts T + Ts , (2.13) 8 K = µcp Pr , (2.14) where µr = 1.7894 × 10−5 Ns/m2, Tr = 288.0 K, Ts = 110.33 K, and cp is the...fraction of species s Cpf = frozen specific heat, cal/g-mole-K Cp ,s = specific heat at constant pressure of species s, cal/g-mole Dij = binary diffusion
Energetics of swimming by the ferret: consequences of forelimb paddling.
Fish, Frank E; Baudinette, Russell V
2008-06-01
The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.
Observation of pressure variation in the cavitation region of submerged journal bearings
NASA Technical Reports Server (NTRS)
Etsion, I.; Ludwig, L. P.
1980-01-01
Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests were performed at various shaft speeds and ambient pressure levels. Some photographs of the cavitation region are presented showing strong reverse flow at the downstream end of the region. Pressure profiles are presented showing significant pressure variations inside the cavitation zone, contrary to common assumptions of constant cavitation pressure.
NASA Astrophysics Data System (ADS)
Dora, Nagaraju; Jothi, T. J. Sarvoththama
2018-05-01
The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.
NASA Astrophysics Data System (ADS)
McCave, I. N.; Thornalley, D. J. R.; Hall, I. R.
2017-09-01
Fine grain-size parameters have been used for inference of palaeoflow speeds of near-bottom currents in the deep-sea. The basic idea stems from observations of varying sediment size parameters on a continental margin with a gradient from slower flow speeds at shallower depths to faster at deeper. In the deep-sea, size-sorting occurs during deposition after benthic storm resuspension events. At flow speeds below 10-15 cm s-1 mean grain-size in the terrigenous non-cohesive 'sortable silt' range (denoted by SS bar , mean of 10-63 μm) is controlled by selective deposition, whereas above that range removal of finer material by winnowing is also argued to play a role. A calibration of the SS bar grain-size flow speed proxy based on sediment samples taken adjacent to sites of long-term current meters set within 100 m of the sea bed for more than a year is presented here. Grain-size has been measured by either Sedigraph or Coulter Counter, in some cases both, between which there is an excellent correlation for SS bar (r = 0.96). Size-speed data indicate calibration relationships with an overall sensitivity of 1.36 ± 0.19 cm s-1/μm. A calibration line comprising 12 points including 9 from the Iceland overflow region is well defined, but at least two other smaller groups (Weddell/Scotia Sea and NW Atlantic continental rise/Rockall Trough) are fitted by sub-parallel lines with a smaller constant. This suggests a possible influence of the calibre of material supplied to the site of deposition (not the initial source supply) which, if depleted in very coarse silt (31-63 μm), would limit SS bar to smaller values for a given speed than with a broader size-spectrum supply. Local calibrations, or a core-top grain-size and local flow speed, are thus necessary to infer absolute speeds from grain-size. The trend of the calibrations diverges markedly from the slope of experimental critical erosion and deposition flow speeds versus grain-size, making it unlikely that the SS bar (or any deposit size for that matter) is simply predicted by the deposition threshold. A more probable control is the rate of deposition of the different size fractions under changing flows over several tens of years (the typical averaging period of a centimetre of deposited sediment). This suggestion is supported by a simple depositional model for which the deposited SS bar is calculated from measured currents with a size-varying depositional threshold. More surficial sediment samples taken near long-term current meter sites are needed to make calibrations more robust and explore regional differences.
Ballooning instabilities in tokamaks with sheared toroidal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waelbroeck, F.L.; Chen, L.
1990-11-01
The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less
Determination of wind from NIMBUS 6 satellite sounding data
NASA Technical Reports Server (NTRS)
Carle, W. E.; Scoggins, J. R.
1981-01-01
Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
Effect of back-pressure forcing on shock train structures in rectangular channels
NASA Astrophysics Data System (ADS)
Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.
2018-04-01
The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.
Stability analysis for capillary channel flow: 1d and 3d computations
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.
NASA Astrophysics Data System (ADS)
Mahamood, Rasheedat M.; Akinlabi, Esther T.; Akinlabi, Stephen
2015-03-01
The influence of the laser power and the scanning speed on the microhardness of the Laser Metal Deposited Ti6Al4V, an aerospace Titanium-alloy, was studied. Ti6Al4V powder was deposited on the Ti6Al4V substrate using the Laser Metal Deposition (LMD) process, an Additive Manufacturing (AM) manufacturing technology. The laser power was varied between 1.8 kW 3 kW and the scanning speed was varied between 0.05 m/s and 0.1 m/s. The powder flow rate and the gas flow rate were kept at constant values of 2 g/min and 2 l/min respectively. The full factorial design of experiment was used to design the experiment and to also analyze the results in the Design Expert 9 software environment. The microhardness profiling was studied using Microhardness indenter performed at a load of 500 g and at a dwelling time of 15 s. The distance between indentations was maintained at a distance of 15 μm. The study revealed that as the laser power was increased, the microhardness was found to decrease and as the scanning speed was increased, the microhardness was found to also increase. The results are presented and fully discussed.
RADIAL FLOW PATTERN OF A SLOW CORONAL MASS EJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Li; Gan, Weiqun, E-mail: lfeng@pmo.ac.cn; Inhester, Bernd
2015-06-01
Height–time plots of the leading edge of coronal mass ejections (CMEs) have often been used to study CME kinematics. We propose a new method to analyze the CME kinematics in more detail by determining the radial mass transport process throughout the entire CME. Thus, our method is able to estimate not only the speed of the CME front but also the radial flow speed inside the CME. We have applied this method to a slow CME with an average leading edge speed of about 480 km s{sup −1}. In the Lagrangian frame, the speeds of the individual CME mass elementsmore » stay almost constant within 2 and 15 R{sub S}, the range over which we analyzed the CME. Hence, we have no evidence of net radial forces acting on parts of the CME in this range or of a pile up of mass ahead of the CME. We find evidence that the leading edge trajectory obtained by tie-pointing may gradually lag behind the Lagrangian front-side trajectories derived from our analysis. Our results also allow a much more precise estimate of the CME energy. Compared with conventional estimates using the CME total mass and leading edge motion, we find that the latter may overestimate the kinetic energy and the gravitational potential energy.« less
Chronic animal experiment with magnetically suspended centrifugal pump.
Yamada, T; Nishimura, K; Park, C H; Kono, S; Yuasa, S; Tsukiya, T; Akamatsu, T; Matsuda, K; Ban, T
1997-07-01
We have been developing a new type of centrifugal pump for long-term use. The magnetically suspended centrifugal pump (MSCP) contains no shaft and seal so that long life expectancy is predicted. Paracorporeal left ventricular (LV) assist circulation between the left atrium and the descending aorta was instituted using sheep. The flow rates ranged from 2.5-5.5 L/min. The sheep that lived the longest (46 days) died of an embolism as a result of the thrombus in the pump. No thrombus formation was observed in other pumps. Plasma free hemoglobin levels ranged from 9 to 18 mg/dl, which led to the conclusion that the hemolysis level remained within an acceptable range. Two driving modes were compared. The slope of the pressure-flow relationship plot under a constant motor current mode was steeper than that under a constant rotational speed mode, and thus, the flow fluctuation decreased. In conclusion, the MSCP is durable for more than a month at the current stage of development and is a promising device for long-term ventricular assist.
NASA Technical Reports Server (NTRS)
Schuller, F. T.
1984-01-01
A 118 mm bore roller bearing with a three piece inner ring ran successfully at 300,000 DN for 20 hr. Provisions were made for lubrication and cooling through the inner ring. In some tests the outer ring was also cooled. Power loss within the bearing increased with both speed and total oil flow rate to the inner ring. Outer ring temperature decreased by as much as 22 K (40 F) when outer ring cooling was employed whereas inner ring temperature remained essentially constant. Cage slip was greatly reduced or even eliminated by using a bearing with a very tight clearance at operating speed. A three piece inner ring bearing had higher inner ring temperatures and less temperature difference between the inner and outer rings than a conventional one piece inner ring bearing.
Note: Four-port microfluidic flow-cell with instant sample switching
NASA Astrophysics Data System (ADS)
MacGriff, Christopher A.; Wang, Shaopeng; Tao, Nongjian
2013-10-01
A simple device for high-speed microfluidic delivery of liquid samples to a surface plasmon resonance sensor surface is presented. The delivery platform is comprised of a four-port microfluidic cell, two ports serve as inlets for buffer and sample solutions, respectively, and a high-speed selector valve to control the alternate opening and closing of the two outlet ports. The time scale of buffer/sample switching (or sample injection rise and fall time) is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement.
Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun
2008-05-01
Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.
Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.
Gritti, Fabrice; Fogwill, Michael
2017-06-09
The potential advantage of turbulent supercritical fluid chromatography (TSFC) in open tubular columns (OTC) was evaluated on both theoretical and practical viewpoints. First, the dispersion model derived by Golay in 1958 and recently extended from laminar to turbulent flow regime is used for the predictions of the speed-resolution performance in TSFC. The average dispersion coefficient of matter in the turbulent flow regime was taken from the available experimental data over a range of Reynolds number from 2000 to 6000. Kinetic plots are built at constant pressure drop (ΔP=4500psi) and Schmidt number (Sc=15) for four inner diameters (10, 30, 100, and 300μm) of the OTC and for three retention factors (0, 1, and 10). Accordingly, in turbulent flow regime, for a Reynolds number of 4000 and a retention factor of 1 (the stationary film thickness is assumed to be negligible with respect to the OTC diameter), the theory projects that a 300μm i.d. OTC has the same speed-resolution power (200,000 theoretical plates; 2.4min hold-up time) as that of a 10μm i.d. OTC operated in laminar flow regime. Secondly, the experimental plate heights of n-butylbenzene are measured in laminar and turbulent flow regimes for a 180μm×4.8m fused silica capillary column using pure carbon dioxide as the mobile phase. The back pressure regulator was set at 1500psi, the temperature was uniform at 297K, and the flow rate was increased step-wise from 0.50 to 3.60mL/min so that the experimental Reynolds number increases from 700 to 5400. The experiments are in good agreement with the plate heights projected in TSFC at high flow rates and with those expected at low flow rates in a laminar flow regime. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karamanis, N.; Palfreyman, D.; Arcoumanis, C.; Martinez-Botas, R. F.
2006-07-01
The detailed flow characteristics of three high-pressure-ratio mixed-flow turbines were investigated under both steady and pulsating flow conditions. Two rotors featured a constant inlet blade angle, one with 12 blades and the second with 10. The third rotor was shorter and had a nominally constant incidence angle. The rotors find application on an automotive high-speed large commercial diesel turbocharger. The steady flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0-mm ahead of the rotor leading edge and 9.5-mm downstream the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at two rotational speeds, 29,400 and 41,300-rpm. The results were resolved in a blade-to-blade sense to examine fully the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been verified. Regarding pulsating flow, the velocity data and their corresponding instantaneous velocity triangles were resolved in a blade-to-blade sense to understand better the complex phenomenon. The results highlighted the potential of a nominally constant incidence design to absorb better the inadequacy of the volute to discharge the exhaust gas uniformly along the blade leading edge. A double vortex rotating in a clockwise sense propagated on the plane normal to the meridional direction. This should be attributed to the effect of the passing blade that was acting as a blockage to the flow. The phenomenon was more pronounced near the suction and pressure surfaces of the blade, but diminished at the mid-passage region where the flow exhibited its best level of guidance. The full mixed flow turbine stage under transient conditions was modelled firstly with a 'steady' inlet and secondly with a 'pulsating' inlet boundary condition. In both cases comparison was made to experiment performance and LDV measurements. With the steady inlet boundary condition, a high level of accuracy was achieved when compared to the experimental performance and velocity field. The velocity along the leading edge showed the same discrepancy as the single passage analysis that is with the radial and axial component from mid span to the blade tip. At the trailing edge features identified in the experimental data are identified in the numerical results; the velocity field appears more 'diffused' across the plane as per the experimental data than from the single passage analysis. With the pulsating inlet boundary, the predicted velocity traces in the volute and close to the turbine lead and trailing edge show excellent agreement in both form (against time) and magnitude.
Turbulent flow in a partially filled pipe
NASA Astrophysics Data System (ADS)
Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David
2017-11-01
Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.
Inlet Turbulence and Length Scale Measurements in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
Thurman, Douglas; Flegel, Ashlie; Giel, Paul
2014-01-01
Constant temperature hotwire anemometry data were acquired to determine the inlet turbulence conditions of a transonic turbine blade linear cascade. Flow conditions and angles were investigated that corresponded to the take-off and cruise conditions of the Variable Speed Power Turbine (VSPT) project and to an Energy Efficient Engine (EEE) scaled rotor blade tip section. Mean and turbulent flowfield measurements including intensity, length scale, turbulence decay, and power spectra were determined for high and low turbulence intensity flows at various Reynolds numbers and spanwise locations. The experimental data will be useful for establishing the inlet boundary conditions needed to validate turbulence models in CFD codes.
Inertia effects in thin film flow with a corrugated boundary
NASA Technical Reports Server (NTRS)
Serbetci, Ilter; Tichy, John A.
1991-01-01
An analytical solution is presented for two-dimensional, incompressible film flow between a sinusoidally grooved (or rough) surface and a flat-surface. The upper grooved surface is stationary whereas the lower, smooth surface moves with a constant speed. The Navier-Stokes equations were solved employing both mapping techniques and perturbation expansions. Due to the inclusion of the inertia effects, a different pressure distribution is obtained than predicted by the classical lubrication theory. In particular, the amplitude of the pressure distribution of the classical lubrication theory is found to be in error by over 100 perent (for modified Reynolds number of 3-4).
Method for culturing mammalian cells in a perfused bioreactor
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)
1992-01-01
A bio-reactor system wherein a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.
Rotating bio-reactor cell culture apparatus
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)
1991-01-01
A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.
Effects of radial direction and eccentricity on acceleration perception.
Mueller, Alexandra S; Timney, Brian
2014-01-01
Radial optic flow can elicit impressions of self-motion--vection--or of objects moving relative to the observer, but there is disagreement as to whether humans have greater sensitivity to expanding or to contracting optic flow. Although most studies agree there is an anisotropy in sensitivity to radial optic flow, it is unclear whether this asymmetry is a function of eccentricity. The issue is further complicated by the fact that few studies have examined how acceleration sensitivity is affected, even though observers and objects in the environment seldom move at a constant speed. To address these issues, we investigated the effects of direction and eccentricity on the ability to detect acceleration in radial optic flow. Our results indicate that observers are better at detecting acceleration when viewing contraction compared with expansion and that eccentricity has no effect on the ability to detect accelerating radial optic flow. Ecological interpretations are discussed.
Paramecia Swim with a constant propulsion in Solutions of Varying Viscosity
NASA Astrophysics Data System (ADS)
Valles, James M., Jr.; Jung, Ilyong; Mickalide, Harry; Park, Hojin; Powers, Thomas
2012-02-01
Paramecia swim through the coordinated beating of the 1000's of cilia covering their body. We have measured the swimming speed of populations of Paramecium Caudatam in solutions of different viscosity, η, to see how their propulsion changes with increased drag. We have found the average instantaneous speed, V to decrease monotonically with increasing η. The product ηv is roughly constant over a factor of 7 change in viscosity suggesting that paramecia swim at constant propulsion force. The distribution of swimming speeds is Gaussian. The width appears proportional to the average speed implying that both fast and slow swimmers exert a constant propulsion. We discuss the possibility that this behavior implies that the body cilia beat at constant force with varying viscosity.
How Do Changes in Speed Affect the Perception of Duration?
ERIC Educational Resources Information Center
Matthews, William J.
2011-01-01
Six experiments investigated how changes in stimulus speed influence subjective duration. Participants saw rotating or translating shapes in three conditions: constant speed, accelerating motion, and decelerating motion. The distance moved and average speed were the same in all three conditions. In temporal judgment tasks, the constant-speed…
Control of High-Speed Flows Using Helium Injection
2005-01-21
Gordeyev et al. 2003). The original instrument was described by Malley et al. (1992), and has been developed further by Jumper at Notre Dame (Hugo & Jumper ...n, described by the Gladstone-Dale relation ( Jumper and Fitzgerald, 2001), n = 1 + pKGD where KOD is the Gladstone-Dale ’constant’ which depends on...aberrations ( Jumper and Fitzgerald, 2001). According to the large-aperture approximation, an estimate for the time-averaged SR for a given optical phase
Hopgood, Matthew; Reynolds, Gavin; Barker, Richard
2018-03-30
We use computational fluid dynamics to compare the shear rate and turbulence in an advanced in vitro gastric model (TIMagc) during its simulation of fasted state Migrating Motor Complex phases I and II, with the United States Pharmacopeia paddle dissolution apparatus II (USPII). A specific focus is placed on how shear rate in these apparatus affects erosion-based solid oral dosage forms. The study finds that tablet surface shear rates in TIMagc are strongly time dependant and fluctuate between 0.001 and 360 s -1 . In USPII, tablet surface shear rates are approximately constant for a given paddle speed and increase linearly from 9 s -1 to 36 s -1 as the paddle speed is increased from 25 to 100 rpm. A strong linear relationship is observed between tablet surface shear rate and tablet erosion rate in USPII, whereas TIMagc shows highly variable behavior. The flow regimes present in each apparatus are compared to in vivo predictions using Reynolds number analysis. Reynolds numbers for flow in TIMagc lie predominantly within the predicted in vivo bounds (0.01-30), whereas Reynolds numbers for flow in USPII lie above the predicted upper bound when operating with paddle speeds as low as 25 rpm (33). Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sajben, Miklos; Freund, Donald D.
1998-01-01
The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study is focused on the response of an inlet/compressor system to acoustic disturbances. From the viewpoint of inlet computations, acoustic disturbances are clearly the most important, since they are the only ones capable of moving upstream. Convective and entropy disturbances may also produce upstream-moving acoustic waves, but such processes are outside the scope of the present study.
The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser
NASA Astrophysics Data System (ADS)
Peterson, C. J.; Vukasinovic, B.; Glezer, A.
2016-11-01
The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.
Conductivity Cell Thermal Inertia Correction Revisited
NASA Astrophysics Data System (ADS)
Eriksen, C. C.
2012-12-01
Salinity measurements made with a CTD (conductivity-temperature-depth instrument) rely on accurate estimation of water temperature within their conductivity cell. Lueck (1990) developed a theoretical framework for heat transfer between the cell body and water passing through it. Based on this model, Lueck and Picklo (1990) introduced the practice of correcting for cell thermal inertia by filtering a temperature time series using two parameters, an amplitude α and a decay time constant τ, a practice now widely used. Typically these two parameters are chosen for a given cell configuration and internal flushing speed by a statistical method applied to a particular data set. Here, thermal inertia correction theory has been extended to apply to flow speeds spanning well over an order of magnitude, both within and outside a conductivity cell, to provide predictions of α and τ from cell geometry and composition. The extended model enables thermal inertia correction for the variable flows encountered by conductivity cells on autonomous gliders and floats, as well as tethered platforms. The length scale formed as the product of cell encounter speed of isotherms, α, and τ can be used to gauge the size of the temperature correction for a given thermal stratification. For cells flushed by dynamic pressure variation induced by platform motion, this length varies by less than a factor of 2 over more than a decade of speed variation. The magnitude of correction for free-flow flushed sensors is comparable to that of pumped cells, but at an order of magnitude in energy savings. Flow conditions around a cell's exterior are found to be of comparable importance to thermal inertia response as flushing speed. Simplification of cell thermal response to a single normal mode is most valid at slow speed. Error in thermal inertia estimation arises from both neglect of higher modes and numerical discretization of the correction scheme, both of which can be easily quantified. Consideration of thermal inertia correction enables assessment of various CTD sampling schemes. Spot sampling by pumping a cell intermittently provides particular challenges, and may lead to biases in inferred salinity that are comparable to climate signals reported from profiling float arrays.
Installation effects on the tonal noise generated by axial flow fans
NASA Astrophysics Data System (ADS)
Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio
2015-03-01
The paper presents the results of experiments on a low-speed axial-flow fan flush mounted on flat panels typically employed in tests on automotive cooling fans. The experiments have been conducted in a hemi-anechoic chamber and were aimed at evaluating the installation effects of the whole test configuration, including chamber floor and size and shape of the mounting panel. The largest panels cause important SPL variations in a narrow, low frequency range. Their effect on the propagation function has been verified by means of parametric BEM computations. A regular wavy trend associated with reflections from the floor is also present. In both cases, the tonal noise is more strongly affected than the broadband one. The analysis is performed by means of an existing spectral decomposition technique and a new one, which allows to consider different noise generating mechanisms and also to separate the emitted tonal and broadband noise from the associated propagation effects. In order to better identify the features of the noise at the blade passing frequency (BPF) harmonics, the phase of the acoustic pressure is also analysed. Measurements are taken during speed ramps, which allow to obtain both constant-Strouhal number SPL data and constant-speed data. The former data set is employed in the new technique, while the latter may be employed in the standard spectral decomposition techniques. Based on both the similarity theory and the analysis of the Green's function of the problem, a theoretical description of the structure of the received SPL spectrum is given. Then, the possibility of discriminating between tonal and broadband noise generating mechanisms is analysed and a theoretical base for the new spectral decomposition technique is provided.
NASA Astrophysics Data System (ADS)
Massie, U. W.
When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.
NASA Astrophysics Data System (ADS)
Someya, Satoshi; Li, Yanrong; Ishii, Keiko; Okamoto, Koji
2011-01-01
This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flows using temperature-sensitive particles (TSPs), a pulsed ultraviolet laser, and a high-speed camera. TSPs respond to temperature changes in the flow and can also serve as tracers for the velocity field. The luminescence from the TSPs was recorded at 15,000 frames per second as sequential images for a lifetime-based temperature analysis. These images were also used for the particle image velocimetry calculations. The temperature field was estimated using several images, based on the lifetime method. The decay curves for various temperature conditions fit well to exponential functions, and from these the decay constants at each temperature were obtained. The proposed technique was applied to measure the temperature and velocity fields in natural convection driven by a Marangoni force and buoyancy in a rectangular tank. The accuracy of the temperature measurement of the proposed technique was ±0.35-0.40°C.
Wake effect on a uniform flow behind wind-turbine model
NASA Astrophysics Data System (ADS)
Okulov, V. L.; Naumov, I. V.; Mikkelsen, R. F.; Sørensen, J. N.
2015-06-01
LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. The rotor is three-bladed and designed using Glauert's optimum theory at a tip speed ratio λ = 5 with a constant of the lift coefficient along the span, CL= 0.8. The wake development has been studied in the range of tip speed ratios from 3 to 9, and at different cross-sections from 10 to 100 rotor radii downstream from the rotor. By using regression techniques to fit the velocity profiles it was possible to obtain accurate velocity deficits and estimate length scales of the wake attenuation. The data are compared with different analytical models for wind turbine wakes.
NASA Technical Reports Server (NTRS)
Evvard, John C
1950-01-01
A series of publications on the source-distribution methods for evaluating the aerodynamics of thin wings at supersonic speeds is summarized, extended, and unified. Included in the first part are the deviations of: (a) the linearized partial-differential equation for unsteady flow at a substantially constant Mach number. b) The source-distribution solution for the perturbation-velocity potential that satisfies the boundary conditions of tangential flow at the surface and in the plane of the wing; and (c) the integral equation for determining the strength and the location of sources to describe the interaction effects (as represented by upwash) of the bottom and top wing surfaces through the region between the finite wing boundary and the foremost Mach wave. The second part deals with steady-state thin-wing problems. The third part of the report approximates the integral equation for unsteady upwash and includes a solution of approximate equation. Expressions are then derived to evaluate the load distributions for time-dependent finite-wing motions.
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.
Acoustic Characteristics of a Model Isolated Tiltrotor in DNW
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; McCluer, Megan; Tadghighi, Hormoz
1999-01-01
An aeroacoustic wind tunnel test was conducted using a scaled isolated tiltrotor model. Acoustic data were acquired using an in-flow microphone wing traversed beneath the model to map the directivity of the near-field acoustic radiation of the rotor for a parametric variation of rotor angle-of-attack, tunnel speed, and rotor thrust. Acoustic metric data were examined to show trends of impulsive noise for the parametric variations. BVISPL maximum noise levels were found to increase with alpha for constant mu and C(sub T), although the maximum BVI levels were found at much higher a than for a typical helicopter. BVISPL levels were found to increase with mu for constant alpha and C(sub T. BVISPL was found to decrease with increasing CT for constant a and m, although BVISPL increased with thrust for a constant wake geometry. Metric data were also scaled for M(sub up) to evaluate how well simple power law scaling could be used to correct metric data for M(sub up) effects.
METHOD AND APPARATUS FOR THE DETECTION OF LEAKS IN PIPE LINES
Jefferson, S.; Cameron, J.F.
1961-11-28
A method is described for detecting leaks in pipe lines carrying fluid. The steps include the following: injecting a radioactive solution into a fluid flowing in the line; flushing the line clear of the radioactive solution; introducing a detector-recorder unit, comprising a radioactivity radiation detector and a recorder which records the detector signal over a time period at a substantially constant speed, into the line in association with a go-devil capable of propelling the detector-recorder unit through the line in the direction of the fluid flow at a substantia1ly constant velocity; placing a series of sources of radioactivity at predetermined distances along the downstream part of the line to make a characteristic signal on the recorder record at intervals corresponding to the location of said sources; recovering the detector-recorder unit at a downstream point along the line; transcribing the recorder record of any radioactivity detected during the travel of the detector- recorder unit in terms of distance along the line. (AEC)
Evaluation of centrifugal compressor performance with water injection
NASA Technical Reports Server (NTRS)
Beede, William L; Hamrick, Joseph T; Withee, Joseph R , Jr
1951-01-01
The effects of water injection on a compressor are presented. To determine the effects of varying water-air ratio, the compressor was operated at a constant equivalent impeller speed over a range of water-air ratios and weight flows. Operation over a range of weight flows at one water-air ratio and two inlet air temperatures was carried out to obtain an indication of the effects of varying inlet air temperature. Beyond a water-air ratio of 0.03 there was no increase in maximum air-weight flow, a negligible rise in peak total-pressure ratio, and a decrease in peak adiabatic efficiency. An increase in inlet air temperature resulted in an increase in the magnitude of evaporation. An analysis of data indicated that the magnitude of evaporation within the compressor impeller was small.
Numerical and experimental study of blowing jet on a high lift airfoil
NASA Astrophysics Data System (ADS)
Bobonea, A.; Pricop, M. V.
2013-10-01
Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.
Natural ventilation of buildings: opposing wind and buoyancy
NASA Astrophysics Data System (ADS)
Linden, Paul; Hunt, Gary
1998-11-01
The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.
Variable Frequency Diverter Actuation for Flow Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.
2006-01-01
The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.
Unsteady Phenomena During Operation of the SSME Fuel Flowmeter
NASA Technical Reports Server (NTRS)
Marcu, Bogdan; McCool, A. (Technical Monitor)
2000-01-01
This report describes a part of the analysis carried in support of the SSME (Space Shuttle Main Engine) Fuel Flowmeter redesign, addressing an intensely researched phenomenon known as "shifting" of the flowmeter constant value. It consists of a sudden change in the flowmeter indication, which occurs simultaneously with the onset of an oscillatory variation of the rotor speed. The change in the flowmeter indications does not correspond to a real change in the volumetric flow through the device. Several causes have been investigated in detail, in the past, without conclusive evidence towards a cause of this phenomenon. The present analysis addresses the flow physics through the flowmeter by assembling results from 3-D CFD (computational fluid dynamics) calculations, airfoil C(sub D)/C(sub L) performance curves and mass moment of inertia characteristics of the rotor into a synergistic calculation which simulates the unsteady regime of the flowmeter operation. The results show that the 4-bladed rotor interacts with the periodic flow pattern created behind the flow straightener upstream in a manner that generates a steady, periodic fluctuation in the rotor's speed. The amplitude of this fluctuation is significantly smaller than the 0.5% of mean speed threshold which constitutes a flight operational limit. When manufacturing errors occur, however, the fluctuations are amplified and can generate a significant apparent change in the flowmeter indication. Two types of possible fabrication errors-which can occur even for parts fabricated within the accepted tolerances for the blade airfoil-are presented, together with their effect on the flowmeter operation.
Capillary pumping independent of the liquid surface energy and viscosity
NASA Astrophysics Data System (ADS)
Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter
2018-03-01
Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.
Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.
2006-01-01
An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper implementation of injecting flow at/near the trailing edge as a wake filling strategy. However, data do support the notion that noise reductions can be realized not only for tones but perhaps more importantly, also for broadband. Furthermore, the technique can be implemented without adversely effecting overall fan aerodynamic performance.
Efficiency and Pressure Loss Characteristics of an Ultra-Compact Combustor with Bulk Swirl
2007-06-01
al., 2004a:3). Besides offering size and weight reductions, the UCC opens the door to adding a reheat step to the Brayton cycle currently used in...possible include a reheat step in the Brayton cycle to gain enhanced performance. Sirignano and Liu (Sirignano and Liu, 1998:1-2) pioneered the idea of...increase in speed for a subsonic flow resulting in a given loss in total pressure. This pressure loss is not desired in the constant pressure Brayton
Energy Self-Sufficiency for Air Force Logistics Command (AFLC) Bases: An Initial Investigation.
1980-06-01
34bottoming cycle ," the system works best for heavy duty trucks on long hauls at constant speeds. Known as the Diesel-Organic Rankine compound engine, it...tolerance for the natural cycle variations of temperature, tides and flows. The range of tolerance is not great for any species and very narrow for some. An...methanol would serve as fuel for a combined- cycle gas tur- bine electrical generator (24:39-40). Coal gasification is presently being considered by the
Surface switching statistics of rotating fluid: Disk-rim gap effects
NASA Astrophysics Data System (ADS)
Tasaka, Yuji; Iima, Makoto
2017-04-01
We examined the influence of internal noise on the irregular switching of the shape of the free surface of fluids in an open cylindrical vessel driven by a bottom disk rotating at constant speed [Suzuki, Iima, and Hayase, Phys. Fluids 18, 101701 (2006), 10.1063/1.2359740]. A slight increase in the disk-rim gap (less than 3% of the disk radius) was established experimentally to cause significant changes in this system, specifically, frequent appearance of the surface descending event connecting a nonaxisymmetric shape in strong mixing flow (turbulent flow) and an axisymmetric shape in laminar flow, as well as a shift in critical Reynolds number that define the characteristic states. The physical mechanism underlying the change is analyzed in terms of flow characteristics in the disk-rim gap, which acts as a noise source, and a mathematical model established from measurements of the surface height fluctuations with noise term.
NASA Technical Reports Server (NTRS)
Schneider, J.; Boccio, J.
1972-01-01
A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.
Asymptotic research of transonic gas flows
NASA Astrophysics Data System (ADS)
Velmisov, Petr A.; Tamarova, Yuliya A.
2017-12-01
The article is dedicated to the development asymptotic theory of gas flowing at speed next to sound velocity, particularly of gas transonic flows, i.e. the flows, containing both, subsonic and supersonic areas. The main issue, when styding such flows, are nonlinearity and combined type of equations, describing the transonic flow. Based on asymptotic nonlinear equation obtained in the article, the gas transonic flows is studied, considering transverse disturbance with respect to the main flow. The asymptotic conditions at shock-wave front and conditions on the streamlined surface are found. Moreover, the equation of sound surface and asymptotic formula defining the pressure are recorded. Several exact particular solutions of such equation are given, and their application to solve several tasks of transonic aerodynamics is indicated. Specifically, the polynomial form solution describing gas axisymmetric flows in Laval nozzles with constant acceleration in direction of the nozzle's axis and flow swirling is obtained. The solutions describing the unsteady flow along the channels between spinning surfaces are presented. The asymptotic equation is obtained, describing the flow, appearing during non-separated and separated flow past, closely approximated to cylindrical one. Specific solutions are given, based on which the examples of steady flow are formed.
On factors influencing air-water gas exchange in emergent wetlands
Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.
2018-01-01
Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.
Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E
2017-07-01
Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P < 0.001), while being associated with lower overall HR (pooled difference, 11 bpm; P < 0.001). MCAvmean increased similarly during aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)
1999-01-01
A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.
NASA Astrophysics Data System (ADS)
Yuan, Feng; Gan, Zhaoming; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning
2015-05-01
Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind and the mechanism of wind production. For this aim, we make use of a 3D general relativistic MHD simulation of hot accretion flows around a Schwarzschild black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Lagrangian particles from simulation data. We find two types of real outflows, i.e., a jet and a wind. The mass flux of wind is very significant, and its radial profile can be described by {{\\dot{M}}wind}≈ {{\\dot{M}}BH}≤ft( r/20 {{r}s} \\right), with {{\\dot{M}}BH} being the mass accretion rate at the black hole horizon and rs being the Schwarzschild radius. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows {{v}p,wind}(r)≈ 0.25{{v}k}(r), with vk(r) being the Keplerian speed at radius r. The mass flux of the jet is much lower, but the speed is much higher, {{v}p,jet} ˜ (0.3-0.4)c. Consequently, both the energy and momentum fluxes of the wind are much larger than those of the jet. The wind is produced and accelerated primarily by the combination of centrifugal force and magnetic pressure gradient, while the jet is mainly accelerated by the magnetic pressure gradient. Finally, we find that the wind production efficiency {{ɛ }wind}\\equiv {{\\dot{E}}wind}/{{\\dot{M}}BH}{{c}2}˜ 1/1000 is in good agreement with the value required from large-scale galaxy simulations with active galactic nucleus feedback.
40 CFR 1039.120 - What emission-related warranty requirements apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of operation and years, whichever comes first. You may offer an emission-related warranty more... Any speed 1,500 hours or two years, whichever comes first. Constant speed 19 ≤kW comes first. Constant speed 19 ≤kW <37 Less than 3,000 rpm 3...
Seethapathi, Nidhi; Srinivasan, Manoj
2015-09-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).
Seethapathi, Nidhi; Srinivasan, Manoj
2015-01-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072
Vibration measurements of automobile catalyst
NASA Astrophysics Data System (ADS)
Aatola, Seppo
1994-09-01
Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.
A fast numerical method for ideal fluid flow in domains with multiple stirrers
NASA Astrophysics Data System (ADS)
Nasser, Mohamed M. S.; Green, Christopher C.
2018-03-01
A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.
Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing
NASA Technical Reports Server (NTRS)
Fricker, David M.
1997-01-01
The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.
NASA Astrophysics Data System (ADS)
Fedoseev, V. N.; Pisarevsky, M. I.; Balberkina, Y. N.
2018-01-01
This paper presents interconnection of dynamic and average flow rates of the coolant in a channel of complex geometry that is a basis for a generalization model of experimental data on heat transfer in various porous structures. Formulas for calculation of heat transfer of fuel rods in transversal fluid flow are acquired with the use of the abovementioned model. It is shown that the model describes a marginal case of separated flows in twisting channels where coolant constantly changes its flow direction and mixes in the communicating channels with large intensity. Dynamic speed is suggested to be identified by power for pumping. The coefficient of proportionality in general case depends on the geometry of the channel and the Reynolds number (Re). A calculation formula of the coefficient of proportionality for the narrow line rod packages is provided. The paper presents a comparison of experimental data and calculated values, which shows usability of the suggested models and calculation formulas.
Two-phase flow research using the DC-9/KC-135 apparatus
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael
1996-01-01
Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.
Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario
2013-02-15
Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.
A calibration loop to test hot-wire response under supercritical conditions
NASA Astrophysics Data System (ADS)
Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.
2004-11-01
A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.
Observation of pressure variation in the cavitation region of submerged journal bearings
NASA Technical Reports Server (NTRS)
Etsion, I.; Ludwig, L. P.
1981-01-01
Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests are run at speeds of 1840 and 3000 rpm, and at each speed, four different levels of the ambient supply pressure are applied, ranging from 13.6 KPa to 54.4 KPa. A strong reverse flow is detected inside the cavitation area adjacent to its downstream end, and significant pressure variations on the order of 50 KPa are found inside the cavitation region at the downstream portion of its circumferential extent. Results indicate that the assumption of a constant cavitation pressure is incorrect in the case of enclosed cavitations, and it is postulated that oil which is saturated with air under atmospheric pressure becomes oversaturated in the subcavity pressure loop.
Synthetic optimization of air turbine for dental handpieces.
Shi, Z Y; Dong, T
2014-01-01
A synthetic optimization of Pelton air turbine in dental handpieces concerning the power output, compressed air consumption and rotation speed in the mean time is implemented by employing a standard design procedure and variable limitation from practical dentistry. The Pareto optimal solution sets acquired by using the Normalized Normal Constraint method are mainly comprised of two piecewise continuous parts. On the Pareto frontier, the supply air stagnation pressure stalls at the lower boundary of the design space, the rotation speed is a constant value within the recommended range from literature, the blade tip clearance insensitive to while the nozzle radius increases with power output and mass flow rate of compressed air to which the residual geometric dimensions are showing an opposite trend within their respective "pieces" compared to the nozzle radius.
Method for controlling a motor vehicle powertrain
Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.
1990-01-01
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.
Method for controlling a motor vehicle powertrain
Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.
1990-05-22
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
NASA Astrophysics Data System (ADS)
Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.
2017-03-01
The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.
NASA Astrophysics Data System (ADS)
Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb
Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.
Two-dimensional compressible flow in centrifugal compressors with straight blades
NASA Technical Reports Server (NTRS)
Stanitz, John D; Ellis, Gaylord O
1950-01-01
Six numerical examples are presented for steady, two-dimensional, compressible, nonviscous flow in centrifugal compressors with thin straight blades, the center lines of which generate the surface of a right circular cone when rotated about the axis of the compressor. A seventh example is presented for incompressible flow. The solutions were obtained in a region of the compressors, including the impeller tip, that was considered to be unaffected by the diffuser vanes or by the impeller-inlet configuration. Each solution applies to radial and mixed flow compressors with various cone angles but with the same angle between blades on the conic flow surface. The solution also apply to radial and mixed flow turbines with the rotation and the flow direction reversed. The effects of variations in the following parameters were investigated: (1) flow rate, (2) impeller-tip speed, (3) variation of passage height with radius, and (4) angle between blades on conic flow surface. The numerical results are presented in plots of the streamlines and constant Mach number lines. Correlation equations are developed whereby the flow conditions in any impeller with straight blades can be determined (in the region investigated by this analysis) for all operating conditions.
Cooled variable-area radial turbine technology program
NASA Technical Reports Server (NTRS)
Large, G. D.; Meyer, L. J.
1982-01-01
The objective of this study was a conceptual evaluation and design analyses of a cooled variable-area radial turbine capable of maintaining nearly constant high efficiency when operated at a constant speed and pressure ratio over a range of flows corresponding to 50- to 100-percent maximum engine power. The results showed that a 1589K (2400 F) turbine was feasible that would satisfy a 4000-hour duty cycle life goal. The final design feasibility is based on 1988 material technology goals. A peak aerodynamic stage total efficiency of 0.88 was predicted at 100 percent power. Two candidate stators were identified: an articulated trailing-edge and a locally movable sidewall. Both concepts must be experimentally evaluated to determine the optimum configuration. A follow-on test program is proposed for this evaluation.
NASA Technical Reports Server (NTRS)
Magi, M.; Freivald, A.; Andersson, I.; Ericsson, U.
1981-01-01
Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.
Propagation of sound in highly porous open-cell elastic foams
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1983-01-01
This work presents both theoretical predictions and experimental measurements of attenuation and progressive phase constants of sound in open-cell, highly porous, elastic polyurethane foams. The foams are available commercially in graded pore sizes for which information about the static flow resistance, thermal time constant, volume porosity, dynamic structure factor, and speed of sound is known. The analysis is specialized to highly porous foams which can be efficient sound absorbers at audio frequencies. Negligible effect of internal wave coupling on attenuation and phase shift for the frequency range 16-6000 Hz was predicted and no experimentally significant effects were observed in the bulk samples studied. The agreement between predictions and measurements in bulk materials is excellent. The analysis is applicable to both the regular and compressed elastic open-cell foams.
Kerner, Boris S
2015-12-01
We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2015-12-01
We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.
Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities
NASA Technical Reports Server (NTRS)
Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.
1998-01-01
Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.
The stabilizing effect of compressibility in turbulent shear flow
NASA Technical Reports Server (NTRS)
Sarkar, S.
1994-01-01
Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.
Kitamura, Shingo; Shirota, Minori; Fukuda, Wakako; Inamura, Takao; Fukuda, Ikuo
2016-12-01
Computational numerical analysis was performed to elucidate the flow dynamics of femoral artery perfusion. Numerical simulation of blood flow was performed from the right femoral artery in an aortic model. An incompressible Navier-Stokes equation and continuity equation were solved using computed flow dynamics software. Three different perfusion models were analyzed: a 4.0-mm cannula (outer diameter 15 French size), a 5.2-mm cannula (18 French size) and an 8-mm prosthetic graft. The cannula was inserted parallel to the femoral artery, while the graft was anastomosed perpendicular to the femoral artery. Shear stress was highest with the 4-mm cannula (172 Pa) followed by the graft (127 Pa) and the 5.2-mm cannula (99 Pa). The cannula exit velocity was high, even when the 5.2-mm cannula was used. Although side-armed perfusion with an 8-mm graft generated a high shear stress area near the point of anastomosis, flow velocity at the external iliac artery was decreased. The jet speed decreased due to the Coanda effect caused by the recirculation behind sudden expansion of diameter, and the flow velocity maintains a constant speed after the reattachment length of the flow. This study showed that iliac artery shear stress was lower with the 5.2-mm cannula than with the 4-mm cannula when used for femoral perfusion. Side-armed graft perfusion generates a high shear stress area around the anastomotic site, but flow velocity in the iliac artery is slower in the graft model than in the 5.2-mm cannula model.
Slow equilibration of reversed-phase columns for the separation of ionized solutes.
Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R
2003-10-10
Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.
Critical capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.
NASA Astrophysics Data System (ADS)
Anil Kumar, K. S.; Murigendrappa, S. M.; Kumar, Hemantha
2017-07-01
In the present study, optimum friction stir weld parameters such as plunge depth, tool rotation speed and traverse speed for butt weld of dissimilar aluminum alloy plates, typically 2024-T351 and 7075-T651, are investigated using a bottom-up approach. In the approach, optimum FSW parameters are achieved by varying any one parameter for every trial while remaining parameters are kept constant. The specimens are extracted from the friction stir-welded plates for studying the tensile, hardness and microstructure properties. Optimum friction stir weld individual parameters are selected based on the highest ultimate tensile strength of the friction stir-welded butt joint specimens produced by varying in each case one parameter and keeping the other two constant. The microstructure samples were investigated for presence of defects, grain refinement at the weld nugget (WN), bonding between the two materials and interface of WN, TMAZ (thermomechanically affected zone) of both advancing and retreating sides of the dissimilar joints using optical microscopy and scanning electron microscopy analyses. In the experimental investigations, the optimum FSW parameters such as plunge depth, 6.2 mm, rotation speed, 650 rpm and traverse speed of 150 mm/min result in ultimate tensile strength, 435 MPa, yield strength, 290 MPa, weld joint efficiency, 92% and maximum elongation, 13%. The microstructure of optimized sample in the WN region revealed alternate lamellae material flow pattern with better metallurgical properties, defect free and very fine equiaxed grain size of about 3-5 µm.
Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor
NASA Technical Reports Server (NTRS)
Stephens, David B.
2012-01-01
An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.
Investigation of Altitude Starting and Acceleration Characteristics of J47 Turbojet Engine
NASA Technical Reports Server (NTRS)
Golladay, Richard L; Bloomer, Harry E
1951-01-01
An investigation was conducted on an axial-flow-compressor type turbojet engine in the NACA Lewis altitude wind tunnel to determine the operational characteristics of several ignition systems, cross-fire tube configurations and fuel systems over a range of simulated flight conditions. The opposite-polarity-type spark plug provided the most satisfactory ignition. Increasing the cross-fire-tube diameter improved intercombustor flame propagation. At high windmilling speeds, accelerations to approximately 6200 rpm could be made at a preset constant throttle position. The use of a variable-area nozzle reduced acceleration time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.
Balbinot, G
2017-05-01
Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (W ext ) and internal mechanical work (W int ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W + ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W - ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W - ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-05-01
Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.
Bidirectional control system for energy flow in solar powered flywheel
NASA Technical Reports Server (NTRS)
Nola, Frank J. (Inventor)
1987-01-01
An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.
A preliminary study of the benefits of flying by ground speed during final approach
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.
1978-01-01
A study was conducted to evaluate the benefits of an approach technique which utilized constant ground speed on approach. It was determined that the technique reduced the capacity losses in headwinds experienced with the currently used constant airspeed technique. The benefits of technique were found to increase as headwinds increased and as the wake avoidance separation intervals were reduced. An additional benefit noted for the constant ground speed technique was a reduction in stopping distance variance due to the approach wind environment.
Salazar, Gary; Ognibene, Ted
2013-01-01
We designed and optimized a novel device "target" that directs a CO 2 gas pulse onto a Ti surface where a Cs + beam generates C - from the CO 2 . This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO 2 in the negative mode to measure 14 C/ 12 C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO 2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12 C - produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs + beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.
Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon
2015-05-01
To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.
Dynamic Characteristics of The DSI-Type Constant-Flow Valves
NASA Astrophysics Data System (ADS)
Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han
Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.
An Novel Continuation Power Flow Method Based on Line Voltage Stability Index
NASA Astrophysics Data System (ADS)
Zhou, Jianfang; He, Yuqing; He, Hongbin; Jiang, Zhuohan
2018-01-01
An novel continuation power flow method based on line voltage stability index is proposed in this paper. Line voltage stability index is used to determine the selection of parameterized lines, and constantly updated with the change of load parameterized lines. The calculation stages of the continuation power flow decided by the angle changes of the prediction of development trend equation direction vector are proposed in this paper. And, an adaptive step length control strategy is used to calculate the next prediction direction and value according to different calculation stages. The proposed method is applied clear physical concept, and the high computing speed, also considering the local characteristics of voltage instability which can reflect the weak nodes and weak area in a power system. Due to more fully to calculate the PV curves, the proposed method has certain advantages on analysing the voltage stability margin to large-scale power grid.
A new approach to the effect of sound on vortex dynamics
NASA Technical Reports Server (NTRS)
Lund, Fernando; Zabusky, Norman J.
1987-01-01
Analytical results are presented on the effect of acoustic radiation on three-dimensional vortex motions in a homogeneous, slightly compressible, inviscid fluid. The flow is considered as linear and irrotational everywhere except inside a very thin cylindrical core region around the vortex filament. In the outside region, a velocity potential is introduced that must be multivalued, and it is shown how to compute this scalar potential if the motion of the vortex filament is prescribed. To find the motion of this singularity in an external potential flow, a variational principle involving a volume integral that must exclude the singular region is considered. A functional of the external potential and vortex filament position is obtained whose extrema give equations to determine the sought-after evolution. Thus, a generalization of the Biot-Savart law to flows with constant sound speed at low Mach number is obtained.
A method of self-pursued boundary value on a body and the Magnus effect calculated with this method
NASA Astrophysics Data System (ADS)
Yoshino, Fumio; Hayashi, Tatsuo; Waka, Ryoji
1991-03-01
A computational method, designated 'SPB', is proposed for the automatic determination of the stream function Phi on an arbitrarily profiled body without recourse to empirical factors. The method is applied to the case of a rotating, circular cross-section cylinder in a uniform shear flow, and the results obtained are compared with those of both the method in which the value of Phi is fixed on a body and the conventional empirical method; it is in view of this established that the SPB method is very efficient and applicable to both steady and unsteady flows. The SPB method, in addition to yielding the aerodynamic forces acting on a cylinder, shows that the Magnus effect lift force decreases as the velocity gradient of the shear flow increases while the cylinder's rotational speed is kept constant.
NASA Technical Reports Server (NTRS)
Bristow, D. R.; Grose, G. G.
1978-01-01
The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.
NASA Astrophysics Data System (ADS)
Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.
2015-11-01
The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.
Spin-Up Instability of a Levitated Molten Drop in MHD-Flow Transition to Turbulence
NASA Technical Reports Server (NTRS)
Abedian, B.; Hyers, R. W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
When an alternating magnetic field interacts with induced eddy currents in a conducting body, there will be a repulsive force between the body and the driving coil system generating the field. This repulsive force is the basis of electromagnetic levitation, which allows containerless processing of different materials. The eddy currents in the conducting body also generate Joule heating. Axial rotation of electromagnetically levitated objects is a common observation in levitation systems and often an undesirable side effect of such experiments on 1-g and -g. There have been recent efforts to use magnetic damping and suppress this tendency of body rotation. The first report of rotation in EML drops was attributed to a slight asymmetry of the shape and location of the levitation coils could change the axis and speed of rotation. Other theories of sample rotation include a frequency difference in the traveling electromagnetic waves and a phase difference in two different applied fields of the same frequency. All of these different mechanisms share the following characteristics: the torque is small, constant for constant field strength, and very weakly dependent on the sample's temperature and phase (solid or liquid). During experiments on the MSL-1 (First Microgravity Science Laboratory) mission of the Space Shuttle (STS-83 and STS-94, April and July 1997), a droplet of palladium-silicon alloy was electromagnetically levitated for viscosity measurements. For the non-deforming droplet, the resultant MHD flow inside the drop is inferred from motion of impurities on the surface. These observations indicate formation of a pair of co-rotating toroidal flow structures inside the spheroidal levitated drop that undergo secondary flow instabilities. As rise in the fluid temperature rises, the viscosity falls and the internal flow accelerates and becomes oscillatory; and beyond a point in the experiments, the surface impurities exhibit non-coherent chaotic motion signifying emergence of turbulence inside the drop. In this work, a background of these set of observations will be given followed by a presentation of our results on the digital particle tracking analysis that has been performed on a number of available videos. The analysis indicates that the levitated drop attains a constant rotational speed during the melting phase and formation of the co-rotating axi-symmetric laminar toroidal structures. However, the rate of axial rotation increases dramatically during the deformation of the toroidal structures anti their breakup into chaotic entities. This new data suggests an interaction between the flow inside the levitated molten drop and the driving coils in the experiments. Possible mechanisms for this interaction will be reviewed. The data will also be used to make an assessment of existing theories on droplet rotation.
NASA Technical Reports Server (NTRS)
Blanchard, Alan E.; Selby, Gregory V.
1996-01-01
One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.
Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow
NASA Astrophysics Data System (ADS)
Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy
2017-02-01
Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.
Analytical study of laser supported combustion waves in hydrogen
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.
1977-01-01
A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.
NASA Astrophysics Data System (ADS)
Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.
2018-07-01
A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.
NASA Astrophysics Data System (ADS)
Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.
2018-04-01
A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.
NASA Astrophysics Data System (ADS)
Yu, R.; Lipatnikov, A. N.; Bai, X. S.
2014-08-01
In order to gain further insight into (i) the use of conditioned quantities for characterizing turbulence within a premixed flame brush and (ii) the influence of front propagation on turbulent scalar transport, a 3D Direct Numerical Simulation (DNS) study of an infinitely thin front that self-propagates in statistically stationary, homogeneous, isotropic, forced turbulence was performed by numerically integrating Navier-Stokes and level set equations. While this study was motivated by issues relevant to premixed combustion, the density was assumed to be constant in order (i) to avoid the influence of the front on the flow and, therefore, to know the true turbulence characteristics as reference quantities for assessment of conditioned moments and (ii) to separate the influence of front propagation on turbulent transport from the influence of pressure gradient induced by heat release. Numerical simulations were performed for two turbulence Reynolds numbers (50 and 100) and four ratios (1, 2, 5, and 10) of the rms turbulent velocity to the front speed. Obtained results show that, first, the mean front thickness is decreased when a ratio of the rms turbulent velocity to the front speed is decreased. Second, although the gradient diffusion closure yields the right direction of turbulent scalar flux obtained in the DNS, the diffusion coefficient Dt determined using the DNS data depends on the mean progress variable. Moreover, Dt is decreased when the front speed is increased, thus, indicating that the front propagation affects turbulent scalar transport even in a constant-density case. Third, conditioned moments of the velocity field differ from counterpart mean moments, thus, disputing the use of conditioned velocity moments for characterizing turbulence when modeling premixed turbulent combustion. Fourth, computed conditioned enstrophies are close to the mean enstrophy in all studied cases, thus, suggesting the use of conditioned enstrophy for characterizing turbulence within a premixed flame brush.
NASA Astrophysics Data System (ADS)
Fang, Pingping
1998-12-01
An extended numerical investigation of fully developed, forced convective laminar flows with heat transfer in eccentric annuli has been carried out. Both Newtonian and non-Newtonian (power-law or Ostwald-de Waele) fluids are studied, representing typical applications in petrochemical, bio-chemical, personal care products, polymer/plastic extrusion and food industries. For the heat transfer problem, with an insulated outer surface, two types of thermal boundary conditions have been considered: Constant wall temperature (T), and uniform axial heat flux with constant peripheral temperature (H1) on the inner surface of the annulus. The governing differential equations for momentum and energy conservation are solved by finite-difference methods. Velocity and temperature distributions in the flow cross section, the wall shear-stress distribution, and isothermal f Re, Nu i,T and Nu i,H1 values for different eccentric annuli (0/leɛ/*/le0.6,/ 0.2/le r/sp/*/le0.8) are presented. In Newtonian flows, the eccentricity is found to have a very strong influence on the flow and temperature fields. In an annulus with relatively large inner cylinder eccentricity, the flow tends to stagnate in the narrow section and has higher peak velocities in the wide section of the annulus. There is considerable flow maldistribution in the azimuthal direction, which in turn produces greater nonuniformity in the temperature field and a consequent degradation in the average heat transfer. Also, the H1 wall condition sustains higher heat transfer coefficients relative to the T boundary condition on the inner surface. For viscous, power-law type non-Newtonian flows, both shear thinning (n<1) and shear thickening (n>1) fluids are considered. Here, the non-linear shear behavior of the fluid is found to further aggravate the flow and temperature maldistribution, and once again the eccentricity is seen to exhibit a very strong influence on the friction and heat transfer behavior. Finally, the hydrodynamic characteristics of fully developed axial laminar flow of Newtonian fluids in eccentric annuli with a rotating inner cylinder are investigated. These are of significant importance to the design and operation of oil and gas drilling wells. Using finite-difference method to solve the governing flow equations in bipolar coordinates, computational results for a wide range of annulus geometry (0/le r/sp/*/le1,/ 0/le/varepsilon/sp/*/le0.8), and rotational Reynolds number (0/le Rer/le150) are presented, where the rotational speeds are restricted to the sub-critical Taylor number regime. The results delineate the effects of annuli r/sp/* and ɛsp/*, and inner cylinder rotation speed on the flow structure and frictional losses.
Microgravity Flammability of PMMA Rods in Concurrent Flow
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Ferkul, Paul V.
2015-01-01
Microgravity experiments burning cast PMMA cylindrical rods in axial flow have been conducted aboard the International Space Station in the Microgravity Science Glovebox (MSG) facility using the Burning and Suppression of Solids (BASS) flow duct, as part of the BASS-II experiment. Twenty-four concurrent-flow tests were performed, focusing on finding flammability limits as a function of oxygen and flow speed. The oxygen was varied by using gaseous nitrogen to vitiate the working volume of the MSG. The speed of the flow parallel to the rod was varied using a fan at the entrance to the duct. Both blowoff and quenching limits were obtained at several oxygen concentrations. Each experiment ignited the rod at the initially hemispherical stagnation tip of the rod, and allowed the flame to develop and heat the rod at a sufficient flow to sustain burning. For blowoff limit tests, the astronaut quickly turned up the flow to obtain extinction. Complementary 5.18-second Zero Gravity Facility drop tests were conducted to compare blowoff limits in short and long duration microgravity. For quenching tests, the flow was incrementally turned down and the flame allowed to stabilize at the new flow condition for at least the solid-phase response time before changing it again. Quenching was observed when the flow became sufficiently weak that the flame could no longer provide adequate heat flux to compensate for the heat losses (conduction into the rod and radiation). A surface energy balance is presented that shows the surface radiative loss exceeds the conductive loss into the rod near the limit. The flammability boundary is shown to represent a critical Damkohler number, expressed in terms of the reaction rate divided by the stretch rate. For the blowoff branch, the boundary exhibits a linear dependence on oxygen concentration and stretch rate, indicating that the temperature at blowoff must be fairly constant. For the quenching branch, the dominance of the exponential nature of the Arrhenius kinetics reaction rate indicates that the temperature is critical.
NASA Astrophysics Data System (ADS)
Sakuraba, A.
2015-12-01
I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the unstable solution does exist, but its linear growth rate in amplitude becomes almost zero. Therefore, the unstable solution effectively disappears in the long-wavelength limit, suggesting that the aspect ratio of the conduit is needed to be sufficiently large if the flow-induced oscillation caused by a moderate magma speed is an origin of volcanic tremor.
Heinrich, Volkmar; Leung, Andrew; Evans, Evan
2005-03-01
We have used a biomembrane force probe decorated with P-selectin to form point attachments with PSGL-1 receptors on a human neutrophil (PMN) in a calcium-containing medium and then to quantify the forces experienced by the attachment during retraction of the PMN at fixed speed. From first touch to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether, and iii), the final detachment from the probe tip most often by one precipitous step of P-selectin:PSGL-1 dissociation. Analyzing the initial elastic response and membrane unbinding from the cytoskeleton in our companion article I, we focus in this article on the regime of tether extrusion that nearly always occurred before release of the extracellular adhesion bond at pulling speeds > or =1 microm/s. The force during tether growth appeared to approach a plateau at long times. Examined over a large range of pulling speeds up to 150 microm/s, the plateau force exhibited a significant shear thinning as indicated by a weak power-law dependence on pulling speed, f(infinity) = 60 pN(nu(pull)/microm/s)(0.25). Using this shear-thinning response to describe the viscous element in a nonlinear Maxwell-like fluid model, we show that a weak serial-elastic component with a stiffness of approximately 0.07 pN/nm provides good agreement with the time course of the tether force approach to the plateau under constant pulling speed.
Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus.
Ji, Chunli; Wang, Junfeng; Liu, Tianzhong
2015-10-01
Biofilm cultivation of microalgae may be useful for biofuel production. However, many aspects for this cultivation method have not been well assessed. Accordingly, aeration strategy for biofilm cultivation of Scenedesmus dimorphus has been explored. Biomass, lipid and triacylglycerol (TAG) productivity in increased S. dimorphus as the CO2 concentration increased within 0.038-0.5% and kept constant with further increases. The biomass, lipid and TAG productivity increased with the speed increasing and an obvious threshold point was observed at 6.6 ml(-2) min(-1). The lipid and TAG content was unaffected by the aeration rate. Both the CO2 concentration as well as aeration speed affected the growth of S. dimorphus in biofilm cultivation. The optimized aeration strategy for biofilm cultivation was continuous air flow enriched with 1% CO2 (v/v) at 6.6 ml(-2) min(-1).
NASA Astrophysics Data System (ADS)
Yu, Chenghai; Ma, Ning; Wang, Kai; Du, Juan; Van den Braembussche, R. A.; Lin, Feng
2014-04-01
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
Velocity distribution in a turbulent flow near a rough wall
NASA Astrophysics Data System (ADS)
Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.
2017-11-01
Velocity distribution in the zone of developed wall turbulence, regardless of the conditions on the wall, is described by the well-known Prandtl logarithmic profile. In this distribution, the constant, that determines the value of the velocity, is determined by the nature of the interaction of the flow with the wall and depends on the viscosity of the fluid, the dynamic velocity, and the parameters of the wall roughness.In extreme cases depending on the ratio between the thickness of the viscous sublayer and the size of the roughness the constant takes on a value that does not depend on viscosity, or leads to a ratio for a smooth wall.It is essential that this logarithmic profile is the result not only of the Prandtl theory, but can be derived from general considerations of the theory of dimensions, and also follows from the condition of local equilibrium of generation and dissipation of turbulent energy in the wall area. This allows us to consider the profile as a universal law of velocity distribution in the wall area of a turbulent flow.The profile approximation up to the maximum speed line with subsequent integration makes possible to obtain the resistance law for channels of simple shape. For channels of complex shape with rough walls, the universal profile can be used to formulate the boundary condition when applied to the calculation of turbulence models.This paper presents an empirical model for determining the constant of the universal logarithmic profile. The zone of roughness is described by a set of parameters and is considered as a porous structure with variable porosity.
Efficient Ionization Investigation for Flow Control and Energy Extraction
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Kamhawi, Hani; Blankson, Isaiah M.
2009-01-01
Nonequilibrium ionization of air by nonthermal means is explored for hypersonic vehicle applications. The method selected for evaluation generates a weakly ionized plasma using pulsed nanosecond, high-voltage discharges sustained by a lower dc voltage. These discharges promise to provide a means of energizing and sustaining electrons in the air while maintaining a nearly constant ion/neutral molecule temperature. This paper explores the use of short approx.5 nsec, high-voltage approx.12 to 22 kV, repetitive (40 to 100 kHz) discharges in generating a weakly ionized gas sustained by a 1 kV dc voltage in dry air at pressures from 10 to 80 torr. Demonstrated lifetimes of the sustainer discharge current approx.10 to 25 msec are over three orders of magnitude longer than the 5 nsec pulse that generates the electrons. This life is adequate for many high speed flows, enabling the possibility of exploiting weakly ionized plasma phenomena in flow-fields such as those in hypersonic inlets, combustors, and nozzles. Results to date are obtained in a volume of plasma between electrodes in a bell jar. The buildup and decay of the visible emission from the pulser excited air is photographed on an ICCD camera with nanosecond resolution and the time constants for visible emission decay are observed to be between 10 to 15 nsec decreasing as pressure increases. The application of the sustainer voltage does not change the visible emission decay time constant. Energy consumption as indicated by power output from the power supplies is 194 to 669 W depending on pulse repetition rate.
A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Harris, C. S.
1990-01-01
A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.
The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.
2004-05-01
Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles
2014-04-30
While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
Velocity and pressure characteristics of a model SSME high pressure fuel turbopump
NASA Technical Reports Server (NTRS)
Tse, D. G-N.; Sabnis, J. S.; Mcdonald, H.
1991-01-01
Under the present effort an experiment rig has been constructed, an instrumentation package developed and a series of mean and rms velocity and pressure measurements made in a turbopump which modelled the first stage of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump. The rig was designed so as to allow initial experiments with a single configuration consisting of a bell-mouth inlet, a flight impeller, a vaneless diffuser and a volute. Allowance was made for components such as inlet guide vanes, exit guide vanes, downstream pumps, etc. to be added in future experiments. This flexibility will provide a clear baseline set of experiments and allow evaluation in later experiments of the effect of adding specific components upon the pump performance properties. The rotational speed of the impeller was varied between 4260 and 7680 rpm which covered the range of scaled SSME rotation speeds when due allowance is made for the differing stagnation temperature, model to full scale. The results at the inlet obtained with rotational speeds of 4260, 6084 and 7680 rpm showed that the axial velocity at the bell-mouth inlet remained roughly constant at 2.2 of the bulk velocity at the exit of the turbopump near the center of the inlet, but it decreased rapidly with increasing radius at all three speeds. Reverse flow occurred at a radius greater than 0.9 R for all three speeds and the maximum negative velocity reduced from 1.3 of the bulk velocity at the exit of the turbopump at 4260 rpm to 0.35 at 7680 rpm, suggesting that operating at a speed closer to the design condition of 8700 rpm improved the inlet characteristics. The reverse flow caused positive prerotation at the impeller inlet which was negligibly small near the center but reached 0.7 of the impeller speed at the outer annulus. The results in the diffuser and the volute obtained at 7680 rpm show that the hub and shroud walls of the diffuser were characterized by regions of transient reverse flow with negative revolution-averaged velocity of 8 percent of the maximum forward revolution-averaged velocity at the center of the diffuser passage near the shroud wall.
Carling; Williams; Bowtell
1998-12-01
Anguilliform swimming has been investigated by using a computational model combining the dynamics of both the creature's movement and the two-dimensional fluid flow of the surrounding water. The model creature is self-propelled; it follows a path determined by the forces acting upon it, as generated by its prescribed changing shape. The numerical solution has been obtained by applying coordinate transformations and then using finite difference methods. Results are presented showing the flow around the creature as it accelerates from rest in an enclosed tank. The kinematics and dynamics associated with the creature's centre of mass are also shown. For a particular set of body shape parameters, the final mean swimming speed is found to be 0.77 times the speed of the backward-travelling wave. The corresponding movement amplitude envelope is shown. The magnitude of oscillation in the net forward force has been shown to be approximately twice that in the lateral force. The importance of allowing for acceleration and deceleration of the creature's body (rather than imposing a constant swimming speed) has been demonstrated. The calculations of rotational movement of the body and the associated moment of forces about the centre of mass have also been included in the model. The important role of viscous forces along and around the creature's body and in the growth and dissolution of the vortex structures has been illustrated.
NASA Astrophysics Data System (ADS)
Wusnah; Bindar, Y.; Yunardi; Nur, F. M.; Syam, A. M.
2018-03-01
This paper presents results the process of combustion propane using computational fluid dynamics (CFD) to simulate the turbulent non-premixed flame under the influences of crosswinds and the ratio of fuel (propane) to steam, S. Configuration, discretization and boundary conditions of the flame are described using GambitTM software and integrated with FluentTM software for calculations of flow and reactive fields. This work focuses on the influence of various crosswind speeds (0–10 m/s) and values of S (0.14–2.35) while the velocity of fuel issued from the nozzle was kept constant at 20 m/s. A turbulence model, k-ɛ standard and combustion model, Eddy Dissipation model were employed for the calculation of velocity and temperature fields, respectively. The results are displayed in the form of predictive terrain profile of the propane flame at different crosswind speeds. The results of the propane flame profile demonstrated that the crosswind significantly affect the structure velocity and position of the flame which was off-center moving towards the direction of crosswind, eventually affect the temperature along the flame. As the values of S is increasing, the flame contour temperature decreases, until the flame was extinguished at S equals to 2.35. The combustion efficiency for a variety of crosswind speeds decreases with increasing values of S.
Expert, Fabien; Ruffier, Franck
2015-02-26
Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.
Analysis of possibilities of waste heat recovery in off-road vehicles
NASA Astrophysics Data System (ADS)
Wojciechowski, K. T.; Zybala, R.; Leszczynski, J.; Nieroda, P.; Schmidt, M.; Merkisz, J.; Lijewski, P.; Fuc, P.
2012-06-01
The paper presents the preliminary results of the waste heat recovery investigations for an agricultural tractor engine (7.4 dm3) and excavator engine (7.2 dm3) in real operating conditions. The temperature of exhaust gases and exhaust mass flow rate has been measured by precise portable exhaust emissions analyzer SEMTECH DS (SENSORS Inc.). The analysis shows that engines of tested vehicles operate approximately at constant speed and load. The average temperature of exhaust gases is in the range from 300 to 400 °C for maximum gas mass flows of 1100 kg/h and 1400 kg/h for tractor and excavator engine respectively. Preliminary tests show that application of TEGs in tested off-road vehicles offers much more beneficial conditions for waste heat recovery than in case of automotive engines.
NASA Technical Reports Server (NTRS)
Riffel, R. E.; Rothrock, M. D.
1980-01-01
A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.
Transient flow characteristics of a high speed rotary valve
NASA Astrophysics Data System (ADS)
Browning, Patrick H.
Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.
Tsunami inundation, sediment transport, and subsequent deposits on topography with a dune
NASA Astrophysics Data System (ADS)
Yoshii, T.; Tanaka, S.; Matsuyama, M.
2017-12-01
The processes of tsunami inundation, sediment transport, and subsequent deposits on topography with a dune were investigated as part of Tsunami Sediment Transport Large-scale experiments (TSTLE) project. The inundation process on topography with a dune was categorized into first and second phase flows. The first phase flow was governed by the wave speed at the shoreline and the land slope, whereas the second phase flow was governed by the difference in water level at the dune. The deposits caused by the first phase flow (near the inundation limit) were constant regardless of the presence of the dune. Thus, there was no direct relationship between the substantial erosion and deposition near the dune caused by the second phase flow and the inundation limit determined by the initial phase flow. It is impossible to measure hydraulic parameters beyond these governing parameters from the deposits without assumption of waveform. Therefore, if the inundation limit is determined by the initial phase flow, the only way to reconstruct the inundation limit (height) is to investigate the deposits near the limit. The nearshore deposit, which could be sufficiently thick to observe sedimentary structures, would enable us to estimate the wave level in front of the dune.
Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube
NASA Astrophysics Data System (ADS)
Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.
2011-11-01
Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.
NASA Technical Reports Server (NTRS)
Schock, H. J.; Sosoka, D. J.; Ramos, J. I.
1983-01-01
A finite-difference procedure which solves the conservation equations of mass, momentum, and energy is used to investigate the effects of the compression ratio, engine speed, bore-to-stroke ratio, and air intake flow angle on the turbulent flow field within an axisymmetric piston-cylinder configuration. It is shown that in a four-stroke piston-cylinder configuration, the intake stroke is characterized by the formation of a piston vortex. The piston vortex is stretched during the intake stroke, and the head vortex has an almost constant diameter. For a 0-deg air intake flow angle, both vortices disappear by the end of the compression stroke; for an air intake flow angle of 45 deg, the flow field within the cylinder shows three elongated vortices which persist into the compression stroke and then break up and merge. It is also shown that larger bore-to-stroke ratios give rise to lower turbulent levels than smaller bore-to-stroke ratios and that the turbulent intensity is almost independent of the rpm.
NASA Technical Reports Server (NTRS)
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
Unsteady penetration of a target by a liquid jet
Uth, Tobias; Deshpande, Vikram S.
2013-01-01
It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet–target interface––this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818
Ng, Boon C; Smith, Peter A; Nestler, Frank; Timms, Daniel; Cohn, William E; Lim, Einly
2017-03-01
The successful clinical applicability of rotary left ventricular assist devices (LVADs) has led to research interest in devising a total artificial heart (TAH) using two rotary blood pumps (RBPs). The major challenge when using two separately controlled LVADs for TAH support is the difficulty in maintaining the balance between pulmonary and systemic blood flows. In this study, a starling-like controller (SLC) hybridized with an adaptive mechanism was developed for a dual rotary LVAD TAH. The incorporation of the adaptive mechanism was intended not only to minimize the risk of pulmonary congestion and atrial suction but also to match cardiac demand. A comparative assessment was performed between the proposed adaptive starling-like controller (A-SLC) and a conventional SLC as well as a constant speed controller. The performance of all controllers was evaluated by subjecting them to three simulated scenarios [rest, exercise, head up tilt (HUT)] using a mock circulation loop. The overall results showed that A-SLC was superior in matching pump flow to cardiac demand without causing hemodynamic instabilities. In contrast, improper flow regulation by the SLC resulted in pulmonary congestion during exercise. From resting supine to HUT, overpumping of the RBPs at fixed speed (FS) caused atrial suction, whereas implementation of SLC resulted in insufficient flow. The comparative study signified the potential of the proposed A-SLC for future TAH implementation particularly among outpatients, who are susceptible to variety of clinical scenarios.
Analysis of pressure head-flow loops of pulsatile rotodynamic blood pumps.
Jahren, Silje E; Ochsner, Gregor; Shu, Fangjun; Amacher, Raffael; Antaki, James F; Vandenberghe, Stijn
2014-04-01
The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation
2016-04-30
AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant
Transient response of sap flow to wind speed.
Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G
2009-01-01
Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-10-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-09-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Analysis of high-speed rotating flow inside gas centrifuge casing
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Onset of turbulence in accelerated high-Reynolds-number flow
NASA Astrophysics Data System (ADS)
Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.
2003-05-01
A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types of acceleration driven instability experiments: (1) classical, relatively low speed, constant acceleration RTI experiments; (2) shock tube, shockwave driven RMI flow mixing experiments; (3) laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last named experiments are of special interest as they provide scaleable flow conditions simulating those of astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.
Measurements of evaporated perfluorocarbon during partial liquid ventilation by a zeolite absorber.
Proquitté, Hans; Rüdiger, Mario; Wauer, Roland R; Schmalisch, Gerd
2004-01-01
During partial liquid ventilation (PLV) the knowledge of the quantity of exhaled perfluorocarbon (PFC) allows a continuous substitution of the PFC loss to achieve a constant PFC level in the lungs. The aim of our in vitro study was to determine the PFC loss in the mixed expired gas by an absorber and to investigate the effect of the evaporated PFC on ventilatory measurements. To simulate the PFC loss during PLV, a heated flask was rinsed with a constant airflow of 4 L min(-1) and PFC was infused by different speeds (5, 10, 20 mL h(-1)). An absorber filled with PFC selective zeolites was connected with the flask to measure the PFC in the gas. The evaporated PFC volume and the PFC concentration were determined from the weight gain of the absorber measured by an electronic scale. The PFC-dependent volume error of the CO2SMO plus neonatal pneumotachograph was measured by manual movements of a syringe with volumes of 10 and 28 mL with a rate of 30 min(-1). Under steady state conditions there was a strong correlation (r2 = 0.999) between the infusion speed of PFC and the calculated PFC flow rate. The PFC flow rate was slightly underestimated by 4.3% (p < 0.01). However, this bias was independent from PFC infusion rate. The evaporated PFC volume was precisely measured with errors < 1%. The volume error of the CO2SMO-Plus pneumotachograph increased with increasing PFC content for both tidal volumes (p < 0.01). However for PFC flow rates up to 20 mL/h the error of the measured tidal volumes was < 5%. PFC selective zeolites can be used to quantify accurately the evaporated PFC volume during PLV. With increasing PFC concentrations in the exhaled air the measurement errors of ventilatory parameters have to be taken into account.
NASA Technical Reports Server (NTRS)
Dadone, L. U.; Fukushima, T.
1975-01-01
A test was conducted in the NASA-Ames 7 x 10 ft low speed wind tunnel on a seven-foot diameter model of a teetering rotor. The objectives of the test were: (1) acquire pressure data for correlation with laser and flow visualization measurements; (2) explore rotor propulsive force limits by varying the advance ratio at constant lift and propulsive force coefficients; (3) obtain additional data to define the differences between teetering and articulated rotors; and (4) verify the acceleration sensitivity of experimental transducers. Results are presented.
Test-section noise of the Ames 7 by 10-foot wind tunnel no. 1
NASA Technical Reports Server (NTRS)
Soderman, P. T.
1976-01-01
An investigation was made of the test-section noise levels at various wind speeds in the Ames 7- by 10-Foot Wind Tunnel No. 1. No model was in the test section. Results showed that aerodynamic noise from various struts used to monitor flow conditions in the test section dominated the wind-tunnel background noise over much of the frequency spectrum. A tapered microphone stand with a thin trailing edge generated less noise than did a constant-chord strut with a blunt trailing edge. Noise from small holes in the test-section walls was insignificant.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
1999-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.
Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
Rongy, L; Goyal, N; Meiburg, E; De Wit, A
2007-09-21
Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts propagating in horizontal capillaries. We furthermore compare the buoyancy-driven dynamics studied here to Marangoni-driven deformation of traveling chemical fronts in solution open to the air in the absence of gravity previously studied in the same geometry [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)].
High-speed flow visualization in hypersonic, transonic, and shock tube flows
NASA Astrophysics Data System (ADS)
Kleine, H.; Olivier, H.
2017-02-01
High-speed flow visualisation has played an important role in the investigations conducted at the Stoßwellenlabor of the RWTH Aachen University for many decades. In addition to applying the techniques of high-speed imaging, this laboratory has been actively developing new or enhanced visualisation techniques and approaches such as various schlieren methods or time-resolved Mach-Zehnder interferometry. The investigated high-speed flows are inherently highly transient, with flow Mach numbers ranging from about M = 0.7 to M = 8. The availability of modern high-speed cameras has allowed us to expand the investigations into problems where reduced reproducibility had so far limited the amount of information that could be extracted from a limited number of flow visualisation records. Following a brief historical overview, some examples of recent studies are given, which represent the breadth of applications in which high-speed imaging has been an essential diagnostic tool to uncover the physics of high-speed flows. Applications include the stability of hypersonic corner flows, the establishment of shock wave systems in transonic airfoil flow, and the complexities of the interactions of shock waves with obstacles of various shapes.
Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S
2008-09-01
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Sullivan, E. M.; Margolis, S. B.
1974-01-01
Curve-fit formulas are presented for the stagnation-point radiative heating rate, cooling factor, and shock standoff distance for inviscid flow over blunt bodies at conditions corresponding to high-speed earth entry. The data which were curve fitted were calculated by using a technique which utilizes a one-strip integral method and a detailed nongray radiation model to generate a radiatively coupled flow-field solution for air in chemical and local thermodynamic equilibrium. The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to 16 km.sec. Spherical bodies with nose radii from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2, 4, and 6 were treated. Powerlaw formulas are proposed and a least-squares logarithmic fit is used to evaluate the constants. It is shown that the data can be described in this manner with an average deviation of about 3 percent (or less) and a maximum deviation of about 10 percent (or less). The curve-fit formulas provide an effective and economic means for making preliminary design studies for situations involving high-speed earth entry.
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhang, Q.-H.; Jayachandran, P. T.; Moen, J.; Xing, Z.-Y.; Chadwick, R.; Ma, Y.-Z.; Ruohoniemi, J. M.; Lester, M.
2018-03-01
First experimental proof of a clear and strong dependence of the standard phase scintillation index (σφ) derived using Global Positioning System measurements on the ionospheric plasma flow around the noon sector of polar ionosphere is presented. σφ shows a strong linear dependence on the plasma drift speed measured by the Super Dual Auroral Radar Network radars, whereas the amplitude scintillation index (S4) does not. This observed dependence can be explained as a consequence of Fresnel frequency dependence of the relative drift and the used constant cutoff frequency (0.1 Hz) to detrend the data for obtaining standard σφ. The lack of dependence of S4 on the drift speed possibly eliminates the plasma instability mechanism(s) involved as a cause of the dependence. These observations further confirm that the standard phase scintillation index is much more sensitive to plasma flow; therefore, utmost care must be taken when identifying phase scintillation (diffractive phase variations) from refractive (deterministic) phase variations, especially in the polar region where the ionospheric plasma drift is much larger than in equatorial and midlatitude regions.
The Rivers of the Mississippi Watershed
2017-12-08
The Mississippi Watershed is the largest drainage basin in North America at 3.2 million square kilometers in area. The USGS has created a database of this area which indicates the direction of waterflow at each point. By assembling these directions into streamflows, it is possible to trace the path of water from every point of the area to the mouth of the Mississippi in the Gulf of Mexico. This animation starts with the points furthest from the Gulf and reveals the streams and rivers as a steady progression towards the mouth of the Mississippi until all the major rivers are revealed. The speed of the reveal of the rivers is not dependent on the actual speed of the water flow. The reveal proceeds at a constant velocity along each river path, timed so that all reveals reach the mouth of the Mississippi at the same time. This animation does not show actual flow rates of the rivers. All rivers are shown with identical rates. The river colors and widths correspond to the relative lengths of river segments. Credit: NASA's Scientific Visualization Studio/Horace Mitchell Go here to download this video: svs.gsfc.nasa.gov/4493
NASA Technical Reports Server (NTRS)
Stimpert, D. L.; Clemons, A.
1977-01-01
Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.
The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Lust, Ethan; Luznik, Luksa; Flack, Karen
2017-11-01
Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.
Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD
NASA Astrophysics Data System (ADS)
Iannelli, Joe
2003-10-01
This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.
Kartamyshev, Sergey P; Balashov, Sergey A; Melkumyants, Arthur M
2007-01-01
The effect of shear stress at the endothelium in the attenuation of the noradrenaline-induced constriction of the femoral vascular bed perfused at a constant blood flow was investigated in 16 anesthetized cats. It is known that the adrenergic vasoconstriction of the femoral vascular bed is considerably greater at a constant pressure perfusion than at a constant blood flow. This difference may depend on the ability of the endothelium to relax smooth muscle in response to an increase in wall shear stress. Since the shear stress is directly related to the blood flow and inversely related to the third power of vessel diameter, vasoconstriction at a constant blood flow increases the wall shear stress that is the stimulus for smooth muscle relaxation opposing constriction. On the other hand, at a constant perfusion pressure, vasoconstriction is accompanied by a decrease in flow rate, which prevents a wall shear stress increase. To reveal the effect of endothelial sensitivity to shear stress, we compared noradrenaline-induced changes in total and proximal arterial resistances during perfusion of the hind limb at a constant blood flow and at a constant pressure in vessels with intact and injured endothelium. We found that in the endothelium-intact bed the same concentration of noradrenaline at a constant flow caused an increase in overall vascular peripheral resistance that was half as large as at a constant perfusion pressure. This difference is mainly confined to the proximal arterial vessels (arteries and large arterioles) whose resistance at a constant flow increased only 0.19 +/- 0.03 times compared to that at a constant pressure. The removal of the endothelium only slightly increased constrictor responses at the perfusion under a constant pressure (noradrenaline-induced increases of both overall and proximal arterial resistance augmented by 12%), while the responses of the proximal vessels at a constant flow became 4.7 +/- 0.4 times greater than in the endothelium-intact bed. A selective blockage of endothelium sensitivity to shear stress using a glutaraldehyde dimer augmented the constrictor responses of the proximal vessels at a constant flow 4.6-fold (+/-0.3), but had no significant effect on the responses at a constant pressure. These results are consistent with the conclusion that the difference in constrictor responses at constant flow and pressure perfusions depends mainly on the smooth muscle relaxation caused by increased wall shear stress. Copyright (c) 2007 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, F.W.; Back, G.G.; Burns, R.E.
1986-11-04
Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devicesmore » or methods is recommended.« less
NASA Astrophysics Data System (ADS)
Jang, G. H.; Yeom, J. H.; Kim, M. G.
2007-03-01
This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.
Stable plume rise in a shear layer.
Overcamp, Thomas J
2007-03-01
Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.
Insights from field observations into controls on flow front speed in submarine sediment flows
NASA Astrophysics Data System (ADS)
Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.
2017-12-01
Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.
Humans do not have direct access to retinal flow during walking
Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.
2013-01-01
Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509
Vibrational analysis of vertical axis wind turbine blades
NASA Astrophysics Data System (ADS)
Kapucu, Onur
The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.
NASA Technical Reports Server (NTRS)
Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.
1999-01-01
A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.
Modeling pH-zone refining countercurrent chromatography: a dynamic approach.
Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues
2015-04-24
A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.
Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing
NASA Astrophysics Data System (ADS)
He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin
In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds accelerated the early process of visual cognition. There is a synergic effect between the effects of constant low-speed rotation and rotating speed of the background. Under certain conditions, they both served to facilitate the visual cognitive processing, and it had been started at the stage when extrastriate cortex perceiving the visual signal. Under the condition of constant low-speed rotation in higher cognitive load tasks, the rapid rotation of the background enhanced the magnitude of the signal transmission in the visual path, making signal to noise ratio increased and a higher signal to noise ratio is clearly in favor of target perception and recognition. This gave rise to the hypothesis that higher cognitive load tasks with higher top-down control had more power in counteracting the inhibition effect of higher velocity rotation background. Acknowledgements: This project was supported by National Natural Science Foundation of China (No. 30670715) and National High Technology Research and Development Program of China (No.2007AA04Z254).
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.
1989-01-01
The flame spread and flame extinction characteristics of a thin fuel burning in a low-speed forced convective environment in microgravity were examined. The flame spread rate was observed to decrease both with decreasing ambient oxygen concentration as well as decreasing free stream velocity. A new mode of flame extinction was observed, caused by either of two means: keeping the free stream velocity constant and decreasing the oxygen concentration, or keeping the oxygen concentration constant and decreasing the free stream velocity. This extinction is called quenching extinction. By combining this data together with a previous microgravity quiescent flame study and normal-gravity blowoff extinction data, a flammability map was constructed with molar percentage oxygen and characteristic relative velocity as coordinates. The Damkohler number is not sufficient to predict flame spread and extinction in the near quench limit region.
Model free simulations of a high speed reacting mixing layer
NASA Technical Reports Server (NTRS)
Steinberger, Craig J.
1992-01-01
The effects of compressibility, chemical reaction exothermicity and non-equilibrium chemical modeling in a combusting plane mixing layer were investigated by means of two-dimensional model free numerical simulations. It was shown that increased compressibility generally had a stabilizing effect, resulting in reduced mixing and chemical reaction conversion rate. The appearance of 'eddy shocklets' in the flow was observed at high convective Mach numbers. Reaction exothermicity was found to enhance mixing at the initial stages of the layer's growth, but had a stabilizing effect at later times. Calculations were performed for a constant rate chemical rate kinetics model and an Arrhenius type kinetics prototype. The Arrhenius model was found to cause a greater temperature increase due to reaction than the constant kinetics model. This had the same stabilizing effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.
Stability of barotropic vortex strip on a rotating sphere
Sohn, Sung-Ik; Kim, Sun-Chul
2018-01-01
We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524
Stability of barotropic vortex strip on a rotating sphere.
Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul
2018-02-01
We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.
Observational effects of varying speed of light in quadratic gravity cosmological models
NASA Astrophysics Data System (ADS)
Izadi, Azam; Shacker, Shadi Sajedi; Olmo, Gonzalo J.; Banerjee, Robi
We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (cST) may become variable in that local frame. For theories of the form f(ℛ,ℛμνℛ μν), this variation in cST has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco
2013-05-01
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.
Parametric Study of High Frequency Pulse Detonation Tubes
NASA Technical Reports Server (NTRS)
Cutler, Anderw D.
2008-01-01
This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.
Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi
2016-01-01
Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.
2016-01-01
Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127
Stability limits of unsteady open capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.
This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.
Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs
2005-11-01
Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.
A bee in the corridor: centering and wall-following
NASA Astrophysics Data System (ADS)
Serres, Julien R.; Masson, Guillaume P.; Ruffier, Franck; Franceschini, Nicolas
2008-12-01
In an attempt to better understand the mechanism underlying lateral collision avoidance in flying insects, we trained honeybees ( Apis mellifera) to fly through a large (95-cm wide) flight tunnel. We found that, depending on the entrance and feeder positions, honeybees would either center along the corridor midline or fly along one wall. Bees kept following one wall even when a major (150-cm long) part of the opposite wall was removed. These findings cannot be accounted for by the “optic flow balance” hypothesis that has been put forward to explain the typical bees’ “centering response” observed in narrower corridors. Both centering and wall-following behaviors are well accounted for, however, by a control scheme called the lateral optic flow regulator, i.e., a feedback system that strives to maintain the unilateral optic flow constant. The power of this control scheme is that it would allow the bee to guide itself visually in a corridor without having to measure its speed or distance from the walls.
Embedded function methods for supersonic turbulent boundary layers
NASA Technical Reports Server (NTRS)
He, J.; Kazakia, J. Y.; Walker, J. D. A.
1990-01-01
The development of embedded functions to represent the mean velocity and total enthalpy distributions in the wall layer of a supersonic turbulent boundary layer is considered. The asymptotic scaling laws (in the limit of large Reynolds number) for high speed compressible flows are obtained to facilitate eventual implementation of the embedded functions in a general prediction method. A self-consistent asymptotic structure is derived, as well as a compressible law of the wall in which the velocity and total enthalpy are logarithmic within the overlap zone, but in the Howarth-Dorodnitsyn variable. Simple outer region turbulence models are proposed (some of which are modifications of existing incompressible models) to reflect the effects of compressibility. As a test of the methodology and the new turbulence models, a set of self-similar outer region profiles is obtained for constant pressure flow; these are then coupled with embedded functions in the wall layer. The composite profiles thus obtained are compared directly with experimental data and good agreement is obtained for flows with Mach numbers up to 10.
An Experimental Device for Generating High Frequency Perturbations in Supersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Ibrahim, Mounir B.
1996-01-01
This paper describes the analytical study of a device that has been proposed as a mechanism for generating gust-like perturbations in supersonic wind tunnels. The device is envisioned as a means to experimentally validate dynamic models and control systems designed for high-speed inlets. The proposed gust generator is composed of two flat trapezoidal plates that modify the properties of the flow ingested by the inlet. One plate may be oscillated to generate small perturbations in the flow. The other plate is held stationary to maintain a constant angle-of-attack. Using an idealized approach, design equations and performance maps for the new device were developed from the compressible flow relations. A two-dimensional CFD code was used to confirm the correctness of these results. The idealized approach was then used to design and evaluate a new gust generator for a 3.05-meter by 3.05-meter (10-foot by 10-foot) supersonic wind tunnel.
Fluid-driven reciprocating apparatus and valving for controlling same
Whitehead, John C.; Toews, Hans G.
1993-01-01
A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.
78 FR 78294 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... Control Unit--Constant Speed Motor/Generator (GCU-CSM/G) failed the operational test. Investigations... airplanes. This proposed AD was prompted by the failure of the generator control unit-constant speed motor... costing up to $17,314, for a cost of up to $17,399 per product. We have no way of determining the number...
Laboratory-based observations of capillary barriers and preferential flow in layered snow
NASA Astrophysics Data System (ADS)
Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.
2015-12-01
Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.
NASA Astrophysics Data System (ADS)
Delgado-Fernandez, I.; Jackson, D.; Cooper, J. A.; Baas, A. C.; Lynch, K.; Beyers, M.
2010-12-01
Airflow separation, lee-side eddies and secondary flows play an essential role on the formation and maintenance of sand dunes. Downstream from dune crests the flow surface layer detaches from the ground and generates an area characterised by turbulent eddies in the dune lee slope (the wake). At some distance downstream from the dune crest, flow separates into a reversed component directed toward the dune toe and an offshore “re-attached” component. This reattachment zone (RZ) has been documented in fluvial and desert environments, wind tunnel experiments and numerical simulations, but not yet characterised in coastal dunes. This study examines the extent and temporal evolution of the RZ and its implications for beach-dune interaction at Magilligan, Northern Ireland. Wind parameters were measured over a profile extending from an 11 m height dune crest towards the beach, covering a total distance of 65 m cross-shore. Data was collected using an array of nine ultrasonic anemometers (UAs) deployed in April-May 2010, as part of a larger experiment to capture airflow data under a range of incident wind velocities and offshore directions. UAs were located along the profile (5 m tower spacing) over the beach, which allowed a detailed examination of the RZ with empirical data. Numerical modelling using Computational Fluid Dynamics (CFD) software was also conducted with input data from anemometer field measurements, running over a surface mesh generated from LiDAR and DGPS surveys. Results demonstrate that there is a wind threshold of approximately 5-6 ms-1 under which no flow separation exists with offshore winds. As wind speed increases over the threshold, a flow reversal area is quickly formed, with the maximum extent of the RZ at approximately 3.5 dune heights (h). The maximum extent of the RZ increases up to 4.5h with stronger wind speeds of 8-10 ms-1 and remains relatively constant as wind speed further increases. This suggests that the spatial extent of the RZ is independent of incident wind speed and is located between 4-5h. The magnitude of the maximum extent of the RZ is similar to that simulated using CFD and is consistent with previous studies conducted in desert dunes and wind tunnel simulations for offshore winds blowing over tall and sharp-crested dunes. Ongoing analyses are being conducted to evaluate the effect of changing wind direction, dune height and shape.
Ethylene Trace-gas Techniques for High-speed Flows
NASA Technical Reports Server (NTRS)
Davis, David O.; Reichert, Bruce A.
1994-01-01
Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.
Numerical Speed of Sound and its Application to Schemes for all Speeds
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Edwards, Jack R.
1999-01-01
The concept of "numerical speed of sound" is proposed in the construction of numerical flux. It is shown that this variable is responsible for the accurate resolution of' discontinuities, such as contacts and shocks. Moreover, this concept can he readily extended to deal with low speed and multiphase flows. As a results, the numerical dissipation for low speed flows is scaled with the local fluid speed, rather than the sound speed. Hence, the accuracy is enhanced the correct solution recovered, and the convergence rate improved. We also emphasize the role of mass flux and analyze the behavior of this flux. Study of mass flux is important because the numerical diffusivity introduced in it can be identified. In addition, it is the term common to all conservation equations. We show calculated results for a wide variety of flows to validate the effectiveness of using the numerical speed of sound concept in constructing the numerical flux. We especially aim at achieving these two goals: (1) improving accuracy and (2) gaining convergence rates for all speed ranges. We find that while the performance at high speed range is maintained, the flux now has the capability of performing well even with the low: speed flows. Thanks to the new numerical speed of sound, the convergence is even enhanced for the flows outside of the low speed range. To realize the usefulness of the proposed method in engineering problems, we have also performed calculations for complex 3D turbulent flows and the results are in excellent agreement with data.
Reconstructing Tsunami Flow Speed from Sedimentary Deposits
NASA Astrophysics Data System (ADS)
Jaffe, B. E.; Gelfenbaum, G. R.
2014-12-01
Paleotsunami deposits contain information about the flow that created them that can be used to reconstruct tsunami flow speed and thereby improving assessment of tsunami hazard. We applied an inverse tsunami sediment transport model to sandy deposits near Sendai Airport, Japan, that formed during the 11 March 2011 Tohoku-oki tsunami to test model performance and explore the spatial variations in tsunami flow speed. The inverse model assumes the amount of suspended sediment in the water column is in equilibrium with local flow speed and that sediment transport convergences, primarily from bedload transport, do not contribute significantly to formation of the portion of the deposit we identify as formed by sediment settling out of suspension. We interpret massive or inversely graded intervals as forming from sediment transport convergences and do not model them. Sediment falling out of suspension forms a specific type of normal grading, termed 'suspension' grading, where the entire grain size distribution shifts to finer sizes higher up in a deposit. Suspension grading is often observed in deposits of high-energy flows, including turbidity currents and tsunamis. The inverse model calculates tsunami flow speed from the thickness and bulk grain size of a suspension-graded interval. We identified 24 suspension-graded intervals from 7 trenches located near the Sendai Airport from ~250-1350 m inland from the shoreline. Flow speeds were highest ~500 m from the shoreline, landward of the forested sand dunes where the tsunami encountered lower roughness in a low-lying area as it traveled downslope. Modeled tsunami flow speeds range from 2.2 to 9.0 m/s. Tsunami flow speeds are sensitive to roughness, which is unfortunately poorly constrained. Flow speed calculated by the inverse model was similar to those calculated from video taken from a helicopter about 1-2 km inland. Deposit reconstructions of suspension-graded intervals reproduced observed upward shifts in grain size distributions reasonably well. As approaches to estimating paleo-roughness improve, the flow speed and size of paleotsunamis will be better understood and the ability to assess tsunami hazard from paleotsunami deposits will improve.
Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri
2006-08-15
An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. Under these conditions, RBCs exhibit different orientations and deformations according to their location in the velocity profile. The rheoscope system produces valuable data such as velocity profile of RBCs, spatial distribution within a microchannel and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured carrying implications for diffractometry methods. These curves of DI were taken at a constant flow rate and cover most of the relevant shear stress spectrum. This is an improvement of the existing techniques for deformability measurements and may serve as a diagnostic tool for certain blood disorders. The DI curves were compared to measurements of the flowing RBCs velocity profile. In addition, we found that RBCs flowing in a microchannel are mostly gathered in the center of the flow and maintain a characteristic spatial distribution. The spatial distribution in this region changes slightly with increasing flow rate. Hence, the system described, provides means for examining the behavior of individual RBCs, and may serve as a microfabricated diagnostic device for deformability measurement.
Computations of Internal and External Axisymmetric Nozzle Aerodynamics at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dalbello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.
Evaluation of free flow speeds on interrupted flow facilities.
DOT National Transportation Integrated Search
2013-05-01
The efficacy of the Florida Department of Transportation (FDOT) simple model of predicting segment free flow speed by adding 5 miles per hour (mph) to the posted speed limit was compared to the performance of the new 2010 Highway Capacity Manual (HCM...
Comparative assessment of turbulence model in predicting airflow over a NACA 0010 airfoil
NASA Astrophysics Data System (ADS)
Panday, Shoyon; Khan, Nafiz Ahmed; Rasel, Md; Faisal, Kh. Md.; Salam, Md. Abdus
2017-06-01
Nowadays the role of computational fluid dynamics to predict the flow behavior over airfoil is quite prominent. Most often a 2-D subsonic flow simulation is carried out over an airfoil at a certain Reynolds number and various angles of attack obtained by different turbulence models those are based on governing equations. The commonly used turbulence models are K-ɛpsilon, K-omega, Spalart Allmaras etc. Variation in turbulence model effectively influences the result of analysis. Here a comparative study is represented to show the effect of different turbulence models for a 2-D flow analysis over a National Advisory Committee for Aeronautics (NACA) airfoil 0010. This airfoil was analysed at 200000 Re number in 10 different angle of attacks at a constant speed of 21.6 m/s. Numbers of two dimensional flow simulation was run by changing the turbulence model, for each AOA. In accordance with the variation of result for different turbulence model, it was also found that for which model, attained result is close enough to experimental outcome from a low subsonic wind tunnel AF100. This paper also documents the effect of high and low angle of attack on the flow behaviour over an airfoil.
Two-phase simulations of the full load surge in Francis turbines
NASA Astrophysics Data System (ADS)
Wack, J.; Riedelbauch, S.
2016-11-01
At off-design conditions, Francis turbines experience cavitation which may reduce the power output and can cause severe damage in the machine. Certain conditions can cause self-excited oscillations of the vortex rope in the draft tube at full load operating point. For the presented work, two-phase simulations are carried out at model scale on a domain ranging from the inlet of the spiral case to the outlet of the draft tube. At different locations, wall pressure measurements are available and compared to the simulation results. Furthermore, the dynamics of the cavity volume in the draft tube cone and at the trailing edge of the runner blades are investigated by comparing with high speed visualization. To account for the selfexcited behaviour, proper boundary conditions need to be set. In this work, the focus lies on the treatment of the boundary condition at the inlet. In the first step, the dynamic behaviour of the cavity regions is investigated using a constant mass flow. Thereafter, oscillations of the total pressure and mass flow rate are prescribed using various frequencies and amplitudes. This methodology enables to examine the response of the cavity dynamics due to different excitations. It can be observed that setting a constant mass flow boundary condition is not suitable to account for the self-excited behaviour. Prescribing the total pressure has the result that the frequency of the vapour volume oscillation is the same as the frequency of the excitation signal. Contrary to that, for an excitation with a mass flow boundary condition, the response of the system is not equal to the excitation.
The stability of a flexible cantilever in viscous channel flow
NASA Astrophysics Data System (ADS)
Cisonni, Julien; Lucey, Anthony D.; Elliott, Novak S. J.; Heil, Matthias
2017-05-01
Most studies of the flow-induced flutter instability of a flexible cantilever have assumed inviscid flow because of the high flow speeds and the large scale of the structures encountered in the wide range of applications of this fluid-structure interaction (FSI) system. However, for instance, in the fields of energy harvesting and biomechanics, low flow speeds and small- and micro-scale systems can give relatively low Reynolds numbers so that fluid viscosity needs to be explicitly accounted for to provide reliable predictions of channel-immersed-cantilever stability. In this study, we employ a numerical model coupling the Navier-Stokes equations and a one-dimensional elastic beam model. We conduct a parametric investigation to determine the conditions leading to flutter instability of a slender flexible cantilever immersed in two-dimensional viscous channel flow for Reynolds numbers lower than 1000. The large set of numerical simulations carried out allows predictions of the influence of decreasing Reynolds numbers and of the cantilever confinement on the single-mode neutral stability of the FSI system and on the pre- and post-critical cantilever motion. This model's predictions are also compared to those of a FSI model containing a two-dimensional solid model in order to assess, primarily, the effect of the cantilever slenderness in the simulations. Results show that an increasing contribution of viscosity to the hydrodynamic forces significantly alters the instability boundaries. In general, a decrease in Reynolds number is predicted to produce a stabilisation of the FSI system, which is more pronounced for high fluid-to-solid mass ratios. For particular fluid-to-solid mass ratios, viscous effects can lower the critical velocity and lead to a change in the first unstable structural mode. However, at constant Reynolds number, the effects of viscosity on the system stability are diminished by the confinement of the cantilever, which strengthens the importance of flow inertia.
Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel
2016-09-01
Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Description and test results of a variable speed, constant frequency generating system
NASA Astrophysics Data System (ADS)
Brady, F. J.
1985-12-01
The variable-speed, constant frequency generating system developed for the Mod-0 wind turbine is presented. This report describes the system as it existed at the conclusion of the project. The cycloconverter control circuit is described including the addition of field-oriented control. The laboratory test and actual wind turbine test results are included.
Processing-property relationships of polypropylene/ciprofloxacin fibers
NASA Astrophysics Data System (ADS)
Botta, L.; Scaffaro, R.
2015-12-01
In this work we prepared polypropylene (PP) fibers incorporating an antibiotic, i.e. ciprofloxacin (CFX), by melt spinning. In particular, PP has been compounded with CFX at different concentrations by using a counter-rotating twin screw compounder. The PP/CFX fibers have been spun by using a capillary rheometer operating under a constant extrusion speed. The effect of "online" hot drawing during the melt spinning or of an "offline" cold drawing on the properties of PP/CFX fibers were evaluated. In particular, the influence of the drawing conditions on the mechanical properties and the release kinetics were studied. Moreover, the rheological behavior in non-isothermal elongation flow has been assessed.
NASA Technical Reports Server (NTRS)
Klann, J. L.; Tew, R. C., Jr.
1977-01-01
Ranges in design and off-design operating conditions of an advanced gas turbine and their effects on fuel economy were analyzed. The assumed engine incorporated a single stage radial flow turbine and compressor with fixed geometry. Fuel economies were calculated over the composite driving cycle with gasoline as the fuel. At a constant turbine-inlet temperature, with a regenerator sized for a full power effectiveness the best fuel economies ranged from 11.1 to 10.2 km/liter (26.2 to 22.5 mpg) for full power turbine tip speeds of 770 to 488m/sec (2530 to 1600ft/sec), respectively.
NASA Astrophysics Data System (ADS)
Huang, Zhongjie; Siozos-Rousoulis, Leonidas; De Troyer, Tim; Ghorbaniasl, Ghader
2018-02-01
This paper presents a time-domain method for noise prediction of supersonic rotating sources in a moving medium. The proposed approach can be interpreted as an extensive time-domain solution for the convected permeable Ffowcs Williams and Hawkings equation, which is capable of avoiding the Doppler singularity. The solution requires special treatment for construction of the emission surface. The derived formula can explicitly and efficiently account for subsonic uniform constant flow effects on radiated noise. Implementation of the methodology is realized through the Isom thickness noise case and high-speed impulsive noise prediction from helicopter rotors.
Hanhan, O; Orhon, D; Krauth, Kh; Günder, B
2005-01-01
In this study the effect of retention time and rotation speed in the denitrification process in two full-scale rotating biological contactors (RBC) which were operated parallel and fed with municipal wastewater is evaluated. Each rotating biological contactor was covered to prevent oxygen input. The discs were 40% submerged. On the axle of one of the rotating biological contactors lamellas were placed (RBC1). During the experiments the nitrate removal performance of the rotating biological contactor with lamellas was observed to be less than the other (RBC2) since the lamellas caused oxygen diffusion through their movement. The highest nitrate removal observed was 2.06 g/m2.d achieved by a contact time of 28.84 minutes and a recycle flow of 1 l/s. The rotation speed during this set had the constant value of 0.8 min(-1). Nitrate removal efficiency on RBC1 was decreasing with increasing rotation speed. On the rotating biological contactor without lamellas no effect on denitrification could be determined within a speed range from 0.67 to 2.1 min-1. If operated in proper conditions denitrification on RBC is a very suitable alternative for nitrogen removal that can easily fulfil the nutrient limitations in coastal areas due to the rotating biological contactors economical benefits and uncomplicated handling.
Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.
Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E
2016-09-01
Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Water flow in high-speed handpieces.
Cavalcanti, Bruno Neves; Serairdarian, Paulo Isaías; Rode, Sigmar Mello
2005-05-01
This study measured the water flow commonly used in high-speed handpieces to evaluate the water flow's influence on temperature generation. Different flow speeds were evaluated between turbines that had different numbers of cooling apertures. Two water samples were collected from each high-speed handpiece at private practices and at the School of Dentistry at São José dos Campos. The first sample was collected at the customary flow and the second was collected with the terminal opened for maximum flow. The two samples were collected into weighed glass receptacles after 15 seconds of turbine operation. The glass receptacles were reweighed and the difference between weights was recorded to calculate the water flow in mL/min and for further statistical analysis. The average water flow for 137 samples was 29.48 mL/min. The flow speeds obtained were 42.38 mL/min for turbines with one coolant aperture; 34.31 mL/min for turbines with two coolant apertures; and 30.44 mL/min for turbines with three coolant apertures. There were statistical differences between turbines with one and three coolant apertures (Tukey-Kramer multiple comparisons test with P < .05). Turbine handpieces with one cooling aperture distributed more water for the burs than high-speed handpieces with more than one aperture.
Sheared bioconvection in a horizontal tube
NASA Astrophysics Data System (ADS)
Croze, O. A.; Ashraf, E. E.; Bees, M. A.
2010-12-01
The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.
High speed digital holographic interferometry for hypersonic flow visualization
NASA Astrophysics Data System (ADS)
Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.
2013-06-01
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N
2011-01-01
The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
PTV analysis of the entrained air into the diesel spray at high-pressure injection
NASA Astrophysics Data System (ADS)
Toda, Naoki; Yamashita, Hayato; Mashida, Makoto
2014-08-01
In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.
Fluid Dynamics Prize Otto Laporte Lecture:Turbulence and Aeroacoustics
NASA Astrophysics Data System (ADS)
Comte-Bellot, Genevieve
2014-11-01
Some significant advances obtained over the years for two closely related fields, Turbulence and Aeroacoustics, are presented. Particular focus is placed on experimental results and on physical mechanisms. For example, for a 2D channel flow, skewness factors of velocity fluctuations are discussed. The study of isotropic turbulence generated by grids in the «Velvet wind tunnel» of Stanley Corrsin, constitutes a masterpiece. Of particular note are the Eulerian memory times, analysed for all wavenumbers. Concerning hot-wire anemometry, the potential of the new constant voltage technique is presented. Some results obtained with Particule Image Velocimetry are also reported. Two flow control examples are illustrated: lift generation for a circular cylinder, and noise reduction for a high speed jet. Finally, the propagation of acoustic waves through turbulence is considered. Experimental data are here completed by numerical simulations showing the possible occurrence of caustics.
Circuit Regulates Speed Of dc Motor
NASA Technical Reports Server (NTRS)
Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.
1990-01-01
Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.
NASA Technical Reports Server (NTRS)
Parker, R. J.; Signer, H. R.
1977-01-01
The performance of 120.65-mm bore tapered roller bearings was investigated at shaft speeds up to 15,000 rpm. Temperature distribution and bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rate, and lubricant inlet temperature. Lubricant was supplied by either jets or by a combination of holes through the cone directly to the cone-rib contact and jets at the roller small-end side. Cone-rib lubrication significantly improved high-speed tapered-roller bearing performance, yielding lower cone-face temperatures and lower power loss and allowing lower lubricant flow rates for a given speed condition. Bearing temperatures increased with increased shaft speed and decreased with increased lubricant flow rate. Bearing power loss increased with increased shaft speed and increased lubricant flow rate.
Vortex propagation around a wall-mounted obstacle in pulsatile flow
NASA Astrophysics Data System (ADS)
Carr, Ian A.; Plesniak, Michael W.
2015-11-01
Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.
1976-01-01
A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.
Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J
2016-01-01
Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased hemoconcentration, but the changes were less in hypothermic lungs perfused at constant PPA.
NASA Tech Briefs, September 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics include: Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask; Three-Dimensional Venturi Sensor for Measuring Extreme Winds; Swarms of Micron-Sized Sensors; Monitoring Volcanoes by Use of Air-Dropped Sensor Packages; Capacitive Sensors for Measuring Masses of Cryogenic Fluids; UHF Microstrip Antenna Array for Synthetic- Aperture Radar; Multimode Broad-Band Patch Antennas; 164-GHz MMIC HEMT Frequency Doubler; GPS Position and Heading Circuitry for Ships; Software for Managing Parametric Studies; Software Aids Visualization of Computed Unsteady Flow; Software for Testing Electroactive Structural Components; Advanced Software for Analysis of High-Speed Rolling-Element Bearings; Web Program for Development of GUIs for Cluster Computers; XML-Based Generator of C++ Code for Integration With GUIs; Oxide Protective Coats for Ir/Re Rocket Combustion Chambers; Simplified Waterproofing of Aerogels; Improved Thermal-Insulation Systems for Low Temperatures; Device for Automated Cutting and Transfer of Plant Shoots; Extension of Liouville Formalism to Postinstability Dynamics; Advances in Thrust-Based Emergency Control of an Airplane; Ultrasonic/Sonic Mechanisms for Drilling and Coring; Exercise Device Would Exert Selectable Constant Resistance; Improved Apparatus for Measuring Distance Between Axles; Six Classes of Diffraction-Based Optoelectronic Instruments; Modernizing Fortran 77 Legacy Codes; Active State Model for Autonomous Systems; Shields for Enhanced Protection Against High-Speed Debris; Scaling of Two-Phase Flows to Partial-Earth Gravity; Neutral-Axis Springs for Thin-Wall Integral Boom Hinges.
On the Concentration Gradient across a Spherical Source Washed by Slow Flow
Jaffe, Lionel
1965-01-01
A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954
NASA Astrophysics Data System (ADS)
Sant, T.; Buhagiar, D.; Farrugia, R. N.
2014-06-01
A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.
Constant power speed range extension of surface mounted PM motors
Lawler, Jack Steward; Bailey, John Milton
2001-01-01
A circuit and method for controlling a rotating machine (11) in the constant horsepower range above base speed uses an inverter (15) having SCR's (T1-T6) connected in series with the primary commutation switches (Q1-Q6) to control turn off of the primary commutation switches and to protect the primary commutation switches from faults. The primary commutation switches (Q1-Q6) are controlled by a controller (14), to fire in advance or after a time when the back emf equals the applied voltage, and then to turn off after a precise dwell time, such that suitable power is developed at speeds up to at least six times base speed.
NASA Astrophysics Data System (ADS)
Suder, Kenneth L.; Celestina, Mark L.
1995-06-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Celestina, Mark L.
1995-01-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
NASA Astrophysics Data System (ADS)
Noble, David R.; Georgiadis, John G.; Buckius, Richard O.
1996-07-01
The lattice Boltzmann method (LBM) is used to simulate flow in an infinite periodic array of octagonal cylinders. Results are compared with those obtained by a finite difference (FD) simulation solved in terms of streamfunction and vorticity using an alternating direction implicit scheme. Computed velocity profiles are compared along lines common to both the lattice Boltzmann and finite difference grids. Along all such slices, both streamwise and transverse velocity predictions agree to within 05% of the average streamwise velocity. The local shear on the surface of the cylinders also compares well, with the only deviations occurring in the vicinity of the corners of the cylinders, where the slope of the shear is discontinuous. When a constant dimensionless relaxation time is maintained, LBM exhibits the same convergence behaviour as the FD algorithm, with the time step increasing as the square of the grid size. By adjusting the relaxation time such that a constant Mach number is achieved, the time step of LBM varies linearly with the grid size. The efficiency of LBM on the CM-5 parallel computer at the National Center for Supercomputing Applications (NCSA) is evaluated by examining each part of the algorithm. Overall, a speed of 139 GFLOPS is obtained using 512 processors for a domain size of 2176×2176.
Flammability Aspects of a Cotton-Fiberglass Fabric in Opposed and Concurrent Airflow in Microgravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.; Olson, Sandra; Johnston, Michael C.; T'ien, James
2012-01-01
Microgravity combustion tests burning fabric samples were performed aboard the International Space Station. The cotton-fiberglass blend samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cm/s. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. For the opposed flow configuration, the flame quickly reached steady spread for each flow speed, and the spread rate was fastest at an intermediate value of flow speed. These tests show the enhanced flammability in microgravity for this geometry, since, in normal gravity air, a flame self-extinguishes in the opposed flow geometry (downward flame spread). In the concurrent flow configuration, flame size grew with time during the tests. A limiting length and steady spread rate were obtained only in low flow speeds ( 10 cm/s) for the short-length samples that fit in the small wind tunnel. For these conditions, flame spread rate increased linearly with increasing flow. This is the first time that detailed transient flame growth data was obtained in purely forced flows in microgravity. In addition, by decreasing flow speed to a very low value (around 1 cm/s), quenching extinction was observed. The valuable results from these long-duration experiments validate a number of theoretical predictions and also provide the data for a transient flame growth model under development.
NASA Technical Reports Server (NTRS)
Sanger, N. L.
1976-01-01
A transonic fan stage having a design pressure ratio of 1.57 was tested with a 90 degree circumferential distortion imposed on the inlet flow. The rotor diameter was approximately 50.8 cm, and the design pressure ratio was 1.60 at a tip speed of 425 m/sec. Overall performance at 70 and 100 percent of design speed showed a loss of stall pressure ratio and flow range at design speed and no significant loss in stall pressure ratio at 70 percent of design speed. Detailed flow measurements are presented to show the rotor-upstream flow interactions and the attenuation and amplification properties through the stage.
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.
2013-08-01
The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the profile slope in the HDR regime. There was significant scatter in the observed slope in the HDR regime, but the scatter did not appear to be Reynolds number dependent. Finally, the ultimate profiles for flows at maximum drag reduction were examined and did not exhibit a logarithmic functional relationship, which is the classical empirical relationship suggested by Virk [J. Am. Inst. Chem. Eng. 21, 625-656 (1975)], 10.1002/aic.690210402.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2016-06-01
Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.
Identification of tower-wake distortions using sonic anemometer and lidar measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya
The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairsmore » of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. Furthermorew, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.« less
Identification of tower-wake distortions using sonic anemometer and lidar measurements
McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya; ...
2017-02-02
The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairsmore » of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. Furthermorew, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.« less
Jajamovich, Guido H; Huang, Wei; Besa, Cecilia; Li, Xin; Afzal, Aneela; Dyvorne, Hadrien A; Taouli, Bachir
2016-02-01
To quantify hepatocellular carcinoma (HCC) perfusion and flow with the fast exchange regime-allowed Shutter-Speed model (SSM) compared to the Tofts model (TM). In this prospective study, 25 patients with HCC underwent DCE-MRI. ROIs were placed in liver parenchyma, portal vein, aorta and HCC lesions. Signal intensities were analyzed employing dual-input TM and SSM models. ART (arterial fraction), K (trans) (contrast agent transfer rate constant from plasma to extravascular extracellular space), ve (extravascular extracellular volume fraction), kep (contrast agent intravasation rate constant), and τi (mean intracellular water molecule lifetime) were compared between liver parenchyma and HCC, and ART, K (trans), v e and k ep were compared between models using Wilcoxon tests and limits of agreement. Test-retest reproducibility was assessed in 10 patients. ART and v e obtained with TM; ART, ve, ke and τi obtained with SSM were significantly different between liver parenchyma and HCC (p < 0.04). Parameters showed variable reproducibility (CV range 14.7-66.5% for both models). Liver K (trans) and ve; HCC ve and kep were significantly different when estimated with the two models (p < 0.03). Our results show differences when computed between the TM and the SSM. However, these differences are smaller than parameter reproducibilities and may be of limited clinical significance.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Wake structure and wing motion in bat flight
NASA Astrophysics Data System (ADS)
Hubel, Tatjana; Breuer, Kenneth; Swartz, Sharon
2008-11-01
We report on experiments concerning the wake structure and kinematics of bat flight, conducted in a low-speed wind tunnel using time-resolved PIV (200Hz) and 4 high-speed cameras to capture wake and wing motion simultaneously. 16 Lesser dog-faced fruit bats (C. brachyotis) were trained to fly in the wind tunnel at 3-6.5m/s. The PIV recordings perpendicular to the flow stream allowed observing the development of the tip vortex and circulation over the wing beat cycle. Each PIV acquisition sequence is correlated with the respective kinematic history. Circulation within wing beat cycles were often quite repeatable, however variations due to maneuvering of the bat are clearly visible. While no distinct vortex structure was observed at the upper reversal point (defined according the vertical motion of the wrist) a tip vortex was observed to develop in the first third of the downstroke, growing in strength, and persisting during much of the upstroke. Correlated to the presence of a strong tip vortex the circulation has almost constant strength over the middle half of the wing beat. At relatively low flight speeds (3.4 m/s), a closed vortex structure behind the bat is postulated.
Effective Propulsion in Swimming: Grasping the Hydrodynamics of Hand and Arm Movements.
van Houwelingen, Josje; Schreven, Sander; Smeets, Jeroen B J; Clercx, Herman J H; Beek, Peter J
2017-02-01
In this paper, a literature review is presented regarding the hydrodynamic effects of different hand and arm movements during swimming with the aim to identify lacunae in current methods and knowledge, and to distil practical guidelines for coaches and swimmers seeking to increase swimming speed. Experimental and numerical studies are discussed, examining the effects of hand orientation, thumb position, finger spread, sculling movements, and hand accelerations during swimming, as well as unsteady properties of vortices due to changes in hand orientation. Collectively, the findings indicate that swimming speed may be increased by avoiding excessive sculling movements and by spreading the fingers slightly. In addition, it appears that accelerating the hands rather than moving them at constant speed may be beneficial, and that (in front crawl swimming) the thumb should be abducted during entry, catch, and upsweep, and adducted during the pull phase. Further experimental and numerical research is required to confirm these suggestions and to elucidate their hydrodynamic underpinnings and identify optimal propulsion techniques. To this end, it is necessary that the dynamical motion and resulting unsteady effects are accounted for, and that flow visualization techniques, force measurements, and simulations are combined in studying those effects.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-09-01
Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.
Signatures of microevolutionary processes in phylogenetic patterns.
Costa, Carolina L N; Lemos-Costa, Paula; Marquitti, Flavia M D; Fernandes, Lucas D; Ramos, Marlon F; Schneider, David M; Martins, Ayana B; Aguiar, Marcus A M
2018-06-23
Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem we analysed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
High speed flow cytometric separation of viable cells
Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.
1995-11-14
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
High speed flow cytometric separation of viable cells
Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie
1995-01-01
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick
2002-10-01
We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.
Comparing cutting efficiencies of diamond burs using a high-speed electric handpiece.
Chung, Evelyn M; Sung, Eric C; Wu, Ben; Caputo, Angelo A
2006-01-01
This study sought to compare the cutting efficiency of different diamond burs on initial use as well as during repeated use, alternating with sterilization. Long, round-end, tapered diamond burs with similar diameter, profile, and diamond coarseness (125-150 microm grit) were used. A high-torque, high-speed electric handpiece (set at 200,000 rpm) was utilized with a coolant flow rate of 25 mL/min. Burs were tested under a constant load of 170 g while cuts were made on a machinable ceramic substrate block. Each bur was subjected to five consecutive cuts for 30 seconds of continuous operation and the cutting depths were measured. All burs performed similarly on the first cut. Cutting efficiencies for three of the bur groups decreased significantly after the first cycle; however, by the fifth cycle, all bur groups performed similarly without any significant differences (p > 0.05). A scanning electron microscope revealed significant crystal loss after each use.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; Flack, Karen; Lust, Ethan
2016-11-01
2D PIV measurements in the near wake flow field (x/D<2) are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. All measurements were obtained in the USNA 380 ft tow tank with turbine towed at a constant carriage speed (Utow = 1.68 m/s), at the nominal tip speed ratio (TSR) of 7 and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. Near wake mapping is accomplished by "tiling" phase locked individual 2D PIV fields of view (nominally 30x30 cm2) with approximately 5 cm overlap. The discussion will focus on the downstream evolution of coherent tip vortices shed by the rotor blades and their vertical/horizontal displacements by the wave induced fluctuations. This observed phenomena ultimately results in significantly increased downstream wake expansion in comparison with the same conditions without waves. Office of Naval Research.
Pressure Response of Various Gases in a Pneumatic Resistance Capacitance System and Pipe
NASA Astrophysics Data System (ADS)
Peng, J.; Youn, C.; Tadano, K.; Kagawa, T.
2017-10-01
City gas, such as propane and methane, is widely used as a fuel in households and factories. Recently, hydrogen as a clean and efficient fuel has been proposed for fuel cell vehicles. However, few studies have investigated pressure control and response of gases considering their properties. This study investigated the static flow rate characteristics in an orifice with four gases—air, propane, methane, and hydrogen. Then, a pressure response experiment was performed using a pneumatic resistance capacitance system comprising an isothermal chamber and a nozzle flapper, and the time constant of the pressure response with various gases was analysed with a mathematical model. The simulation results agreed with the experimental data. Finally, the differences in pressure propagation in a pipe with various gases were explicated by a pressure response experiment. The results showed that the pressure response speed of hydrogen is faster than that of the other three gases because of its small molecular weight. Therefore, the pressure control equipment of hydrogen needs a high response speed.
The Radial Flow Speed of the Neutral Hydrogen in the Oval Distortion of NGC 4736
NASA Astrophysics Data System (ADS)
Speights, Jason; Benton, Allen; Reimer, Rebecca; Lemaire, Robert; Godwin, Caleb
2017-01-01
Radial flows are difficult to measure in the presence of elliptical flows. This is because the model describing the observed velocity field when both kinds of flows are present is degenerate in the unknown parameters. In this poster we show that the degeneracy can be overcome if the pattern speed and position angle of the elliptical flows are known. The method is demonstrated for NGC 4736 using 3.6 micrometer and neutral hydrogen data. We find a mean inward radial flow speed of 5.6 +/- 1.7 km/s in the region of the oval distortion.
Inertial Currents in Isotropic Plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1993-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; van Benthem, Max; Flack, Karen; Lust, Ethan
2013-11-01
Near wake measurements are presented for a 0.8 m diameter (D) two bladed horizontal axis tidal turbine model for two inflow conditions. The first case had steady inflow conditions, i.e. turbine was towed at a constant carriage speed and the second case had a constant carriage speed and incoming regular waves with a period of 1.6 seconds and 0.09 m wave height. The test matrix in the wake covered four radial positions from r/D = 0.3 to 0.5 and five axial positions from x/D = 0.19 to 0.95. All measurements were performed at the nominal tip speed ratio (TSR) of 7.4. The distribution of mean velocities for the steady inflow case exhibit significant spatial variability in the wake region. Normalized mean streamwise velocity show a decrease in magnitude with the axial direction for all radial locations ranging from U/Utow = 0.55 at r/D = 0.49 to 0.35 at r/D = 0.3. Vertical and lateral mean velocities are small but consistent with counterclockwise fluid angular momentum for a clockwise rotor rotation. The Reynolds shear stresses consistently show elevated levels for measurements near the rotor tip (r/D = 0.49) and are significantly reduced by x/D = 0.6 downstream. This suggests low turbulence levels in the wake which is consistent with very low free stream turbulence. For the case with waves, evidence of enhanced turbulence intensities and shear stresses within spatial coverage of the experiment suggest increased in localized turbulence production in the blade tip region over the entire near wake region.
Experimental investigation of large-scale vortices in a freely spreading gravity current
NASA Astrophysics Data System (ADS)
Yuan, Yeping; Horner-Devine, Alexander R.
2017-10-01
A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude
2015-06-01
It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-01-01
The paper demonstrates the possibility of calculating the characteristics of the flow of visitors to objects carrying out mass events passing through checkpoints. The mathematical model is based on the non-stationary queuing system (NQS) where dependence of requests input rate from time is described by the function. This function was chosen in such way that its properties were similar to the real dependencies of speed of visitors arrival on football matches to the stadium. A piecewise-constant approximation of the function is used when statistical modeling of NQS performing. Authors calculated the dependencies of the queue length and waiting time for visitors to service (time in queue) on time for different laws. Time required to service the entire queue and the number of visitors entering the stadium at the beginning of the match were calculated too. We found the dependence for macroscopic quantitative characteristics of NQS from the number of averaging sections of the input rate.
Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanne, A.; Movva, H. C. P.; Kang, S.
We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriersmore » as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.« less
Wittlich, F; Kohno, K; Mies, G; Norris, D G; Hoehn-Berlage, M
1995-01-01
NMR bolus track measurements were correlated with autoradiographically determined regional cerebral blood flow (rCBF). The NMR method is based on bolus infusion of the contrast agent gadolinium diethylenetriaminepentaacetate and high-speed T*2-sensitive NMR imaging. The first pass of the contrast agent through the image plane causes a transient decrease of the signal intensity. This time course of the signal intensity is transformed into relative concentrations of the contrast agent in each pixel. The mean transit time and relative blood flow and volume are calculated from such indicator dilution curves. We investigated whether this NMR technique correctly expresses the relative rCBF. The relative blood flow data, calculated from NMR bolus track experiments, and the absolute values of iodo[14C]antipyrine autoradiography were compared. A linear relationship was observed, indicating the proportionality of the transient NMR signal change with CBF. Excellent interindividual reproducibility of calibration constants is observed (r = 0.963). For a given NMR protocol, bolus track measurements calibrated with autoradiography after the experiment allow determination of absolute values for rCBF and regional blood volume. Images Fig. 2 Fig. 3 PMID:7892189
Ultrasonic Doppler blood flow meter for extracorporeal circulation
NASA Astrophysics Data System (ADS)
Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.
2000-04-01
In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.
Generation and Radiation of Acoustic Waves from a 2D Shear Layer
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.
NASA Astrophysics Data System (ADS)
Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei
Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.
Small axial compressor technology, volume 1
NASA Technical Reports Server (NTRS)
Holman, F. F.; Kidwell, J. R.; Ware, T. C.
1976-01-01
A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.
2001-08-30
Body with Thermo-Chemical destribution of Heat-Protected System . In: Physical and Gasdynamic Phenomena in Supersonic Flows Over Bodies. Edit. By...Final Report on ISTC Contract # 1809p Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental...of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagier, B.; Rousset, B.; Hoa, C.
Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and themore » refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.« less
Nonlinear dead water resistance at subcritical speed
NASA Astrophysics Data System (ADS)
Grue, John
2015-08-01
The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.
Research on grid connection control technology of double fed wind generator
NASA Astrophysics Data System (ADS)
Ling, Li
2017-01-01
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
A root-mean-square pressure fluctuations model for internal flow applications
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1985-01-01
A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
2001-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.
NASA Technical Reports Server (NTRS)
Burger, G. D.; Hodges, T. R.; Keenan, M. J.
1975-01-01
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion.
Free-to-roll tests of X-31 and F-18 subscale models with correlation to flight test results
NASA Technical Reports Server (NTRS)
Williams, David L., II; Nelson, Robert C.; Fisher, David F.
1994-01-01
This presentation will concentrate on a series of low-speed wind tunnel tests conducted on a 2.5 percent subscale F-18 model and a 2 percent subscale X-31 model. The model's control surfaces were unaugmented; and for the most part, were deflected at a constant angle throughout the tests. The tests consisted mostly of free-to-roll experiments conducted with the use of an air-bearing, surface pressure measurements, off-surface flow visualization, and force-balance tests. Where possible the results of the subscale tests have been compared to flight test data, or to other wind tunnel data taken at higher Reynolds numbers.
NASA Technical Reports Server (NTRS)
Riffel, R. E.; Rothrock, M. D.
1980-01-01
A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.
NASA Astrophysics Data System (ADS)
1992-09-01
ESDU 92026 provides a procedure for the design and performance analysis of the bearings with five or more identical equally-spaced rectangular recesses (or pockets) fed by identical capillary restrictors from a constant pressure supply. The method takes account of stiffness and overload capacity requirements and determines the bearing overall size and proportions from the required load, speed and shaft diameter, recommends the clearance and supply pressure, and defines the recess dimensions and capillary restrictor size from the properties of the chosen lubricant. Equations and charts allow prediction of the journal displacement under load, the power loss, the lubricant flow rate, and the bearing and lubricant temperatures. The method applies to laminar flow and guidance is given for assessing the onset of non-laminar flow in the bearing and restrictors. Guidance is also given on the likelihood of bearing-induced instability. The user is assisted by flowcharts in applying the method, and two practical worked examples illustrate the procedure. ESDU 92037 introduces a FORTRAN program that implements the method, and magnetic media are available in ESDUpac A9237.
Aspherical Supernovae: Effects on Early Light Curves
NASA Astrophysics Data System (ADS)
Afsariardchi, Niloufar; Matzner, Christopher D.
2018-04-01
Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.
Madanu, Sushma B; Barbel, Stanley I; Ward, Thomas
2016-06-01
In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.
Pulsed Neurton Elemental On-Line Material Analyzer
Vourvopoulos, George
2002-08-20
An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.
Que, Ruiyi; Zhu, Rong
2014-01-01
This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°. PMID:24385032
Que, Ruiyi; Zhu, Rong
2013-12-31
This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.
A mesh regeneration method using quadrilateral and triangular elements for compressible flows
NASA Technical Reports Server (NTRS)
Vemaganti, G. R.; Thornton, E. A.
1989-01-01
An adaptive remeshing method using both triangular and quadrilateral elements suitable for high-speed viscous flows is presented. For inviscid flows, the method generates completely unstructured meshes. For viscous flows, structured meshes are generated for boundary layers, and unstructured meshes are generated for inviscid flow regions. Examples of inviscid and viscous adaptations for high-speed flows are presented.
A bio-inspired flying robot sheds light on insect piloting abilities.
Franceschini, Nicolas; Ruffier, Franck; Serres, Julien
2007-02-20
When insects are flying forward, the image of the ground sweeps backward across their ventral viewfield and forms an "optic flow," which depends on both the groundspeed and the groundheight. To explain how these animals manage to avoid the ground by using this visual motion cue, we suggest that insect navigation hinges on a visual-feedback loop we have called the optic-flow regulator, which controls the vertical lift. To test this idea, we built a micro-helicopter equipped with an optic-flow regulator and a bio-inspired optic-flow sensor. This fly-by-sight micro-robot can perform exacting tasks such as take-off, level flight, and landing. Our control scheme accounts for many hitherto unexplained findings published during the last 70 years on insects' visually guided performances; for example, it accounts for the fact that honeybees descend in a headwind, land with a constant slope, and drown when travelling over mirror-smooth water. Our control scheme explains how insects manage to fly safely without any of the instruments used onboard aircraft to measure the groundheight, groundspeed, and descent speed. An optic-flow regulator is quite simple in terms of its neural implementation and just as appropriate for insects as it would be for aircraft.
Microconfined flow behavior of red blood cells.
Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano
2016-01-01
Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao
2013-09-01
Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.
Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan
2013-01-01
Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.
Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows
NASA Technical Reports Server (NTRS)
Nayagam, Vedha
2006-01-01
Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of fuel flow rate and the burner rotational speed.
Loss reduction in axial-flow compressors through low-speed model testing
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1984-01-01
A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
The selective use of functional optical variables in the control of forward speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.
Chen, Ching-Fu; Chen, Cheng-Wen
2011-05-01
This paper focuses on a special segment of motorcyclists in Taiwan--riders of heavy motorcycles--and investigates their speeding behavior and its affecting factors. It extends the theory of planned behavior (TPB) to explore motorcyclist speeding behavior by including the variables of psychological flow theory. The levels of sensation-seeking and riding experience are also used as grouping variables to investigate group differences from the influences of their affecting factors on speeding behavior. The results reveal that the psychological flow variables have greater predictive power in explaining speeding behavior than the TPB variables, providing useful insights into the unique nature of this group of motorcyclists, who are more prone to engage in speeding. Group differences with regard to both sensation-seeking and rider experience in speeding behavior are highlighted, and the implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G
2013-01-25
The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
Metal flow and temperature in direct extrusion of large-size aluminum billets
NASA Astrophysics Data System (ADS)
Valberg, Henry; Costa, André L. M.
2018-05-01
FEM-analysis is used to study thermo-mechanical conditions in aluminum rod extrusion for billets with large size corresponding to that used in industrial production. In the analysis, focus is on how the metal flow and the temperature conditions in the extrusion material is affected by the extrusion velocity in terms of the ram speed used in the extrusion process. In the study, metal flow is characterized by the deformations in extrusion subjected to a perfect grid pattern, consisting of orthogonal crossing lines, added into the longitudinal mid-plane of the initial billet. The analysis shows that metal flow in extrusion conducted at a low ram speed of 1 mms-1, is predicted significantly different from that at a high speed of 5 mms-1, or above. As regards the thermal conditions in the extrusion material, they are also predicted significantly different, at the low and the high ram speed level. A likely explanation why metal flow is different at low and high ram speeds may be that flow is altered because of the concurrent change in the temperature field within the billet.
High-tip-speed, low-loading transonic fan stage. Part 3: Final report
NASA Technical Reports Server (NTRS)
Ware, T. C.; Kobayashi, R. J.; Jackson, R. J.
1974-01-01
Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips.
Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.
Martin, Raleigh L; Kok, Jasper F
2017-06-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.
Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress
Martin, Raleigh L.; Kok, Jasper F.
2017-01-01
Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907
NASA Astrophysics Data System (ADS)
Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.
2014-07-01
An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Dunham, E. M.
2012-12-01
Crack waves are guided waves along fluid-filled cracks that propagate with phase velocity less than the sound wave speed. Chouet (JGR, 1986) and Ferrazzini and Aki (JGR, 1977) have shown that such waves could explain volcanic tremor in terms of the resonant modes of a finite length magma-filled crack. Based on an idealized lumped-parameter model, Julian (JGR, 1994) further proposed that the steady flow of a viscous magma in a volcanic conduit is unstable to perturbations, leading to self-excited oscillations of the conduit walls and radiation of seismic waves. Our objective is to evaluate the possibility of self-excited oscillations within a rigorous, continuum framework. Our specific focus has been on basaltic fissure eruptions. In a typical basaltic fissure system, the magnitudes of the wave restoring forces, fluid compressibility and wall elasticity, are highly depth dependent. Because of the elevated fluid compressibility from gas exsolution at shallow depths, fluid pressure perturbations in this regime propagate as acoustic waves with effectively rigid conduit walls. Below the exsolution depth, the conduit walls are more compliant relative to the magma compressibility and perturbations propagate as dispersive crack waves. Viscous magma flow through such a fissure will evolve to a fully developed state characterized by a parabolic velocity profile in several to tens of seconds. This time scale is greater than harmonic tremor periods, typically 0.1 to 1 second. A rigorous treatment of the wave response to pressure perturbations therefore requires a general analysis of conduit flow that is not in a fully developed state. We present a linearized analysis of the coupled fluid and elastic response to general flow perturbations. We assume that deformation of the wall is linear elastic. As our focus is on wavelengths greatly exceeding the crack width, fluid flow is described by a quasi-one dimensional, or width-averaged, model. We account for conservation of magma mass and momentum including compressibility and viscous drag. Our analysis further assumes small perturbations about a steady background flow, a linearized isothermal equation of state, and a nominally constant width channel. We confirm Julian's results that sufficiently rapid flow through a deformable-walled conduit is unstable to perturbations in the form of crack waves. Instability occurs when drag reduction from opening the conduit exceeds the increase in drag from increased fluid velocity. Crack waves are most unstable at long wavelengths, where the conduit becomes more compliant. In the long wavelength limit, we find a simple expression for the critical flow speed beyond which crack waves are unstable: u = c / 2, where c is the crack wave phase velocity. The instability condition is remarkably independent of viscosity. This result more rigorously confirms the conclusion of Dunham and Ogden (2012, J. App. Mech.), who found the same instability criterion under the limiting assumption of fully developed flow. In a typical basaltic system the occurrence of this instability requires flow speeds exceeding ~50 m/s at depths where magma is primarily liquid melt with little exsolved gas. At these depths, flow speeds of this order are unlikely to occur. We conclude that harmonic tremor due to self-excited oscillations is unlikely to occur in nature.
An explanation for the tiny value of the cosmological constant and the low vacuum energy density
NASA Astrophysics Data System (ADS)
Nassif, Cláudio
2015-09-01
The paper aims to provide an explanation for the tiny value of the cosmological constant and the low vacuum energy density to represent the dark energy. To accomplish this, we will search for a fundamental principle of symmetry in space-time by means of the elimination of the classical idea of rest, by including an invariant minimum limit of speed in the subatomic world. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks down the Lorentz symmetry. The metric of the flat space-time shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological length scales. Thus, the equation of state for the cosmological constant [ p(pressure) (energy density)] naturally emerges from such a space-time with an energy barrier of a minimum speed. The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained, being in agreement with the observational results of Perlmutter, Schmidt and Riess.
Combustion of Solids in Microgravity: Results from the BASS-II Experiment
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.; Bhattacharjee, Subrata; Fernandez-Pello, Carlos; Miller, Fletcher; Olson, Sandra L.; Takahashi, Fumiaki; T’ien, James S.
2014-01-01
The Burning and Suppression of Solids-II (BASS-II) experiment was performed on the International Space Station. Microgravity combustion tests burned thin and thick flat samples, acrylic slabs, spheres, and cylinders. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 53 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and oxygen concentration on flame appearance, growth, spread rate, and extinction were examined in both the opposed and concurrent flow configuration. The flames are quite sensitive to air flow speed in the range 0 to 5 cms. They can be sustained at very low flow speeds of less than 1 cms, when they become dim blue and stable. In this state they are not particularly dangerous from a fire safety perspective, but they can flare up quickly with a sudden increase in air flow speed. Including earlier BASS-I results, well over one hundred tests have been conducted of the various samples in the different geometries, flow speeds, and oxygen concentrations. There are several important implications related to fundamental combustion research as well as spacecraft fire safety. This work was supported by the NASA Space Life and Physical Sciences Research and Applications Division (SLPSRA).
NASA Astrophysics Data System (ADS)
Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.
2010-02-01
Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1992-01-01
Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.
NASA Technical Reports Server (NTRS)
Tracy, M. B.; Plentovich, E. B.; Chu, Julio
1992-01-01
An experiment was performed in the Langley 0.3 meter Transonic Cryogenic Tunnel to study the internal acoustic field generated by rectangular cavities in transonic and subsonic flows and to determine the effect of Reynolds number and angle of yaw on the field. The cavity was 11.25 in. long and 2.50 in. wide. The cavity depth was varied to obtain length-to-height (l/h) ratios of 4.40, 6.70, 12.67, and 20.00. Data were obtained for a free stream Mach number range from 0.20 to 0.90, a Reynolds number range from 2 x 10(exp 6) to 100 x 10(exp 6) per foot with a nearly constant boundary layer thickness, and for two angles of yaw of 0 and 15 degs. Results show that Reynolds number has little effect on the acoustic field in rectangular cavities at angle of yaw of 0 deg. Cavities with l/h = 4.40 and 6.70 generated tones at transonic speeds, whereas those with l/h = 20.00 did not. This trend agrees with data obtained previously at supersonic speeds. As Mach number decreased, the amplitude, and bandwidth of the tones changed. No tones appeared for Mach number = 0.20. For a cavity with l/h = 12.67, tones appeared at Mach number = 0.60, indicating a possible change in flow field type. Changes in acoustic spectra with angle of yaw varied with Reynolds number, Mach number, l/h ratios, and acoustic mode number.
Critical phenomenon of granular flow on a conveyor belt.
De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu
2003-06-01
The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When v
The span as a fundamental factor in airplane design
NASA Technical Reports Server (NTRS)
Lachmann, G
1928-01-01
Previous theoretical investigations of steady curvilinear flight did not afford a suitable criterion of "maneuverability," which is very important for judging combat, sport and stunt-flying airplanes. The idea of rolling ability, i.e., of the speed of rotation of the airplane about its X axis in rectilinear flight at constant speed and for a constant, suddenly produced deflection of the ailerons, is introduced and tested under simplified assumptions for the air-force distribution over the span. This leads to the following conclusions: the effect of the moment of inertia about the X axis is negligibly small, since the speed of rotation very quickly reaches a uniform value.
Rheology of surface granular flows
NASA Astrophysics Data System (ADS)
Orpe, Ashish V.; Khakhar, D. V.
Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate dot{gamma}_C = [gsin(beta_m-beta_s)/dcosbeta_s](1/2) and the particle diameter, where beta_m is the maximum dynamic angle of repose and beta_s is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length lambda=1.1d. The r.m.s. velocity shows similar behaviour but with lambda=1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity eta with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity eta˜ u(-1.5) . The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.
Simulation of load traffic and steeped speed control of conveyor
NASA Astrophysics Data System (ADS)
Reutov, A. A.
2017-10-01
The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.
Effects of optic flow on spontaneous overground walk-to-run transition.
De Smet, Kristof; Malcolm, P; Lenoir, M; Segers, V; De Clercq, D
2009-03-01
Perturbations of optic flow can induce changes in walking speed since subjects modulate their speed with respect to the speed perceived from optic flow. The purpose of this study was to examine the effects of optic flow on steady-state as well as on non steady-state locomotion, i.e. on spontaneous overground walk-to-run transitions (WRT) during which subjects were able to accelerate in their preferred way. In this experiment, while subjects moved along a specially constructed hallway, a series of stripes projected on the side walls and ceiling were made to move backward (against the locomotion direction) at an absolute speed of -2 m s(-1) (condition B), or to move forward at an absolute speed of +2 m s(-1) (condition F), or to remain stationary (condition C). While condition B and condition F entailed a decrease and an increase in preferred walking speed, respectively, the spatiotemporal characteristics of the spontaneous walking acceleration prior to reaching WRT were not influenced by modified visual information. However, backward moving stripes induced a smaller speed increase when making the actual transition to running. As such, running speeds after making the WRT were lower in condition B. These results indicate that the walking acceleration prior to reaching the WRT is more robust against visual perturbations compared to walking at preferred walking speed. This could be due to a higher contribution from spinal control during the walking acceleration phase. However, the finding that subjects started to run at a lower running speed when experiencing an approaching optic flow faster than locomotion speed shows that the actual realization of the WRT is not totally independent of external cues.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Field measurement of velocity time series in the center of Sequim Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Samuel F.; Harker-Klimes, Genevra EL
A 600 kHz RDI Workhorse was installed in the center of Sequim Bay from 15:04 June 23, 2017 to 09:34 August 24, 2017 at a depth of 25.9 m from MLLW. The instrument was configured to record the flow velocity in vertical cells of 1.0 m in 10 minute ensembles. Each ensemble was calculated as the mean of 24 pings, sampled with an interval of 5.0 s. A burst of increased sampling rate (1200 samples at 2 Hz) was recorded to characterize the wave climate on an hourly basis. The peak depth-averaged flow speed for the deployment was recorded duringmore » the flood tide on June 24, 2017 with a magnitude of 0.34 m/s. The peak flow speed in a single bin was recorded during the same tide at a location of 11.6 m from the seabed with a magnitude of 0.46 m/s. The velocity direction was observed to be relatively constant as a function of depth for the higher flow velocities (flood tides) but highly variable during times of slower flow (ebb tides). A peak significant wave height of 0.36 m was recorded on June 30, 2017 at 18:54. The measured waves showed no indication of a prevalent wave direction during this deployment. The wave record of the fetch-limited site during this deployment approaches the lower limit of the wave measurement resolution. The water temperature fluctuated over a range of 1.7°C during the deployment duration. The mean pitch of the instrument was -1.2° and the mean roll angle of the instrument was 0.3°. The low pitch and roll angles are important factors in the accurate measurement of the wave activity at the surface.« less
Cold Ion Escape from the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei
2014-05-01
It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 Martian radii the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Structure of S-shaped growth in innovation diffusion
NASA Astrophysics Data System (ADS)
Shimogawa, Shinsuke; Shinno, Miyuki; Saito, Hiroshi
2012-05-01
A basic question on innovation diffusion is why the growth curve of the adopter population in a large society is often S shaped. From macroscopic, microscopic, and mesoscopic viewpoints, the growth of the adopter population is observed as the growth curve, individual adoptions, and differences among individual adoptions, respectively. The S shape can be explained if an empirical model of the growth curve can be deduced from models of microscopic and mesoscopic structures. However, even the structure of growth curve has not been revealed yet because long-term extrapolations by proposed models of S-shaped curves are unstable and it has been very difficult to predict the long-term growth and final adopter population. This paper studies the S-shaped growth from the viewpoint of social regularities. Simple methods to analyze power laws enable us to extract the structure of the growth curve directly from the growth data of recent basic telecommunication services. This empirical model of growth curve is singular at the inflection point and a logarithmic function of time after this point, which explains the unstable extrapolations obtained using previously proposed models and the difficulty in predicting the final adopter population. Because the empirical S curve can be expressed in terms of two power laws of the regularity found in social performances of individuals, we propose the hypothesis that the S shape represents the heterogeneity of the adopter population, and the heterogeneity parameter is distributed under the regularity in social performances of individuals. This hypothesis is so powerful as to yield models of microscopic and mesoscopic structures. In the microscopic model, each potential adopter adopts the innovation when the information accumulated by the learning about the innovation exceeds a threshold. The accumulation rate of information is heterogeneous among the adopter population, whereas the threshold is a constant, which is the opposite of previously proposed models. In the mesoscopic model, flows of innovation information incoming to individuals are organized as dimorphic and partially clustered. These microscopic and mesoscopic models yield the empirical model of the S curve and explain the S shape as representing the regularities of information flows generated through a social self-organization. To demonstrate the validity and importance of the hypothesis, the models of three level structures are applied to reveal the mechanism determining and differentiating diffusion speeds. The empirical model of S curves implies that the coefficient of variation of the flow rates determines the diffusion speed for later adopters. Based on this property, a model describing the inside of information flow clusters can be given, which provides a formula interconnecting the diffusion speed, cluster populations, and a network topological parameter of the flow clusters. For two recent basic telecommunication services in Japan, the formula represents the variety of speeds in different areas and enables us to explain speed gaps between urban and rural areas and between the two services. Furthermore, the formula provides a method to estimate the final adopter population.
Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.
Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola
2011-12-01
The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.
Calibration of the k- ɛ model constants for use in CFD applications
NASA Astrophysics Data System (ADS)
Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora
2011-11-01
The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.
The temperature of unheated bodies in a high-speed gas stream
NASA Technical Reports Server (NTRS)
Eckert, E; Weise, W
1941-01-01
The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.
Non-minimally coupled varying constants quantum cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less
NASA low speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
1990-01-01
The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator.
Briens, Lauren; Logan, Ryan
2011-12-01
Chopper presence and then chopper speed was varied during wet high shear granulation of a placebo formulation using a PMA-1 granulator while also varying the impeller speed. The granules were extensively analyzed for differences due to the chopper. The effect of the chopper on the granules varied with impeller speed from no effect at a low impeller speed of 300 rpm to flow interruptions at an impeller speed of 700 rpm to minimal impact at very high impeller speeds as caking at the bowl perimeter obscured the effect of the chopper on the flow pattern. Differences in the granule flowability were minimal. However, it was concluded that the largest fraction of optimal granules would be obtained at an impeller speed of 700 rpm with the chopper at 1,000 rpm allowing balances between flow establishment, segregation, and centrifugal forces.
NASA Technical Reports Server (NTRS)
Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.
2015-01-01
As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.
Flux or speed? Examining speckle contrast imaging of vascular flows
Kazmi, S. M. Shams; Faraji, Ehssan; Davis, Mitchell A.; Huang, Yu-Yen; Zhang, Xiaojing J.; Dunn, Andrew K.
2015-01-01
Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384
Flux or speed? Examining speckle contrast imaging of vascular flows.
Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K
2015-07-01
Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking.
Reducing the impact of speed dispersion on subway corridor flow.
Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian
2017-11-01
The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.
Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P
2016-01-01
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less
Nozzle Aerodynamic Stability During a Throat Shift
NASA Technical Reports Server (NTRS)
Kawecki, Edwin J.; Ribeiro, Gregg L.
2005-01-01
An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
Time response analysis in suspension system design of a high-speed car
NASA Astrophysics Data System (ADS)
Pagwiwoko, Cosmas Pandit
2010-03-01
A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.
Distributed flow sensing for closed-loop speed control of a flexible fish robot.
Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A
2015-10-23
Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal
2010-06-20
Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) 'arches' or 'bubbles' that 'inflate' from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate verticallymore » from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex 'roll-up' of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) 'optical flow' code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s{sup -1}, which is supersonic for a {approx}10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s{sup -1}. Typical lifetimes range from 300 to 1000 s ({approx}5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km{sup 2} s{sup -1} reaching maximum projected areas from 2 to 15 Mm{sup 2}. Maximum contrast of the dark flows relative to the bright prominence plasma in SOT images is negative and ranges from -10% for smaller flows to -50% for larger flows. Passive scalar 'cork movies' derived from NAVE measurements show that prominence plasma is entrained by the upflows, helping to counter the ubiquitous downflow streams in the prominence. Plume formation shows no clear temporal periodicity. However, it is common to find 'active cavities' beneath prominences that can spawn many upflows in succession before going dormant. The mean flow recurrence time in these active locations is roughly 300-500 s (5-8 minutes). Locations remain active on timescales of tens of minutes up to several hours. Using a column density ratio measurement and reasonable assumptions on plume and prominence geometries, we estimate that the mass density in the dark cavities is at most 20% of the visible prominence density, implying that a single large plume could supply up to 1% of the mass of a typical quiescent prominence. We hypothesize that the plumes are generated from a Rayleigh-Taylor instability taking place on the boundary between the buoyant cavities and the overlying prominence. Characteristics, such as plume size and frequency, may be modulated by the strength and direction of the cavity magnetic field relative to the prominence magnetic field. We conclude that buoyant plumes are a source of quiescent prominence mass as well as a mechanism by which prominence plasma is advected upward, countering constant gravitational drainage.« less
NASA Astrophysics Data System (ADS)
Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Lites, Bruce W.; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi
2010-06-01
Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) "arches" or "bubbles" that "inflate" from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex "roll-up" of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) "optical flow" code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s-1, which is supersonic for a ~10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s-1. Typical lifetimes range from 300 to 1000 s (~5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km2 s-1 reaching maximum projected areas from 2 to 15 Mm2. Maximum contrast of the dark flows relative to the bright prominence plasma in SOT images is negative and ranges from -10% for smaller flows to -50% for larger flows. Passive scalar "cork movies" derived from NAVE measurements show that prominence plasma is entrained by the upflows, helping to counter the ubiquitous downflow streams in the prominence. Plume formation shows no clear temporal periodicity. However, it is common to find "active cavities" beneath prominences that can spawn many upflows in succession before going dormant. The mean flow recurrence time in these active locations is roughly 300-500 s (5-8 minutes). Locations remain active on timescales of tens of minutes up to several hours. Using a column density ratio measurement and reasonable assumptions on plume and prominence geometries, we estimate that the mass density in the dark cavities is at most 20% of the visible prominence density, implying that a single large plume could supply up to 1% of the mass of a typical quiescent prominence. We hypothesize that the plumes are generated from a Rayleigh-Taylor instability taking place on the boundary between the buoyant cavities and the overlying prominence. Characteristics, such as plume size and frequency, may be modulated by the strength and direction of the cavity magnetic field relative to the prominence magnetic field. We conclude that buoyant plumes are a source of quiescent prominence mass as well as a mechanism by which prominence plasma is advected upward, countering constant gravitational drainage.
A cellular automata traffic flow model for three-phase theory
NASA Astrophysics Data System (ADS)
Qian, Yong-Sheng; Feng, Xiao; Zeng, Jun-Wei
2017-08-01
This paper presents a newly-modified KKW model including the subdivided vehicles types, and introduces the changes for a driver's sensitivity into the speed fluctuation. By means of the numerical simulation the following conclusions are obtained herewith: 1. Velocity disturbance propagation in traffic flow is caused by the speed adaptation among vehicles. 2. In free flow phase, very fewer vehicles are affected by the velocity disturbance and the effect can be dissipated quickly thus the time of disturbance in a single vehicle is quite shorter. On the contrary, the impact duration time of the disturbance on a single vehicle is longer in synchronous flow phase, thus, it will affect more vehicles accordingly. 3. Under the free flow phase, the continuous deceleration behavior of a high speed vehicle to adapt the preceding car with slow speed can cause the reduction of the driver's sensitivity, lead to the vehicle over-deceleration and aggravate the effects of velocity perturbations While in the synchronous flow phase, though the reaction delay caused by the driver's sensitivity reduction can induce speed wave dissolving in essence, it increases the impact of disturbance on the traffic flow. 4. The large acceleration and deceleration tendency of an aggressive driver in the free flow phase always increase the influence of the velocity disturbance, while a conservative driver often weakens the influence. However, in the synchronized flow, since the high traffic density and the synchronization between vehicles is very strong, also the main factor which affects the driver's speed choice is the distance among vehicles, therefore the effect of a driver's behavior tendency to the spread of velocity perturbation is not obvious under this state.
NASA Astrophysics Data System (ADS)
Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan
2018-04-01
In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.
The Comet Giacobini-Zinner magnetotail: Axial stresses and inferred near-nucleus properties
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Slavin, J. A.; Smith, E. J.; Steinberg, J. L.
1986-01-01
Utilizing the electron and magnetic field data from the ICE tail traversal of comet Giacobini-Zinner along with the MHD equations, a steady state, stress balance model of the cometary magnetotail was developed, and used to infer important but unmeasured ion properties within the magnetotail at ICE and upstream at the average point along each streamline where cometary ions are picked-up. The derived tailward ion flow speed at ICE is quite constant at approx. -20 to -30 km/sec across the entire tail. The flow velocity, ion temperature, density, and ion source rates upstream from the lobes (current sheet) at the average pick-up locations are approx. -75 km/sec (approx. -12), approx. 4 million K (approx. 100,000), approx. 20 cc (approx. 400), and approx. 15 cu cm/sec. Gradients in the plasma properties between the two regions are quite strong. Implications of inferred plasma properties for the near-nucleus region and for cometary magnetotail formation are examined.
Hydrodynamics of Fishlike Swimming: Effects of swimming kinematics and Reynolds number
NASA Astrophysics Data System (ADS)
Gilmanov, Anvar; Posada, Nicolas; Sotiropoulos, Fotis
2003-11-01
We carry out a series of numerical simulations to investigate the effects of swimming kinematics and Reynolds number on the flow past a three-dimensional fishlike body undergoing undulatory motion. The simulated body shape is that of a real mackerel fish. The mackerel was frozen and subsequently sliced in several thin fillets whose dimensions were carefully measured and used to construct the fishlike body shape used in the simulations. The flow induced by the undulating body is simulated by solving the 3D, unsteady, incompressible Navier-Stokes equations with the second-order accurate, hybrid Cartesian/Immersed Boundary formulation of Gilmanov and Sotiropoulos (J. Comp. Physics, under review, 2003). We consider in-line swimming at constant speed and carry out simulations for various types of swimming kinematics, varying the tailbeat amplitude, frequency, and Reynolds number (300
Measuring Aptamer Equilbria Using Gradient Micro Free Flow Electrophoresis
Turgeon, Ryan T.; Fonslow, Bryan R.; Jing, Meng; Bowser, Michael T.
2010-01-01
Gradient micro free flow electrophoresis (μFFE) was used to observe the equilibria of DNA aptamers with their targets (IgE or HIVRT) across a range of ligand concentrations. A continuous stream of aptamer was mixed online with an increasing concentration of target and introduced into the μFFE device, which separated ligand-aptamer complexes from the unbound aptamer. The continuous nature of μFFE allowed the equilibrium distribution of aptamer and complex to be measured at 300 discrete target concentrations within 5 minutes. This is a significant improvement in speed and precision over affinity capillary electrophoresis (ACE) assays. The dissociation constant of the aptamer-IgE complex was estimated to be 48± 3 nM. The high coverage across the range of ligand concentrations allowed complex stoichiometries of the aptamer-HIVRT complexes to be observed. Nearly continuous observation of the equilibrium distribution from 0 to 500 nM HIVRT revealed the presence of complexes with 3:1 (aptamer:HIVRT), 2:1 and 1:1 stoichiometries. PMID:20373790
Flow speed has little impact on propulsive characteristics of oscillating foils
NASA Astrophysics Data System (ADS)
Van Buren, T.; Floryan, D.; Wei, N.; Smits, A. J.
2018-01-01
Experiments are reported on the performance of a pitching and heaving two-dimensional foil in a water channel in either continuous or intermittent motion. We find that the thrust and power are independent of the mean free-stream velocity for twofold changes in the mean velocity (fourfold in the dynamic pressure) and for oscillations in the velocity up to 38% of the mean, where the oscillations are intended to mimic those of freely swimming motions where the thrust varies during the flapping cycle. We demonstrate that the correct velocity scale is not the flow velocity but the mean velocity of the trailing edge. We also find little or no impact of streamwise velocity change on the wake characteristics such as vortex organization, vortex strength, and time-averaged velocity profile development—the wake is both qualitatively and quantitatively unchanged. Our results suggest that constant velocity studies can be used to make robust conclusions about swimming performance without a need to explore the free-swimming condition.
Chang, Dongsook; Huang, Aaron; Olsen, Bradley D
2017-01-01
The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein-polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air-film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, John C.
1995-01-01
A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, J.C.
1995-06-27
A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue
NASA Astrophysics Data System (ADS)
Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-11-01
Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24mm·s-1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.
NASA Astrophysics Data System (ADS)
Peng, Di; Wang, Shaofei; Liu, Yingzheng
2016-04-01
Fast pressure-sensitive paint (PSP) is very useful in flow diagnostics due to its fast response and high spatial resolution, but its applications in low-speed flows are usually challenging due to limitations of paint's pressure sensitivity and the capability of high-speed imagers. The poor signal-to-noise ratio in low-speed cases makes it very difficult to extract useful information from the PSP data. In this study, unsteady PSP measurements were made on a flat plate behind a cylinder in a low-speed wind tunnel (flow speed from 10 to 17 m/s). Pressure fluctuations (Δ P) on the plate caused by vortex-plate interaction were recorded continuously by fast PSP (using a high-speed camera) and a microphone array. Power spectrum of pressure fluctuations and phase-averaged Δ P obtained from PSP and microphone were compared, showing good agreement in general. Proper orthogonal decomposition (POD) was used to reduce noise in PSP data and extract the dominant pressure features. The PSP results reconstructed from selected POD modes were then compared to the pressure data obtained simultaneously with microphone sensors. Based on the comparison of both instantaneous Δ P and root-mean-square of Δ P, it was confirmed that POD analysis could effectively remove noise while preserving the instantaneous pressure information with good fidelity, especially for flows with strong periodicity. This technique extends the application range of fast PSP and can be a powerful tool for fundamental fluid mechanics research at low speed.
Linander, Nellie; Dacke, Marie; Baird, Emily
2015-04-01
When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. © 2015. Published by The Company of Biologists Ltd.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Heinicke, Orville H.; Vandeman, Jack E.
1945-01-01
An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.
Development of circulation control technology for powered-lift STOL aircraft
NASA Technical Reports Server (NTRS)
Englar, Robert J.
1987-01-01
The flow entraining capabilities of the Circulation Control Wing high lift system were employed to provide an even stronger STOL potential when synergistically combined with upper surface mounted engines. The resulting configurations generate very high supercirculation lift in addition to a vertical component of the pneumatically deflected engine thrust. A series of small scale wind tunnel tests and full scale static thrust deflection tests are discussed which provide a sufficient data base performance. These tests results show thrust deflections of greater than 90 deg produced pneumatically by nonmoving aerodynamic surfaces, and the ability to maintain constant high lift while varying the propulsive force from high thrust recovery required for short takeoff to high drag generation required for short low speed landings.
2016-11-09
software, and their networking to augment optical diagnostics employed in supersonic reacting and non-reacting flow experiments . A high-speed...facility at Caltech. Experiments to date have made use of this equipment, extending previous capabilities to high-speed schlieren quantitative flow...visualization and image correlation velocimetry, with further experiments currently in progress. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
Morrow, Thomas B.; Behring, II, Kendricks A.
2004-10-12
A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.
Reduced Perceived Noise Low Tip Speed Fans as a Result of Abandoning Cutoff Stator Vane Numbers
NASA Technical Reports Server (NTRS)
Dittmar, James
1998-01-01
As fan tip speeds are reduced, broadband noise is becoming more important in the calculation of perceived noise. Past experience indicates that lower vane number stators with either constant chord or constant solidity may be a way to reduce broadband noise caused by the interaction of the rotor wake turbulence with the stators. A baseline fan and a low blade number fan were investigated to determine if a noise reduction was possible. The low vane number fan showed a 2 PndB and a 1.5 PNLT noise reduction. These reductions show that this is a viable technique for reducing the perceived noise of low tip speed fans.
On the modelling of scalar and mass transport in combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.
1989-01-01
Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
NASA Astrophysics Data System (ADS)
Richardson, S. I. Heath; Baggaley, A. W.; Hill, N. A.
2018-02-01
We study the effects of imposed three-dimensional flows on the trajectories and mixing of gyrotactic swimming microorganisms and identify phenomena not seen in flows restricted to two dimensions. Through numerical simulation of Taylor-Green and Arnold-Beltrami-Childress (ABC) flows, we explore the role that the flow and the cell shape play in determining the long-term configuration of the cells' trajectories, which often take the form of multiple sinuous and helical "plumelike" structures, even in the chaotic ABC flow. This gyrotactic suppression of Lagrangian chaos persists even in the presence of random noise. Analytical solutions for a number of cases reveal the how plumes form and the nature of the competition between torques acting on individual cells. Furthermore, studies of Lyapunov exponents reveal that, as the ratio of cell swimming speed relative to the flow speed increases from zero, the initial chaotic trajectories are first suppressed and then give way to a second unexpected window of chaotic trajectories at speeds greater than unity, before suppression of chaos at high relative swimming speeds.
NASA Technical Reports Server (NTRS)
Messenger, H. E.; Keenan, M. J.
1974-01-01
A two-stage fan with a first rotor tip speed of 1450 ft/sec (441.96 m/sec) and no inlet guide vanes was tested with uniform and distorted inlet flows, with a redesigned second rotor having a part span shroud to prevent flutter, with variable-stagger stators set in nominal positions, and without rotor casing treatment. The fan achieved a pressure ratio 2.8 at a corrected flow of 185.4 lbm/sec (84.0 kg/sec), an adiabatic efficiency of 85.0 percent, and a stall margin of 12 percent. The redesigned second rotor did not flutter. Tip radial distortion reduced the stall margin at intermediate speed, but had little effect on stall margin at high or low speeds. Hub radial distortion reduced the stall margin at design speed but increased stall margin at low speed. Circumferential distortion reduced stall pressure ratio and flow to give approximately the same stall lines with uniform inlet flow. Distortions were attenuated by the fan. For Vol. 1, see N74-11421.
Miller, Jeff; Sproesser, Gudrun; Ulrich, Rolf
2008-07-01
In two experiments, we used response signals (RSs) to control processing time and trace out speed--accuracy trade-off(SAT) functions in a difficult perceptual discrimination task. Each experiment compared performance in blocks of trials with constant and, hence, temporally predictable RS lags against performance in blocks with variable, unpredictable RS lags. In both experiments, essentially equivalent SAT functions were observed with constant and variable RS lags. We conclude that there is little effect of advance preparation for a given processing time, suggesting that the discrimination mechanisms underlying SAT functions are driven solely by bottom-up information processing in perceptual discrimination tasks.
Implementation of density-based solver for all speeds in the framework of OpenFOAM
NASA Astrophysics Data System (ADS)
Shen, Chun; Sun, Fengxian; Xia, Xinlin
2014-10-01
In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.
The steady-state flow quality in a model of a non-return wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Eckert, W. T.; Kelly, M. W.
1972-01-01
The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.
DOT National Transportation Integrated Search
1996-12-01
Although the speed of some guided ground transportation systems continues to : increase, the reaction time and the sensory and information processing : capacities of railroad personnel remain constant. This second report in a : series examining criti...
Embedded function methods for compressible high speed turbulent flow
NASA Technical Reports Server (NTRS)
Walker, J. D. A.
1989-01-01
Fundamental issues relating to compressible turbulent flow are addressed. The focus has been on developing methods and testing concepts for attached flows rather than trying to force a conventional law of the wall into a zone of backflow. Although the dynamics of the near-wall flow in an attached turbulent boundary layer are relatively well documented, the dynamical features of a zone of reversed turbulent flow are not, nor are they well understood. Incompressibility introduces effects and issues that have been dealt with only marginally in the literature, therefore, the present work has been focussed on attached high-speed flows. The wall function method has been extended up through the supersonic to hypersonic speeds. Algorithms have been successfully introduced into the code that calculates the flow all the way to the wall, and testing is being carried out for progressively more complex flow situations.
NASA Astrophysics Data System (ADS)
Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš
2018-06-01
Hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV). The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a tooth impeller 133 mm in diameter. The velocity fields were measured in the impeller discharge flow for impeller rotation speeds from 300 rpm to 700 rpm and three liquids of different viscosities (i.e. (i) distilled water, ii) a 28% vol. aqueous solution of glycol, and iii) a 43% vol. aqueous solution of glycol), corresponding to the impeller Reynolds number in the range 68 000 < Re < 221 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The radial turbulence intensity was found to be in the majority in the range from 0.3 to 0.9, which corresponds to the high level of this quantity.
OFF-DESIGN PERFORMANCE OF RADIAL INFLOW TURBINES
NASA Technical Reports Server (NTRS)
Wasserbauer, C. A.
1994-01-01
This program calculates off design performance of radial inflow turbines. The program uses a one dimensional solution of flow conditions through the turbine along the main streamline. The loss model accounts for stator, rotor, incidence, and exit losses. Program features include consideration of stator and rotor trailing edge blockage and computation of performance to limiting load. Stator loss (loss in kinetic energy across the stator) is proportional to the average kinetic energy in the blade row and is represented in the program by an equation which includes a stator loss coefficient determined from design point performance and then assumed to be constant for the off design calculations. Minimum incidence loss does not occur at zero incidence angle with respect to the rotor blade, but at some optimum flow angle. At high pressure ratios the level of rotor inlet velocity seemed to have an excessive influence on the loss. Using the component of velocity in the direction of the optimum flow angle gave better correlations with experimental results. Overall turbine geometry and design point values of efficiency, pressure ratio, and mass flow are needed as input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The program has been implemented on the IBM 7094 and operates in batch mode.
NASA Astrophysics Data System (ADS)
Bravo, Teresa; Maury, Cédric
2018-03-01
This paper describes analytical and experimental studies carried out to examine the attenuation and absorption properties of rigidly-backed fibrous anisotropic materials in contact with a uniform mean flow. The aim is to provide insights for the development of non-locally reacting wall-treatments able to dissipate the noise induced by acoustic excitations over in-duct or external lining systems. A model of sound propagation in anisotropic bulk-reacting liners is presented that fully accounts for anisotropic losses due to heat conduction, viscous dissipation and diffusion processes along and across the material fibres as well as for the convective effect of an external flow. The propagation constant for the least attenuated mode of the coupled system is obtained using a simulated annealing search method. The predicted acoustical performance is validated in the no-flow case for a wide range of fibre diameters. They are assessed against impedance tube and free-field pressure-velocity measurements of the normal incidence absorption coefficient and surface impedance. Parametric studies are then conducted to determine the key constitutive parameters such as the fibres orientation or the amount of anisotropy that mostly influence the axial attenuation or the normal absorption. They are supported by a low-frequency approximation to the axial attenuation under a low-speed flow.
Local scattering property scales flow speed estimation in laser speckle contrast imaging
NASA Astrophysics Data System (ADS)
Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.
2015-07-01
Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.
The numerical simulation of a high-speed axial flow compressor
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Adamczyk, John J.
1991-01-01
The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.
Measurement of direct current electric fields and plasma flow speeds in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.; Balogh, A.; Forsyth, R. J.
1993-01-01
During the encounter of Ulysses with Jupiter, we have measured two components of the dc electric field and deduced from them the flow speed in the Io toms, as well as the presence of a polar cap region end what we interpret as a cleft region. Within the toms the flow speed is approximately equal to the speed of a plasma corotating with Jupiter but has significant deviations. The dominant deviations have an apparent period of the order of Jupiter's rotation period, but this might be a latitudinal effect. Other important periods are about 40 min and less than 25 min.
Cosmologies with varying speed of light: kinematic tests
NASA Astrophysics Data System (ADS)
Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.
2003-08-01
In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.
Spedding, G R; Hedenström, A H; McArthur, J; Rosén, M
2008-01-01
Bird flight occurs over a range of Reynolds numbers (Re; 10(4) < or = Re < or = 10(5), where Re is a measure of the relative importance of inertia and viscosity) that includes regimes where standard aerofoil performance is difficult to predict, compute or measure, with large performance jumps in response to small changes in geometry or environmental conditions. A comparison of measurements of fixed wing performance as a function of Re, combined with quantitative flow visualisation techniques, shows that, surprisingly, wakes of flapping bird wings at moderate flight speeds admit to certain simplifications where their basic properties can be understood through quasi-steady analysis. Indeed, a commonly cited measure of the relative flapping frequency, or wake unsteadiness, the Strouhal number, is seen to be approximately constant in accordance with a simple requirement for maintaining a moderate local angle of attack on the wing. Together, the measurements imply a fine control of boundary layer separation on the wings, with implications for control strategies and wing shape selection by natural and artificial fliers.
In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy.
Chen, Sung-Liang; Xie, Zhixing; Carson, Paul L; Wang, Xueding; Guo, L Jay
2011-10-15
We recently proposed photoacoustic correlation spectroscopy (PACS) and demonstrated a proof-of-concept experiment. Here we use the technique for in vivo flow speed measurement in capillaries in a chick embryo model. The photoacoustic microscopy system is used to render high spatial resolution and high sensitivity, enabling sufficient signals from single red blood cells. The probe beam size is calibrated by a blood-mimicking phantom. The results indicate the feasibility of using PACS to study flow speeds in capillaries.
Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters
NASA Astrophysics Data System (ADS)
Demir, Veysi
Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).
Three-dimensional trajectory analyses of two drop sizing instruments: PMS OAP and PMS FSSP
NASA Technical Reports Server (NTRS)
Norment, Hillyer G.
1988-01-01
Flow induced distortions of water drop fluxes and speeds seen by the instruments were predicted by use of three dimensional flow and trajectory calculation methods. Sensitivities were determined for the instruments, in isolation and mounted under the wing of an airplane, to: water drop diameter (2 to 1000 microns), angle of attack and free stream air speed. For the optical array probe in isolation and on the airplane at 0 deg angle of attack, flux distortions of practical consequence are not found. At 4 deg airplane angle of attack, partial flow stagnation under the uptilted wing causes significant decreases in both flux and speed for cloud size droplets. For the forward scattering spectrometer probe in isolation, only marginally significant sensitivities to free stream air speed are found, and no sensitivity is found to angle of attack. Both speed and flux of cloud size droplets are predicted to be undermeasured by from 12 to 24 percent depending on airplane angle of attack. For the wing-mounted instruments, effects of flow about the instruments themselves are found to be equal in importance to effects of flow about the airplane. Preferred orientation (canting) angles of distorted water drops are found to be functions of drop size, angle of attack and air speed.
Non-stationary Drainage Flows and Cold Pools in Gentle Terrain
NASA Astrophysics Data System (ADS)
Mahrt, L.
2015-12-01
Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley
The experimental study of matching between centrifugal compressor impeller and diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, H.; Nakao, H.; Saito, M.
1999-01-01
the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by themore » critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.« less
NASA Technical Reports Server (NTRS)
Wenzel, L M; Hart, C E; Craig, R T
1957-01-01
Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.
Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D
2017-10-15
Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi
2006-01-01
The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.
Theory of diffusion of active particles that move at constant speed in two dimensions.
Sevilla, Francisco J; Gómez Nava, Luis A
2014-08-01
Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term. While no difference is observed for the mean-square displacement computed from the two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles with constant speed in dispersive media.
NASA Astrophysics Data System (ADS)
Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin
2012-11-01
The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.
Selective Use of Optical Variables to Control Forward Speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.
Kinetic effects on the velocity-shear-driven instability
NASA Technical Reports Server (NTRS)
Wang, Z.; Pritchett, P. L.; Ashour-Abdalla, M.
1992-01-01
A comparison is made between the properties of the low-frequency long-wavelength velocity-shear-driven instability in kinetic theory and magnetohydrodynamics (MHD). The results show that the removal of adiabaticity along the magnetic field line in kinetic theory leads to modifications in the nature of the instability. Although the threshold for the instability in the two formalisms is the same, the kinetic growth rate and the unstable range in wave-number space can be larger or smaller than the MHD values depending on the ratio between the thermal speed, Alfven speed, and flow speed. When the thermal speed is much larger than the flow speed and the flow speed is larger than the Alfven speed, the kinetic formalism gives a larger maximum growth rate and broader unstable range in wave-number space. In this regime, the normalized wave number for instability can be larger than unity, while in MHD it is always less than unity. The normal mode profile in the kinetic case has a wider spatial extent across the shear layer.
Chirp-Z analysis for sol-gel transition monitoring.
Martinez, Loïc; Caplain, Emmanuel; Serfaty, Stéphane; Griesmar, Pascal; Gouedard, Gérard; Gindre, Marcel
2004-04-01
Gelation is a complex reaction that transforms a liquid medium into a solid one: the gel. In gel state, some gel materials (DMAP) have the singular property to ring in an audible frequency range when a pulse is applied. Before the gelation point, there is no transmission of slow waves observed; after the gelation point, the speed of sound in the gel rapidly increases from 0.1 to 10 m/s. The time evolution of the speed of sound can be measured, in frequency domain, by following the frequency spacing of the resonance peaks from the Synchronous Detection (SD) measurement method. Unfortunately, due to a constant frequency sampling rate, the relative error for low speeds (0.1 m/s) is 100%. In order to maintain a low constant relative error, in the whole speed time evolution range, Chirp-Z Transform (CZT) is used. This operation transforms a time variant signal to a time invariant one using only a time dependant stretching factor (S). In the frequency domain, the CZT enables us to stretch each collected spectrum from time signals. The blind identification of the S factor gives us the complete time evolution law of the speed of sound. Moreover, this method proves that the frequency bandwidth follows the same time law. These results point out that the minimum wavelength stays constant and that it only depends on the gel.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005
Exact Relativistic `Antigravity' Propulsion
NASA Astrophysics Data System (ADS)
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
NASA Astrophysics Data System (ADS)
Diamond, D. H.; Heyns, P. S.; Oberholster, A. J.
2016-12-01
The measurement of instantaneous angular speed is being increasingly investigated for its use in a wide range of condition monitoring and prognostic applications. Central to many measurement techniques are incremental shaft encoders recording the arrival times of shaft angular increments. The conventional approach to processing these signals assumes that the angular increments are equidistant. This assumption is generally incorrect when working with toothed wheels and especially zebra tape encoders and has been shown to introduce errors in the estimated shaft speed. There are some proposed methods in the literature that aim to compensate for this geometric irregularity. Some of the methods require the shaft speed to be perfectly constant for calibration, something rarely achieved in practice. Other methods assume the shaft speed to be nearly constant with minor deviations. Therefore existing methods cannot calibrate the entire shaft encoder geometry for arbitrary shaft speeds. The present article presents a method to calculate the shaft encoder geometry for arbitrary shaft speed profiles. The method uses Bayesian linear regression to calculate the encoder increment distances. The method is derived and then tested against simulated and laboratory experiments. The results indicate that the proposed method is capable of accurately determining the shaft encoder geometry for any shaft speed profile.
A near-wall four-equation turbulence model for compressible boundary layers
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1992-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.
Flight Demonstration of a Shock Location Sensor Using Constant Voltage Hot-Film Anemometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Sarma, Garimella R.; Mangalam, Siva M.
1997-01-01
Flight tests have demonstrated the effectiveness of an array of hot-film sensors using constant voltage anemometry to determine shock position on a wing or aircraft surface at transonic speeds. Flights were conducted at the NASA Dryden Flight Research Center using the F-15B aircraft and Flight Test Fixture (FTF). A modified NACA 0021 airfoil was attached to the side of the FTF, and its upper surface was instrumented to correlate shock position with pressure and hot-film sensors. In the vicinity of the shock-induced pressure rise, test results consistently showed the presence of a minimum voltage in the hot-film anemometer outputs. Comparing these results with previous investigations indicate that hot-film anemometry can identify the location of the shock-induced boundary layer separation. The flow separation occurred slightly forward of the shock- induced pressure rise for a laminar boundary layer and slightly aft of the start of the pressure rise when the boundary layer was tripped near the airfoil leading edge. Both minimum mean output and phase reversal analyses were used to identify the shock location.