Sample records for constant modulus algorithm

  1. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    NASA Astrophysics Data System (ADS)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  2. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    PubMed

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  3. Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems

    NASA Astrophysics Data System (ADS)

    Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun

    2013-12-01

    The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.

  4. Numerical results on the transcendence of constants involving pi, e, and Euler's constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    The existence of simple polynomial equations (integer relations) for the constants e/pi, e + pi, log pi, gamma (Euler's constant), e exp gamma, gamma/e, gamma/pi, and log gamma is investigated by means of numerical computations. The recursive form of the Ferguson-Fourcade algorithm (Ferguson and Fourcade, 1979; Ferguson, 1986 and 1987) is implemented on the Cray-2 supercomputer at NASA Ames, applying multiprecision techniques similar to those described by Bailey (1988) except that FFTs are used instead of dual-prime-modulus transforms for multiplication. It is shown that none of the constants has an integer relation of degree eight or less with coefficients of Euclidean norm 10 to the 9th or less.

  5. New spatial diversity equalizer based on PLL

    NASA Astrophysics Data System (ADS)

    Rao, Wei

    2011-10-01

    A new Spatial Diversity Equalizer (SDE) based on phase-locked loop (PLL) is proposed to overcome the inter-symbol interference (ISI) and phase rotations simultaneously in the digital communication system. The proposed SDE consists of equal gain combining technique based on a famous blind equalization algorithm constant modulus algorithm (CMA) and a PLL. Compared with conventional SDE, the proposed SDE has not only faster convergence rate and lower residual error but also the ability to recover carrier phase rotation. The efficiency of the method is proved by computer simulation.

  6. Implementation of LSCMA adaptive array terminal for mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Zhou, Shun; Wang, Huali; Xu, Zhijun

    2007-11-01

    This paper considers the application of adaptive array antenna based on the least squares constant modulus algorithm (LSCMA) for interference rejection in mobile SATCOM terminals. A two-element adaptive array scheme is implemented with a combination of ADI TS201S DSP chips and Altera Stratix II FPGA device, which makes a cooperating computation for adaptive beamforming. Its interference suppressing performance is verified via Matlab simulations. Digital hardware system is implemented to execute the operations of LSCMA beamforming algorithm that is represented by an algorithm flowchart. The result of simulations and test indicate that this scheme can improve the anti-jamming performance of terminals.

  7. A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks.

    PubMed

    Zare, Yasser; Rhim, Sungsoo; Garmabi, Hamid; Rhee, Kyong Yop

    2018-04-01

    The networks of nanoparticles in nanocomposites cause solid-like behavior demonstrating a constant storage modulus at low frequencies. This study examines the storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes (CNT) nanocomposites. The experimental data of the storage modulus in the plateau regions are obtained by a frequency sweep test. In addition, a simple model is developed to predict the constant storage modulus assuming the properties of the interphase regions and the CNT networks. The model calculations are compared with the experimental results, and the parametric analyses are applied to validate the predictability of the developed model. The calculations properly agree with the experimental data at all polymer and CNT concentrations. Moreover, all parameters acceptably modulate the constant storage modulus. The percentage of the networked CNT, the modulus of networks, and the thickness and modulus of the interphase regions directly govern the storage modulus of nanocomposites. The outputs reveal the important roles of the interphase properties in the storage modulus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  9. Ab initio predictions of structural and elastic properties of struvite: contribution to urinary stone research.

    PubMed

    Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.

  10. Blind equalization with criterion with memory nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Yuanjie; Nikias, Chrysostomos L.; Proakis, John G.

    1992-06-01

    Blind equalization methods usually combat the linear distortion caused by a nonideal channel via a transversal filter, without resorting to the a priori known training sequences. We introduce a new criterion with memory nonlinearity (CRIMNO) for the blind equalization problem. The basic idea of this criterion is to augment the Godard [or constant modulus algorithm (CMA)] cost function with additional terms that penalize the autocorrelations of the equalizer outputs. Several variations of the CRIMNO algorithms are derived, with the variations dependent on (1) whether the empirical averages or the single point estimates are used to approximate the expectations, (2) whether the recent or the delayed equalizer coefficients are used, and (3) whether the weights applied to the autocorrelation terms are fixed or are allowed to adapt. Simulation experiments show that the CRIMNO algorithm, and especially its adaptive weight version, exhibits faster convergence speed than the Godard (or CMA) algorithm. Extensions of the CRIMNO criterion to accommodate the case of correlated inputs to the channel are also presented.

  11. Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Jani, A. R.

    2011-12-01

    Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.

  12. Effective Elastic Modulus as a Function of Angular Leaf Span for Curved Leaves of Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    A theoretical equation was derived to predict the spring constant (load/deflection) for a simply supported cylindrical section with a line force applied at the center. Curved leaves of PBN were mechanically deformed and the force versus deflection data was recorded and compared to the derived theoretical equation to yield an effective modulus for each leaf. The effective modulus was found to vary from the pure shear modulus for a flat plate to a mixed mode for a half cylinder as a function of the sine of one half the angular leaf span. The spring constants of individual PBN leaves were usually predicted to within 30%.

  13. Phase Retrieval from Modulus Using Homeomorphic Signal Processing and the Complex Cepstrum: An Algorithm for Lightning Protection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G A

    2004-06-08

    In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable,more » causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection. Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications. Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the algorithm along with advanced system identification algorithms to estimate impulse responses and transfer functions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.« less

  14. Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.

    PubMed

    Xu, Lu; Huang, Defeng David; Guo, Yingjie Jay

    2015-12-01

    In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization.

  15. Network clustering and community detection using modulus of families of loops.

    PubMed

    Shakeri, Heman; Poggi-Corradini, Pietro; Albin, Nathan; Scoglio, Caterina

    2017-01-01

    We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.

  16. Test of parameter-free local pseudopotential for the study of dynamical elastic constants - Cu as a prototype

    NASA Astrophysics Data System (ADS)

    Bhatia, K. G.; Vyas, S. M.; Patel, A. B.; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-05-01

    Using parameter-free (first principles local) pseudopotential, in the present communication we have calculated dynamical elastic constants (C11, C12 and C44), bulk modulus (B), shear modulus (µp), Young's modulus (Y) and Poisson's ratio (σ) in long wavelength limit. Our computed results are well agreed for C44 and B with experiment and with other theoretical results obtained within framework of second order perturbation pseudopotential theory. From the present study we conclude that pseudopotential used contain s-p hybridization and no extra term is required to account core-core repulsion.

  17. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    NASA Astrophysics Data System (ADS)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  18. Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Chien, Hung-Chang

    2014-08-25

    We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated.

  19. A time and frequency synchronization method for CO-OFDM based on CMA equalizers

    NASA Astrophysics Data System (ADS)

    Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum

    2018-06-01

    In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.

  20. Resonant Acoustic Determination of Complex Elastic Moduli

    NASA Technical Reports Server (NTRS)

    Brown, David A.; Garrett, Steven L.

    1991-01-01

    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc.

  1. Sonic Estimation of Elasticity via Resonance: A New Method of Assessing Hemostasis

    PubMed Central

    Corey, F. Scott; Walker, William F.

    2015-01-01

    Uncontrolled bleeding threatens patients undergoing major surgery and in care for traumatic injury. This paper describes a novel method of diagnosing coagulation dysfunction by repeatedly measuring the shear modulus of a blood sample as it clots in vitro. Each measurement applies a high-energy ultrasound pulse to induce a shear wave within a rigid walled chamber, and then uses low energy ultrasound pulses to measure displacements associated with the resonance of that shear wave. Measured displacements are correlated with predictions from Finite Difference Time Domain (FDTD) models, with the best fit corresponding to the modulus estimate. In our current implementation each measurement requires 62.4 ms. Experimental data was analyzed using a fixed-viscosity algorithm and a free-viscosity algorithm. In experiments utilizing human blood induced to clot by exposure to kaolin, the free-viscosity algorithm quantified the shear modulus of formed clots with a worst-case precision of 2.5%. Precision was improved to 1.8% by utilizing the fixed-viscosity algorithm. Repeated measurements showed a smooth evolution from liquid blood to a firm clot with a shear modulus between 1.4 kPa and 3.3 kPa. These results show the promise of this technique for rapid, point of care assessment of coagulation. PMID:26399992

  2. On factoring RSA modulus using random-restart hill-climbing algorithm and Pollard’s rho algorithm

    NASA Astrophysics Data System (ADS)

    Budiman, M. A.; Rachmawati, D.

    2017-12-01

    The security of the widely-used RSA public key cryptography algorithm depends on the difficulty of factoring a big integer into two large prime numbers. For many years, the integer factorization problem has been intensively and extensively studied in the field of number theory. As a result, a lot of deterministic algorithms such as Euler’s algorithm, Kraitchik’s, and variants of Pollard’s algorithms have been researched comprehensively. Our study takes a rather uncommon approach: rather than making use of intensive number theories, we attempt to factorize RSA modulus n by using random-restart hill-climbing algorithm, which belongs the class of metaheuristic algorithms. The factorization time of RSA moduli with different lengths is recorded and compared with the factorization time of Pollard’s rho algorithm, which is a deterministic algorithm. Our experimental results indicates that while random-restart hill-climbing algorithm is an acceptable candidate to factorize smaller RSA moduli, the factorization speed is much slower than that of Pollard’s rho algorithm.

  3. Ab-initio study of electronic structure and elastic properties of ZrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.

    2016-05-23

    The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.

  4. Calculating tissue shear modulus and pressure by 2D log-elastographic methods

    NASA Astrophysics Data System (ADS)

    McLaughlin, Joyce R.; Zhang, Ning; Manduca, Armando

    2010-08-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ sdot u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms.

  5. MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system

    NASA Astrophysics Data System (ADS)

    Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.

  6. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.

    PubMed

    Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin

    2016-09-01

    CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.

  8. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    NASA Astrophysics Data System (ADS)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  9. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1- x ( Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-08-01

    We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  10. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  11. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers.

    PubMed

    Kalita, Viktor M; Snarskii, Andrei A; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  12. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    NASA Astrophysics Data System (ADS)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  13. Demultiplexing based on frequency-domain joint decision MMA for MDM system

    NASA Astrophysics Data System (ADS)

    Caili, Gong; Li, Li; Guijun, Hu

    2016-06-01

    In this paper, we propose a demultiplexing method based on frequency-domain joint decision multi-modulus algorithm (FD-JDMMA) for mode division multiplexing (MDM) system. The performance of FD-JDMMA is compared with frequency-domain multi-modulus algorithm (FD-MMA) and frequency-domain least mean square (FD-LMS) algorithm. The simulation results show that FD-JDMMA outperforms FD-MMA in terms of BER and convergence speed in the cases of mQAM (m=4, 16 and 64) formats. And it is also demonstrated that FD-JDMMA achieves better BER performance and converges faster than FD-LMS in the cases of 16QAM and 64QAM. Furthermore, FD-JDMMA maintains similar computational complexity as the both equalization algorithms.

  14. A constrained modulus reconstruction technique for breast cancer assessment.

    PubMed

    Samani, A; Bishop, J; Plewes, D B

    2001-09-01

    A reconstruction technique for breast tissue elasticity modulus is described. This technique assumes that the geometry of normal and suspicious tissues is available from a contrast-enhanced magnetic resonance image. Furthermore, it is assumed that the modulus is constant throughout each tissue volume. The technique, which uses quasi-static strain data, is iterative where each iteration involves modulus updating followed by stress calculation. Breast mechanical stimulation is assumed to be done by two compressional rigid plates. As a result, stress is calculated using the finite element method based on the well-controlled boundary conditions of the compression plates. Using the calculated stress and the measured strain, modulus updating is done element-by-element based on Hooke's law. Breast tissue modulus reconstruction using simulated data and phantom modulus reconstruction using experimental data indicate that the technique is robust.

  15. Structural, elastic and electronic properties of transition metal carbides ZnC, NbC and their ternary alloys ZnxNb1-xC

    NASA Astrophysics Data System (ADS)

    Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.

    2018-02-01

    We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.

  16. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    PubMed

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  17. Internet Protocol Security (IPSEC): Testing and Implications on IPv4 and IPv6 Networks

    DTIC Science & Technology

    2008-08-27

    Message Authentication Code-Message Digest 5-96). Due to the processing power consumption and slowness of public key authentication methods, RSA ...MODP) group with a 768 -bit modulus 2. a MODP group with a 1024-bit modulus 3. an Elliptic Curve Group over GF[ 2n ] (EC2N) group with a 155-bit...nonces, digital signatures using the Digital Signature Algorithm, and the Rivest-Shamir- Adelman ( RSA ) algorithm. For more information about the

  18. Understanding the Effect of Plastic Deformation on Elastic Modulus of Metals Based on a Percolation Model with Electron Work Function

    NASA Astrophysics Data System (ADS)

    Li, Qingda; Hua, Guomin; Lu, Hao; Yu, Bin; Li, D. Y.

    2018-05-01

    The elastic modulus of materials is usually treated as a constant in engineering applications. However, plastic deformation may result in changes in the elastic modulus of metallic materials. Using brass, aluminum, and low-carbon steel as sample materials, it is demonstrated that plastic deformation decreased the elastic modulus of the materials by 10% to 20%. A percolation model incorporating the electron work function is proposed to correlate such plastic-strain-induced variations in the elastic modulus to corresponding changes in the electron work function. Efforts are made to understand the observed phenomenon on an electronic basis. The obtained experimental results are consistent with the theoretical analysis.

  19. Inverse finite element methods for extracting elastic-poroviscoelastic properties of cartilage and other soft tissues from indentation

    NASA Astrophysics Data System (ADS)

    Namani, Ravi

    Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted "average" linear elastic modulus was studied. The focus here is on murine tibial cartilage, since recent experiments have shown that the modulus measured by a 15 mum tip is considerably larger than that obtained from a 90 mum tip. It is shown that a depth-dependent modulus could give rise to such a size effect. Lastly, parametric studies were performed within the small strain setting to understand the influence of permeability and viscoelastic properties on the indentation stress-relaxation response. The focus here is on cartilage, and specific test protocols (single-step vs. multi-step stress relaxation) are explored. An inverse algorithm was developed to extract the poroviscoelastic parameters. A sensitivity study using this algorithm shows that the instantaneous elastic modulus (which is a measure of the viscous relaxation) can be extracted with very good accuracy, but the permeability and long-time relaxation constant cannot be extracted with good accuracy. The thesis concludes with implications of these studies. The potential and limitations of indentation tests for studying cartilage and other soft tissues is discussed.

  20. The simulation of magnetic resonance elastography through atherosclerosis.

    PubMed

    Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R

    2016-06-14

    The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Sridharan, Srinivasan

    2005-01-01

    Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.

  2. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys

    NASA Astrophysics Data System (ADS)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet

    2018-02-01

    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  3. Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur

    2018-04-01

    By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.

  4. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    DTIC Science & Technology

    2014-03-27

    created using a hammer and a punch tool provided by Material Test Systems (MTS) and were kept to a minimal depth to avoid fracture initiation at the...temperature. 76 be seen that the modulus remains relatively constant until near failure. There was no apparent correlation between modulus loss and...Normalized modulus vs. fatigue cycles of all ±45° specimens can be seen in Figure 56. There is not an evident correlation between number of cycles and

  5. Effect of ripples on the finite temperature elastic properties of hexagonal boron nitride using strain-fluctuation method

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-11-01

    This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.

  6. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  7. Determining Young's Modulus by Measuring Guitar String Frequency

    ERIC Educational Resources Information Center

    Polak, Robert D.; Davenport, Adam R. V.; Fischer, Andrew; Rafferty, Jared

    2018-01-01

    Values for physical constants are commonly given as abstractions without building strong intuition, and are too often utilized solely in the pursuit of more easily conceptualized properties. The goal of this experiment is to remove the obscurity behind Young's modulus by exploring the phenomena associated with it--namely, the frequency of a…

  8. Evaluation of Resilient Modulus of Subgrade and Base Materials in Indiana and Its Implementation in MEPDG

    PubMed Central

    Siddiki, Nayyarzia; Nantung, Tommy; Kim, Daehyeon

    2014-01-01

    In order to implement MEPDG hierarchical inputs for unbound and subgrade soil, a database containing subgrade M R, index properties, standard proctor, and laboratory M R for 140 undisturbed roadbed soil samples from six different districts in Indiana was created. The M R data were categorized in accordance with the AASHTO soil classifications and divided into several groups. Based on each group, this study develops statistical analysis and evaluation datasets to validate these models. Stress-based regression models were evaluated using a statistical tool (analysis of variance (ANOVA)) and Z-test, and pertinent material constants (k 1, k 2 and k 3) were determined for different soil types. The reasonably good correlations of material constants along with M R with routine soil properties were established. Furthermore, FWD tests were conducted on several Indiana highways in different seasons, and laboratory resilient modulus tests were performed on the subgrade soils that were collected from the falling weight deflectometer (FWD) test sites. A comparison was made of the resilient moduli obtained from the laboratory resilient modulus tests with those from the FWD tests. Correlations between the laboratory resilient modulus and the FWD modulus were developed and are discussed in this paper. PMID:24701162

  9. CCOMP: An efficient algorithm for complex roots computation of determinantal equations

    NASA Astrophysics Data System (ADS)

    Zouros, Grigorios P.

    2018-01-01

    In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.

  10. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    NASA Astrophysics Data System (ADS)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  11. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    NASA Astrophysics Data System (ADS)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  12. Nanoindentation on SnAgCu lead-free solder joints and analysis

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.

    2006-12-01

    The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.

  13. A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics

    NASA Astrophysics Data System (ADS)

    Lei, Dong; Liang, Yingjie; Xiao, Rui

    2018-01-01

    We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.

  14. Pressure-volume relations and bulk modulus under pressure of tetrahedral compounds

    NASA Astrophysics Data System (ADS)

    Soma, T.; Takahashi, Y.; Kagaya, H.-M.

    1985-03-01

    The pressure-volume relation and the compression effect on the bulk modulus of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe are investigated from the electronic theory of solids by using a recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The calculated results of the pressure-volume relations involving the pressure-induced phase transition are useful when comparing with the experimental data under high pressure. The calculated bulk modulus of these compounds increases as the crystal volume decreases. Further, the pressure derivative of bulk modulus is not constant and decreases with the reduction of the crystal volume.

  15. An Efficient and Accurate Genetic Algorithm for Backcalculation of Flexible Pavement Layer Moduli

    DOT National Transportation Integrated Search

    2012-12-01

    The importance of a backcalculation method in the analysis of elastic modulus in pavement engineering has been : known for decades. Despite many backcalculation programs employing different backcalculation procedures and : algorithms, accurate invers...

  16. Study of Randomness in AES Ciphertexts Produced by Randomly Generated S-Boxes and S-Boxes with Various Modulus and Additive Constant Polynomials

    NASA Astrophysics Data System (ADS)

    Das, Suman; Sadique Uz Zaman, J. K. M.; Ghosh, Ranjan

    2016-06-01

    In Advanced Encryption Standard (AES), the standard S-Box is conventionally generated by using a particular irreducible polynomial {11B} in GF(28) as the modulus and a particular additive constant polynomial {63} in GF(2), though it can be generated by many other polynomials. In this paper, it has been shown that it is possible to generate secured AES S-Boxes by using some other selected modulus and additive polynomials and also can be generated randomly, using a PRNG like BBS. A comparative study has been made on the randomness of corresponding AES ciphertexts generated, using these S-Boxes, by the NIST Test Suite coded for this paper. It has been found that besides using the standard one, other moduli and additive constants are also able to generate equally or better random ciphertexts; the same is true for random S-Boxes also. As these new types of S-Boxes are user-defined, hence unknown, they are able to prevent linear and differential cryptanalysis. Moreover, they act as additional key-inputs to AES, thus increasing the key-space.

  17. Correlation between physical properties and ultrasonic relaxation parameters in transition metal tellurite glasses

    NASA Astrophysics Data System (ADS)

    Abd El-Moneim, A.

    2003-07-01

    The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.

  18. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.

    PubMed

    Chawla, A; Mukherjee, S; Karthikeyan, B

    2009-02-01

    The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.

  19. Molecular modeling of polymers 16. Gaseous diffusion in polymers: a quantitative structure-property relationship (QSPR) analysis.

    PubMed

    Patel, H C; Tokarski, J S; Hopfinger, A J

    1997-10-01

    The purpose of this study was to identify the key physicochemical molecular properties of polymeric materials responsible for gaseous diffusion in the polymers. Quantitative structure-property relationships, QSPRs were constructed using a genetic algorithm on a training set of 16 polymers for which CO2, N2, O2 diffusion constants were measured. Nine physicochemical properties of each of the polymers were used in the trial basis set for QSPR model construction. The linear cross-correlation matrices were constructed and investigated for colinearity among the members of the training sets. Common water diffusion measures for a limited training set of six polymers was used to construct a "semi-QSPR" model. The bulk modulus of the polymer was overwhelmingly found to be the dominant physicochemical polymer property that governs CO2, N2 and O2 diffusion. Some secondary physicochemical properties controlling diffusion, including conformational entropy, were also identified as correlation descriptors. Very significant QSPR diffusion models were constructed for all three gases. Cohesive energy was identified as the main correlation physicochemical property with aqueous diffusion measures. The dominant role of polymer bulk modulus on gaseous diffusion makes it difficult to develop criteria for selective transport of gases through polymers. Moreover, high bulk moduli are predicted to be necessary for effective gas barrier materials. This property requirement may limit the processing and packaging features of the material. Aqueous diffusion in polymers may occur by a different mechanism than gaseous diffusion since bulk modulus does not correlate with aqueous diffusion, but rather cohesive energy of the polymer.

  20. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  1. Dielectric Properties of PMMA and its Composites with ZrO2

    NASA Astrophysics Data System (ADS)

    Sannakki, Basavaraja; Anita

    The polymer films of PMMA with different thickness and its composites with ZrO2 at various weight percentages but of same thickness have been studied. The determination of its dielectric properties, dielectric loss, a.conductivity and dielectric modulus were carried out using capacitance measurements of the above samples as a function of frequency, over the range 50 Hz - 5 MHz at room temperature. The films of PMMA and its composites have been characterized using X-Ray Diffractometer. The dielectric permittivity of films of PMMA behaves nonlinearly as frequency increases over the range 50-300 Hz, where as above 300 Hz the values of dielectric constant remains constant. But it is observed that the dielectric constant of PMMA increases as thickness of the film increases. In case of composite films of PMMA with ZrO2 the values of dielectric permittivity decreases gradually up to frequency of around 1 KHz and at higher frequencies it remains constant for all the weight percentages of ZrO2. The complex form of dielectric modulus of PMMA is obtained from the experimentally measured data of dielectric constant and dielectric loss values. The relaxation time of the orientation of dipoles is obtained from the peak value of angular frequency through the plots of imaginary part of electrical modulus as function of frequency. The impedance of PMMA polymer increases as thickness of the films increases. The a c conductivity of PMMA film remains constant up to frequency of 1 MHz and above. It shows a nonlinear phenomenon with peak values at frequency 4 MHz. Shape and size of the nanoparticles of composite film of PMMA with ZrO2 was analyzed by Field Emission Scanning Electron Microscope (FESEM).

  2. The effective propagation constants of SH wave in composites reinforced by dispersive parallel nanofibers

    NASA Astrophysics Data System (ADS)

    Qiang, FangWei; Wei, PeiJun; Li, Li

    2012-07-01

    In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.

  3. Differential phase-shift keying and channel equalization in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  4. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  5. Dielectric and modulus analysis of the photoabsorber Cu2SnS3

    NASA Astrophysics Data System (ADS)

    Lahlali, S.; Essaleh, L.; Belaqziz, M.; Chehouani, H.; Alimoussa, A.; Djessas, K.; Viallet, B.; Gauffier, J. L.; Cayez, S.

    2017-12-01

    Dielectric properties of the ternary semiconductor compound Cu2SnS3 is studied for the first time in the high temperature range from 300 °C to 440 °C with the frequency range 1 kHz to 1 MHz. The dielectric constant ε ‧ and dielectric loss tan (δ) were observed to increase with temperature and decrease rapidly with frequency to remains constant at high frequencies. The variation of the dielectric loss Ln (ε ") with L n (ω) was found to follow the empirical law, ε " = B ω m (T). The dielectric data were analyzed using complex electrical modulus M* at various temperatures. The activation energy responsible for the relaxation is estimated from the analysis of the modulus spectra. The value of the hopping barrier potential is estimated from the dielectric loss and compared with the value previously obtained from ac-conductivity. These results are critical for understanding the behavior of based polycrystalline family of Cu2SnS3 for absorber materials in solar-cells.

  6. Mechanics of Constriction during Cell Division: A Variational Approach

    PubMed Central

    Almendro-Vedia, Victor G.; Monroy, Francisco; Cao, Francisco J.

    2013-01-01

    During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of , we calculate constriction forces in the range . The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of , thus evidencing that cells need a robust mechanism to stabilize constriction at midcell. PMID:23990888

  7. Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-04-01

    The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.

  8. Effects of biaxial strains on electronic and elastic properties of hexagonal XSi2 (X = Cr, Mo, W) from first-principles

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo

    2018-02-01

    Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.

  9. The Pressure Dependence of Structural, Electronic, Mechanical, Vibrational, and Thermodynamic Properties of Palladium-Based Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Çoban, Cansu

    2017-08-01

    The pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young's modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).

  10. Elastic medium equivalent to Fresnel's double-refraction crystal.

    PubMed

    Carcione, José M; Helbig, Klaus

    2008-10-01

    In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.

  11. Thermal equation of state of silicon carbide

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  12. Thermal equation of state of silicon carbide

    DOE PAGES

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; ...

    2016-02-11

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure–volume–temperature (P-V-T) data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as, the ambient bulk modulus K To = 237(2) GPa, temperature derivative of bulk modulus at constant pressure (∂K/∂T)P = -0.037(4) GPa K -1, volumetric thermal expansivity α(0, T)=a+bT with a = 5.77(1)×10 -6 K -1 and b = 1.36(2)×10 -8 K -2,more » and pressure derivative of thermal expansion at constant temperature (∂α/∂P) T =6.53±0.64×10 -7 K -1GPa -1. Furthermore, we found the temperature derivative of bulk modulus at constant volume, (∂K T/∂T) V, equal to -0.028(4) GPa K -1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. Lastly, the computed results generally agree well with the experimental values.« less

  13. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization.

    PubMed

    Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich

    2017-01-01

    A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. The first principles study of elastic and thermodynamic properties of ZnSe

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  15. Application of the Modified Compaction Material Model to the Analysis of Landmine Detonation in Soil with Various Degrees of Water Saturation

    DTIC Science & Technology

    2007-01-01

    Equation of State R2 – Constant in JWL Equation of State σ – Yield Stress T – Temperature...v – Specific volume w – Constant in JWL Equation of State x – Spatial coordinate y – Spatial coordinate Y – Yield stress Subscripts Comp – Value at...Constant in JWL Equation of State α – Porosity B – Compaction Modulus B1 – Strain Hardening Constant B2 – Constant in JWL Equation of State

  16. Nonlinear Stress/Strain Behavior of a Synthetic Porous Medium at Seismic Frequencies

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Ibrahim, R. H.

    2008-12-01

    Laboratory experiments on porous core samples have shown that seismic-band (100 Hz or less) mechanical, axial stress/strain cycling of the porous matrix can influence the transport behavior of fluids and suspended particles during steady-state fluid flow through the cores. In conjunction with these stimulated transport experiments, measurements of the applied dynamic axial stress/strain were made to investigate the nonlinear mechanical response of porous media for a poorly explored range of frequencies from 1 to 40 Hz. A unique core-holder apparatus that applies low-frequency mechanical stress/strain to 2.54-cm-diameter porous samples during constant-rate fluid flow was used for these experiments. Applied stress was measured with a load cell in series with the source and porous sample, and the resulting strain was measured with an LVDT attached to the core face. A synthetic porous system consisting of packed 1-mm-diameter glass beads was used to investigate both stress/strain and stimulated mass-transport behavior under idealized conditions. The bead pack was placed in a rubber sleeve and static confining stresses of 2.4 MPa radial and 1.7 MPa axial were applied to the sample. Sinusoidal stress oscillations were applied to the sample at 1 to 40 Hz over a range of RMS stress amplitude from 37 to 275 kPa. Dynamic stress/strain was measured before and after the core was saturated with deionized water. The slope of the linear portion of each stress/strain hysteresis loop was used to estimate Young's modulus as a function of frequency and amplitude for both the dry and wet sample. The modulus was observed to increase after the dry sample was saturated. For both dry and wet cases, the modulus decreased with increasing dynamic RMS stress amplitude at a constant frequency of 23 Hz. At constant RMS stress amplitude, the modulus increased with increasing frequency for the wet sample but remained constant for the dry sample. The observed nonlinear behavior of Young's modulus and the dependence of stress/strain hysteresis on strain amplitude and frequency have implications on how seismic waves can influence the mechanical properties of granular porous materials in the Earth. This work was funded by the U.S. Department of Energy Basic Energy Sciences Program under the Los Alamos National Laboratory contract no. DE-AC52-06NA25396.

  17. A New Superhard Phase and Physical Properties of ZrB₃ from First-Principles Calculations.

    PubMed

    Zhang, Gangtai; Bai, Tingting; Zhao, Yaru; Hu, Yanfei

    2016-08-22

    Using the first-principles particle swarm optimization algorithm for crystal structural prediction, we have predicted a novel monoclinic C 2/ m structure for ZrB₃, which is more energetically favorable than the previously proposed FeB₃-, TcP₃-, MoB₃-, WB₃-, and OsB₃-type structures in the considered pressure range. The new phase is mechanically and dynamically stable, as confirmed by the calculations of its elastic constants and phonon dispersion curve. The calculated large shear modulus (227 GPa) and high hardness (42.2 GPa) show that ZrB₃ within the monoclinic phase is a potentially superhard material. The analyses of the electronic density of states and chemical bonding reveal that the strong B-B and B-Zr covalent bonds are attributed to its high hardness. By the quasi-harmonic Debye model, the heat capacity, thermal expansion coefficient and Grüneisen parameter of ZrB₃ are also systemically investigated.

  18. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    PubMed

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  19. Evaluating CMA equalization of SOQPSK-TG data for aeronautical telemetry

    NASA Astrophysics Data System (ADS)

    Cole-Rhodes, Arlene; KoneDossongui, Serge; Umuolo, Henry; Rice, Michael

    2015-05-01

    This paper presents the results of using a constant modulus algorithm (CMA) to recover shaped offset quadrature-phase shift keying (SOQPSK)-TG modulated data, which has been transmitted using the iNET data packet structure. This standard is defined and used for aeronautical telemetry. Based on the iNET-packet structure, the adaptive block processing CMA equalizer can be initialized using the minimum mean square error (MMSE) equalizer [3]. This CMA equalizer is being evaluated for use on iNET structured data, with initial tests being conducted on measured data which has been received in a controlled laboratory environment. Thus the CMA equalizer is applied at the receiver to data packets which have been experimentally generated in order to determine the feasibility of our equalization approach, and its performance is compared to that of the MMSE equalizer. Performance evaluation is based on computed bit error rate (BER) counts for these equalizers.

  20. Shear modulus of porcine coronary artery in reference to a new strain measure.

    PubMed

    Zhang, Wei; Lu, Xiao; Kassab, Ghassan S

    2007-11-01

    To simplify the stress-strain relationship of blood vessels, we define a logarithmic-exponential (log-exp) strain measure to absorb the nonlinearity. As a result, the constitutive relation between the second Piola-Kirchhoff stress and the log-exp strain can be written as a generalized Hooke's law. In this work, the shear modulus of porcine coronary arteries is determined from the experimental data in inflation-stretch-torsion tests. It is found that the shear modulus with respect to the log-exp strain can be viewed as a material constant in the full range of elasticity, and the incremental shear modulus for Cauchy shear stress and small shear strain at various loading levels can be predicted by the proposed Hooke's law. This result further validates the linear constitutive relation for blood vessels when shear deformation is involved.

  1. First-principles study of the structural, electronic and thermal properties of CaLiF3

    NASA Astrophysics Data System (ADS)

    Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.

    2013-09-01

    Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.

  2. Elasticity, slowness, thermal conductivity and the anisotropies in the Mn3Cu1-xGexN compounds

    NASA Astrophysics Data System (ADS)

    Li, Guan-Nan; Chen, Zhi-Qian; Lu, Yu-Ming; Hu, Meng; Jiao, Li-Na; Zhao, Hao-Ting

    2018-03-01

    We perform the first-principles to systematically investigate the elastic properties, minimum thermal conductivity and anisotropy of the negative thermal expansion compounds Mn3Cu1-xGexN. The elastic constant, bulk modulus, shear modulus, Young’s modulus and Poisson ratio are calculated for all the compounds. The results of the elastic constant indicate that all the compounds are mechanically stable and the doped Ge can adjust the ductile character of the compounds. According to the values of the percent ratio of the elastic anisotropy AB, AE and AG, shear anisotropic factors A1, A2 and A3, all the Mn3Cu1-xGexN compounds are elastic anisotropy. The three-dimensional diagrams of elastic moduli in space also show that all the compounds are elastic anisotropy. In addition, the acoustic wave speed, slowness, minimum thermal conductivity and Debye temperature are also calculated. When the ratio of content for Cu and Ge arrived to 1:1, the compound has the lowest thermal conductivity and the highest Debye temperature.

  3. Static and vibrational properties of equiatomic Na-based binary alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-09-01

    The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.

  4. Spatially Tailored and Functionally Graded Light-Weight Structures for Optimum Mechanical Performance

    DTIC Science & Technology

    2008-01-15

    grading scheme involves embedding particles only in the outer layers of a laminate , achieving maximal increases in bending stiffness with a minimum...by Eq. (19), with d=2. Longitudinal-transverse shear modulus The shear modulus for distortion of the laminate in axes with one direction aligned...The effective Poisson’s ratio νeLT is dictated by the other material constants of the laminate (Hill, 1964; Torquato, 2001): 12 νe LT = ν f + ν

  5. Density and mechanical properties of calcium aluminate cement

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem

    2018-04-01

    Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.

  6. Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy.

    PubMed

    Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi

    2006-01-01

    The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.

  7. Thermal equation of state of TiC: A synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Xiaohui; National Lab for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080; Department of Physics, University of Science and Technology of China, Hefei 230026

    2010-06-15

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{sub 0}{sup '}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0}=268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P}=-0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1})=a+bT with a=1.62(12)x10{sup -5} K{supmore » -1} and b=1.07(17)x10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{alpha}/{partial_derivative}P){sub T}=(-3.62{+-}1.14)x10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V}=-0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  8. Thermal equation-of-state of TiC: a synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaohui; Lin, Zhijun; Zhang, Jianzhong

    2009-01-01

    The pressure (P)-volume (V)-temperature (T) measurements were carried out for titanium carbide at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus, K'{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub p} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity a{sub T}(K{sup -1}) = a + bT with a =more » 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}a/{partial_derivative}P){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub v} = -0.015 (8) GPa K{sup -1}. These results provide fundamental thermo physical properties for TiC and are important to theoretical and computational modeling of transition metal carbides.« less

  9. First principles investigation of structural, mechanical, dynamical and thermodynamic properties of AgMg under pressure

    NASA Astrophysics Data System (ADS)

    Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong

    2017-12-01

    The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.

  10. Experimental determination of pore shapes using phase retrieval from q -space NMR diffraction

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q -space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  11. Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.

    PubMed

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  12. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.

    PubMed

    Reiter, Rolf; Freise, Christian; Jöhrens, Korinna; Kamphues, Carsten; Seehofer, Daniel; Stockmann, Martin; Somasundaram, Rajan; Asbach, Patrick; Braun, Jürgen; Samani, Abbas; Sack, Ingolf

    2014-05-07

    Despite the success of elastography in grading hepatic fibrosis by stiffness related noninvasive markers the relationship between viscoelastic constants in the liver and tissue structure remains unclear. We therefore studied the mechanical properties of 16 human liver specimens with different degrees of fibrosis, inflammation and steatosis by wideband magnetic resonance elastography (MRE) and static indentation experiments providing the specimens׳ static Young׳s modulus (E), dynamic storage modulus (G') and dynamic loss modulus (G″). A frequency-independent shear modulus μ and a powerlaw exponent α were obtained by fitting G' and G″ using the two-parameter sprinpot model. The mechanical parameters were compared to the specimens׳ histology derived parameters such as degree of Fibrosis (F), inflammation score and fat score, amount of hydroxyproline (HYP) used for quantification of collagen, blood markers and presurgery in vivo function tests. The frequency averaged parameters G', G″ and μ were significantly correlated with F (G': R=0.762, G″: R=0.830; μ: R=0.744; all P<0.01) and HYP (G': R=0.712; G″: R=0.720; μ: R=0.731; all P<0.01). The powerlaw exponent α displayed an inverse correlation with F (R=-0.590, P=0.034) and a trend of inverse correlation with HYP (R=-0.470, P=0.089). The static Young׳s modulus E was less correlated with F (R=0.587, P=0.022) and not sensitive to HYP. Although inflammation was highly correlated with F (R=0.773, P<0.001), no interaction was discernable between inflammation and mechanical parameters measured in this study. Other histological and blood markers as well as liver function test were correlated with neither F nor the measured mechanical parameters. In conclusion, viscoelastic constants measured by wideband MRE are highly sensitive to histologically proven fibrosis. Our results suggest that, in addition to the amount of connective tissue, subtle structural changes of the viscoelastic matrix determine the sensitivity of mechanical tissue properties to hepatic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Impedance and electric modulus approaches to investigate four origins of giant dielectric constant in CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Wen-Xiang

    2012-03-01

    The frequency dependence of electric modulus of polycrystalline CaCu3Ti4O12 (CCTO) ceramics has been investigated. The experimental data have also been analyzed in the complex plane of impedance and electric modulus, and a suitable equivalent circuit has been proposed to explain the dielectric response. Four dielectric responses are first distinguished in the impedance and modulus spectroscopies. The results are well interpreted in terms of a triple insulating barrier capacitor model. Using this model, these four dielectric relaxations are attributed to the domain, domain-boundary, grain-boundary, and surface layer effects with three Maxwell-Wagner relaxations. Moreover, the values of the resistance and capacitance of bulk CCTO phase, domain-boundary, grain-boundary and surface layer contributions have been calculated directly from the peak characteristics of spectroscopic plots.

  14. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    NASA Astrophysics Data System (ADS)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  15. Calibration-free portable Young's-modulus tester with isolated langasite oscillator.

    PubMed

    Ogi, Hirotsugu; Sakamoto, Yuto; Hirao, Masahiko

    2014-09-01

    A ballpoint-pen-type portable ultrasonic oscillator is developed for quantitative measurement of Young's modulus on a solid. It consists of an electrodeless rod-shaped langasite oscillator with a tungsten-carbide spherical-shaped tip at the end, permanent magnets for making a constant force at the contact interface, and antennas for exciting and detecting the longitudinal vibration contactlessly. The resonance frequency of the oscillator is changed by contact with the specimen, reflecting Young's modulus of the specimen at the contact area. The langasite oscillator is supported at the nodal points so that its acoustical contact occurs only at the specimen, making a calibration-free measurement realistic. Young's moduli of various specimens were evaluated within 15% error just by touching the specimens with the probe. The error becomes smaller than 10% for lower Young-modulus materials (<∼150 GPa). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    NASA Astrophysics Data System (ADS)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  17. The Effect of Microstructure and Pre-strain on the Change in Apparent Young's Modulus of a Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Kupke, A.; Hodgson, P. D.; Weiss, M.

    2017-07-01

    The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.

  18. Insight into the structural, electronic, elastic and optical properties of the alkali hydride compounds, XH (X = Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Jaradat, Raed; Abu-Jafar, Mohammed; Abdelraziq, Issam; Mousa, Ahmad; Ouahrani, Tarik; Khenata, Rabah

    2018-04-01

    The equilibrium structural parameters, electronic and optical properties of the alkali hydrides RbH and CsH compounds in rock-salt (RS) and cesium chloride (CsCl) structures have been studied using the full-potential linearized augmented plane-wave (FP-LAPW) method. Wu and Cohen generalized gradient approximation (WC-GGA) was used for the exchange-correlation potential to compute the equilibrium structural parameters, such as the lattice constant (a0), the bulk modulus (B) and bulk modulus first order pressure derivative (B'). In addition to the WC-GGA, the modified Becke Johnson (mBJ) scheme has been also used to overcome the underestimation of the band gap energies. RbH and CsH compounds are found to be semiconductors (wide energy-band gap) using the WC-GGA method, while they are insulators using the mBJ-GGA method. Elastic constants, mechanical and thermodynamic properties were obtained by using the IRelast package. RbH and CsH compounds at ambient pressure are mechanically stable in RS and CsCl structures; they satisfy the Born mechanical stability criteria. Elastic constants (Cij), bulk modulus (B), shear modulus (S) and Debye temperatures (θD) of RbH and CsH compounds decrease as the alkali radius increases. The RS structure of these compounds at ambient conditions is mechanically stronger than CsCl structure. RbH and CsH in RS and CsCl structures are suitable as dielectric compounds. The wide direct energy band gap for these compounds make them promising compounds for optoelectronic UV device applications. Both RbH and CsH have a wide absorption region, on the other hand RbH absorption is very huge compared to the CsH absorption, RbH is an excellent absorbent material, maximum absorption regions are located in the middle ultraviolet (MUV) region and far ultraviolet (FUV) region. The absorption coefficient α (w), imaginary part of the dielectric constant ɛ2(w) and the extinction coefficient k(w) vary in the same way. The present calculated results are in good agreement with the experimental data, indicating the high accuracy of the performed calculations and reliability of the obtained results.

  19. Dielectric and modulus studies of polycrystalline BaZrO3 ceramic

    NASA Astrophysics Data System (ADS)

    Saini, Deepash S.; Singh, Sunder; Kumar, Anil; Bhattacharya, D.

    2018-05-01

    In the present work, dielectric and modulus studies of polycrystalline BaZrO3 ceramic, prepared by modified combustion method followed by conventional sintering, are investigated over the frequency range of 100 Hz to 106 Hz at different temperatures from 250 to 500 °C in air. The high value of dielectric constant (ɛ' ˜ 103) of BaZrO3 at high temperature and low frequency can be attributed to the Maxwell-Wagner polarization mechanism as well as to the thermally activated mechanism of charge carriers. Electric modulus reveal two type relaxations in the 250 °C to 800 °C temperature region as studied at different frequencies over 100 Hz to 106 Hz in air.

  20. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    PubMed

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  1. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    PubMed

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  2. Inflation from higher dimensions

    NASA Astrophysics Data System (ADS)

    Nakada, Hiroshi; Ketov, Sergei V.

    2017-12-01

    We derive the scalar potential in four spacetime dimensions from an eight-dimensional (R +γ R4-2 Λ -F42) gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ and the cosmological constant Λ , by using the flux compactification of four extra dimensions on a 4-sphere with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost) stabilized at its minimum. We also speculate about a possibility of embedding our model in eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified eleven-dimensional supergravity.

  3. Simulation of hydrocephalus condition in infant head

    NASA Astrophysics Data System (ADS)

    Wijayanti, Erna; Arif, Idam

    2014-03-01

    Hydrocephalus is a condition of an excessive of cerebrospinal fluid in brain. In this paper, we try to simulate the behavior of hydrocephalus conditions in infant head by using a hydro-elastic model which is combined with orthotropic elastic skull and with the addition of suture that divide the skull into two lobes. The model then gives predictions for the case of stenosis aqueduct by varying the cerebral aqueduct diameter, time constant and brain elastic modulus. The hydrocephalus condition which is shown by the significant value of ventricle displacement, as the result shows, is occurred when the aqueduct is as resistant as brain parenchyma for the flow of cerebrospinal fluid. The decrement of brain elastic modulus causes brain parenchyma displacement value approach ventricle displacement value. The smaller of time constant value causes the smaller value of ventricle displacement.

  4. Structural and electronic properties of high pressure phases of lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  5. The elastic properties of cancerous skin: Poisson's ratio and Young's modulus.

    PubMed

    Tilleman, Tamara Raveh; Tilleman, Michael M; Neumann, Martino H A

    2004-12-01

    The physical properties of cancerous skin tissue have rarely been measured in either fresh or frozen skin specimens. Of interest are the elastic properties associated with the skin's ability to deform, i.e., to stretch and compress. Two constants--Young's modulus and Poisson's ratio--represent the basic elastic behavior pattern of any elastic material, including skin. The former relates the applied stress on a specimen to its deformation via Hooke's law, while the latter is the ratio between the axial and lateral strains. To investigate the elastic properties of cancerous skin tissue. For this purpose 23 consecutive cancerous tissue specimens prepared during Mohs micrographic surgery were analyzed. From these specimens we calculated the change in radial length (defined as the radial strain) and the change in tissue thickness (defined as axial strain). Based on the above two strains we determined a Poisson ratio of 0.43 +/- 0.12 and an average Young modulus of 52 KPa. Defining the elastic properties of cancerous skin may become the first step in turning elasticity into a clinical tool. Correlating these constants with the histopathologic features of a cancerous tissue can contribute an additional non-invasive, in vivo and in vitro diagnostic tool.

  6. Thermal Equation of State of TiC: A Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, X.; Lin, Z; Zhang, J

    2010-01-01

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{prime}{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1}) =more » a+b T with a = 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8}K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{sub {alpha}}/{partial_derivative}{sub P}){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V} = -0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  7. Computational Design Tool for the Synthesis and Optimization of Gel Formulations (SOGeF)

    DTIC Science & Technology

    2009-01-01

    ACCOMPLISHMENTS 2.1 Phase I Technical Objectives TIle primary technical objective of the Phase I program was the development of a model(s) to describe the...Figure 37: Storage Modulus G’, Loss Modulus G", and Stress vs. Strain. Yield Stress ~460Pa. (Tri-ethylamine 11% Cabosil) The primary detenninant of...GUI The primary objective of this task was to design and implement a graphical user interface (GUI) for the NN algorithms and gel database files. The

  8. On the Satisfaction of Modulus and Ambiguity Function Constraints in Radar Waveform Optimization for Detection

    DTIC Science & Technology

    2010-06-01

    sense that the two waveforms are as close as possible in a Euclidean sense . Li et al. [33] later devised an algorithm that provides the optimal waveform...respectively), and the SWORD algorithm in [33]. These algorithms were designed for the problem of detecting a known signal in the presence of wide- sense ... sensing , astronomy, crystallography, signal processing, and image processing. (See references in the works cited below for examples.) In the general

  9. Full potential study of the elastic, electronic, and optical properties of spinels MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} under pressure effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semari, F.; Khenata, R.; Depatment of Physics and Astronomy, King Saud University, PO Box 2455, Riyadh 11451

    2010-12-15

    The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the totalmore » energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}« less

  10. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation

    PubMed Central

    Zhang, Jie; Zhang, Wen; Yang, Hui-Lin

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20–3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science. PMID:28116309

  11. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.

    PubMed

    Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.

  12. Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed

    2017-11-01

    This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.

  13. Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia

    The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.

  14. Modeling of Failure Mechanisms in Composites With Z-Pins-Damage Validation of Z-Pin Reinforced Co-Cured Composite Laminates

    DTIC Science & Technology

    2011-04-01

    there it is a computer implementation of the method just introduced. It uses Scilab ® programming language, and the Young modulus is calculated as final...laminate without Z-pins, its thickness, lamina stacking sequence and lamina’s engineering elastic constants, the second Scilab ® code can be used to find...EL thickness, the second Scilab ® code is employed once again; this time, though, a new Young’s modulus estimate would be produced. On the other hand

  15. Measurement of leaky Lamb wave dispersion curves with application on coating characterization

    NASA Astrophysics Data System (ADS)

    Lee, Yung-Chun; Cheng, Sheng Wen

    2001-04-01

    This paper describes a new measurement system for measuring dispersion curves of leaky Lamb waves. The measurement system is based on a focusing PVDF transducer, the defocusing measurement, the V(f,z) waveform processing method, and an image displaying technique. The measurement system is applied for the determination of thin-film elastic properties, namely Young's modulus and shear modulus, by the inversion of dispersion curves measured from a thin-film/plate configuration. Elastic constants of electro-deposited nickel layers are determined with this method.

  16. Influence of Metal Ion and Polymer Core on the Melt Rheology of Metallosupramolecular Films

    DTIC Science & Technology

    2012-01-01

    60:40, ( F ) 50:50. Storage modulus (triangles), loss modulus (circles), and complex viscosity (squares) vs oscillatory angular frequency. Tref = 30 C...λω), where n is the number of cross-links per unit volume, kB is Boltzmann’s constant, T is temperature, and f (λω) is a function describing the...system at hand. For linear polymer melts n can be written as FNA/M where F is the mass density, NA is Avogadro’s number, andM is molecular weight

  17. Evaluation of mechanical and transport properties of Zr2CoSi Heusler alloy

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Khandy, S. A.; Bhat, T. M.; Gupta, D. C.

    2017-05-01

    Systematic investigation of mechanical and transport properties of Zr2CoSi within the density functional theory have been analysed. From the elastic constants, the shear modulus, Young's modulus, Poisson's ratio, we conclude the ductile nature of alloy. Thermoelectric properties show that Zr2CoSi as an n-type thermoelectric material with a higher increase in Seebeck coefficient with temperature. Further the power factor analysis confirms the heavily doping of the alloy fruitful for increase in thermoelectric performance and its use for the future thermoelectric spin generators.

  18. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  19. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  20. Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3

    NASA Astrophysics Data System (ADS)

    Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.

    2017-04-01

    The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.

  1. Equilibrium structures of carbon diamond-like clusters and their elastic properties

    NASA Astrophysics Data System (ADS)

    Lisovenko, D. S.; Baimova, Yu. A.; Rysaeva, L. Kh.; Gorodtsov, V. A.; Dmitriev, S. V.

    2017-04-01

    Three-dimensional carbon diamond-like phases consisting of sp 3-hybridized atoms, obtained by linking of carcasses of fullerene-like molecules, are studied by methods of molecular dynamics modeling. For eight cubic and one hexagonal diamond-like phases on the basis of four types of fullerene-like molecules, equilibrium configurations are found and the elastic constants are calculated. The results obtained by the method of molecular dynamics are used for analytical calculations of the elastic characteristics of the diamond- like phases with the cubic and hexagonal anisotropy. It is found that, for a certain choice of the dilatation axis, three of these phases have negative Poisson's ratio, i.e., are partial auxetics. The variability of the engineering elasticity coefficients (Young's modulus, Poisson's ratio, shear modulus, and bulk modulus) is analyzed.

  2. Insufficiency of the Young’s modulus for illustrating the mechanical behavior of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Feezell, Daniel; Busani, Tito

    2018-05-01

    We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young’s modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young’s modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young’s moduli reported in recent literature, and we prove the insufficiency of the Young’s modulus for predicting the mechanical behavior of GaN NWs.

  3. Insufficiency of the Young's modulus for illustrating the mechanical behavior of GaN nanowires.

    PubMed

    Kouhpanji, Mohammad Reza Zamani; Behzadirad, Mahmoud; Feezell, Daniel; Busani, Tito

    2018-05-18

    We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young's modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young's modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young's moduli reported in recent literature, and we prove the insufficiency of the Young's modulus for predicting the mechanical behavior of GaN NWs.

  4. Estimation of Slow Crack Growth Parameters for Constant Stress-Rate Test Data of Advanced Ceramics and Glass by the Individual Data and Arithmetic Mean Methods

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Holland, Frederic A.

    1997-01-01

    The two estimation methods, individual data and arithmetic mean methods, were used to determine the slow crack growth (SCG) parameters (n and D) of advanced ceramics and glass from a large number of room- and elevated-temperature constant stress-rate ('dynamic fatigue') test data. For ceramic materials with Weibull modulus greater than 10, the difference in the SCG parameters between the two estimation methods was negligible; whereas, for glass specimens exhibiting Weibull modulus of about 3, the difference was amplified, resulting in a maximum difference of 16 and 13 %, respectively, in n and D. Of the two SCG parameters, the parameter n was more sensitive to the estimation method than the other. The coefficient of variation in n was found to be somewhat greater in the individual data method than in the arithmetic mean method.

  5. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A. (Inventor); Mukai, Ryan (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  6. Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components

    NASA Astrophysics Data System (ADS)

    Nazarenko, Lidiya; Khoroshun, Leonid; Müller, Wolfgang H.; Wille, Ralf

    2009-02-01

    In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.

  7. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  8. Effect of organo clay on curing, mechanical and dielectric properties of NR/SBR blends

    NASA Astrophysics Data System (ADS)

    Ravikumar, K.; Joseph, Reji; Ravichandran, K.

    2018-04-01

    Natural rubber (NR) and styrene butadiene rubber (SBR) based elastomeric blends reinforced with organically modified Sodium bentonite clay were prepared by two roll mills. Vulcanization parameters such as minimum and maximum torque values scorch and cure times are measured by Oscillating Disc Rheometer. Mechanical properties such as Tensile strength, modulus at 100%, 200% and 300% elongation and elongation at break and Hardness were measured by Universal testing machine and Durometer Shore A hardness meter respectively. Dielectric properties such as dielectric constant (ε’), dissipation factor (tanδ) and volume resistivity (ρv) were measured at room temperature. The curing studies show that torque values are increasing in NR/SBR blends by increase NR content. The scorch and optimum cure time in NR/SBR blends reinforced organo modified clay was found through increase in the SBR content. This may be due to better processing safety of the NR/SBR blends reinforced with organo modified clay. Mechanical properties show that addition of SBR in blends, tensile strength, elongation modulus increases, but 100% modulus slightly increases and no change was observed in Hardness. Dielectric studies show that dielectric constant of NR and SBR rubbers are almost same, it may due to their non-polar nature. But addition of SBR in NR/SBR blend, dielectric constant gradually increases and maximum value observed at 50/50 ratio. But no considerable change was observed in dissipation factor. Frequency dependant resistivity shows that volume resistivity was not changed with respect to frequency up to 3.5 kHz and beyond that the frequency dependence resistivity was found.

  9. Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites

    NASA Astrophysics Data System (ADS)

    Chavan, Pradeep; Naik, L. R.; Belavi, P. B.; Chavan, Geeta; Ramesha, C. K.; Kotnala, R. K.

    2017-01-01

    The semiconducting polycrystalline ferrite materials with the general formula Ni1- x Mg x Fe2O4 were synthesized by using the solid state reaction method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrographs, and atomic force microscopy techniques were utilized to study the structural parameters. XRD confirms the formation of single phase cubic spinel structure of the ferrites. The crystallite sizes of ferrites determined using the Debye-Scherer formula ranges from 0.963 μm to 1.069 μm. The cation distribution of ferrite shows that Mg2+ ions occupy a tetrahedral site ( A-site) and the Ni2+ ion occupy an octahedral site ( B-site) whereas Fe3+ ions occupies an octahedral as well as a tetrahedral site. The study of elastic parameters such as the longitudinal modulus, rigidity modulus, Young's modulus, bulk modulus, and Debye temperature were estimated using the FTIR technique. The decrease of direct current (DC) resistivity with increase in temperature indicates the semiconducting nature of ferrites. The dielectric constant as well as loss tangent decreases with increase in frequency, and at still higher frequencies, they are almost constant. This shows usual dielectric dispersion behavior attributed to the Maxwell-Wagner type of interfacial polarization and is in accordance with Koop's phenomenological theory. The linear increase of alternating current conductivity with increase of frequency shows the small polaron hopping type of conduction mechanism in all the ferrites. The magnetic properties such as saturation magnetization ( M s ), magnetic moment, coercivity, remnant magnetization ( M r ), and the ratio of M r /M s was estimated using the M-H loop.

  10. Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys

    NASA Astrophysics Data System (ADS)

    Tamer, M.

    2016-06-01

    Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.

  11. Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun

    2015-01-01

    The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer. PMID:25785306

  12. Study on Topology Optimization Design, Manufacturability, and Performance Evaluation of Ti-6Al-4V Porous Structures Fabricated by Selective Laser Melting (SLM)

    PubMed Central

    Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang

    2017-01-01

    The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing “bottleneck”. This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing. PMID:28880229

  13. Study on Topology Optimization Design, Manufacturability, and Performance Evaluation of Ti-6Al-4V Porous Structures Fabricated by Selective Laser Melting (SLM).

    PubMed

    Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang

    2017-09-07

    The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing "bottleneck". This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing.

  14. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity

    PubMed Central

    2017-01-01

    The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507

  15. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has notmore » been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.« less

  16. Elasticity study of textured barium strontium titanate thin films by X-ray diffraction and laser acoustic waves

    NASA Astrophysics Data System (ADS)

    Chaabani, Anouar; Njeh, Anouar; Donner, Wolfgang; Klein, Andreas; Hédi Ben Ghozlen, Mohamed

    2017-05-01

    Ba0.65Sr0.35TiO3 (BST) thin films of 300 nm were deposited on Pt(111)/TiO2/SiO2/Si(001) substrates by radio frequency magnetron sputtering. Two thin films with different (111) and (001) fiber textures were prepared. X-ray diffraction was applied to measure texture. The raw pole figure data were further processed using the MTEX quantitative texture analysis software for plotting pole figures and calculating elastic constants and Young’s modulus from the orientation distribution function (ODF) for each type of textured fiber. The calculated elastic constants were used in the theoretical studies of surface acoustics waves (SAW) propagating in two types of multilayered BST systems. Theoretical dispersion curves were plotted by the application of the ordinary differential equation (ODE) and the stiffness matrix methods (SMM). A laser acoustic waves (LAW) technique was applied to generate surface acoustic waves (SAW) propagating in the BST films, and from a recursive process, the effective Young’s modulus are determined for the two samples. These methods are used to extract and compare elastic properties of two types of BST films, and quantify the influence of texture on the direction-dependent Young’s modulus.

  17. Radiofrequency electrode vibration-induced shear wave imaging for tissue modulus estimation: a simulation study.

    PubMed

    Bharat, Shyam; Varghese, Tomy

    2010-10-01

    Quasi-static electrode displacement elastography, used for in-vivo imaging of radiofrequency ablation-induced lesions in abdominal organs such as the liver and kidney, is extended in this paper to dynamic vibrational perturbations of the ablation electrode. Propagation of the resulting shear waves into adjoining regions of tissue can be tracked and the shear wave velocity used to quantify the shear (and thereby Young's) modulus of tissue. The algorithm used utilizes the time-to-peak displacement data (obtained from finite element analyses) to calculate the speed of shear wave propagation in the material. The simulation results presented illustrate the feasibility of estimating the Young's modulus of tissue and is promising for characterizing the stiffness of radiofrequency-ablated thermal lesions and surrounding normal tissue.

  18. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    NASA Astrophysics Data System (ADS)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  19. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  20. Adiabatic bulk modulus of elasticity for 2D liquid dusty plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Huang, Dong; Li, Wei

    2018-05-01

    From the recently obtained equation of state (EOS) for two-dimensional (2D) liquid dusty plasmas, their various physical quantities have been derived analytically, such as the specific heat CV, the Grüneisen parameter, the bulk modulus of elasticity, and the isothermal compressibility. Here, the coefficient of volumetric thermal expansion αV and the relative pressure coefficient αP of 2D liquid dusty plasmas are derived from their EOS. Using the obtained CV, αV, and αP, the analytical expression of their heat capacity under constant-pressure conditions CP is obtained. Thus, the heat capacity ratio, expressed as CP/CV , is analytically achieved. Then the adiabatic bulk modulus of elasticity is derived, so that the adiabatic sound speeds are obtained. These obtained results are compared with previous findings using a different approach.

  1. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  2. Dielectric relaxation of gamma irradiated muscovite mica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjeet; Singh, Mohan, E-mail: mohansinghphysics@gmail.com; Singh, Lakhwant

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, usingmore » the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.« less

  3. High Resolution Imaging Using Phase Retrieval. Volume 2

    DTIC Science & Technology

    1991-10-01

    aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude

  4. Distinctive viscoelastic and viscoplastic nanomechanics of ionically cross-linked polyelectrolyte complexes under intermittent relaxation and creep

    NASA Astrophysics Data System (ADS)

    Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin

    This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.

  5. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiriolo, Raffaele; Rangnekar, Neel; Zhang, Han

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservationmore » of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.« less

  6. The synthesis and characterization of xerogel silica films for interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Chow, Loren Anton

    1999-11-01

    Lowering the dielectric constant, k, of the interlayer dielectric in microprocessors leads to a decrease in power consumption, crosstalk between interconnects and RC time delay. Because of its low density, porous silica, as derived from the sol-gel process, has been widely praised as having the lowest dielectric constant of all viable "low-k" materials. Presented in this work are the results of an investigation featuring the synthesis and characterization of xerogel silica films. Synthesized were xerogel films derived from a tetrafanctional precursor. Such a material was found to be brittle and given to cracking and delamination during curing. it was found, however, that organic modification of the xerogel film led to a compliant material that remained crack-free throughout the curing process. This "hybrid" material filled 0.35 mum trenches without voids, cracks or delamination. The dielectric constant was found to be extremely sensitive to moisture. Although the moisture content was lower than that detectable by Fourier-transform infrared spectroscopy, the dielectric constant in ambient conditions was 80% higher than a dry film. The voltage breakdown was 3.4 MV/cm and the leakage current during bias temperature stressing (at 200 V and 200°C) was negligibly low. There was a critical film thickness at which the film cracked. This critical film thickness was dependent on the elastic constants of the substrate and the film. Because the strain energy released by the cracking film is commensurate with the compliance of the substrate, cracks formed preferentially in the <100> directions; that is, the directions of lowest substrate modulus. The critical thickness for the <100> direction for the hybrid film cured at 500°C was found to be 1.10 mum. Furthermore, it was found that cracks from the xerogel penetrated into the Si substrate to a depth of 0.8 mum. Using substrates of different elastic constants, the biaxial modulus and the coefficient of thermal expansion were found to be respectively 56 GPa and 2.11 x 10-6/°C. With knowledge of the biaxial modulus, the depth of cracking into the Si substrate and an assumption on Poisson's ratio, the critical crack energy release rate of the film was found to be 1.8 J/m2.

  7. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günay, E.

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values.more » In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.« less

  8. Investigation of structural, electronic, elastic and optical properties of Cd{sub 1-x-y}Zn{sub x}Hg{sub y}Te alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr

    2016-06-15

    Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

  9. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  10. The elastic constants of San Carlos olivine to 17 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, E.H.; Brown, J.M.; Slutsky, L.J.

    1997-06-01

    All elastic constants, the average bulk and shear moduli, and the lattice parameters of San Carlos olivine (Fo{sub 90}) (initial density 3.355gm/cm{sup 3}) have been determined to a pressure of 12 GPa at room temperature. Measurements of c{sub 11}, c{sub 33}, c{sub 13}, and c{sub 55} have been extended to 17 GPa. The pressure dependence of the adiabatic, isotropic (Hashin-Shtrikman bounds) bulk modulus, and shear modulus may be expressed as K{sub HS}=129.4+4.29P and by G{sub HS}=78+1.71P{minus}0.027P{sup 2}, where both the pressure and the moduli are in gigapascals. The isothermal compression of olivine is described by a bulk modulus given asmore » K{sub T}=126.3+4.28P. Elastic constants other than c{sub 55} can be adequately represented by a linear relationship in pressure. In the order (c{sub 11},c{sub 12},c{sub 13},c{sub 22},c{sub 23},c{sub 33},c{sub 44},c{sub 55},c{sub 66}) the 1 bar intercepts (gigapascal units) are (320.5, 68.1, 71.6, 196.5, 76.8, 233.5, 64.0, 77.0, 78.7). The first derivatives are (6.54, 3.86, 3.57, 5.38, 3.37, 5.51, 1.67, 1.81, 1.93). The second derivative for c{sub 55} is {minus}0.070GPa{sup {minus}1}. Incompressibilities for the three axes may also be expressed as linear relationships with pressure. In the order of {bold a, b}, and {bold c} axes the intercepts in gigapascals are (547.8, 285.8, 381.8) and the first derivatives are (20.1, 12.3, 14.0).{copyright} 1997 American Geophysical Union« less

  11. Modelling Pre-eruptive Progressive Damage in Basaltic Volcanoes: Consequences for the Pre-eruptive Process

    NASA Astrophysics Data System (ADS)

    Got, J. L.; Amitrano, D.; Carrier, A.; Marsan, D.; Jouanne, F.; Vogfjord, K. S.

    2017-12-01

    At Grimsvötn volcano, high-quality earthquake and continuous GPS data were recorded by the Icelandic Meteorological Office during its 2004-2011 inter-eruptive period and exhibited remarkable patterns : acceleration of the cumulated earthquake number, and a 2-year exponential decrease in displacement rate followed by a 4-year constant inflation rate. We proposed a model with one magma reservoir in a non-linear elastic damaging edifice, with incompressible magma and a constant pressure at the base of the magma conduit. We first modelled seismicity rate and damage as a function of time, and show that Kachanov's elastic brittle damage law may be used to express the decrease of the effective shear modulus with time. We then derived simple analytical expressions for the magma reservoir overpressure and the surface displacement as a function of time. We got a very good fit of the seismicity and surface displacement data by adjusting only three phenomenological parameters and computed magma reservoir overpressure, magma flow and strain power as a function of time. Overpressure decrease is controlled by damage and shear modulus decrease. Displacement increases, although overpressure is decreasing, because shear modulus decreases more than overpressure. Normalized strain power reaches a maximum 0.25 value. This maximum is a physical limit, after which the elasticity laws are no longer valid, earthquakes cluster, cumulative number of earthquakes departs from the model. State variable extrema provide four reference times that may be used to assess the mechanical state and dynamics of the volcanic edifice. We also performed the spatial modelling of the progressive damage and strain localization around a pressurized magma reservoir. We used Kachanov's damage law and finite element modelling of an initially elastic volcanic edifice pressurized by a spherical magma reservoir, with a constant pressure in the reservoir and various external boundary conditions. At each node of the model, Young's modulus is decreased if deviatoric stress locally reaches the Mohr-Coulomb plastic threshold. For a compressive horizontal stress, the result shows a complex strain localization pattern, showing reverse and normal faulting very similar to what is obtained from analog modelling and observed at volcanic resurgent domes.

  12. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping.

    PubMed

    Natale, L C; Rodrigues, M C; Xavier, T A; Simões, A; de Souza, D N; Braga, R R

    2015-01-01

    To compare the ion release and mechanical properties of a calcium hydroxide (Dycal) and two calcium silicate (MTA Angelus and Biodentine) cements. Calcium and hydroxyl ion release in water from 24-h set cements were calculated from titration with HCl (n = 3). Calcium release after 7, 14, 21 and 28 days at pH 5.5 and 7.0 was measured using ICP-OES (n = 6). Flexural strength (FS) and modulus (E) were tested after 48-h storage, and compressive strength (CS) was tested after 48 h and 7 days (n = 10). Ion release and mechanical data were subjected to anova/Tukey and Kruskal-Wallis/Mann-Whitney tests, respectively (α = 0.05). Titration curves revealed that Dycal released significantly fewer ions in solution than calcium silicates (P < 0.001). Calcium release remained constant at pH 7.0, whilst at pH 5.5, it dropped significantly by 24% after 21 days (P < 0.05). At pH 5.5, MTA Angelus released significantly more calcium than Dycal (P < 0.01), whilst Biodentine had superior ion release than Dycal at pH 7.0 (P < 0.01). Biodentine had superior flexural strength, flexural modulus and compressive strength than the other cements, whilst MTA Angelus had higher modulus than Dycal (P < 0.001). Immediate calcium and hydroxyl ion release in solution was significantly lower for Dycal. In general, all materials released constant calcium levels over 28 days, but release from Dycal was significantly lower than Biodentine and MTA Angelus depending on pH conditions. Biodentine had substantially higher strength and modulus than MTA Angelus and Dycal, both of which demonstrated low stress-bearing capabilities. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  14. Mechanical response of the flux lines in ceramic YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; André, M.-O.; Benoit, W.

    1992-06-01

    We have studied the mechanical response of the flux-line lattice (FLL) in ceramic samples of YBa2Cu3O7 by means of a low-frequency forced pendulum. The internal friction and elastic modulus variation of the FLL have been measured as a function of temperature for different values of the applied stress. A somewhat different behavior was observed whether a zero-field-cooling or field-cooling procedure was followed. Measurements of the internal friction and elastic modulus as a function of the applied stress at constant temperature show amplitude-dependent dissipation, with a maximum dissipation at intermediate values of the stress. This dependence is well fitted by a rheological model of extended dry friction, if we restrict ourselves to the dissipation and modulus at fixed temperature. The agreement is not so good when attempting to extend the model to fit the temperature dependence.

  15. Electronic Structure, Mechanical and Dynamical Stability of Hexagonal Subcarbides M2C (M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt): Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Suetin, D. V.; Shein, I. R.

    2018-02-01

    Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.

  16. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ekta, E-mail: jainekta05@gmail.com; Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com

    2016-05-06

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B{sub 2}-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a{sub 0}), bulk modulus (B) and first-order pressure derivative of bulk modulus (B’) are presented. The density of states are derived which show the metallic character of present compound. Our results for C{sub 11}, C{sub 12} and C{sub 44} agree well with previous theoretical data. Using Pugh’s criteria (B/G{sub H} < 1.75), brittle character of AlFe is satisfied. In addition shear modulusmore » (G{sub H}), Young’s modulus (E), sound wave velocities and Debye temperature (θ{sub D}) have also been estimated.« less

  17. Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Chandra, S.; Singh, J. K.

    2017-08-01

    Based on plasma oscillations theory of solids, simple relations have been proposed for the calculation of bond length, specific gravity, homopolar energy gap, heteropolar energy gap, average energy gap, crystal ionicity, bulk modulus, electronic polarizability and dielectric constant of rare earth divalent R+2X and trivalent R+3X monochalcogenides. The specific gravity of nine R+2X, twenty R+3X, and bulk modulus of twenty R+3X monochalcogenides have been calculated for the first time. The calculated values of all parameters are compared with the available experimental and the reported values. A fairly good agreement has been obtained between them. The average percentage deviation of two parameters: bulk modulus and electronic polarizability for which experimental data are known, have also been calculated and found to be better than the earlier correlations.

  18. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  19. First-principles investigation for some physical properties of some fluoroperovskites compounds ABF3 (A = K, Na; B = Mg, Zn)

    NASA Astrophysics Data System (ADS)

    Bakri, Badis; Driss, Zied; Berri, Saadi; Khenata, Rabah

    2017-12-01

    In this work, the structural, electronic and optical properties of fluoroperovskite ABF3 (A = K, Na; B = Mg, Zn) were studied using two different approaches: the full-potential linearized augmented plane wave method and the pseudo-potential plane wave scheme in the frame of generalized gradient approximation features such as the lattice constant, bulk modulus and its pressure derivative are reported. The ground state properties of these compounds such as the equilibrium lattice constant and the bulk modulus are in good agreement with the experimental results. The first principles calculations were performed to study the electronic structures of ABF3(A = K, Na; B = Mg, Zn) compounds and the results indicated that these four compounds are indirect band gap insulators. The optical properties are analysed and the source of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 25 eV have also been reported and discussed.

  20. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.

    PubMed

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2013-01-01

    A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.

  1. A Novel Approach for Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Chen, Ya-Chin; Juang, Jer-Nan

    1998-01-01

    Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In the main, their theoretical development is based upon the assumption of stationarity of the signals involved, particularly with respect to the second order statistics. On this basis, the well-known normal equations can be formulated. If high- order statistical stationarity is assumed, then the equivalent normal equations involve high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed and considerable implementation has been made in our contributions in the past year. The approach is based upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and offers significant deviations from the standard prediction methods. These blind adaptive algorithms are derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report, other new update algorithms are derived from the fundamental concepts of advanced system identification to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number of control-related problems, such as disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. The applications implemented are speech processing, such as coding and synthesis. Simulations are included to verify the novel modelling method.

  2. Ab-initio study of C15-type Laves phase superconductor LaRu2

    NASA Astrophysics Data System (ADS)

    Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur

    2017-01-01

    Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.

  3. Lattice Mechanical Properties of Noble and Transition Metals

    NASA Astrophysics Data System (ADS)

    Baria, J. K.

    2004-04-01

    A model pseudopotential depending on an effective core radius but otherwise parameter free is used to study the interatomic interactions, phonon dispersion curves (in q and r-space analysis), phonon density of states, mode Grüneisen parameters, dynamical elastic constants ( C 11, C 12 and C 44), bulk modulus ( B), shear modulus ( C'), deviation from Cauchy relation ( C 12 C 44), Poisson’s ratio ( σ), Young’s modulus ( Y), behavior of phonon frequencies in the elastic limit independent of the direction ( Y 1), limiting value in the [110] direction ( Y 2), degree of elastic anisotropy ( A), maximum frequency ω max, mean frequency < ω>, < ω 2>1/2=(< ω>/< ω -1>)1/2, fundamental frequency < ω 2>, and propagation velocities of the elastic constants in Cu, Ag, Au, Ni, Pd, and Pt. The contribution of s-like electrons is calculated in the second-order perturbation theory for the model potential while that of d-like electrons is taken into account by introducing repulsive short-range Born-Mayer like term. Very recently proposed screening function due to Sarkar et al. has been used to obtain the screened form factor. The theoretical results are compared with experimental findings wherever possible. A good agreement between theoretical investigations and experimental findings has proved the ability of our model potential for predicting a large number of physical properties of transition metals.

  4. Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Dutta, G.

    2016-09-01

    We determine the elastic properties of the layered thermoelectrics BiOCuSe and LaOCuSe using first-principles density functional theory calculations. To predict their stability, we calculate six distinct elastic constants, where all of them are positive, and suggest mechanically stable tetragonal crystals. As elastic properties relate to the nature and the strength of the chemical bond, the latter is analyzed by means of real-space descriptors, such as the electron localization function (ELF) and Bader charge. From elastic constants, a set of related properties, namely, bulk modulus, shear modulus, Young's modulus, sound velocity, Debye temperature, Grüneisen parameter, and thermal conductivity, are evaluated. Both materials are found to be ductile in nature and not brittle. We find BiOCuSe to have a smaller sound velocity and, hence, within the accuracy of the used Slack's model, a smaller thermal conductivity than LaOCuSe. Our calculations also reveal that the elastic properties and the related lattice thermal transport of both materials exhibit a much larger anisotropy than their electronic band properties that are known to be moderately anisotropic because of a moderate effective-electron-mass anisotropy. Finally, we determine the lattice dynamical properties, such as phonon dispersion, atomic displacement, and mode Grüneisen parameters, in order to correlate the elastic response, chemical bonding, and lattice dynamics.

  5. Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems

    NASA Astrophysics Data System (ADS)

    Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.

    2018-05-01

    An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.

  6. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  7. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  8. Three-body interactions and the elastic constants of hcp solid 4He

    NASA Astrophysics Data System (ADS)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-09-01

    The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.

  9. Pressure derivatives of elastic moduli of fused quartz to 10 kb

    USGS Publications Warehouse

    Peselnick, L.; Meister, R.; Wilson, W.H.

    1967-01-01

    Measurements of the longitudinal and shear moduli were made on fused quartz to 10 kb at 24??5??C. The anomalous behavior of the bulk modulus K at low pressure, ???K ???P 0, at higher pressures. The pressure derivative of the rigidity modulus ???G ???P remains constant and negative for the pressure range covered. A 15-kb hydrostatic pressure vessel is described for use with ultrasonic pulse instrumentation for precise measurements of elastic moduli and density changes with pressure. The placing of the transducer outside the pressure medium, and the use of C-ring pressure seals result in ease of operation and simplicity of design. ?? 1967.

  10. Single-crystal elastic properties of aluminum oxynitride (AlON) from brillouin scattering

    DOE PAGES

    Satapathy, Sikhanda; Ahart, Muhtar; Dandekar, Dattatraya; ...

    2016-01-19

    The Brillouin light-scattering technique was used to determine experimentally the three independent elastic constants of cubic aluminum oxynitride at the ambient condition. They are C 11=334.8(±1.8) GPa, C 12=164.4(± 1.2) GPa, and C 44=178.6(± 1.1) GPa. Its bulk modulus is 221.2 GPa. The magnitude of Zener anisotropic ratio is 2.1 similar to other spinels. Here, the anisotropic nature of the material is shown by a large variation in the Young’s modulus and Poisson’s ratio with crystallographic directions. The material was found to be auxetic in certain orientations.

  11. Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcadam, D J; Mebs, R W

    1939-01-01

    The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.

  12. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    PubMed Central

    Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.

    2013-01-01

    Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602

  13. Seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Cao, Zizheng; Chi, Nan; Zhang, Junwen; Shao, Yufeng; Tao, Li

    2012-10-22

    We experimentally demonstrated the seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation with 400-km single-mode fiber-28 (SMF-28) transmission and 1-m wireless delivery. The X- and Y-polarization components of optical PDM-QPSK baseband signal are simultaneously up-converted to 100 GHz by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which make up a 2x2 multiple-input multiple-output (MIMO) wireless link based on microwave polarization multiplexing. At the wireless receiver, a two-stage down conversion is firstly done in analog domain based on balanced mixer and sinusoidal radio frequency (RF) signal, and then in digital domain based on digital signal processing (DSP). Polarization de-multiplexing is realized by constant modulus algorithm (CMA) based on DSP in heterodyne coherent detection. Our experimental results show that more taps are required for CMA when the X- and Y-polarization antennas have different wireless distance.

  14. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  15. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  16. Elasticity of Pargasite Amphibole: A Hydrous Phase at Mid Lithospheric Discontinuity

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Mookherjee, M.

    2017-12-01

    Mid Lithospheric Discontinuity (MLD) is characterized by a low shear wave velocity ( 3 to 10 %). In cratons, the depth of MLD varies between 80 and 100 km. The reduction of the shear wave velocity at MLD is similar to what is observed in the lithosphere-asthenosphere boundary (LAB). Such low velocity at MLD could be caused by partial melting, temperature induced grain boundary sliding, changes in the elastic anisotropy, and/or metasomatism which may lead to the formation of hydrous phases including mica and amphibole. Thus, it is clear that in order to assess the role of metasomatism at MLD, we need better constraints on the elasticity of hydrous phases. However, such elasticity data are scarce. In this study, we explore elasticity of pargasite amphibole [NaCa2(Mg4Al)(Si6Al2)O22(OH)2] using density functional theory (DFT) with local density approximation (LDA) and generalized gradient approximation (GGA). We find that the pressure-volume results can be adequately described by a finite strain equation with the bulk modulus, K0 being 102 and 85 GPa for LDA and GGA respectively. We also determined the full elastic constant tensor (Cij) using the finite difference method. The bulk modulus, K0 determined from the full elastic constant tensor is 104 GPa for LDA and 87 GPa for GGA. The shear modulus, G0 determined from the full elastic constant tensor is 64 GPa for LDA and 58 GPa for GGA. The bulk and shear moduli predicted with LDA are 5 and 1 % stiffer than the recent results [1]. In contrast, the bulk and shear moduli predicted with GGA are 12 and 10 % softer compared to the recent results [1]. The full elastic constant tensor for pargasite shows significant anisotropy. For instance, LDA predicts compressional (AVP) and shear (AVS) wave anisotropy of 22 and 20 % respectively. At higher pressure, elastic moduli stiffen. However, temperature is likely to have an opposite effect on the elasticity and this remains largely unknown for pargasite. Compared to the major mantle minerals, pargasite has softer elastic constants and significant anisotropy and may explain the reduction in shear wave velocity at MLD. Reference: [1] Brown, J. M., Abramson, E. H.,2016, Phys. Earth Planet. Int., 261, 161-171. Acknowledgement: This work is supported by US NSF award EAR 1639552.

  17. Stochastic Investigation of Natural Frequency for Functionally Graded Plates

    NASA Astrophysics Data System (ADS)

    Karsh, P. K.; Mukhopadhyay, T.; Dey, S.

    2018-03-01

    This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.

  18. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.

    2016-08-01

    An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.

  19. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    PubMed

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Yielding in a strongly aggregated colloidal gel: 2D simulations and theory

    NASA Astrophysics Data System (ADS)

    Roy, Saikat; Tirumkudulu, Mahesh

    2015-11-01

    We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.

  1. Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature

    DOE PAGES

    Lipp, M. J.; Jenei, Zs.; Cynn, H.; ...

    2017-10-31

    Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less

  2. Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipp, M. J.; Jenei, Zs.; Cynn, H.

    Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less

  3. First Principles Investigation of Fluorine Based Strontium Series of Perovskites

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2016-11-01

    Density functional theory is used to explore structural, elastic, and mechanical properties of SrLiF3, SrNaF3, SrKF3 and SrRbF3 fluoroperovskite compounds by means of an ab-initio Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method. Several lattice parameters are employed to obtain accurate equilibrium volume (Vo). The resultant quantities include ground state energy, elastic constants, shear modulus, bulk modulus, young's modulus, cauchy's pressure, poisson's ratio, shear constant, ratio of elastic anisotropy factor, kleinman's parameter, melting temperature, and lame's coefficient. The calculated structural parameters via DFT as well as analytical methods are found to be consistent with experimental findings. Chemical bonding is used to investigate corresponding chemical trends which authenticate combination of covalent-ionic behavior. Furthermore electron density plots as well as elastic and mechanical properties are reported for the first time which reveals that fluorine based strontium series of perovskites are mechanically stable and posses weak resistance towards shear deformation as compared to resistance towards unidirectional compression while brittleness and ionic behavior is dominated in them which decreases from SrLiF3 to SrRbF3. Calculated cauchy's pressure, poisson's ratio and B/G ratio also proves ionic nature in these compounds. The present methodology represents an effective and influential approach to calculate the whole set of elastic and mechanical parameters which would support to understand various physical phenomena and empower device engineers for implementing these materials in numerous applications.

  4. Study on property and stability mechanism of LAB-AEO-4 system

    NASA Astrophysics Data System (ADS)

    Song, Kaifei; Ge, Jijiang; Wang, Yang; Zhang, Guicai; Jiang, Ping

    2017-04-01

    The behaviors of binary blending systems of fatty alcohol polyoxyethylene ether (AEO-4) blended with the laurel amide betaine (LAB) was investigated at 80°C,the results indicated that the optimal ratio of the mixed system of LAB-AEO-4 was 5:2. The stability mechanism of LAB-AEO-4 system was analyzed from three aspects of dynamic surface tension,gas permeation rate and surface rheology.The results showed that the tension of mixed system was easier to achieve balance,the constant of gas permeation rate of the mixed system decreased by about 7% and the elastic modulus and dilational modulus increased by about 2 times compared with the single LAB system.

  5. Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1977-01-01

    A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.

  6. Electronic and mechanical properties of ZnX (X = S, Se and Te)—An ab initio study

    NASA Astrophysics Data System (ADS)

    Verma, Ajay Singh; Sharma, Sheetal; Sarkar, Bimal Kumar; Jindal, Vijay Kumar

    2011-12-01

    Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C11, C12 and C44), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.

  7. Creep rupture of polymer-matrix composites

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Morris, D. H.; Griffith, W. I.

    1981-01-01

    The time-dependent creep-rupture process in graphite-epoxy laminates is examined as a function of temperature and stress level. Moisture effects are not considered. An accelerated characterization method of composite-laminate viscoelastic modulus and strength properties is reviewed. It is shown that lamina-modulus master curves can be obtained using a minimum of normally performed quality-control-type testing. Lamina-strength master curves, obtained by assuming a constant-strain-failure criterion, are presented along with experimental data, and reasonably good agreement is shown to exist between the two. Various phenomenological delayed failure models are reviewed and two (the modified rate equation and the Larson-Miller parameter method) are compared to creep-rupture data with poor results.

  8. Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

    2011-01-01

    Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

  9. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    PubMed

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.

  10. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    NASA Technical Reports Server (NTRS)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  11. The computation of pi to 29,360,000 decimal digits using Borweins' quartically convergent algorithm

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    The quartically convergent numerical algorithm developed by Borwein and Borwein (1987) for 1/pi is implemented via a prime-modulus-transform multiprecision technique on the NASA Ames Cray-2 supercomputer to compute the first 2.936 x 10 to the 7th digits of the decimal expansion of pi. The history of pi computations is briefly recalled; the most recent algorithms are characterized; the implementation procedures are described; and samples of the output listing are presented. Statistical analyses show that the present decimal expansion is completely random, with only acceptable numbers of long repeating strings and single-digit runs.

  12. Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties

    PubMed Central

    Fan, Qingyang; Chai, Changchun; Wei, Qun; Yang, Yintang

    2016-01-01

    We systematically studied the physical properties of a novel superhard (t-C3N4) and a novel hard (m-C3N4) C3N4 allotrope. Detailed theoretical studies of the structural properties, elastic properties, density of states, and mechanical properties of these two C3N4 phases were carried out using first-principles calculations. The calculated elastic constants and the hardness revealed that t-C3N4 is ultra-incompressible and superhard, with a high bulk modulus of 375 GPa and a high hardness of 80 GPa. m-C3N4 and t-C3N4 both exhibit large anisotropy with respect to Poisson’s ratio, shear modulus, and Young’s modulus. Moreover, m-C3N4 is a quasi-direct-bandgap semiconductor, with a band gap of 4.522 eV, and t-C3N4 is also a quasi-direct-band-gap semiconductor, with a band gap of 4.210 eV, with the HSE06 functional. PMID:28773550

  13. Analysis of the torsional storage modulus of human hair and its relation to hair morphology and cosmetic processing.

    PubMed

    Wortmann, Franz J; Wortmann, Gabriele; Haake, Hans-Martin; Eisfeld, Wolf

    2014-01-01

    Through measurements of three different hair samples (virgin and treated) by the torsional pendulum method (22°C, 22% RH) a systematic decrease of the torsional storage modulus G' with increasing fiber diameter, i.e., polar moment of inertia, is observed. G' is therefore not a material constant for hair. This change of G' implies a systematic component of data variance, which significantly contributes to the limitations of the torsional method for cosmetic claim support. Fitting the data on the basis of a core/shell model for cortex and cuticle enables to separate this systematic component of variance and to greatly enhance the discriminative power of the test. The fitting procedure also provides values for the torsional storage moduli of the morphological components, confirming that the cuticle modulus is substantially higher than that of the cortex. The results give consistent insight into the changes imparted to the morphological components by the cosmetic treatments.

  14. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  15. High pressure phase transformation in uranium carbide: A first principle study

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2013-02-01

    First principles calculations have been carried out to analyze structural, elastic and dynamic stability, of UC under hydrostatic compression. The comparison of enthalpies of rocksalt type (B1) and body centered orthorhombic (bco) structures as a function of pressure suggests the B1 →bco transition at ˜ 23 GPa, in good agreement with experimental value of 27 GPa. From the lattice dynamic calculations we have determined the phonon dispersion relations for B1 phase at various compressions. It is found that TA phonon branch along Γ-X direction becomes imaginary around the transition pressure. Further, the phonon instability so caused is of long wavelength nature as it occurs near the Brillouin zone centre. This long wavelength phonon instability at the transition point indicates that the B1 →bco transition is driven by elastic failure (the vanishing of C44 modulus). Various physical quantities such as equilibrium volume, bulk modulus, pressure derivative of bulk modulus and elastic constants have been determined at zero pressure and compared with data available in literature.

  16. Thermodynamic properties of α-uranium

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao

    2016-11-01

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0-100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit.

  17. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  18. The Influence of Pore Size on the Indentation Behavior of Metallic Nanoporous Materials: A Molecular Dynamics Study

    PubMed Central

    Esqué-de los Ojos, Daniel; Pellicer, Eva; Sort, Jordi

    2016-01-01

    In general, the influence of pore size is not considered when determining the Young’s modulus of nanoporous materials. Here, we demonstrate that the pore size needs to be taken into account to properly assess the mechanical properties of these materials. Molecular dynamics simulations of spherical indentation experiments on single crystalline nanoporous Cu have been undertaken in systems with: (i) a constant degree of porosity and variable pore diameter; and (ii) a constant pore diameter and variable porosity degree. The classical Gibson and Ashby expression relating Young’s modulus with the relative density of the nanoporous metal is modified to include the influence of the pore size. The simulations reveal that, for a fixed porosity degree, the mechanical behavior of materials with smaller pores differs more significantly from the behavior of the bulk, fully dense counterpart. This effect is ascribed to the increase of the overall surface area as the pore size is reduced, together with the reduced coordination number of the atoms located at the pores edges. PMID:28773476

  19. Application of based on improved wavelet algorithm in fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Tang, Wenjuan

    2018-03-01

    It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.

  20. Elastic response of binary hard-sphere fluids

    NASA Astrophysics Data System (ADS)

    Rickman, J. M.; Ou-Yang, H. Daniel

    2011-07-01

    We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for example, does not. This behavior is shown to be dictated by the angular dependence (in k⃗ space) of derivatives of the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal fluids in laser trapping experiments.

  1. Fabrication and characterization of carbon nanotube turfs

    NASA Astrophysics Data System (ADS)

    Qiu, Anqi

    Carbon nanotube turfs are vertically aligned, slightly tortuous and entangled functional nanomaterials that exhibit high thermal and electrical properties. CNT turfs exhibit unique combinations of thermal and electrical conductivity, energy absorbing capability, low density and adhesive behavior. The objective of this study is to fabricate, measure, manipulate and characterize CNT turfs and thus determine the relationship between a turf's properties and its morphology, and provide guidance for developing links between turf growth conditions and of the subsequent turf properties. Nanoindentation was utilized to determine the mechanical and in situ electrical properties of CNT turfs. Elastic properties do not vary significantly laterally within a single turf, quantifying for the first time the ability to treat the turf as a mechanical continuum throughout. The use of the average mechanical properties for any given turf should be suitable for design purpose without the necessity of accounting for lateral spatial variation in structure. Properties variation based on time dependency, rate dependency, adhesive behavior and energy absorption and dissipation behavior have been investigated for these CNT turfs. Electrical properties measurements of CNT turfs have been carried out and show that a constant electrical current at a constant penetration depth indicates that a constant number of CNTs in contact with the tip; combining with the results that adhesive load increased with an increasing penetration hold time, thus we conclude that during a hold period of nanoindentation, individual tubes increase their individual attachment to the tip. CNT turfs show decreased adhesion and modulus after exposure to an electron beam due to carbon deposition and subsequent oxidation. To increase the modulus of the turf, axial compression and solvent capillary were used to increase the density of the turf by up to 15 times. Structure-property relationships were determined from the density and tortuosity measurements carried out through in situ electrical measurements and directionality measurements. Increasing density increases the mechanical properties as well as electrical conductivity. The modulus increased with a lower tortuosity, which may be related to the compressive buckling positioning.

  2. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-07-01

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young’s modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W1-y  Os y than in W1-x  Re x . A strong correlation between C‧ and the fcc-bcc structural energy difference for W1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C‧. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  3. First-principles study on the structural, elastic and electronic properties of Ti4N3 and Ti6N5 under high pressure

    NASA Astrophysics Data System (ADS)

    Yang, Ruike; Chai, Bao; Zhu, Chuanshuai; Wei, Qun; Du, Zheng

    2017-12-01

    The structural, elastic and electronic properties of Ti4N3 and Ti6N5 have been systematically studied by first-principles calculations based on density functional theory (DFT) with generalized gradient approximation (GGA) and local density approximation (LDA). Basic physical properties for Ti4N3 and Ti6N5, such as the lattice constants, the bulk modulus, shear modulus, and elastic constants are calculated. The results show that Ti4N3 and Ti6N5 are mechanically stable under ambient pressure. The phonon dispersion spectra are researched throughout the Brillouin zone via the linear response approach as implemented in the CASTEP code, which indicate the optimized structures are stable dynamically. The Young’s modulus E and Poisson’s ratios ν are also determined within the framework of the Voigt-Reuss-Hill approximation. The analyses show that Ti4N3 is more ductile than Ti6N5 at the same pressure and ductility increases as the pressure increases. Moreover, the anisotropies of the Ti4N3 and Ti6N5 are discussed by the Young’s modulus at different directions, and the results indicate that the anisotropy of the two Ti-N compounds is obvious. The total density of states (TDOS) and partial density of states (PDOS) show that the TDOS of TiN, Ti4N3 and Ti6N5 originate mainly from Ti “d” and N “p” states. The results show that Ti4N3 and Ti6N5 present semimetal character. Pressure makes the level range of DOS significantly extended, for TiN, Ti4N3 and Ti6N5. The TDOS decreases with the pressure rise, at Fermi level.

  4. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.

    PubMed

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-06-03

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y  Os y than in W 1-x  Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  5. Novel techniques for optical sensor using single core multi-layer structures for electric field detection

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2017-05-01

    This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.

  6. Mechanical property assessment of tissue-mimicking phantoms using remote palpation and optical read-out for amplitude of vibration and refractive index modulation.

    PubMed

    Usha Devi, C; Bharat Chandran, R S; Vasu, R Mohan; Sood, Ajay K

    2007-01-01

    A coherent light beam is used to interrogate the focal region within a tissue-mimicking phantom insonified by an ultrasound transducer. The ultrasound-tagged photons exiting from the object carry with them information on local optical path length fluctuations caused by refractive index variations and medium vibration. Through estimation of the force distribution in the focal region of the ultrasound transducer, and solving the forward elastography problem for amplitude of vibration of tissue particles, we observe that the amplitude is directed along the axis of the transducer. It is shown that the focal region interrogated by photons launched along the transducer axis carries phase fluctuations owing to both refractive index variations and particle vibration, whereas the photons launched perpendicular to the transducer axis carry phase fluctuations arising mainly from the refractive index variations, with only smaller contribution from vibration of particles. Monte-Carlo simulations and experiments done on tissue-mimicking phantoms prove that as the storage modulus of the phantom is increased, the detected modulation depth in autocorrelation is reduced, significantly for axial photons and only marginally for the transverse-directed photons. It is observed that the depth of modulation is reduced to a significantly lower and constant value as the storage modulus of the medium is increased. This constant value is found to be the same for both axial and transverse optical interrogation. This proves that the residual modulation depth is owing to refractive index fluctuations alone, which can be subtracted from the overall measured modulation depth, paving the way for a possible quantitative reconstruction of storage modulus. Moreover, since the transverse-directed photons are not significantly affected by storage modulus variations, for a quantitatively accurate read-out of absorption coefficient variation, the interrogating light should be perpendicular to the focusing ultrasound transducer axis.

  7. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography

    PubMed Central

    2013-01-01

    Background The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. Methods In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young’s modulus are computed simultaneously through an extended Kalman filter (EKF). Results In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young’s modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. Conclusions The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young’s modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc. PMID:23937814

  8. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.

    PubMed

    Lu, Minhua; Zhang, Heye; Wang, Jun; Yuan, Jinwei; Hu, Zhenghui; Liu, Huafeng

    2013-08-10

    The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young's modulus are computed simultaneously through an extended Kalman filter (EKF). In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young's modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young's modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc.

  9. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

  10. DEM interpolation weight calculation modulus based on maximum entropy

    NASA Astrophysics Data System (ADS)

    Chen, Tian-wei; Yang, Xia

    2015-12-01

    There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.

  11. Phase-only asymmetric optical cryptosystem based on random modulus decomposition

    NASA Astrophysics Data System (ADS)

    Xu, Hongfeng; Xu, Wenhui; Wang, Shuaihua; Wu, Shaofan

    2018-06-01

    We propose a phase-only asymmetric optical cryptosystem based on random modulus decomposition (RMD). The cryptosystem is presented for effectively improving the capacity to resist various attacks, including the attack of iterative algorithms. On the one hand, RMD and phase encoding are combined to remove the constraints that can be used in the attacking process. On the other hand, the security keys (geometrical parameters) introduced by Fresnel transform can increase the key variety and enlarge the key space simultaneously. Numerical simulation results demonstrate the strong feasibility, security and robustness of the proposed cryptosystem. This cryptosystem will open up many new opportunities in the application fields of optical encryption and authentication.

  12. Nonlinearity of bituminous mixtures

    NASA Astrophysics Data System (ADS)

    Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.

    2018-02-01

    This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).

  13. Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance

    NASA Astrophysics Data System (ADS)

    Anthoulis, G. I.; Kontou, E.; Fainleib, A.; Bei, I.

    2009-03-01

    The outstanding improvement in the physical properties of cyanate esters (CEs) compared with those of competitor resins, such as epoxies, has attracted appreciable attention recently. Cyanate esters undergo thermal polycyclotrimerization to give polycyanurates (PCNs). However, like most thermo setting resins, the main draw back of CEs is brittleness. To over come this disadvan tage, CEs can be toughened by the introduction of polytetramethylene glycol (PTMG), a hydroxyl-terminated polyether. How ever, PTMG has a detrimental impact on Young's modulus. To simultaneously enhance both the ductility and the stiffness of CE, we added PTMG and an organoclay (mont morillonite, MMT) to it. A series of PCN/PTMG/MMT nanocomposites with a constant PTMG weight ratio was pre pared, and the resulting nanophase morphology, i.e., the degree of filler dispersion and distribution in the composite and the thermomechanical properties, in terms of glass-transition behaviour, Young's modulus, tensile strength, and elongation at break, were examined using the scanning elec tron micros copy (SEM), a dynamic mechanical analysis (DMA), and stress-strain measurements, re spectively. It was found that, at a content of MMT below 2 wt.%, MMT nanoparticles were distributed uniformly in the matrix, suggesting a lower degree of agglomeration for these materials. In the glassy state, the significant increase in the storage modulus revealed a great stiffening effect of MMT due to its high Young's modulus. The modification with PTMG led to a 233% greater elongation at break compared with that of neat PCN. The nanocomposites exhibited an invariably higher Young's modulus than PCN/PTMG for all the volume factors of organoclay examined, with the 2 wt.% material displaying the most pronounced in crease in the modulus, in agreement with micros copy results.

  14. A Constant-Factor Approximation Algorithm for the Link Building Problem

    NASA Astrophysics Data System (ADS)

    Olsen, Martin; Viglas, Anastasios; Zvedeniouk, Ilia

    In this work we consider the problem of maximizing the PageRank of a given target node in a graph by adding k new links. We consider the case that the new links must point to the given target node (backlinks). Previous work [7] shows that this problem has no fully polynomial time approximation schemes unless P = NP. We present a polynomial time algorithm yielding a PageRank value within a constant factor from the optimal. We also consider the naive algorithm where we choose backlinks from nodes with high PageRank values compared to the outdegree and show that the naive algorithm performs much worse on certain graphs compared to the constant factor approximation scheme.

  15. On global optimization using an estimate of Lipschitz constant and simplicial partition

    NASA Astrophysics Data System (ADS)

    Gimbutas, Albertas; Žilinskas, Antanas

    2016-10-01

    A new algorithm is proposed for finding the global minimum of a multi-variate black-box Lipschitz function with an unknown Lipschitz constant. The feasible region is initially partitioned into simplices; in the subsequent iteration, the most suitable simplices are selected and bisected via the middle point of the longest edge. The suitability of a simplex for bisection is evaluated by minimizing of a surrogate function which mimics the lower bound for the considered objective function over that simplex. The surrogate function is defined using an estimate of the Lipschitz constant and the objective function values at the vertices of a simplex. The novelty of the algorithm is the sophisticated method of estimating the Lipschitz constant, and the appropriate method to minimize the surrogate function. The proposed algorithm was tested using 600 random test problems of different complexity, showing competitive results with two popular advanced algorithms which are based on similar assumptions.

  16. Shear modulus of neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2011-09-01

    The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.

  17. Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo; Frizera, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-07-01

    This paper presents the dynamic mechanical analysis (DMA) in polymer optical fibers (POFs) made of Polymethyl Methacrylate (PMMA) that were submitted to different thermal and chemical treatments, namely annealing and etching processes. The prepared samples were submitted to stress-strain cycles to evaluate the Young's modulus of each fiber. Also, test with constant stress and temperature variation were performed to estimate the thermal expansion coefficient of the fibers submitted to each thermal and chemical treatment. The samples were also tested under different temperature, humidity and strain cycle frequency conditions to analyze the variation of their mechanical properties with these parameters. Results show that the thermal and chemical treatments lead to a reduction of Young's modulus and an increase of the thermal expansion coefficient, which can produce sensors based on intensity variation or fiber Bragg grating with higher dynamic range, stress and temperature sensitivity. Furthermore, the etching and annealing resulted in fiber that presents lower Young's modulus variation with temperature, humidity and strain cycling frequency in most cases. However, the annealing made under water and the combinations of etching and annealing resulted in POFs with higher modulus variation with humidity, which enable their application as intensity variation or FBG-based sensors in humidity/moisture assessment.

  18. Combining AFM and Acoustic Probes to Reveal Changes in the Elastic Stiffness Tensor of Living Cells

    PubMed Central

    Nijenhuis, Nadja; Zhao, Xuegen; Carisey, Alex; Ballestrem, Christoph; Derby, Brian

    2014-01-01

    Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young’s modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell’s cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value. PMID:25296302

  19. Elastic-mathematical theory of cells and mitochondria in swelling process. II. Effect of temperature upon modulus of elasticity of membranous material of egg cells of sea urchin, Strongylocentrotus purpuratus, and of oyster, Crassostrea virginica.

    PubMed

    Mela, M J

    1968-01-01

    The elastic behavior of the cell wall as a function of the temperature has been studied with particular attention being given to the swelling of egg cells of Strongylocentrotus purpuratus and Crassostrea virginica in different sea water concentrations at different temperatures. It was found that the modulus of elasticity is a nonlinear function of temperature. At about 12-13 degrees C the modulus of elasticity (E) is constant, independent of the stress (sigma) and strain (epsilon(nu)) which exist at the cell wall; the membranous material follows Hooke's law, and E approximately 3 x 10(7) dyn/cm(2) for S. purpuratus and C. virginica. When the temperature is higher or lower than 12-13 degrees C, the modulus of elasticity increases, and the membranous material does not follow Hooke's law, but is almost directly proportional to the stresses existing at the cell wall. On increasing the stress, the function E(sigma) = E(sigma) approaches saturation. The corresponding stress-strain diagrams, sigma = sigma(epsilon(nu)), and the graphs, E(sigma) = E(sigma) and E(sigma) = E(t) are given. The cyto-elastic phenomena at the membrane are discussed.

  20. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  1. Comparison of two optimization algorithms for fuzzy finite element model updating for damage detection in a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2018-03-01

    vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.

  2. Determination of elastic constants of a generally orthotropic plate by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, T. C.; Lau, T. C.

    1993-01-01

    This paper describes a method of finding the elastic constants of a generally orthotropic composite thin plate through modal analysis based on a Rayleigh-Ritz formulation. The natural frequencies and mode shapes for a plate with free-free boundary conditions are obtained with chirp excitation. Based on the eigenvalue equation and the constitutive equations of the plate, an iteration scheme is derived using the experimentally determined natural frequencies to arrive at a set of converged values for the elastic constants. Four sets of experimental data are required for the four independent constants: namely the two Young's moduli E1 and E2, the in-plane shear modulus G12, and one Poisson's ratio nu12. The other Poisson's ratio nu21 can then be determined from the relationship among the constants. Comparison with static test results indicate good agreement. Choosing the right combinations of natural modes together with a set of reasonable initial estimates for the constants to start the iteration has been found to be crucial in achieving convergence.

  3. Nondestructive determination of the modulus of elasticity of Fraxinus mandschurica using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Huiling; Liang, Hao; Lin, Xue; Zhang, Yizhuo

    2018-04-01

    A nondestructive methodology is proposed to determine the modulus of elasticity (MOE) of Fraxinus mandschurica samples by using near-infrared (NIR) spectroscopy. The test data consisted of 150 NIR absorption spectra of the wood samples obtained using an NIR spectrometer, with the wavelength range of 900 to 1900 nm. To eliminate the high-frequency noise and the systematic variations on the baseline, Savitzky-Golay convolution combined with standard normal variate and detrending transformation was applied as data pretreated methods. The uninformative variable elimination (UVE), improved by the evolutionary Monte Carlo (EMC) algorithm and successive projections algorithm (SPA) selected three characteristic variables from full 117 variables. The predictive ability of the models was evaluated concerning the root-mean-square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set. In comparison with the predicted results of all the models established in the experiments, UVE-EMC-SPA-LS-SVM presented the best results with the smallest RMSEP of 0.652 and the highest Rp2 of 0.887. Thus, it is feasible to determine the MOE of F. mandschurica using NIR spectroscopy accurately.

  4. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  5. Stretch-Orientation of LaRC(TM) RP 50 Polyimide Film

    NASA Technical Reports Server (NTRS)

    Hawkins, Brian P.; Hinkley, Jeffrey A.; Pater, Ruth H.; Moore, Joanne

    2006-01-01

    An addition-curable poly(amic acid) film was subjected to various thermal pretreatments and then to uniaxial or biaxial drawing. Hot-stretching to 300% of the initial length produced better than twofold increases in tensile modulus and strength of partially-cured films. Most of the improvement was maintained upon completion of the curing at constant length.

  6. Direct Shear Failure in Reinforced Concrete Beams under Impulsive Loading

    DTIC Science & Technology

    1983-09-01

    115 References ............... ............................. 119 Tables . ............................. 124 Figures ............ 1..............30...8217. : = differentiable functions of time 1 = elastic modulus enhancement function 4) 41’ = constants for a given mode W’, = frequency w tfirst thickness-shear...are defined by linear partial differential equations. The analytic results are compared to data gathered on one-way slabs loaded with impulsive blast

  7. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  8. Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures

    DOE PAGES

    Haglund, A.; Koehler, M.; Catoor, D.; ...

    2014-12-05

    A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less

  9. Hooke's Law and the Stiffness of a Plastic Spoon

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.; Warren, Cori

    2012-11-01

    The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate another method to explore elastic properties of everyday materials. This experiment uses a common plastic spoon exposed to a transverse force in order to determine the stiffness constant, yield point, and rupture point of the plastic spoon. In addition, much like the "Youngs Modulus of a Marshmallow" activity, this experiment visually demonstrates Hooke's law, is fun and easy to perform, and leaves a lasting impression on the students.

  10. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Tchagang, Alain B.; Tewfik, Ahmed H.

    2006-12-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  11. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions

    NASA Astrophysics Data System (ADS)

    Holec, D.; Tasnádi, F.; Wagner, P.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.; Keckes, J.

    2014-11-01

    Despite the fast development of computational material modeling, the theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic Zr1 -xAlxN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to make the three cubic directions [1 0 0 ] , [0 1 0 ] , and [0 0 1 ] as similar as possible. In this way, only a small spread of elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder and computational limits regarding the supercell size and calculational time is proposed. The single-crystal elastic constants are shown to vary smoothly with composition, yielding x ≈0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and sharpness. It turns out that for low AlN mole fractions, the spread of the possible Young's modulus data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic Zr1 -xAlxN contains also the evaluation of the texture typical for thin films.

  12. An Implementation Of Elias Delta Code And ElGamal Algorithm In Image Compression And Security

    NASA Astrophysics Data System (ADS)

    Rachmawati, Dian; Andri Budiman, Mohammad; Saffiera, Cut Amalia

    2018-01-01

    In data transmission such as transferring an image, confidentiality, integrity, and efficiency of data storage aspects are highly needed. To maintain the confidentiality and integrity of data, one of the techniques used is ElGamal. The strength of this algorithm is found on the difficulty of calculating discrete logs in a large prime modulus. ElGamal belongs to the class of Asymmetric Key Algorithm and resulted in enlargement of the file size, therefore data compression is required. Elias Delta Code is one of the compression algorithms that use delta code table. The image was first compressed using Elias Delta Code Algorithm, then the result of the compression was encrypted by using ElGamal algorithm. Prime test was implemented using Agrawal Biswas Algorithm. The result showed that ElGamal method could maintain the confidentiality and integrity of data with MSE and PSNR values 0 and infinity. The Elias Delta Code method generated compression ratio and space-saving each with average values of 62.49%, and 37.51%.

  13. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    NASA Astrophysics Data System (ADS)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2) Regardless of the wire type, no clinically important effects were seen 5mm and 10mm beyond the annealed portion.

  14. Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver.

    PubMed

    Fu, Songnian; Xu, Zuying; Lu, Jianing; Jiang, Hexun; Wu, Qiong; Hu, Zhouyi; Tang, Ming; Liu, Deming; Chan, Calvin Chun-Kit

    2018-03-19

    We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.

  15. Mechanical, lattice dynamical and electronic properties of CeO2 at high pressure: First-principles studies

    NASA Astrophysics Data System (ADS)

    Li, Mei; Jia, Huiling; Li, Xueyan; Liu, Xuejie

    2016-01-01

    The elastic constants (Cij), bulk modulus (B), shear modulus (G) and elastic modulus (E) of cubic fluorite CeO2 under high pressure have been studied using the plane-wave pseudopotential method based on density functional theory. The calculated results show that the mechanical properties (Cij, B, G and E) of CeO2 increase with increasing pressure, and the phase transition of CeO2 occurs beyond the pressure of 130 GPa. From the calculated phonon spectrum using Parlinsk-Li-Kawasoe method, we found that CeO2 appears imaginary frequency at 140 GPa, which indicates phase transition. The energy band, density of states and charge density of CeO2 under high pressure are calculated using GGA+U method. It is found that the high pressure makes the electron delocalization and Ce-O covalent bonding enhanced. As pressure increases, the band gap between O2p and Ce4f states near the Fermi level increases, and CeO2 nonmetallic nature promotes. The present research results in a better understanding of how CeO2 responds to compression.

  16. Measurement of high temperature elastic moduli of an 18Cr-9Ni-2.95 Cu-0.58 Nb-0.1C (Wt %) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Hajra, Raj Narayan; Sudha, C.; Raju, S.; Saibaba, Saroja

    2018-04-01

    The Young's modulus (E) and Shear modulus (G) of an indigenously developed 18Cr-9Ni-0.1C-2.95 Cu-0.58Nb (wt %) austenitic stainless steel has been evaluated in the temperature range 298 K to 1273 K (25 °C to 1000 °C), using Impulse excitation technique (IET). The Bulk modulus (K) and the poison's ratio have been estimated from the measured values of E and G. It is observed that the elastic constants (E, G and K) are found to decrease in a nonlinear fashion with increase in temperature. The Cu precipitation is found to influence the elastic moduli of the steel in the cooling cycle. The observed elastic moduli are fitted to 3rd order polynomial equations in order to describe the temperature dependence of E, G, K moduli in the temperature range 298-1273 K (25 °C to 1000 °C). The room temperature values of E,G and K moduli is found to be 207, 82 and 145 GPa respectively for the present steel.

  17. Elastic-Mathematical Theory of Cells and Mitochondria in Swelling Process

    PubMed Central

    Mela, M. J.

    1968-01-01

    The elastic behavior of the cell wall as a function of the temperature has been studied with particular attention being given to the swelling of egg cells of Strongylocentrotus purpuratus and Crassostrea virginica in different sea water concentrations at different temperatures. It was found that the modulus of elasticity is a nonlinear function of temperature. At about 12-13°C the modulus of elasticity (E) is constant, independent of the stress (σ) and strain (εν) which exist at the cell wall; the membranous material follows Hooke's law, and E ≈ 3 × 107 dyn/cm2 for S. purpuratus and C. virginica. When the temperature is higher or lower than 12-13°C, the modulus of elasticity increases, and the membranous material does not follow Hooke's law, but is almost directly proportional to the stresses existing at the cell wall. On increasing the stress, the function Eσ = E(σ) approaches saturation. The corresponding stress-strain diagrams, σ = σ(εν), and the graphs, Eσ = E(σ) and Eσ = E(t) are given. The cyto-elastic phenomena at the membrane are discussed. PMID:5689191

  18. Wrinkling and folding of nanotube-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.

    2014-07-01

    The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.

  19. The Effect of Prism Orientation in the Indentation Testing of Human Molar Enamel

    PubMed Central

    Braly, A.; Darnell, L.A.; Mann, A.B.; Teaford, M.F.; Weihs, T.P.

    2007-01-01

    Recent nanoindentation studies have demonstrated that the hardness and Young's modulus of human molar enamel decreases by more than 50% on moving from the occlusal surface to the dentin-enamel junction on cross-sectional samples. Possible sources of these variations are changes in local chemistry, microstructure, and prism orientation. This study investigates the latter source by performing nanoindentation tests at two different orientations relative to the hydroxyapatite prisms: parallel and perpendicular. A single sample volume was tested in order to maintain a constant chemistry and microstructure. The resulting data show very small differences between the two orientations for both hardness and Young's modulus. The 1.5 to 3.0% difference is significantly less than the standard deviations found within the data set. Thus, the variations in hardness and Young's modulus on cross-sectional samples of human molar are attributed to changes in local chemistry (varying levels of mineralization, organic matter, and water content) and changes in microstructure (varying volume fractions of inorganic crystals and organic matrix). The impact of prism orientation on mechanical properties measured by nanoindentation appears to be minimal. PMID:17449008

  20. Pressure effect on the structural, phonon, elastic and thermodynamic properties of L12 phase RH3TA: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Leini; Jian, Zhang; Ning, Wei

    2018-06-01

    The phonon, elastic and thermodynamic properties of L12 phase Rh3Ta have been investigated by the density functional theory (DFT) approach combined with the quasi-harmonic approximation model. The results of the phonon band structure show that L12 phase Rh3Ta possesses dynamical stability in the pressure range from 0-80 GPa due to the absence of imaginary frequencies. The pressure dependences with the elastic constants Cij, shear modulus G, bulk modulus B, Young’s modulus Y, Poisson’s ratio and B/G ratio have been analyzed. The results of the elastic properties studies show that L12 phase Rh3Ta compound is mechanically stable and possesses a higher hardness, improved ductility and plasticity under higher pressures. The pressure and temperature relationship of the thermodynamic properties, such as the Debye temperature ΘD, heat capacity Cp, thermal expansion coefficient α and the Grüneisen parameter γ are predicted by the quasi-harmonic Debye model in a wide pressure (0-80 GPa) and temperature (0-750 K) ranges.

  1. Electrochemical Characterization of a Low Modulus Ti-35.5Nb-7.3Zr-5.7Ta Alloy in a Simulated Body Fluid Using Eis for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhola, R.; Bhola, S. M.; Mishra, B.; Ayers, R. A.; Olson, D. L.

    2011-06-01

    Electrochemical characterization of the low modulus Ti-35.5Nb-7.3Zr-5.7Ta beta alloy (TNZT) has been performed in phosphate buffer saline solution at 37 °C using the non destructive electrochemical impedance spectroscopy technique. Measurements were performed at various immersion intervals at the open circuit potential (OCP), which was also monitored with time. Results obtained for TNZT alloy have been compared with those for the commercially used Ti-6Al-4V mixed alloy (Ti64) and the commercially pure titanium (Ti2) alpha alloy. Potentiodynamic polarization was performed to supplement the data obtained from EIS analysis. The TNZT alloy exhibits a two time constant impedance response, whereas the Ti64 and Ti2 alloys display a one time constant behavior. Human fetal osteoblast cells show a better adhesion and a higher cell count for the TNZT alloy compared to the other two alloys. The present investigation is an effort to understand the correlation between the electrochemical, morphological and cellular characteristics of titanium alloys to qualify them for implant applications.

  2. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.

    PubMed

    Gagg, Graham; Ghassemieh, Elaheh; Wiria, Florencia E

    2013-09-01

    A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

  3. Effect of Ionizing Radiation on the Mechanical and Structural Properties of Graphite Fiber Reinforced Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wolf, Kay Woodroof

    1982-01-01

    Graphite/epoxy (T300/5208) and graphite/polyimide composites (C6000/PMR 15) were exposed to various levels of 0.5 MeV electron radiation with the maximum dose being 10,000 Mrad. A three point bending test was used to evaluate the ultimate stress and modulus of the composites. In all composites except transverse samples of C6000/PMR 15 ultimate stress values remained approximately constant or increased slightly. The modulus values remained approximately constant for all composite types regardless of the radiation level. Interfacial aspects of composites were studied. Interlaminar shear tests were performed on T300/5208 and C6000/PMR 15 composites irradiated to 10,000 Mrad. There was an initial increase in interlaminar shear strength (up to 1,000 Mrad) followed by a sharp decrease with further radiation exposure. Using scanning electron microscopy no visual differences in the mode of fracture could be detected between ruptured control samples and those exposed to various levels of radiation. Electron spectroscopy for chemical analysis (ESCA) revealed little change in the surface elements present in control and highly irradiated T300/5208 composite samples.

  4. Material model measurements and predictions for a random pore poly(epsilon-caprolactone) scaffold.

    PubMed

    Quinn, T P; Oreskovic, T L; Landis, F A; Washburn, N R

    2007-07-01

    We investigated material models for a polymeric scaffold used for bone. The material was made by co-extruding poly(epsilon-caprolactone) (PCL), a biodegradable polyester, and poly(ethylene oxide) (PEO). The water soluble PEO was removed resulting in a porous scaffold. The stress-strain curve in compression was fit with a phenomenological model in hyperbolic form. This material model will be useful for designers for quasi-static analysis as it provides a simple form that can easily be used in finite element models. The ASTM D-1621 standard recommends using a secant modulus based on 10% strain. The resulting modulus has a smaller scatter in its value compared with the coefficients of the hyperbolic model, and it is therefore easier to compare differences in material processing and ensure quality of the scaffold. A prediction of the small-strain elastic modulus was constructed from images of the microstructure. Each pixel of the micrographs was represented with a brick finite element and assigned the Young's modulus of bulk PCL or a value of 0 for a pore. A compressive strain was imposed on the model and the resulting stresses were calculated. The elastic constants of the scaffold were then computed with Hooke's law for a linear-elastic isotropic material. The model was able to predict the small-strain elastic modulus measured in the experiments to within one standard deviation. Thus, by knowing the microstructure of the scaffold, its bulk properties can be predicted from the material properties of the constituents. Copyright 2006 Wiley Periodicals, Inc.

  5. Fluid Effects on Shear for Seismic Waves in Finely Layered Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J G

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus of the layered system (namely the uniaxial shear) contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored in this modulus by an amount that ranges from the smallest to the largest effective shear moduli of the VTI system. But, since there are five shear moduli in play, the overall increase in shear energy due to fluids is reducedmore » by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of overall shear modulus, being about 20% of the allowed range as liquid is fully substituted for gas. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% decreases the shear wave speed and, thereby, partially offsets the effect of this shear modulus increase. The final result is an increase of shear wave speed on the order of 5 to 10%. This increase is shown to be possible under most favorable circumstances - i.e. when the shear modulus fluctuations are large (resulting in strong anisotropy) and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), resulting short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity.« less

  6. Switching portfolios.

    PubMed

    Singer, Y

    1997-08-01

    A constant rebalanced portfolio is an asset allocation algorithm which keeps the same distribution of wealth among a set of assets along a period of time. Recently, there has been work on on-line portfolio selection algorithms which are competitive with the best constant rebalanced portfolio determined in hindsight (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996). By their nature, these algorithms employ the assumption that high returns can be achieved using a fixed asset allocation strategy. However, stock markets are far from being stationary and in many cases the wealth achieved by a constant rebalanced portfolio is much smaller than the wealth achieved by an ad hoc investment strategy that adapts to changes in the market. In this paper we present an efficient portfolio selection algorithm that is able to track a changing market. We also describe a simple extension of the algorithm for the case of a general transaction cost, including the transactions cost models recently investigated in (Blum and Kalai, 1997). We provide a simple analysis of the competitiveness of the algorithm and check its performance on real stock data from the New York Stock Exchange accumulated during a 22-year period. On this data, our algorithm outperforms all the algorithms referenced above, with and without transaction costs.

  7. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface.

    PubMed

    Ingebrigtsen, Trond S; Toxvaerd, Søren; Heilmann, Ole J; Schrøder, Thomas B; Dyre, Jeppe C

    2011-09-14

    An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid. © 2011 American Institute of Physics

  8. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  9. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  10. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

    PubMed

    Koski, Jason P; Riggleman, Robert A

    2017-04-28

    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  11. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    NASA Astrophysics Data System (ADS)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  12. Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan

    2016-07-01

    This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.

  13. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  14. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    PubMed

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  15. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    2016-06-01

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.

  16. First-principles calculations for elastic properties of OsB 2 under pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  17. Phase transition in nonuniform Josephson arrays: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Pomirchy, L. M.

    1994-01-01

    Disordered 2D system with Josephson interactions is considered. Disordered XY-model describes the granular films, Josephson arrays etc. Two types of disorder are analyzed: (1) randomly diluted system: Josephson coupling constants J ij are equal to J with probability p or zero (bond percolation problem); (2) coupling constants J ij are positive and distributed randomly and uniformly in some interval either including the vicinity of zero or apart from it. These systems are simulated by Monte Carlo method. Behaviour of potential energy, specific heat, phase correlation function and helicity modulus are analyzed. The phase diagram of the diluted system in T c-p plane is obtained.

  18. An experimental investigation of creep and viscoelastic properties using depth-sensing indentation techniques

    NASA Astrophysics Data System (ADS)

    Lucas, Barry Neal

    Indentation Creep. Using depth-sensing indentation techniques at both room and elevated temperatures, the dependency of the indentation hardness on the variables of indentation strain rate and temperature, and the existence of a steady state behavior in an indentation creep test with a Berkovich indenter were investigated. The indentation creep response of five materials, Pb-65 at% In (at RT), high purity indium (from RT to 75sp°C), high purity aluminum (from RT to 250sp°C), an amorphous alumina film (at RT), and sapphire (at RT), was measured. It was shown that the indentation strain rate, defined as h/h, could be held constant during an experiment using a Berkovich indenter by controlling the loading rate such that the loading rate divided by the load, P/P, remained constant. The temperature dependence of indentation creep in indium and aluminum was found to be the same as that for uniaxial creep. By performing P/P change experiments, it was shown that a steady state path independent hardness could be reached in an indentation test with a Berkovich indenter. Viscoelasticity. Using a frequency specific dynamic indentation technique, a method to measure the linear viscoelastic properties of polymers was determined. The polymer tested was poly-cis 1,4-isoprene. By imposing a small harmonic force excitation on the specimen during the indentation process and measuring the displacement response at the same frequency, the complex modulus, G*, of the polymer was determined. The portion of the displacement signal "in phase" with the excitation represents the elastic response of the contact and is related to the stiffness, S, of the contact and to the storage modulus, Gsp', of the material. The "out of phase" portion of the displacement signal represents the damping, Comega where omega = 2 pi f, of the contact, and thus the loss modulus, Gsp{''}, of the material. It was shown that both the storage, S, and loss, Comega components of the response scale as the respective component of the complex modulus multiplied by the square root of the contact area.

  19. The effects of the spatial influence function on orthotropic femur remodelling.

    PubMed

    Shang, Y; Bai, J; Peng, L

    2008-07-01

    The morphology and internal structure of bone are modulated by the mechanical stimulus. The osteocytes can sense the stimulus signals from the adjacent regions and respond to them through bone growth or bone absorption. This mechanism can be modelled as the spatial influence function (SIF) in bone adaptation algorithm. In this paper, the remodelling process was simulated in human femurs using an adaptation algorithm with and without SIF, and the trabecular bone was assumed to be orthotropic. A different influence radius and weighting factor were adopted to study the effects of the SIF on the bone density distribution and trabecular alignment. The results have shown that the mean density and L-T ratio (the ratio of longitudinal modulus to transverse modulus) had an excellent linear relationship with the weighting factor when the influence radius was small. The characteristics of density distribution and L-T ratio accorded with the actual observation or measurement when a small weighting factor was used. The large influence radius and weighting factor led to unrealistic results. In contrast, the SIF hardly affected the trabecular alignment, as the mean variation angles of principal axes were less than 1.0 degree for any influence radius and weighting factor.

  20. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Xiaoma; Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906; Wang, Ziru

    2016-05-15

    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement withmore » experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.« less

  1. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  2. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    NASA Astrophysics Data System (ADS)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  3. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials.

    PubMed

    Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L

    2017-07-15

    The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. Instrumented indentation is a widespread tool for characterising the mechanical properties of biological materials. Here, we show that the ratio between indentation hardness and modulus is approximately constant in biological materials. A simple elastic-plastic series deformation model is employed to rationalise part of this correlation, and criteria for a meaningful comparison of indentation hardness across biological materials are proposed. The ratio between indentation hardness and modulus emerges as the key parameter characterising the relative amount of irreversible deformation during indentation. Despite their comparatively high hardness to modulus ratio, biological materials are susceptible to quasiplastic deformation, due to their high toughness: quasi-plastic deformation is hence hypothesised to be a frequent yet poorly understood phenomenon, highlighting an important area of future research. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  4. Studies on crosslinked hydroxyapatite-polyethylene composite as a bone-analogue material

    NASA Astrophysics Data System (ADS)

    Smolko, E.; Romero, G.

    2007-08-01

    The paper examines the use of different types of polymeric matrix composites in hard-tissue replacement applications. The composite samples were prepared with hydroxyapatite (HA) powder and polyethylenes of different densities. The raw material was first compounded in the extruder and the resulting composite pre-forms were compression molded into desired plates and irradiated with different doses. Modulus of elasticity in tension, tensile strength, tensile fracture strain, elongation at break and gel content were obtained for all composites. Ceramic filler distribution was investigated under scanning electron microscopy (SEM). With HA incorporated in the samples an increase in the values of Young's Modulus, (stiffness) was observed, while elongation at break decreased with the amount of filler, showing increase of brittleness. Tensile strengths at yield and at break decreased with the filler content for LD and MDPE and stayed constant for HDPE.

  5. Mechanical behavior, electronic and phonon properties of ZrB12 under pressure

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Yong, Yong-Liang; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-06-01

    The mechanical, phonon and electronic properties of ZrB12 under pressure are investigated by first-principles calculations. The research shows that ZrB12 is mechanically and dynamically stable up to 100 GPa. The elastic constants, bulk modulus B, shear modulus G, hardness Hv, B/G ratio, Debye temperature under different pressures are systematically investigated. The calculation of electronic properties shows that ZrB12 has metallic character. The Zr-d states dominate the DOS at the Fermi level, and the total DOS and PDOS change slightly with the increasing pressure. DOS (Ef) first decreases, then increases with the increasing pressure. At 50 GPa, ZrB12 has less electron carriers. The analysis of electron localization function shows that the strong B-B and Zr-B covalent bonds may be responsible for the high hardness and stability.

  6. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria. PMID:26771746

  7. A first-principles investigation on the effects of magnetism on the Bain transformation of α-phase FeNi systems

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Gee Kim, In; Bhadeshia, H. K. D. H.

    2012-03-01

    The effects of magnetism on the Bain transformation of α-phase FeNi systems are investigated by using the full potential linearized augmented plane wave method based on the generalized gradient approximation. We found that Ni impurity in bcc Fe increases the lattice constant in the ferromagnetic (FM) states, but not in the nonmagnetic (NM) states. The shear modulus, G, and Young's modulus, E, of bcc Fe are also increased by raising the concentration of nickel. All the compositions considered show high shear anisotropy, and the ratio of the bulk to shear modulus is greater than 1.75, implying ductility. The mean sound velocities in the [100] directions are greater than in the [110] directions. The Bain transformation, which is a component of martensitic transformation, has also been studied to reveal that NixFe1-x alloys are elastically unstable in the NM states, but not so in the FM states. The electronic structures explain these results in terms of the density of states at the Fermi level. It is evident that magnetism cannot be neglected when dealing with the Bain transformation in iron and its alloys.

  8. Mechanical properties and phase stability of monoborides using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Kim, Hyojung; Trinkle, Dallas R.

    2017-06-01

    We compute the structural energies, elastic constants, and stacking fault energies, and investigate the phase stability of monoborides with different compositions (" close=")X1-x 1Xx2)">X1-x 1Xx2B (X =Ti/Fe/Mo/Nb/V ) using density functional theory in order to search for Ti monoborides with improved mechanical properties. Our computed Young's modulus and Pugh's modulus ratio, which correlate with stiffness and toughness, agree well with predictions from Vegard's law with the exceptions of mixed monoborides containing Mo and Fe. Among all the monoborides considered in this paper, TiB has the smallest Pugh's ratio, which suggests that the addition of solutes can improve the toughness of a Ti matrix. When X1B and X2B are respectively most stable in the B27 and Bf structures, the mixed monoborides (X0.51X0.52)B , mixed (Ti0.5Mo0.5 )B and mixed (Ti0.5V0.5 )B have a higher Young's modulus, a higher Pugh's ratio, and a smaller stacking fault energy than TiB. We also construct phase diagrams and find large solubility limits for solid solutions containing Ti compared to those containing Fe.

  9. Dielectric relaxation in complex perovskite oxide In(Ni{sub 1/2}Zr{sub 1/2})O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Lata, E-mail: lata_agrawal84@yahoo.com; Singh, B.P.; Sinha, T.P.

    2009-09-15

    The dielectric study of indium nickel zirconate, In(Ni{sub 1/2}Zr{sub 1/2})O{sub 3} (INZ) synthesized by solid state reaction technique is performed in a frequency range from 500 Hz to 1 MHz and in a temperature range from 303 to 493 K. The X-ray diffraction analysis shows that the compound is monoclinic. A relaxation is observed in the entire temperature range as a gradual decrease in {epsilon}'({omega}) and as a broad peak in {epsilon}''({omega}) in the frequency dependent real and imaginary parts of dielectric constant, respectively. The frequency dependent electrical data are analyzed in the framework of conductivity and electric modulus formalisms.more » The frequencies corresponding to the maxima of the imaginary electric modulus at various temperatures are found to obey an Arrhenius law with activation energy of 0.66 eV. The Cole-Cole model is used to study the dielectric relaxation of INZ. The scaling behaviour of imaginary part of electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The frequency dependent conductivity spectra follow the universal power law.« less

  10. First-principles calculation on the thermodynamic and elastic properties of precipitations in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Sun, Dongqiang; Wang, Yongxin; Zhang, Xinyi; Zhang, Minyu; Niu, Yanfei

    2016-12-01

    First-principles calculations based on density functional theory was used to investigate the structural, thermodynamic and elastic properties of precipitations, θ″, θ‧ and θ, in Al-Cu alloys. The values of lattice constants accord with experimental results well. The structural stability of θ is the best, followed by θ‧ and θ″. In addition, due to the highest bulk modulus, shear modulus and Young's modulus, θ possesses the best reinforcement effect in precipitation hardening process considered only from mechanical properties of perfect crystal. According to the values of B/G, Poisson's ratio and C11-C12, θ‧ has the worst ductility, while θ″ has the best ductility, the ductility of θ is in the middle. The ideal tensile strength of θ″, θ‧ and θ calculated along [100] and [001] directions are 20.87 GPa, 23.11 GPa and 24.70 GPa respectively. The analysis of electronic structure suggests that three precipitations all exhibit metallic character, and number of bonding electrons and bonding strength are the nature of different thermodynamic and elastic properties for θ″, θ‧ and θ.

  11. Electronic and mechanic properties of trigonal boron nitride by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Mei, Hua Yue; Pang, Yong; Liu, Ding Yu; Cheng, Nanpu; Zheng, Shaohui; Song, Qunliang; Wang, Min

    2018-07-01

    A new boron nitride allotrope with 6 atoms in a unit cell termed as trigonal BN (TBN), which belongs to P3121 space group, is theoretically investigated. Electronic structures, mechanic properties, phonon spectra and other properties were calculated by using first-principles based on density functional theory (DFT). The elastic constants reveal that TBN is mechanically stable. Furthermore, phonon dispersion indicates that TBN is dynamically stable. The calculated bulk modulus and shear modulus of TBN are 323 and 342 GPa, respectively. The calculated Young's modulus are Ex = Ey = 760 GPa, Ez = 959 GPa, indicating that TBN is a super-hard and brittle material. The universal anisotropy index, which is only 0.296, shows its weak anisotropy. Band structure states clearly that TBN is an indirect semiconductor with a band gap of 3.87 eV. The valence bands are mainly composed of N 2p states, and the conduction bands are mainly contributed by B 2p states. Simulated X-ray diffraction patterns (XRD) and Raman spectra were also provided for future experimental characterizations. Due to its band gap and super-hard properties, TBN may possess potential in super-hard, optical and electronic applications.

  12. Deformation Studies and Elasticity Measurements of Hydrophobic Silica Aerogels using Double Exposure Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant; Sabale, Sandip; Chavan, Sugam

    2017-01-01

    Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.

  13. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  14. Structural, electronic, mechanical, and thermoelectric properties of a novel half Heusler compound HfPtPb

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita

    2017-07-01

    We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.

  15. Quantifying mechanical properties in a murine fracture healing system using inverse modeling: preliminary work

    NASA Astrophysics Data System (ADS)

    Miga, Michael I.; Weis, Jared A.; Granero-Molto, Froilan; Spagnoli, Anna

    2010-03-01

    Understanding bone remodeling and mechanical property characteristics is important for assessing treatments to accelerate healing or in developing diagnostics to evaluate successful return to function. The murine system whereby mid-diaphaseal tibia fractures are imparted on the subject and fracture healing is assessed at different time points and under different therapeutic conditions is a particularly useful model to study. In this work, a novel inverse geometric nonlinear elasticity modeling framework is proposed that can reconstruct multiple mechanical properties from uniaxial testing data. To test this framework, the Lame' constants were reconstructed within the context of a murine cohort (n=6) where there were no differences in treatment post tibia fracture except that half of the mice were allowed to heal 4 days longer (10 day, and 14 day healing time point, respectively). The properties reconstructed were a shear modulus of G=511.2 +/- 295.6 kPa, and 833.3+/- 352.3 kPa for the 10 day, and 14 day time points respectively. The second Lame' constant reconstructed at λ=1002.9 +/-42.9 kPa, and 14893.7 +/- 863.3 kPa for the 10 day, and 14 day time points respectively. An unpaired Student t-test was used to test for statistically significant differences among the groups. While the shear modulus did not meet our criteria for significance, the second Lame' constant did at a value p<0.0001. Traditional metrics that are commonly used within the bone fracture healing research community were not found to be statistically significant.

  16. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  18. Constitutive models for a poly(e-caprolactone) scaffold.

    PubMed

    Quinn, T P; Oreskovic, T L; McCowan, C N; Washburn, N R

    2004-01-01

    We investigate material models for a porous, polymeric scaffold used for bone. The material was made by co-extruding poly(e-caprolactone) (PCL), a biodegradable polyester, and poly(ethylene oxide) (PEO). The water soluble PEO was removed resulting in a porous scaffold. The stress-strain curve in compression was fit with a phenomenological model in hyperbolic form. This material model will be useful for designers for quasi-static analysis as it provides a simple form that can easily be used in finite element models. The ASTM D-1621 standard recommends using a secant modulus based on 10% strain. The resulting modulus has a smaller scatter in its value compared to the coefficients of the hyperbolic model, and it is therefore easier to compare material processing differences and ensure quality of the scaffold. A third material model was constructed from images of the microstructure. Each pixel of the micrographs was represented with a brick finite element and assigned the Young's modulus of bulk PCL or a value of 0 for a pore. A compressive strain was imposed on the model and the resulting stresses were calculated. The elastic constants of the scaffold were then computed using Hooke's law for a linear-elastic isotropic material. The model was able to predict the small strain Young's modulus measured in the experiments to within one standard deviation. Thus, by knowing the microstructure of the scaffold, its bulk properties can be predicted from the material properties of the constituents.

  19. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  20. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  1. Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes

    NASA Astrophysics Data System (ADS)

    Qiang, FangWei; Wei, PeiJun; Liu, XiQiang

    2013-08-01

    The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.

  2. First-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound

    NASA Astrophysics Data System (ADS)

    Paliwal, U.; Joshi, K. B.

    2018-05-01

    In this work the first-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound is presented. The calculations are performed applying the QUANTUM ESPRESSO code utilizing the Perdew, Becke, Ernzerhof generalized gradient approximation in the framework of density functional theory. Adopting standard optimization strategy, the ground state equilibrium lattice constant and bulk modulus are calculated. After settling the structure the electronic band structure, bandgap and static dielectric constant are evaluated. In absence of any experimental work on this system our findings are compared with the available theoretical calculations which are found to follow well anticipated general trends.

  3. Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems

    NASA Astrophysics Data System (ADS)

    Sandwell, David; Smith-Konter, Bridget

    2018-05-01

    We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.

  4. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  5. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  6. Non-invasive In vivo measurement of the shear modulus of human vocal fold tissue

    PubMed Central

    Kazemirad, Siavash; Bakhshaee, Hani; Mongeau, Luc; Kost, Karen

    2014-01-01

    Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects’ vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 to 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI. PMID:24433668

  7. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  8. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE PAGES

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...

    2018-04-11

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  9. Toward de Sitter space from ten dimensions

    NASA Astrophysics Data System (ADS)

    Moritz, Jakob; Retolaza, Ander; Westphal, Alexander

    2018-02-01

    Using a 10D lift of nonperturbative volume stabilization in type IIB string theory, we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest Kachru, Kallosh, Linde, and Trivedi vacua with a single Kähler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are metastable and supersymmetry breaking, but that are always anti-de Sitter (AdS). However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  10. Free energies of stable and metastable pores in lipid membranes under tension.

    PubMed

    den Otter, Wouter K

    2009-11-28

    The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to obtain the Helmholtz free energy as a function of pore size for thermodynamically stable, metastable, and unstable pores, and the system-size dependence of these elongations is discussed. A link to the Gibbs free energy at constant tension, commonly known as the Litster model, is established by a Legendre transformation. The change of genus upon pore formation is exploited to estimate the saddle-splay modulus or Gaussian curvature modulus of the membrane leaflets. Details are provided of the simulation approach, which combines the potential of mean constraint force method with a reaction coordinate based on the local lipid density.

  11. Modulus spectroscopy of grain-grain boundary binary system

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-Fei; Song, Jiang; Li, Sheng-Tao; Wang, Hui

    2015-02-01

    Understanding various polarization mechanisms in complex dielectric systems and specifying their physical origins are key issues in dielectric physics. In this paper, four different methods for representing dielectric properties were analyzed and compared. Depending on the details of the system under study, i.e., uniform or non-uniform, it was suggested that different representing approaches should be used to obtain more valuable information. Especially, for the grain-grain boundary binary non-uniform system, its dielectric response was analyzed in detail in terms of modulus spectroscopy (MS). Furthermore, it was found that through MS, the dielectric responses between uniform and non-uniform systems, grain and grain boundary, Maxwell-Wagner polarization and intrinsic polarization can be distinguished. Finally, with the proposed model, the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were studied. The colossal dielectric constant of CCTO at low frequency was attributed to the pseudo relaxation process of grain.

  12. Variable stiffness torsion springs

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.; Polites, Michael E.

    1994-05-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  13. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  14. Variable stiffness torsion springs

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.; Polites, Michael E.

    1995-08-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  15. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1994-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  16. Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions

    NASA Astrophysics Data System (ADS)

    Çetinkaya, Onur; Wojcik, Grzegorz; Mergo, Pawel

    2018-05-01

    The diameter fluctuations of poly(methyl methacrylate) based polymer optical fibers, during drawing processes, have been comprehensively studied. In this study, several drawing parameters were selected for investigation; such as drawing tensions, preform diameters, preform feeding speeds, and argon flows. Varied drawing tensions were used to draw fibers, while other parameters were maintained at constant. At a later stage in the process, micro-structured polymer optical fibers were drawn under optimized drawing conditions. Fiber diameter deviations were reduced to 2.2%, when a 0.2 N drawing tension was employed during the drawing process. Higher drawing tensions led to higher diameter fluctuations. The Young’s modulus of fibers drawn with different tensions was also measured. Our results showed that fiber elasticity increased as drawing tensions decreased. The inhomogeneity of fibers was also determined by comparing the deviation of Young’s modulus.

  17. Measurement of elastic and thermal properties of composite materials using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra

    2015-08-01

    In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.

  18. Hydrostatic compression of Fe(1-x)O wuestite

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Sato-Sorensen, Y.

    1986-01-01

    Hydrostatic compression measurements on Fe(0.95)O wuestite up to 12 GPa yield a room temperature value for the isothermal bulk modulus of K(ot) = 157 (+ or - 10) GPa at zero pressure. This result is in accord with previous hydrostatic and nonhydrostatic measurements of K(ot) for wuestites of composition: 0.89 = Fe/O 0.95. Dynamic measurements of the bulk modulus by ultrasonic, shock-wave and neutron-scattering experiments tend to yield a larger value: K(ot) approximately 180 GPa. The discrepancy between static and dynamic values cannot be explained by the variation of K(ot) with composition, as has been proposed. This conclusion is based on high-precision compression data and on theoretical models of the effects of defects on elastic constants. Barring serious errors in the published measurements, the available data suggest that wuestite exhibits a volume relaxation under pressure.

  19. Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2005-04-01

    We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.

  20. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    NASA Astrophysics Data System (ADS)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  1. [Effects of Geometrical Dimensions and Material Properties on the Rotation Characteristics of Head].

    PubMed

    Chen, Yue; Cui, Shihai; Li, Haiyan; Ruan, Shijie

    2016-08-01

    The validated finite element head model(FEHM)of a 3-year-old child,a 6-year-old child and a 50 th percentile adult were used to investigate the effects of head dimension and material parameters of brain tissues on the head rotational responses based on experimental design.Results showed that the effects of head dimension and directions of rotation on the head rotational responses were not significant under the same rotational loading condition,and the same results appeared in the viscoelastic material parameters of brain tissues.However,the head rotational responses were most sensitive to the shear modulus(G)of brain tissues relative to decay constant(β)and bulk modulus(K).Therefore,the selection of material parameters of brain tissues is most important to the accuracy of simulation results,especially in the study of brain injury criterion under the rotational loading conditions.

  2. Spectral dispersion and fringe detection in IOTA

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Lacasse, M. G.; Carleton, N. P.

    1990-01-01

    Pupil plane beam combination, spectral dispersion, detection, and fringe tracking are discussed for the IOTA interferometer. A new spectrometer design is presented in which the angular dispersion with respect to wavenumber is nearly constant. The dispersing element is a type of grism, a series combination of grating and prism, in which the constant parts of the dispersion add, but the slopes cancel. This grism is optimized for the display of channelled spectra. The dispersed fringes can be tracked by a matched-filter photon-counting correlator algorithm. This algorithm requires very few arithmetic operations per detected photon, making it well-suited for real-time fringe tracking. The algorithm is able to adapt to different stellar spectral types, intensity levels, and atmospheric time constants. The results of numerical experiments are reported.

  3. Wave propagation in a multilayered laminated cross-ply composite plate

    NASA Technical Reports Server (NTRS)

    Shah, A. H.; Datta, S. K.; Karunasena, W.

    1991-01-01

    Dispersion of guided waves in a cross-ply laminated plate has been studied here using a stiffness method and an exact method. It is shown that the number of laminae strongly influences the dispersion behavior. Further, it is found that when the number of laminae is sufficiently large, then the dispersion behavior can be predicted by treating the plate as homogeneous with six stiffness constants obtained by using an effective modulus method.

  4. Anisotropy of the Mechanical Properties of TbF3 Crystals

    NASA Astrophysics Data System (ADS)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  5. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study.

    PubMed

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-12-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  6. Advanced digital signal processing for short-haul and access network

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2016-02-01

    Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.

  7. Efficient Grammar Induction Algorithm with Parse Forests from Real Corpora

    NASA Astrophysics Data System (ADS)

    Kurihara, Kenichi; Kameya, Yoshitaka; Sato, Taisuke

    The task of inducing grammar structures has received a great deal of attention. The reasons why researchers have studied are different; to use grammar induction as the first stage in building large treebanks or to make up better language models. However, grammar induction has inherent computational complexity. To overcome it, some grammar induction algorithms add new production rules incrementally. They refine the grammar while keeping their computational complexity low. In this paper, we propose a new efficient grammar induction algorithm. Although our algorithm is similar to algorithms which learn a grammar incrementally, our algorithm uses the graphical EM algorithm instead of the Inside-Outside algorithm. We report results of learning experiments in terms of learning speeds. The results show that our algorithm learns a grammar in constant time regardless of the size of the grammar. Since our algorithm decreases syntactic ambiguities in each step, our algorithm reduces required time for learning. This constant-time learning considerably affects learning time for larger grammars. We also reports results of evaluation of criteria to choose nonterminals. Our algorithm refines a grammar based on a nonterminal in each step. Since there can be several criteria to decide which nonterminal is the best, we evaluate them by learning experiments.

  8. Practical Algorithms for the Longest Common Extension Problem

    NASA Astrophysics Data System (ADS)

    Ilie, Lucian; Tinta, Liviu

    The Longest Common Extension problem considers a string s and computes, for each of a number of pairs (i,j), the longest substring of s that starts at both i and j. It appears as a subproblem in many fundamental string problems and can be solved by linear-time preprocessing of the string that allows (worst-case) constant-time computation for each pair. The two known approaches use powerful algorithms: either constant-time computation of the Lowest Common Ancestor in trees or constant-time computation of Range Minimum Queries (RMQ) in arrays. We show here that, from practical point of view, such complicated approaches are not needed. We give two very simple algorithms for this problem that require no preprocessing. The first needs only the string and is significantly faster than all previous algorithms on the average. The second combines the first with a direct RMQ computation on the Longest Common Prefix array. It takes advantage of the superior speed of the cache memory and is the fastest on virtually all inputs.

  9. PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.

    PubMed

    Zou, Yu; Pan, Xiaochuan; Xia, Dan; Wang, Ge

    2005-08-01

    Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could arise in helical cone-beam CT fluoroscopy for the determination of vascular structures through real-time imaging of contrast bolus arrival. Most of the existing reconstruction algorithms have been developed only for helical cone-beam CT with constant pitch, including the backprojection-filtration (BPF) and filtered-backprojection (FBP) algorithms that we proposed previously. It is possible to generalize some of these algorithms to reconstruct images exactly for helical cone-beam CT with a variable pitch. In this work, we generalize our BPF and FBP algorithms to reconstruct images directly from data acquired in helical cone-beam CT with a variable pitch. We have also performed a preliminary numerical study to demonstrate and verify the generalization of the two algorithms. The results of the study confirm that our generalized BPF and FBP algorithms can yield exact reconstruction in helical cone-beam CT with a variable pitch. It should be pointed out that our generalized BPF algorithm is the only algorithm that is capable of reconstructing exactly region-of-interest image from data containing transverse truncations.

  10. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    NASA Astrophysics Data System (ADS)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B occupies 10 elements, 0.1 x 0.1 meter size. The footings are placed at the center of the mesh. Figure 1 shows the mesh used in probabilistic bearing capacity analysis. PIC Figure 1- Mesh used in analyses REFERENCES Fenton, G.A., Griffiths, D.V., (2008) Risk Assessment in Geotechnical Engineering, John Wiley & Sons, New York, Terzaghi, K. (1943). Theoretical Soil Mechanics, New York: John Wiley & Sons.

  11. Finite element simulation of Reference Point Indentation on bone.

    PubMed

    Idkaidek, Ashraf; Agarwal, Vineet; Jasiuk, Iwona

    2017-01-01

    Reference Point Indentation (RPI) is a novel technique aimed to assess bone quality. Measurements are recorded by the BioDent instrument that applies multiple indents to the same location of cortical bone. Ten RPI parameters are obtained from the resulting force-displacement curves. Using the commercial finite element analysis software Abaqus, we assess the significance of the RPI parameters. We create an axisymmetric model and employ an isotropic viscoelastic-plastic constitutive relation with damage to simulate indentations on a human cortical bone. Fracture of bone tissue is not simulated for simplicity. The RPI outputs are computed for different simulated test cases and then compared with experimental results, measured using the BioDent, found in literature. The number of cycles, maximum indentation load, indenter tip radius, and the mechanical properties of bone: Young׳s modulus, compressive yield stress, and viscosity and damage constants, are varied. The trends in the RPI parameters are then investigated. We find that the RPI parameters are sensitive to the mechanical properties of bone. An increase in Young׳s modulus of bone causes the force-displacement loading and unloading slopes to increase and the total indentation distance (TID) to decrease. The compressive yield stress is inversely proportional to a creep indentation distance (CID1) and the TID. The viscosity constant is proportional to the CID1 and an average of the energy dissipated (AvED). The maximum indentation load is proportional to the TID, CID1, loading and unloading slopes, and AvED. The damage parameter is proportional to the TID, but it is inversely proportional to both the loading and unloading slopes and the AvED. The value of an indenter tip radius is proportional to the CID1 and inversely proportional to the TID. The number of load cycles is inversely proportional to an average of a creep indentation depth (AvCID) and the AvED. The indentation distance increase (IDI) is strongly inversely proportional to the compressive yield stress, and strongly proportional to the viscosity constant and maximum applied load, but has weak relation with the damage parameter, indenter tip radius, and elastic modulus. This computational study advances our understanding of the RPI outputs and provides a starting point for more comprehensive computational studies of the RPI technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of image recognition algorithms for statistical description of nano- and microstructured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mărăscu, V.; Dinescu, G.; Faculty of Physics, University of Bucharest, 405 Atomistilor Street, Bucharest-Magurele

    In this paper we propose a statistical approach for describing the self-assembling of sub-micronic polystyrene beads on silicon surfaces, as well as the evolution of surface topography due to plasma treatments. Algorithms for image recognition are used in conjunction with Scanning Electron Microscopy (SEM) imaging of surfaces. In a first step, greyscale images of the surface covered by the polystyrene beads are obtained. Further, an adaptive thresholding method was applied for obtaining binary images. The next step consisted in automatic identification of polystyrene beads dimensions, by using Hough transform algorithm, according to beads radius. In order to analyze the uniformitymore » of the self–assembled polystyrene beads, the squared modulus of 2-dimensional Fast Fourier Transform (2- D FFT) was applied. By combining these algorithms we obtain a powerful and fast statistical tool for analysis of micro and nanomaterials with aspect features regularly distributed on surface upon SEM examination.« less

  13. The effectiveness of a new algorithm on a three-dimensional finite element model construction of bone trabeculae in implant biomechanics.

    PubMed

    Sato, Y; Teixeira, E R; Tsuga, K; Shindoi, N

    1999-08-01

    More validity of finite element analysis (FEA) in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To evaluate the effectiveness of a new algorithm established for more valid FEA model construction without downsizing, three-dimensional FEA bone trabeculae models with different element sizes (300, 150 and 75 micron) were constructed. Four algorithms of stepwise (1 to 4 ranks) assignment of Young's modulus accorded with bone volume in the individual cubic element was used and then stress distribution against vertical loading was analysed. The model with 300 micron element size, with 4 ranks of Young's moduli accorded with bone volume in each element presented similar stress distribution to the model with the 75 micron element size. These results show that the new algorithm was effective, and the use of the 300 micron element for bone trabeculae representation was proposed, without critical changes in stress values and for possible savings on computer memory and calculation time in the laboratory.

  14. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  15. Quantitative evaluation of the piezoelectric response of unpoled ferroelectric ceramics from elastic and dielectric measurements: Tetragonal BaTiO3

    NASA Astrophysics Data System (ADS)

    Cordero, F.

    2018-03-01

    A method is proposed for evaluating the potential piezoelectric response, that a ferroelectric material would exhibit after full poling, from elastic and dielectric measurements of the unpoled ceramic material. The method is based on the observation that the softening in a ferroelectric phase with respect to the paraelectric phase is of piezoelectric origin, and is tested on BaTiO3. The angular averages of the piezoelectric softening in unpoled ceramics are calculated for ferroelectric phases of different symmetries. The expression of the orientational average with the piezoelectric and dielectric constants of single crystal tetragonal BaTiO3 from the literature reproduces well the softening of the Young's modulus of unpoled ceramic BaTiO3, after a correction for the porosity. The agreement is good in the temperature region sufficiently far from the Curie temperature and from the transition to the orthorhombic phase, where the effect of fluctuations should be negligible, but deviations are found outside this region, and possible reasons for this are discussed. This validates the determination of the piezoelectric response by means of purely elastic measurements on unpoled samples. The method is indirect and, for quantitative assessments, requires the knowledge of the dielectric tensor. On the other hand, it does not require poling of the sample, and therefore is insensitive to inaccuracies from incomplete poling, and can even be used with materials that cannot be poled, for example, due to excessive electrical conductivity. While the proposed example of the Young's modulus of a ceramic provides an orientational average of all the single crystal piezoelectric constants, a Resonant Ultrasound Spectroscopy measurement of a single unpoled ceramic sample through the ferroelectric transition can in principle measure all the piezoelectric constants, together with the elastic ones.

  16. Effect of observed micropolar motions on wave propagation in deep Earth minerals

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Thomas, Christine; Durand, Stephanie

    2018-03-01

    We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth's mantle material by providing Cosserat couple modulus that were not available before.

  17. Analysis of the tensile stress-strain behavior of elastomers at constant strain rates. I - Criteria for separability of the time and strain effects

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.

    1981-01-01

    A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.

  18. Issues associated with the use of Yoshida nonlinear isotropic/kinematic hardening material model in Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Shi, Ming F.; Zhang, Li; Zhu, Xinhai

    2016-08-01

    The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.

  19. Room temperature shear properties of the strain isolator pad for the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Waters, W. A., Jr.

    1981-01-01

    Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.

  20. Indentation analysis of active viscoelastic microplasmodia of P. polycephalum

    NASA Astrophysics Data System (ADS)

    Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther

    2018-01-01

    Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.

  1. Confined compression and torsion experiments on a pHEMA gel in various bath concentrations.

    PubMed

    Roos, Reinder W; Petterson, Rob; Huyghe, Jacques M

    2013-06-01

    The constitutive behaviour of cartilaginous tissue is the result of complex interaction between electrical, chemical and mechanical forces. Electrostatic interactions between fixed charges and mobile ions are usually accounted for by means of Donnan osmotic pressure. Recent experimental data show, however, that the shear modulus of articular cartilage depends on ionic concentration even if the strain is kept constant. Poisson-Boltzmann simulations suggest that this dependence is intrinsic to the double-layer around the proteoglycan chains. In order to verify this premise, this study measures whether--at a given strain--this ionic concentration-dependent shear modulus is present in a polymerized hydroxy-ethyl-methacrylate gel or not. A combined 1D confined compression and torque experiment is performed on a thin cylindrical hydrogel sample, which is brought in equilibrium with, respectively, 1, 0.1 and 0.03 M NaCl. The sample was placed in a chamber that consists of a stainless steel ring placed on a sintered glass filter, and on top a sintered glass piston. Stepwise ionic loading was cascaded by stepwise 1D compression, measuring the total stress after equilibration of the sample. In addition, a torque experiment was interweaved by applying a harmonic angular displacement and measuring the torque, revealing the relation between aggregate shear modulus and salt concentration at a given strain.

  2. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings

    NASA Astrophysics Data System (ADS)

    Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong

    2018-06-01

    Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.

  3. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    NASA Astrophysics Data System (ADS)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  4. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn₂GaC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thore, A., E-mail: andth@ifm.liu.se; Dahlqvist, M., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se; Alling, B., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se

    2014-09-14

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn₂GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants,more » the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn₂GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M₂AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.« less

  5. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  6. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen, E-mail: zhangyu@missouri.edu

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered asmore » the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C{sub 11}, C{sub 12}, and C{sub 44}, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.« less

  8. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  9. Effects of Temperature on the Tensile Strength and Elastic Modulus of Composite Material.

    DTIC Science & Technology

    1985-03-01

    9.)- IU1.6 1.4 Figure 4.7. Peak Stress vs Tab Angle temperature. The constant temperature distribution zone of the Marshell furnace extends 4 inches...actually used.) d) The clear hole diameter of the Marshell funace is 3.0 inches. The dimensions of the specimen for this investigation was determined...Applied Test System, Inc., Butter, Pennsyl- vania) , were used to pull a specimen at elevated temperatures. A Marshell model 2232 three-zone

  10. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  11. Quantum size effects on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Gao, D.; Ray, A. K.

    2007-01-01

    Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.

  12. Understanding and Improving the Elastic Compressive Modulus of Fibre Reinforced Soy-Based Polyurethane Foams

    NASA Astrophysics Data System (ADS)

    Hussain, Sadakat

    Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.

  13. Algorithms for Determining Physical Responses of Structures Under Load

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Ko, William L.

    2012-01-01

    Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.

  14. Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.

    PubMed

    Bevzenko, Dmytro; Lubchenko, Vassiliy

    2014-11-07

    We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.

  15. Diffusional falsification of kinetic constants on Lineweaver-Burk plots.

    PubMed

    Ghim, Y S; Chang, H N

    1983-11-07

    The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.

  16. Constant Communities in Complex Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy; Srinivasan, Sriram; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-05-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core functional units of the larger communities.

  17. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  18. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.

  19. Single-Specimen Technique to Establish the J-Resistance of Linear Viscoelastic Solids with Constant Poisson's Ratio

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)

    2001-01-01

    A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.

  20. Economic Load Dispatch Using Adaptive Social Acceleration Constant Based Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-04-01

    In this paper, an Adaptive Social Acceleration Constant based Particle Swarm Optimization (ASACPSO) has been developed which uses the best value of social acceleration constant (Csg). Three formulations of Csg have been used to search for the best value of Csg. These three formulations led to the development of three algorithms-ALDPSO, AELDPSO-I and AELDPSO-II which were implemented for Economic Load Dispatch of IEEE 5 bus, 14 bus and 30 bus systems. The best value of Csg was selected based on the minimum number of Kounts i.e. number of function evaluations required to minimize the function. This value of Csg was directly used in basic PSO algorithm which led to the development of ASACPSO algorithm. ASACPSO was found to converge faster and give more accurate results compared to BPSO for IEEE 5, 14 and 30 bus systems.

  1. The motion of a vortex on a closed surface of constant negative curvature.

    PubMed

    Ragazzo, C Grotta

    2017-10-01

    The purpose of this work is to present an algorithm to determine the motion of a single hydrodynamic vortex on a closed surface of constant curvature and of genus greater than one. The algorithm is based on a relation between the Laplace-Beltrami Green function and the heat kernel. The algorithm is used to compute the motion of a vortex on the Bolza surface. This is the first determination of the orbits of a vortex on a closed surface of genus greater than one. The numerical results show that all the 46 vortex equilibria can be explicitly computed using the symmetries of the Bolza surface. Some of these equilibria allow for the construction of the first two examples of infinite vortex crystals on the hyperbolic disc. The following theorem is proved: 'a Weierstrass point of a hyperellitic surface of constant curvature is always a vortex equilibrium'.

  2. Combinatorial approximation algorithms for MAXCUT using random walks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Kale, Satyen

    We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-approximation for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less

  3. Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.

    PubMed

    Tarawneh, Ahmad M; Wettergreen, Matthew; Liebschner, Michael A K

    2012-01-01

    Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.

  4. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  5. Fast optimization algorithms and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad

    2017-11-01

    Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.

  6. Water Pulsejet Research

    DTIC Science & Technology

    1977-08-01

    pulsejet. C W W/pW2 X3A, a work coefficient D Pipe diameter = 2R E Young’s modulus, or kinetic energy f D’Arcy friction factor , or stress g Acceleration due...to con- tact the hot region to provide a supply of steam for later condensation. This factor may account for the somewhat more stable operation of a...momentum in the wake. (c) Equation (1) assumes that the [)’Arcy friction factor f is constant, so that skin friction terms cancel out. The magnitu|de of

  7. Giant Electric Field Control of Magnetism and Narrow Ferromagnetic Resonance Linewidth in FeCoSiB/Si/SiO2/PMN PT Multiferroic Heterostructures (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2016-06-06

    the widely used lead zirconate titanate ceramics which have a typical piezoelectric coefficient d31 of ~- 200pC/N, PMN-PT single crystals used in...substrate clamping effect, therefore, a relatively giant tunability can be obtained. However, the normally large roughness of piezoelectric layer...is the saturation magnetostriction constant, Y the Young’s modulus of the magnetic film, deff the effective piezoelectric coefficient, E

  8. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems.

    PubMed

    McKinnon, Daniel D; Domaille, Dylan W; Cha, Jennifer N; Anseth, Kristi S

    2014-02-12

    Presented here is a cytocompatible covalently adaptable hydrogel uniquely capable of mimicking the complex biophysical properties of native tissue and enabling natural cell functions without matrix degradation. Demonstrated is both the ability to control elastic modulus and stress relaxation time constants by more than an order of magnitude while predicting these values based on fundamental theoretical understanding and the simulation of muscle tissue and the encapsulation of myoblasts. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8.

    PubMed

    Liu, Cong; Mullins, Michael; Hawkins, Spencer; Kotaki, Masaya; Sue, Hung-Jue

    2018-01-10

    Zeolitic imidazole framework-8 (ZIF-8) is utilized as a functional filler and a curing agent in the preparation of epoxy nanocomposites. The imidazole group on the surface of the ZIF-8 initiates epoxy curing, resulting in covalent bonding between the ZIF-8 crystals and epoxy matrix. A substantial reduction in dielectric constant and increase in tensile modulus were observed. The implication of the present study for utilization of metal-organic framework to improve physical and mechanical properties of polymeric matrixes is discussed.

  10. Laser ultrasonic investigations of vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Queheillalt, Douglas Ted

    The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface geometry (i.e. axial location and shape) can be precisely recovered and the ultrasonic velocities of both solid and liquid phases obtained. To gain insight into the melting and solidification process, a single zone VB growth furnace was integrated with the laser ultrasonic sensor system and used to monitor the melting-solidification and directional solidification characteristics of Cd0.96Zn 0.04Te.

  11. New dielectric elastomers with improved properties for energy harvesting and actuation

    NASA Astrophysics Data System (ADS)

    Stiubianu, George; Bele, Adrian; Tugui, Codrin; Musteata, Valentina

    2015-02-01

    New materials with large value for dielectric constant were obtained by using siloxane and chemically modified lignin. The modified lignin does not act as a stiffening filler material for the siloxane but acts as bulk filler, preserving the softness and low value of Young's modulus specific for silicones. The measured values for dielectric constant compare positively with the ones for previously tested dielectric elastomers based on siloxane rubber or acrylic rubber loaded with ceramic nanoparticles. The new materials use the well-known silicone chemistry and lignin which is available worldwide in large amounts as a by-product of pulp and paper industry, making its manufacturing affordable. The prepared dielectric elastomers were tested for possible applications for wave, wind and kinetic body motion energy harvesting. Siloxane, lignin, dielectric

  12. Dielectric Constant Measurements of Solid 4He

    NASA Astrophysics Data System (ADS)

    Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.

    2011-03-01

    Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.

  13. Dose-dependent collagen cross-linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology.

    PubMed

    Schuldt, Carsten; Karl, Anett; Körber, Nicole; Koch, Christian; Liu, Qing; Fritsch, Anatol W; Reichenbach, Andreas; Wiedemann, Peter; Käs, Josef A; Francke, Mike; Iseli, Hans Peter

    2015-08-01

    To determine the visco-elastic properties of isolated rabbit scleral tissue and dose-dependent biomechanical and morphological changes after collagen cross-linking by riboflavin/blue light treatment. Scleral patches from 87 adult albino rabbit eyes were examined by dynamic shear rheology. Scleral patches were treated by riboflavin and different intensities of blue light (450 nm), and the impact on the visco-elastic properties was determined by various rheological test regimes. The relative elastic modulus was calculated from non-treated and corresponding treated scleral patches, and treatments with different blue light intensities were compared. Shear rheology enables us to study the material properties of scleral tissue within physiological relevant parameters. Cross-linking treatment increased the viscous as well as the elastic modulus and changed the ratio of the elastic versus viscous proportion in scleral tissue. Constant riboflavin application combined with different blue light intensities from 12 mW/cm(2) up to 100 mW/cm(2) increased the relative elastic modulus of scleral tissue by factors up to 1.8. Further enhancement of the applied light intensity caused a decline of the relative elastic modulus. This might be due to destructive changes of the collagen bundle structure at larger light intensities, as observed by histological examination. Collagen cross-linking by riboflavin/blue light application increases the biomechanical stiffness of the sclera in a dose-dependent manner up to certain light intensities. Therefore, this treatment might be a suitable therapeutic approach to stabilize the biomechanical properties of scleral tissue in cases of pathological eye expansion. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Mechanical properties of graphene and boronitrene

    NASA Astrophysics Data System (ADS)

    Andrew, R. C.; Mapasha, R. E.; Ukpong, A. M.; Chetty, N.

    2012-03-01

    We present an equation of state (EOS) that describes how the hydrostatic change in surface area is related to two-dimensional in-plane pressure (F) and yields the measure of a material's resilience to isotropic stretching (the layer modulus γ) as one of its fit parameters. We give results for the monolayer systems of graphene and boronitrene, and we also include results for Si, Ge, GeC, and SiC in the isostructural honeycomb structure for comparison. Our results show that, of the honeycomb structures, graphene is the most resilient to stretching with a value of γC = 206.6 N m-1, second is boronitrene with γBN = 177.0 N m-1, followed by γSiC = 116.5 N m-1, γGeC = 101.0 N m-1, γSi = 44.5 N m-1, and γGe = 29.6 N m-1. We calculate the Young's and shear moduli from the elastic constants and find that, in general, they rank according to the layer modulus. We also find that the calculated layer modulus matches the one obtained from the EOS. We use the EOS to predict the isotropic intrinsic strength of the various systems and find that, in general, the intrinsic stresses also rank according to the layer modulus. Graphene and boronitrene have comparable strengths with intrinsic stresses of 29.4 and 26.0 N m-1, respectively. We considered four graphene allotropes including pentaheptite and graphdiyne and find that pentaheptite has a value for γ comparable to graphene. We find a phase transition from graphene to graphdiyne at F = -7.0 N m-1. We also consider bilayer, trilayer, and four-layered graphene and find that the addition of extra layers results in a linear dependence of γ with F.

  15. Structure-Property Relationships of Bismaleimides

    NASA Technical Reports Server (NTRS)

    Tenteris-Noebe, Anita D.

    1997-01-01

    The purpose of this research was to control and systematically vary the network topology of bismaleimides through cure temperature and chemistry (addition of various coreactants) and subsequently attempt to determine structure-mechanical property relationships. Characterization of the bismaleimide structures by dielectric, rheological, and thermal analyses, and density measurements was subsequently correlated with mechanical properties such as modulus, yield strength, fracture energy, and stress relaxation. The model material used in this investigation was 4,4'-BismaleiMidodIphenyl methane (BMI). BMI was coreacted with either 4,4'-Methylene Dianiline (MDA), o,o'-diallyl bisphenol A (DABA) from Ciba Geigy, or Diamino Diphenyl Sulfone (DDS). Three cure paths were employed: a low- temperature cure of 140 C where chain extension should predominate, a high-temperature cure of 220 C where both chain extension and crosslinking should occur simultaneously, and a low-temperature (140 C) cure followed immediately by a high-temperature (220 C) cure where the chain extension reaction or amine addition precedes BMI homopolymerization or crosslinking. Samples of cured and postcured PMR-15 were also tested to determine the effects of postcuring on the mechanical properties. The low-temperature cure condition of BMI/MDA exhibited the highest modulus values for a given mole fraction of BMI with the modulus decreasing with decreasing concentration of BMI. The higher elastic modulus is the result of steric hindrance by unreacted BMI molecules in the glassy state. The moduli values for the high- and low/high-temperature cure conditions of BMI/MDA decreased as the amount of diamine increased. All the moduli values mimic the yield strength and density trends. For the high-temperature cure condition, the room- temperature modulus remained constant with decreasing mole fraction of BMT for the BMI/DABA and BMI/DDS systems. Postcuring PMR-15 increases the modulus over that of the cured material even though density values of cured and postcured PMR were essentially the same. Preliminary results of a continuous and intermittent stress relaxation experiment for BMI:MDA in a 2:1 molar ratio indicate that crosslinking is occurring when the sample is in the undeformed state. Computer simulation of properties such as density, glass transition temperature, and modulus for the low- temperature cure conditions of BMI/MDA and BMI/DABA were completed. The computer modeling was used to help further understand and confirm the structure characterization results. The simulations correctly predicted the trends of these properties versus mole fraction BMI and were extended to other BMI/diamine systems.

  16. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  17. Size dependent elastic modulus and mechanical resilience of dental enamel.

    PubMed

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle

    NASA Astrophysics Data System (ADS)

    Thipdech, Pacharavalee; Sirivat, Anuvat

    2007-03-01

    Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.

  19. Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications

    NASA Astrophysics Data System (ADS)

    Jubsilp, Chanchira; Taewattana, Rapiphan; Takeichi, Tsutomu; Rimdusit, Sarawut

    2015-10-01

    Effects of liquid amine-terminated butadiene-acrylonitrile (ATBN) on the properties of bisphenol-A/aniline-based polybenzoxazine (PBA-a) composites were investigated. Liquid ATBN decreased gel time and lowered curing temperature of the benzoxazine resin (BA-a). The PBA-a/ATBN-based self-lubricating composites resulted in substantial enhancement regarding their tribological, mechanical, and thermal properties. The inclusion of the ATBN at 5% by weight was found decreasing the friction coefficient and improved wear resistance of the PBA-a/ATBN composites. Flexural modulus and glass transition temperature of the PBA-a composite samples added the ATBN was constant within the range of 1-5% by weight. A plausible wear mechanism of the composites is proposed based on their worn surface morphologies. Based on the findings in this work, it seems that the obtained PBA-a/ATBN self-lubricating composites would have high potential to be used for bearing materials where low friction coefficient, high wear resistance, and modulus with good thermal property are required.

  20. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    PubMed

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  1. Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Wang, Zhang; Cai, Zhen-bing; Chen, Zhi-qiang; Sun, Yang; Zhu, Min-hao

    2017-11-01

    The impact tests were conducted on metallic materials with different bulk hardness and Young's moduli. Analysis of the dynamics response during the tribological process showed that the tested materials had similar energy absorption, where the peak contact force increased as the tests continued. Moreover, wear volume decreased with the increase in Young's modulus of metals, except for Cr with a relatively low hardness. Wear rate was gradually reduced to a steady stage with increasing cycles, which was attributed to the decrease in contact stress and work-hardening effect. The main wear mechanism of impact was characterized by delamination, and the specific surface degradation mechanisms were depending on the mechanical properties of materials. The absorbed energy was used to the propagation of micro-cracks in the subsurface instead of plastic deformation, when resistance of friction wear and plastic behavior was improved. Hence, both the hardness and Young's modulus played important roles in the impact wear of metallic materials.

  2. Does maltose influence on the elasticity of SOPC membrane?

    NASA Astrophysics Data System (ADS)

    Genova, J.; Zheliaskova, A.; Mitov, M. D.

    2010-11-01

    Thermally induced shape fluctuations of giant quasi-spherical lipid vesicles are used to study the influence of the disaccharide maltose, dissolved in the aqueous solution, on the curvature elasticity kc of a lipid membrane. The influence of the carbohydrate solute is investigated throughout a considerably wide interval of concentrations. The values of the bending elastic modulus for 200 mM and 400 mM of maltose in the water solution are obtained. The data for kc in presence of maltose is compared with previously obtained results for this constant for the most popular hydrocarbons: monosaccharides glucose and fructose and disaccharides sucrose and trehalose. It is shown that the presence of maltose, dissolved in the aqueous phase surrounding the membrane does not influence on the bending elasticity with the increase of its concentration in the aqueous solution. Up to our knowledge this is the first sugar that does not show decrease of the bending elastic modulus of the lipid membrane, when present in the water surrounding it in concentration up to 400mM.

  3. First principles study on the elastic and electronic properties of CdX (X = S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Sharma, Sheetal; Verma, Ajay Singh; Sarkar, Bimal Kumar; Bhandari, Rajiv; Jindal, Vijay Kumar

    2011-12-01

    Wide band gap semiconductors are emerging as a potential candidate for optically active materials in blue green spectral region and operating at high power level and high temperature. CdX, X = S, Se and Te are wide band gap semiconductors having applications in optoelectronics devices. In this paper we investigated the elastic and electronic properties of Cadmium chalcogenide (cubic zinc-blende (ZB) structure) using standard Kohn-Sham self consistent density functional theory method (DFT) that uses non conserving pseudopotentials in fully nonlocal form within the generalized gradient approximation (GGA) for the exchange-correlation potential. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. The shear modulus and Young's modulus are estimated for CdX. Using the GGA for the exchange correlation potential, the calculated direct fundamental band gap value is in very good agreement with the measured one.

  4. An analytical model for transient deformation of viscoelastically coated beams: Applications to static-mode microcantilever chemical sensors

    NASA Astrophysics Data System (ADS)

    Heinrich, S. M.; Wenzel, M. J.; Josse, F.; Dufour, I.

    2009-06-01

    The problem governing the transient deformation of an elastic cantilever beam with viscoelastic coating, subjected to a time-dependent coating eigenstrain, is mathematically formulated. An analytical solution for an exponential eigenstrain history, exact within the context of beam theory, is obtained in terms of the coating and base layer thicknesses, the elastic modulus of the base material, the initial coating modulus, the coating relaxation percentage (0%-100%), and the time constants of the coating's relaxation process and its eigenstrain history. Approximate formulas, valid for thin coatings, are derived as special cases to provide insight into system behavior. Main results include (1) the time histories of the beam curvature and the coating stresses, (2) a criterion governing the response type (monotonic or "overshoot" response), and (3) simple expressions for the overshoot ratio, defined as the peak response scaled by the steady-state response, and the time at which the peak response occurs. Applications to polymer-coated microcantilever-based chemical sensors operating in the static mode are discussed.

  5. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  6. Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor

    NASA Astrophysics Data System (ADS)

    M, Dongol; M, M. El-Nahass; A, El-Denglawey; A, A. Abuelwafa; T, Soga

    2016-06-01

    Alternating current (AC) conductivity and dielectric properties of thermally evaporated Au/PtOEP/Au thin films are investigated each as a function of temperature (303 K-473 K) and frequency (50 Hz-5 MHz). The frequency dependence of AC conductivity follows the Jonscher universal dynamic law. The AC-activation energies are determined at different frequencies. It is found that the correlated barrier hopping (CBH) model is the dominant conduction mechanism. The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model. Coulombic barrier height W m , hopping distance R ω , and the density of localized states N(E F) are valued at different frequencies. Dielectric constant ɛ 1(ω,T) and dielectric loss ɛ 2(ω,T) are discussed in terms of the dielectric polarization process. The dielectric modulus shows the non-Debye relaxation in the material. The extracted relaxation time by using the imaginary part of modulus (M″) is found to follow the Arrhenius law.

  7. Method and apparatus for measuring shear modulus and viscosity of a monomolecular film

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-10-18

    Apparatus for measuring the shear modulus of a monomolecular film comprises a circular trough having inwardly sloping sides containing a liquid for supporting the monolayer on the surface thereof; a circular rotor suspended above the trough such that the lower surface of the rotor contacts the surface of the liquid, positioned such that the axis of the rotor is concentric with the axis of the trough and freely rotable about its axis; means for hydrostatically compressing the monolayer in the annular region formed between the rotor and the sides of the trough; and means for rotating the trough about its axis. Preferably, hydrostatic compression of the monolayer is achieved by removing liquid from the bottom of the trough (decreasing the surface area) while raising the trough vertically along its axis to maintain the monolayer at a constant elevation (and maintain rotor contact). In order to measure viscosity, a means for rotating the rotor about its axis is added to the apparatus.

  8. Method and apparatus for measuring shear modulus and viscosity of a monomolecular film

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1985-01-01

    Instrument for measuring the shear modulus of a monomolecular film comprises a circular trough having inwardly sloping sides containing a liquid for supporting the monolayer on the surface thereof; a circular rotor suspended above the trough such that the lower surface of the rotor contacts the surface of the liquid, positioned such that the axis of the rotor is concentric with the axis of the trough and freely rotable about its axis; apparatus for hydrostatically compressing the monolayer in the annular region formed between the rotor and the sides of the trough; and apparatus for rotating the trough about its axis. Preferably, hydrostatic compression of the monolayer is achieved by removing liquid from the bottom of the trough (decreasing the surface area) while raising the trough vertically along its axis to maintain the monolayer at a constant elevation (and maintain rotor contact). In order to measure viscosity, a apparatus for rotating the rotor about its axis is added to the apparatus.

  9. Influence of CeO2 on structural properties of glasses by using ultrasonic technique: comparison between the local sand and SiO2.

    PubMed

    Laopaiboon, Raewat; Bootjomchai, Cherdsak

    2013-04-01

    Comparison between the local sand and SiO2 with different compositions of CeO2 on the structural properties of glasses was carried out by using ultrasonic technique. The ultrasonic velocities were measured by the pulse echo technique with a frequency of 4 MHz and at room temperature. From these obtained velocities and densities, various elastic moduli, micro-hardness and Poisson's ratio were calculated. The interesting point of the bulk modulus (SiO2 glass system) decreases at x = 1.25 mol.% initially before it turns to increase between x = 3.75 and x = 5.00 mol.%. While the bulk modulus of the local sand glass system is near constant. FTIR spectra were used to study the structural properties of the prepared glass system. The results supported our discussion of the formation of non-bridging oxygens (NBO) and bridging oxygens (BO). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Elasticity and Stability of Clathrate Hydrate: Role of Guest Molecule Motions.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2017-05-02

    Molecular dynamic simulations were performed to determine the elastic constants of carbon dioxide (CO 2 ) and methane (CH 4 ) hydrates at one hundred pressure-temperature data points, respectively. The conditions represent marine sediments and permafrost zones where gas hydrates occur. The shear modulus and Young's modulus of the CO 2 hydrate increase anomalously with increasing temperature, whereas those of the CH 4 hydrate decrease regularly with increase in temperature. We ascribe this anomaly to the kinetic behavior of the linear CO 2 molecule, especially those in the small cages. The cavity space of the cage limits free rotational motion of the CO 2 molecule at low temperature. With increase in temperature, the CO 2 molecule can rotate easily, and enhance the stability and rigidity of the CO 2 hydrate. Our work provides a key database for the elastic properties of gas hydrates, and molecular insights into stability changes of CO 2 hydrate from high temperature of ~5 °C to low decomposition temperature of ~-150 °C.

  11. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  12. Weak interfaces for UV cure nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa

    2008-03-01

    Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.

  13. Moduli stabilising in heterotic nearly Kähler compactifications

    NASA Astrophysics Data System (ADS)

    Klaput, Michael; Lukas, Andre; Matti, Cyril; Svanes, Eirik E.

    2013-01-01

    We study heterotic string compactifications on nearly Kähler homogeneous spaces, including the gauge field effects which arise at order α'. Using Abelian gauge fields, we are able to solve the Bianchi identity and supersymmetry conditions to this order. The four-dimensional external space-time consists of a domain wall solution with moduli fields varying along the transverse direction. We find that the inclusion of α' corrections improves the moduli stabilization features of this solution. In this case, one of the dilaton and the volume modulus asymptotes to a constant value away from the domain wall. It is further shown that the inclusion of non-perturbative effects can stabilize the remaining modulus and "lift" the domain wall to an AdS vacuum. The coset SU(3)/U(1)2 is used as an explicit example to demonstrate the validity of this AdS vacuum. Our results show that heterotic nearly Kähler compactifications can lead to maximally symmetric four-dimensional space-times at the non-perturbative level.

  14. Vibrational and elastic properties of silicate spinels A2SiO4 (A = Mg, Fe, Ni, and Co)

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.; Ma, C.-G.; Brik, M. G.; Akbudak, S.

    2018-06-01

    A six-parameter bond-bending force constant model is used to calculate the zone-center (Γ = 0) Raman and infrared phonon mode frequencies, elastic constants and related properties, the Debye temperatures, and sound velocities along high-symmetry directions for A2SiO4 (A = Mg, Fe, Ni, and Co) spinels. The main outcomes of the calculations are that the interactions between Si and O atoms (first-neighbor interaction) are stronger than those between A and Oatoms (A = Mg, Fe, Ni, and Co) (second-neighbor interaction). The elastic constants C11, C12, and C44 decrease in the order Mg > Fe > Ni > Co. The calculated bulk modulus, Poisson's ratio, and anisotropy decrease in the sequence Fe2SiO4 → Ni2SiO4 → Co2SiO4 → Mg2SiO4. On comparison, we find overall good agreement with the available experimental and previously calculated data.

  15. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.

    PubMed

    Santos, Juan E; Savioli, Gabriela B

    2015-11-01

    This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-phase viscous, compressible fluid. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the phase velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-phase fluids. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and fluids phases. Finally the phase velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.

  16. Observational effects of varying speed of light in quadratic gravity cosmological models

    NASA Astrophysics Data System (ADS)

    Izadi, Azam; Shacker, Shadi Sajedi; Olmo, Gonzalo J.; Banerjee, Robi

    We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (cST) may become variable in that local frame. For theories of the form f(ℛ,ℛμνℛ μν), this variation in cST has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.

  17. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

    NASA Astrophysics Data System (ADS)

    Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-04-01

    We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.

  18. On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient.

    PubMed

    Ridgway, Cathy; Bawuah, Prince; Markl, Daniel; Zeitler, J Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik; Gane, Patrick

    2017-06-30

    The physical properties and mechanical integrity of pharmaceutical tablets are of major importance when loading with active pharmaceutical ingredient(s) (API) in order to ensure ease of processing, control of dosage and stability during transportation and handling prior to patient consumption. The interaction between API and excipient, acting as functional extender and binder, however, is little understood in this context. The API indomethacin is combined in this study with microcrystalline cellulose (MCC) at increasing loading levels. Tablets from the defined API/MCC ratios are made under conditions of controlled porosity and tablet thickness, resulting from different compression conditions, and thus compaction levels. Mercury intrusion porosimetry is used to establish the accessible pore volume, pore size distribution and, adopting the observed region of elastic intrusion-extrusion at high pressure, an elastic bulk modulus of the skeletal material is recorded. Porosity values are compared to previously published values derived from terahertz (THz) refractive index data obtained from exactly the same tablet sample sets. It is shown that the elastic bulk modulus is dependent on API wt% loading under constant tablet preparation conditions delivering equal dimensions and porosity. The findings are considered of novel value in respect to establishing consistency of tablet production and optimisation of physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. First-principles calculations of stability, electronic and elastic properties of the precipitates present in 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Shao, Hongbang; Ma, Yunlong; Huang, Yuanchun; Xiao, Zhengbing

    2018-04-01

    The structural stability, electronic structures and elastic properties of the strengthening precipitates, namely Al3Zr, MgZn2, Al2CuMg and Al2Cu, present in 7055 aluminum alloy were investigated by the first-principles calculations based on density functional theory (DFT). The optimized structural parameters are in good agreement with literature values available. It is found that Al3Zr has the strongest alloying ability and structural stability, while for MgZn2, its structural stability is the worst. The calculated electronic results indicate that covalent bonding is the dominant cohesion of Al3Zr, whereas the fractional ionic interactions coexisting with metallic bonding are found in MgZn2, Al2CuMg and Al2Cu. The elastic constants Cij of these precipitates were calculated, and the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal elastic anisotropy were derived. It is suggested that MgZn2 is ductile, whereas Al3Zr, Al2CuMg and Al2Cu are brittle, and the elastic anisotropies of them increase in the following sequence: Al3Zr

  20. Measurement of elastic pp scattering at $$\\sqrt{\\hbox {s}} = \\hbox {8}$$ TeV in the Coulomb–nuclear interference region: Determination of the ρ-parameter and the total cross-section

    DOE PAGES

    Antchev, G.; Aspell, P.; Atanassov, I.; ...

    2016-11-30

    Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less

  1. AnisoVis: a MATLAB™ toolbox for the visualisation of elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Healy, D.; Timms, N.; Pearce, M. A.

    2016-12-01

    The elastic properties of rocks and minerals vary with direction, and this has significant consequences for their physical response to acoustic waves and natural or imposed stresses. This anisotropy of elasticity is well described mathematically by 4th rank tensors of stiffness or compliance. These tensors are not easy to visualise in a single diagram or graphic, and visualising Poisson's ratio and shear modulus presents a further challenge in that their anisotropy depends on two principal directions. Students and researchers can easily underestimate the importance of elastic anisotropy. This presentation describes an open source toolbox of MATLAB scripts that aims to visualise elastic anisotropy in rocks and minerals. The code produces linked 2-D and 3-D representations of the standard elastic constants, such as Young's modulus, Poisson's ratio and shear modulus, all from a simple GUI. The 3-D plots can be manipulated by the user (rotated, panned, zoomed), to encourage investigation and a deeper understanding of directional variations in the fundamental properties. Examples are presented of common rock forming minerals, including those with negative Poisson's ratio (auxetic behaviour). We hope that an open source code base will encourage further enhancements from the rock physics and wider geoscience communities. Eventually, we hope to generate 3-D prints of these complex and beautiful natural surfaces to provide a tactile link to the underlying physics of elastic anisotropy.

  2. Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models.

    PubMed

    Cañadas, P; Laurent, V M; Chabrand, P; Isabey, D; Wendling-Mansuy, S

    2003-11-01

    The visco-elastic properties of living cells, measured to date by various authors, vary considerably, depending on the experimental methods and/or on the theoretical models used. In the present study, two mechanisms thought to be involved in cellular visco-elastic responses were analysed, based on the idea that the cytoskeleton plays a fundamental role in cellular mechanical responses. For this purpose, the predictions of an open unit-cell model and a 30-element visco-elastic tensegrity model were tested, taking into consideration similar properties of the constitutive F-actin. The quantitative predictions of the time constant and viscosity modulus obtained by both models were compared with previously published experimental data obtained from living cells. The small viscosity modulus values (10(0)-10(3) Pa x s) predicted by the tensegrity model may reflect the combined contributions of the spatially rearranged constitutive filaments and the internal tension to the overall cytoskeleton response to external loading. In contrast, the high viscosity modulus values (10(3)-10(5) Pa x s) predicted by the unit-cell model may rather reflect the mechanical response of the cytoskeleton to the bending of the constitutive filaments and/or to the deformation of internal components. The present results suggest the existence of a close link between the overall visco-elastic response of micromanipulated cells and the underlying architecture.

  3. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  4. Elasticity of Calcium-Alkaline Amphiboles: Revised Properties for Crustal Seismic Models

    NASA Astrophysics Data System (ADS)

    Straughan, K. B.; Castle, N. R.; Brown, J.

    2009-12-01

    Amphiboles are dominant mineral constituents of both the oceanic and continental crust. Efforts to model crustal seismic structure and anisotropy have been limited by sparse and uncertain data for the elasticity of common rock-forming amphiboles. A single paper from 1961 reports properties of two “hornblendes” of unreported composition. We have undertaken a study of the calcium-alkaline amphiboles (minerals in this range include hornblende, tremolite, edenite, pargasite, tschermaktite and others) to explore elastic properties as a function of composition. Velocities as a function of propagation direction were measured using Impulsively Stimulated Light Scattering. All thirteen monoclinic elastic constants were determined for nine amphiboles spanning this common rock-forming compositional space. Amphiboles exhibit a wide range of elemental compositions and site occupancies. Measured trends of elastic constants with composition cannot be reduced to a single variable. Broad correlations are apparent in both (Mg+Fe) and Al concentrations. Among these samples, the isotropic average bulk modulus ranges from 85 to 98 GPa and the shear modulus ranges from 51 to 62. Poisson’s ratio varies from .23 to .27. The compressional velocity anisotropy (fast direction along the c axis and slow direction along the a-axis) varies with composition from 23% to 33%. Velocities along the c-axis are as fast as 9.0 km/s and along the a-axis are as slow as 5.8 km/s. These results exhibit far greater anisotropy and higher velocities than previously assumed based on the earlier data.

  5. Fast Fourier Tranformation Algorithms: Experiments with Microcomputers.

    DTIC Science & Technology

    1986-07-01

    is, functions a with a known, discrete Fourier transform A Such functions are given fn [I]. The functions, TF1 , TF2, and TF3, were used and are...the IBM PC, all with TF1 (Eq. 1). ’The compilers provided options to improve performance, as noted, for which a penalty in compiling time has to be...BASIC only. Series I In this series the procedures were as follows: (i) Calculate the input values for TF1 of ar and the modulus Iar (which is

  6. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    NASA Astrophysics Data System (ADS)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  7. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.

    PubMed

    Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C

    2010-12-01

    Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.

  8. Finite element study of human pelvis model in side impact for Chinese adult occupants.

    PubMed

    Ma, Zhengwei; Lan, Fengchong; Chen, Jiqing; Liu, Weiguo

    2015-01-01

    The occupant's pelvis is very vulnerable to side collision in road accidents. Finite element (FE) studies on pelvic injury help to design occupant protection devices to improve vehicle safety. This study was aimed to develop a highly biofidelic pelvis model of Chinese adults and assess its sensitivity to variations in pelvis cortical bone thickness, bone material properties, and loading conditions. In this study, 4 different FE models of the pelvis were developed from the computed tomography (CT) data of a volunteer representing the 50th percentile Chinese male. Two of them were meshed using entirely hexahedral elements with variable and constant cortical thickness distribution (the V-Hex and C-Hex models), and the others were modeled with hexahedral elements for cancellous bone and variable or constant thickness shell elements for cortical bone (the V-HS and C-HS models). In model developments, the semi-automatic multiblock meshing approach was employed to maintain the pelvis geometric curvature and generate a high-quality hexahedral mesh. Then, several simulations with postmortem human subjects (PMHS) tests were performed to obtain the most accurate model in predicting pelvic injury. Based on the most accurate model, sensitivity studies were conducted to analyze the effects of the cortex thickness, Young's modulus of the cortical and cancellous bone, impactor velocity, and impactor with or without padding on the biomechanical responses and injuries of pelvis. The results indicate that the models with variable cortical bone thickness can give more accurate predictions than those with constant cortical thickness. Both the V-Hex and V-HS models are favorable for simulating pelvic response and injury, but the simulation results of the V-Hex model agree with the tests better. The sensitivity study shows that pelvic response is more sensitive to alterations in the Young's modulus of cortical bone than cancellous bone. Compared to failure displacement, peak force is more sensitive to the cortical bone thickness. However, displacement is more sensitive to the Young's modulus of cancellous bone than peak force. The padding attached on the impactor plays a significant role in absorbing the impact energy and alleviating pelvic injury. The all-hex meshing method with variable cortical bone thickness has the highest accuracy but is time-consuming. The cortical bone plays a determining role in resisting pelvic fracture. Peak impact force appears to be a reasonable injury predictor for pelvic injury assessment. Some appropriate energy absorbers installed in the car door can significantly reduce pelvic injury and will be beneficial for occupant protection.

  9. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608

  10. Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.

    2015-11-01

    The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.

  11. Collision detection for spacecraft proximity operations

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.

    1991-01-01

    A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.

  12. Predicting DNA hybridization kinetics from sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Jinny X.; Fang, John Z.; Duan, Wei; Wu, Lucia R.; Zhang, Angela W.; Dalchau, Neil; Yordanov, Boyan; Petersen, Rasmus; Phillips, Andrew; Zhang, David Yu

    2018-01-01

    Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.

  13. High-dielectric-constant polymers as high-energy-density (HED) field effect actuator and capacitor materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Zhang, Qiming

    2004-07-01

    The development of high dielectric constant polymers as active materials in high-performance devices is one of the challenges in polymeric electronics and opto-electronics such as flexible thin-film capacitors, memory devices and microactuators for deformable micromirror technology. A group of poly(vinylidene fluoridetrifluoroethylene) P(VDF-TrFE) based high-dielectric-constant fluoroterpolymers have been developed, which have high room-temperature dielectric constant (K>60) and very high strain level and high energy density. The longitudinal and transverse strain of these materials can reach about -7% and 4.5%, respectively, and the elastic energy density is around 1.1 J/cm^3 under a high electric field of 150 MV/m. The influence on the electromechanical properties of copolymerizing poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) with a third monomer, chlorofluoroethylene (CFE), was investigated. It was found that increasing the CFE content from 0 to 8.5% slowly converts the ferroelectric structure of the copolymer to a relaxor ferroelectric system. This allows for a greatly decreased polarization and dielectric hysteresis and a much higher strain. Above 8.5%, increased CFE content substantially degrades the bulk crystallinity and the Young's modulus. These terpolymers have the potential to achieve above 10 J/cm^3 whole capacity energy density, which makes them good candidates for applications in pulse power capacitors. An all-polymer percolative composite by the combination of conductive polyaniline particles (K>10^5) within a fluoroterpolymer matrix, is introduced which exhibits very high dielectric constant (>7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cm^3 can be achieved under a low field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis. Flexible high dielectric constant electroactive polymers provide potential applications in high-energy-density (HED) energy storage and conversion systems such as lightweight field effect actuators and capacitors.

  14. Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Granberg, F.; Nordlund, K.

    2017-10-01

    In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.

  15. Electronic structure, mechanical and thermodynamic properties of BaPaO3 under pressure.

    PubMed

    Khandy, Shakeel Ahmad; Islam, Ishtihadah; Gupta, Dinesh C; Laref, Amel

    2018-05-07

    Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO 3 . The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO 3 at 0 K are 523 K and 1764.75 K, respectively.

  16. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less

  17. On the analytical determination of relaxation modulus of viscoelastic materials by Prony's interpolation method

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.

    1986-01-01

    A computer implementation to Prony's curve fitting by exponential functions is presented. The method, although more than one hundred years old, has not been utilized to its fullest capabilities due to the restriction that the time range must be given in equal increments in order to obtain the best curve fit for a given set of data. The procedure used in this paper utilizes the 3-dimensional capabilities of the Interactive Graphics Design System (I.G.D.S.) in order to obtain the equal time increments. The resultant information is then input into a computer program that solves directly for the exponential constants yielding the best curve fit. Once the exponential constants are known, a simple least squares solution can be applied to obtain the final form of the equation.

  18. The threshold strength of laminar ceramics utilizing molar volume changes and porosity

    NASA Astrophysics Data System (ADS)

    Pontin, Michael Gene

    It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.

  19. Performance of journal bearings with semi-compressible fluids

    NASA Technical Reports Server (NTRS)

    Carpino, M.; Peng, J.-P.

    1991-01-01

    Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.

  20. Algorithm for fuel conservative horizontal capture trajectories

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1981-01-01

    A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.

  1. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  2. Average luminosity distance in inhomogeneous universes

    NASA Astrophysics Data System (ADS)

    Kostov, Valentin Angelov

    Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus it is more directly applicable to our observations. Unlike previous studies, the averaging is exact, non-perturbative, an includes all possible non-linear effects. The inhomogeneous universes are represented by Sweese-cheese models containing random and simple cubic lattices of mass- compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein - de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. For voids aligned in a certain direction, there is a cumulative gravitational lensing correction to the distance modulus that increases with redshift. That correction is present even for small voids and depends on the density contrast of the voids, not on their radius. Averaging over all directions destroys the cumulative correction even in a non-randomized simple cubic lattice of voids. Despite the well known argument for photon flux conservation, the average distance modulus correction at low redshifts is not zero due to the peculiar velocities. A formula for the maximum possible average correction as a function of redshift is derived and shown to be in excellent agreement with the numerical results. The formula applies to voids of any size that: (1) have approximately constant densities in their interior and walls, (2) are not in a deep nonlinear regime. The actual average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximum. That is traced to cancelations between the corrections coming from the fronts and backs of different voids at the same redshift from the observer. The calculated correction at low redshifts allows one to readily predict the redshift at which the averaged fluctuation in the Hubble diagram is below a required precision and suggests a method to extract the background Hubble constant from low redshift data without the need to correct for peculiar velocities.

  3. The influence of architecture on the elasticity and strength of Si(3)N(4)/BN fibrous-monolithic ceramic laminates

    NASA Astrophysics Data System (ADS)

    King, Bruce H.

    Fibrous-monolithic ceramics are a class of material with many similarities to layered ceramic composites. Like layered composites, fibrous monoliths depend on a weak interphase to promote crack deflection and energy absorption, avoiding catastrophic failure. However, in a fibrous monolith, the interphase surrounds fiber-like "cells" of the strong phase, forming a continuous, 2-dimensional honeycomb network. In the most simple architecture, all cells are aligned unidirectionally. More complex architectures are easily produced by varying the orientation of successive layers relative to each other. The Young's modulus of the unidirectional architecture is predicted accurately along principal axes using a "brick" model, while the modulus at angles between 0sp° and 90sp° is predicted using laminate theory. Laminate theory may also be used to accurately predict the Young's modulus of multidirectional architectures such as a cross-ply 0sp°/90sp° and a quasi-isotropic 0sp°/{±}45sp°/90sp°. Unidirectional fibrous monolithic ceramics are linear elastic in flexure until the first major failure event. The flexural strength of the unidirectional architecture tested at orientations between 0sp° and 90sp° is observed to fall into three distinct regions. Between 0sp° and 10sp° the strength is a constant 450 MPa, but between 10sp° and 45sp°, it gradually drops to 80 MPa. Above 45sp° the strength remains essentially constant. Between 0sp° and 30sp°, the strength is accurately predicted using the Maximum Stress theory. Above 30sp°, the strength is predicted using the Tsai-Hill model. The multidirectional architectures exhibit nonlinearity in flexural loading prior to the peak stress. Cyclic loading experiments indicate that this nonlinearity is a result-of microcracking in the boron nitride cell boundaries of the off-axis layers. The cross-ply architecture exhibits a strength of 334 ± 35 MPa, while the quasi-isotropic has a strength of 255 ± 22 MPa. The models developed to describe the unidirectional architecture may be extended to predict upper and lower bounds on the strength of multidirectional architectures.

  4. Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study.

    PubMed

    Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio

    2017-01-10

    The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.

  5. Lifted worm algorithm for the Ising model

    NASA Astrophysics Data System (ADS)

    Elçi, Eren Metin; Grimm, Jens; Ding, Lijie; Nasrawi, Abrahim; Garoni, Timothy M.; Deng, Youjin

    2018-04-01

    We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using the lifting technique. We study the dynamic critical behavior of an energylike observable on both the complete graph and toroidal grids, and compare our findings with reversible algorithms such as the Prokof'ev-Svistunov worm algorithm. Our results show that the lifted worm algorithm improves the dynamic exponent of the energylike observable on the complete graph and leads to a significant constant improvement on toroidal grids.

  6. Comment on "Comment on 'Constant temperature molecular dynamics simulations by means of a stochastic collision model. II. The harmonic oscillator' [J. Chem. Phys. 104, 3732 (1996)]" [J. Chem. Phys. 106, 1646 (1997)].

    PubMed

    Kast, Stefan M

    2004-03-08

    An argument brought forward by Sholl and Fichthorn against the stochastic collision-based constant temperature algorithm for molecular dynamics simulations developed by Kast et al. is refuted. It is demonstrated that the large temperature fluctuations noted by Sholl and Fichthorn are due to improperly chosen initial conditions within their formulation of the algorithm. With the original form or by suitable initialization of their variant no deficient behavior is observed.

  7. Qutrit witness from the Grothendieck constant of order four

    NASA Astrophysics Data System (ADS)

    Diviánszky, Péter; Bene, Erika; Vértesi, Tamás

    2017-07-01

    In this paper, we prove that KG(3 )

  8. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    PubMed

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Narita, Kengo; Şen, Mustafa; Shiku, Hitoshi; Matsue, Tomokazu

    2015-01-01

    In this study, various amounts of oxygen were added to Ti-10Cr (mass%) alloys. It is expected that a large changeable Young's modulus, caused by a deformation-induced ω-phase transformation, can be achieved in Ti-10Cr-O alloys by the appropriate oxygen addition. This "changeable Young's modulus" property can satisfy the otherwise conflicting requirements for use in spinal implant rods: high and low moduli are preferred by surgeons and patients, respectively. The influence of oxygen on the microstructures and mechanical properties of the alloys was examined, as well as the bending springback and cytocompatibility of the optimized alloy. Among the Ti-10Cr-O alloys, Ti-10Cr-0.2O (mass%) alloy shows the largest changeable Young's modulus following cold rolling for a constant reduction ratio. This is the result of two competing factors: increased apparent β-lattice stability and decreased amounts of athermal ω phase, both of which are caused by oxygen addition. The most favorable balance of these factors for the deformation-induced ω-phase transformation occurred at an oxygen concentration of 0.2mass%. Ti-10Cr-0.2O alloy not only exhibits high tensile strength and acceptable elongation, but also possesses a good combination of high bending strength, acceptable bending springback and great cytocompatibility. Therefore, Ti-10Cr-0.2O alloy is a potential material for use in spinal fixture devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Silica-Coated Core-Shell Structured Polystyrene Nanospheres and Their Size-Dependent Mechanical Properties.

    PubMed

    Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin

    2017-08-22

    The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.

  11. Indentation size effect of cortical bones submitted to different soft tissue removals.

    PubMed

    Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D

    2013-04-01

    Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Phosphate-based glasses: Prediction of acoustical properties

    NASA Astrophysics Data System (ADS)

    El-Moneim, Amin Abd

    2016-04-01

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  13. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0

  14. Dynamics of Bottlebrush Networks

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Daniel, William; Vatankhah-Varnosfaderani, Mohammad; Sheiko, Sergei; Dobrynin, Andrey

    The deformation dynamics of bottlebrush networks in a melt state is studied using a combination of theoretical, computational, and experimental techniques. Three main molecular relaxation processes are identified in these systems: (i) relaxation of the side chains, (ii) relaxation of the bottlebrush backbones on length scales shorter than the bottlebrush Kuhn length (bK) , and (iii) relaxation of the bottlebrush network strands between cross-links. The relaxation of side chains having a degree of polymerization (DP), nsc, dominates the network dynamics on the time scales τ0 < t <=τsc , where τ0 and τsc τ0 (nsc + 1)2 are the characteristic relaxation times of monomeric units and side chains, respectively. In this time interval, the shear modulus at small deformations decays with time as G0BB (t) t - 1 / 2. On time scales t >τsc, bottlebrush elastomers behave as networks of filaments with a shear modulus G0BB (t) (nsc + 1)- 1 / 4t - 1 / 2 . Finally, the response of the bottlebrush networks becomes time independent at times scales longer than the Rouse time of the bottlebrush network strands. In this time interval, the network shear modulus depends on the network molecular parameters as G0BB (t) (nsc + 1)-1N-1 . Analysis of the simulation data shows that the stress evolution in the bottlebrush networks during constant strain-rate deformation can be described by a universal function. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  15. Spinning optical resonator sensor for torsional vibrational applications measurements

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.

    2016-03-01

    Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.

  16. Automated Spectroscopic Analysis Using the Particle Swarm Optimization Algorithm: Implementing a Guided Search Algorithm to Autofit

    NASA Astrophysics Data System (ADS)

    Ervin, Katherine; Shipman, Steven

    2017-06-01

    While rotational spectra can be rapidly collected, their analysis (especially for complex systems) is seldom straightforward, leading to a bottleneck. The AUTOFIT program was designed to serve that need by quickly matching rotational constants to spectra with little user input and supervision. This program can potentially be improved by incorporating an optimization algorithm in the search for a solution. The Particle Swarm Optimization Algorithm (PSO) was chosen for implementation. PSO is part of a family of optimization algorithms called heuristic algorithms, which seek approximate best answers. This is ideal for rotational spectra, where an exact match will not be found without incorporating distortion constants, etc., which would otherwise greatly increase the size of the search space. PSO was tested for robustness against five standard fitness functions and then applied to a custom fitness function created for rotational spectra. This talk will explain the Particle Swarm Optimization algorithm and how it works, describe how Autofit was modified to use PSO, discuss the fitness function developed to work with spectroscopic data, and show our current results. Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L., Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H., J. Mol. Spec. 312, 13-21 (2015)

  17. In situ characterization of Zircaloy-4 oxidation at 500 °C in dry air

    NASA Astrophysics Data System (ADS)

    Vermoyal, J. J.; Dessemond, L.; Hammou, A.; Frichet, A.

    2001-10-01

    The in situ oxidation of Zircaloy-4 at 500 °C in dry air was investigated by thermogravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The coating of the alloy by a platinum film as electrode material was observed as not to modify the oxidation kinetic properties. After an initial cubic rate law, a transition to a quasi-linear curve occurs. The independence of the oxidation behavior to the Pt coupling is compatible with oxygen diffusion as the rate-determining step. During the pre-transition step, the rest potential of the cell Pt/oxide/Zy-4, the color of the oxide and the modulus of the single EIS signature indicate the high non-stoichiometry of the oxide. The kinetic transition was proposed to be correlated to the degradation of the film into a partially porous layer. This alteration of the oxide is associated to the appearance of a 1.2 V constant rest potential and the modification of the impedance diagrams in two high modulus contributions. The Cole-Cole representation has been used to demonstrate that the time variation of impedance spectra is related to the oxide growth. An equivalent circuit including two RC loops in series, whose capacitances are frequency dispersed, was proposed to be related to the film structure. Fitted data show that the thickness of the assumed protective layer of the film, close to the metal-oxide interface, is time independent in agreement with a constant oxidation rate. Finally, electrical properties of this inner layer were found to be quite different in pre- and post-transition stage.

  18. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    NASA Astrophysics Data System (ADS)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  19. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    PubMed

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  20. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  1. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  2. Using a latent variable model with non-constant factor loadings to examine PM2.5 constituents related to secondary inorganic aerosols.

    PubMed

    Zhang, Zhenzhen; O'Neill, Marie S; Sánchez, Brisa N

    2016-04-01

    Factor analysis is a commonly used method of modelling correlated multivariate exposure data. Typically, the measurement model is assumed to have constant factor loadings. However, from our preliminary analyses of the Environmental Protection Agency's (EPA's) PM 2.5 fine speciation data, we have observed that the factor loadings for four constituents change considerably in stratified analyses. Since invariance of factor loadings is a prerequisite for valid comparison of the underlying latent variables, we propose a factor model that includes non-constant factor loadings that change over time and space using P-spline penalized with the generalized cross-validation (GCV) criterion. The model is implemented using the Expectation-Maximization (EM) algorithm and we select the multiple spline smoothing parameters by minimizing the GCV criterion with Newton's method during each iteration of the EM algorithm. The algorithm is applied to a one-factor model that includes four constituents. Through bootstrap confidence bands, we find that the factor loading for total nitrate changes across seasons and geographic regions.

  3. Elastic energy distribution in bi-material lithosphere: implications for shear zone formation

    NASA Astrophysics Data System (ADS)

    So, B.; Yuen, D. A.

    2013-12-01

    Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.

  4. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    NASA Astrophysics Data System (ADS)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  5. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    NASA Astrophysics Data System (ADS)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  6. Effect of Bending Stiffness of the Electroactive Polymer Element on the Performance of a Hybrid Actuator System (HYBAS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2006-01-01

    An electroactive polymer (EAP)-ceramic hybrid actuation system (HYBAS) was developed recently at NASA Langley Research Center. This paper focuses on the effect of the bending stiffness of the EAP component on the performance of a HYBAS, in which the actuation of the EAP element can match the theoretical prediction at various length/thickness ratios for a constant elastic modulus of the EAP component. The effects on the bending stiffness of the elastic modulus and length/thickness ratio of the EAP component were studied. A critical bending stiffness to keep the actuation of the EAP element suitable for a rigid beam theory-based modeling was found for electron irradiated P(VDF-TrFE) copolymer. For example, the agreement of experimental data and theoretical modeling for a HYBAS with the length/thickness ratio of EAP element at 375 times is demonstrated. However, the beam based theoretical modeling becomes invalid (i.e., the profile of the HYBAS movement does not follow the prediction of theoretical modeling) when the bending stiffness is lower than a critical value.

  7. Rolling, slip and traction measurements on low modulus materials

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.

  8. A rate insensitive linear viscoelastic model for soft tissues

    PubMed Central

    Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.

    2012-01-01

    It is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: μ0, τ, m, ρ and β, where μ0 is the relaxed elastic modulus, τ the characteristic relaxation time, m the number of Maxwell elements, ρ the gap between characteristic frequencies, and β = μ1/μ0 with μ1 being the elastic modulus of the Maxwell body that has relaxation time τ. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters. PMID:17512585

  9. Theoretical Investigation of Half-Metallic Oxides XFeO3 (X = Sr, Ba) via Modified Becke-Johnson Potential Scheme

    NASA Astrophysics Data System (ADS)

    Maqsood, Saba; Rashid, Muhammad; Din, Fasih Ud; Saddique, M. Bilal; Laref, A.

    2018-03-01

    The cubic XFeO3 (X = Sr, Ba) perovskite oxides are studied for their thermodynamic stability in the ferromagnetic phase by using density functional theory calculations. We also explore the elastic properties of these compounds in terms of elastic constants C ij, bulk modulus B, shear modulus G, anisotropy factor A, Poisson's ratio ν and the B/ G ratio. The electronic properties are examined to elucidate the magnetic order, and the thermoelectric properties of XFeO3 (X = Sr, Ba) materials are also presented. The modified Becke-Johnson local density approximation scheme has been used to compute the electronic band structure and density of states, which show that these materials are half-metallic ferromagnetic. We study the magnetic properties by computing the crystal field energy (ΔCF), John-Teller energy (ΔJT) and the exchange splitting energies Δx( d) and Δx( pd). Our results indicate that strong hybridization causes a decrease in the magnetic moment of Fe, which then produces permanent magnetic moments in the nonmagnetic sites.

  10. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Yong; Lu, Yong; Zheng, Fa-Wei; Zhang, Ping

    2015-11-01

    Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 51071032).

  11. A simple method of predicting S-wave velocity

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.

  12. Single shot multi-wavelength phase retrieval with coherent modulation imaging.

    PubMed

    Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-04-15

    A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.

  13. Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.

    2015-11-01

    The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.

  14. Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P.

    2016-05-06

    The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustratemore » the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.« less

  15. Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq; Rafiq, M. A.; Hasan, M. M.

    2013-10-01

    We report here the synthesis of ˜20 nm sized cadmium sulfide (CdS) nanoparticles via conventional solid state reaction at low temperature ˜200 °C and ambient pressure. X-ray diffraction and high resolution transmission electron microscopy analysis confirmed the synthesis of hexagonal phased nanoparticles. Impedance and electrical modulus investigations were carried out in the frequency range 20 Hz to 2 MHz and at temperature from 300 K to 400 K, which show the presence of bulk, grain boundary, and sub-grain boundary phases in CdS nanoparticles. Overlapped large polaron tunneling was the observed mechanism of charge carriers in used temperature range. The presence of colossal dielectric constant in the system is attributed to the Maxwell-Wagner type polarization. High and temperature dependent dielectric constants make the CdS nanoparticles efficient material to be used in capacitive energy storage devices.

  16. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites.

    PubMed

    Liao, Wei-Hao; Yang, Shin-Yi; Hsiao, Sheng-Tsung; Wang, Yu-Sheng; Li, Shin-Ming; Ma, Chen-Chi M; Tien, Hsi-Wen; Zeng, Shi-Jun

    2014-09-24

    An effective method is proposed to prepare octa(aminophenyl) silsesquioxane (OAPS) functionalized graphene oxide (GO) reinforced polyimide (PI) composites with a low dielectric constant and ultrastrong mechanical properties. The amine-functionalized surface of OAPS-GO is a versatile starting platform for in situ polymerization, which promotes the uniform dispersion of OAPS-GO in the PI matrix. Compared with GO/PI composites, the strong interfacial interaction between OAPS-GO and the PI matrix through covalent bonds facilitates a load transfer from the PI matrix to the OAPS-GO. The OAPS-GO/PI composite film with 3.0 wt % OAPS-GO exhibited an 11.2-fold increase in tensile strength, and a 10.4-fold enhancement in tensile modulus compared with neat PI. The dielectric constant (D(k)) decreased with the increasing content of 2D porous OAPS-GO, and a D(k) value of 1.9 was achieved.

  17. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  18. Fiber-wireless transmission system of 108  Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency.

    PubMed

    Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K

    2012-12-15

    We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108  Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108  Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100  Gb/s signal delivery through both fiber and wireless links at 100 GHz.

  19. Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method

    NASA Astrophysics Data System (ADS)

    Singh Yadav, Raghvendra; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Švec, Jiří; Enev, Vojtěch; Hajdúchová, Miroslava

    2017-12-01

    In this work CoFe2O4 spinel ferrite nanoparticles were synthesized by honey mediated sol-gel combustion method and further annealed at higher temperature 500 °C, 700 °C, 900 °C and 1100 °C. The synthesized spinel ferrite nanoparticles is investigated by x-ray diffraction, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), field emission scanning electron microscopy, x-ray photoelectron spectroscopy and vibrating sample magnetometer. The x-ray diffraction study reveals face-centered cubic spinel cobalt ferrite crystal phase formation. The crystallite size and lattice parameter are increased with annealing temperature. Raman and Fourier transform infrared spectra also confirm spinel ferrite crystal structure of synthesized nanoparticles. The existence of cation at octahedral and tetrahedral site in cobalt ferrite nanoparticles is confirmed by x-ray photoelectron spectroscopy. Magnetic measurement shows increased saturation magnetization 74.4 emu g-1 at higher annealing temperature 1100 °C, high coercivity 1347.3 Oe at lower annealing temperature 500 °C, and high remanent magnetization 32.3 emu g-1 at 900 °C annealing temperature. The magnetic properties of synthesized ferrite nanoparticles can be tuned by adjusting sizes through annealing temperature. Furthermore, the dielectric constant and ac conductivity shows variation with frequency (1-107 Hz), grain size and cation redistribution. The modulus spectroscopy study reveals the role of bulk grain and grain boundary towards the resistance and capacitance. The cole-cole plots in modulus formalism also well support the electrical response of nanoparticles originated from both grain and grain boundaries. The dielectric, electrical, magnetic, impedance and modulus spectroscopic characteristics of synthesized CoFe2O4 spinel ferrite nanoparticles demonstrate the applicability of these nanoparticles for magnetic recording, memory devices and for microwave applications.

  20. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs.

    PubMed

    Commisso, Maria S; Martínez-Reina, Javier; Mayo, Juana; Domínguez, Jaime

    2013-02-01

    The main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective. Generally, the complete three-dimensional formulation of the quasi-linear viscoelastic model is very complex. Therefore, it is necessary to design an experimental test to ensure a simple stress state, such as uniaxial compression to facilitate obtaining the viscoelastic properties. This work provides some recommendations about the experimental setup, which are important to follow, as an inadequate setup could produce a stress state far from uniaxial, thus, distorting the material constants determined from the experiment. The test considered is a stress relaxation test using unconfined compression performed in cylindrical specimens extracted from temporomandibular joint discs. To validate the experimental protocol, the test was numerically simulated using finite-element modelling. The disc was arbitrarily assigned a set of quasi-linear viscoelastic constants (c1) in the finite-element model. Another set of constants (c2) was obtained by fitting the results of the simulated test with the proposed algorithm. The deviation of constants c2 from constants c1 measures how far the stresses are from the uniaxial state. The effects of the following features of the experimental setup on this deviation have been analysed: (a) the friction coefficient between the compression plates and the specimen (which should be as low as possible); (b) the portion of the specimen glued to the compression plates (smaller areas glued are better); and (c) the variation in the thickness of the specimen. The specimen's faces should be parallel to ensure a uniaxial stress state. However, this is not possible in real specimens, and a criterion must be defined to accept the specimen in terms of the specimen's thickness variation and the deviation of the fitted constants arising from such a variation.

  1. Geometry and the onset of rigidity in a disordered network

    NASA Astrophysics Data System (ADS)

    Vermeulen, Mathijs F. J.; Bose, Anwesha; Storm, Cornelis; Ellenbroek, Wouter G.

    2017-11-01

    Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ★, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.

  2. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.

    PubMed

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-10-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  3. Real-time motion-based H.263+ frame rate control

    NASA Astrophysics Data System (ADS)

    Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay

    1998-12-01

    Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.

  4. Evolving cell models for systems and synthetic biology.

    PubMed

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  5. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    DOE PAGES

    Radak, Brian K.; Roux, Benoît

    2016-10-07

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance.more » An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.« less

  6. A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2001-01-01

    A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.

  7. A new finite element formulation for computational fluid dynamics. IX - Fourier analysis of space-time Galerkin/least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Shakib, Farzin; Hughes, Thomas J. R.

    1991-01-01

    A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.

  8. Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers

    NASA Astrophysics Data System (ADS)

    Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille

    This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.

  9. The cancellous bone multiscale morphology-elasticity relationship.

    PubMed

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-06-01

    The cancellous bone effective properties relations are analysed on multiscale across two aspects; properties of representative volume element on micro scale and statistical measure of trabecular trajectory orientation on mesoscale. Anisotropy of the microstructure is described across fabric tensor measure with trajectory orientation tensor as bridging scale connection. The scatter measured data (elastic modulus, trajectory orientation, apparent density) from compression test are fitted by stochastic interpolation procedure. The engineering constants of the elasticity tensor are estimated by last square fitt procedure in multidimensional space by Nelder-Mead simplex. The multiaxial failure surface in strain space is constructed and interpolated by modified super-ellipsoid.

  10. Prospects for mirage mediation

    NASA Astrophysics Data System (ADS)

    Pierce, Aaron; Thaler, Jesse

    2006-09-01

    Mirage mediation reduces the fine-tuning in the minimal supersymmetric standard model by dynamically arranging a cancellation between anomaly-mediated and modulus-mediated supersymmetry breaking. We explore the conditions under which a mirage ``messenger scale'' is generated near the weak scale and the little hierarchy problem is solved. We do this by explicitly including the dynamics of the SUSY-breaking sector needed to cancel the cosmological constant. The most plausible scenario for generating a low mirage scale does not readily admit an extra-dimensional interpretation. We also review the possibilities for solving the μ/Bμ problem in such theories, a potential hidden source of fine-tuning.

  11. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, T.; Lance, M. J.; Katoh, Y.

    Raman spectra from polycrystalline beta-silicon carbide (SiC) were collected following neutron irradiation at 380–1180 °C to 0.011–1.87 displacement per atom. The longitudinal optical (LO) peak shifted to a lower frequency and broadened as a result of the irradiation. The changes observed in the LO phonon line shape and position in neutron-irradiated SiC are explained by a combination of changes in the lattice constant and Young's modulus, and the phonon confinement effect. The phonon confinement model reasonably estimates the defect-defect distance in the irradiated SiC, which is consistent with results from previous experimental studies and simulations.

  13. On the eigenfrequencies of elastic shear waves propagating in an inhomogeneous layer

    NASA Astrophysics Data System (ADS)

    Khachatryan, V. M.

    2018-04-01

    In this work, we consider the problem of eigenfrequencies of elastic shear waves propagating in a layer whose Young’s modulus and density are functions of the longitudinal coordinate. Taking into account the material inhomogeneity makes the problem of the eigenfrequencies of the waves propagating in the layer more complicated. In this paper, the problem of pure shear is considered. To solve the problem, we use an integral formula which allows us to represent the general solution of the original equation with variable coefficients in terms of the general solution of the accompanying equation with constant coefficients.

  14. Surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization

    NASA Astrophysics Data System (ADS)

    Bongova, M.; Urgela, Stanislav

    1999-07-01

    Physicoacoustical properties of wood influenced by surface coating are studied by modal analysis. Resonant spruce plates were coated by stain, nitrocellulose varnish, special violin paint and shellac. The modal testing was performed by electronic speckle pattern interferometry. For this purpose, equipment called VIBROVIZER was used. The collected values of physicoacoustical characteristics (density, Young's modulus, acoustic constant) were compared using the graphic plots of data. The 3D plots help to evaluate wooden plates from a viewpoint of the quality control. This fact offers new opportunity for musical instrument manufacturers.

  15. Total variation iterative constraint algorithm for limited-angle tomographic reconstruction of non-piecewise-constant structures

    NASA Astrophysics Data System (ADS)

    Krauze, W.; Makowski, P.; Kujawińska, M.

    2015-06-01

    Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.

  16. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    PubMed

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  17. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks

    PubMed Central

    Vestergaard, Christian L.; Génois, Mathieu

    2015-01-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860

  18. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.

    PubMed

    Vestergaard, Christian L; Génois, Mathieu

    2015-10-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.

  19. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum

    NASA Astrophysics Data System (ADS)

    Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.

    2017-09-01

    An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.

  20. Random Walk Particle Tracking For Multiphase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  1. A study of real-time computer graphic display technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Rajala, S. A.

    1981-01-01

    The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.

  2. Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization.

    PubMed

    Wong, Ieong; Liu, Wenjia; Ho, Chih-Ming; Ding, Xianting

    2017-06-01

    Differential evolution (DE) has been applied extensively in drug combination optimization studies in the past decade. It allows for identification of desired drug combinations with minimal experimental effort. This article proposes an adaptive population-sizing method for the DE algorithm. Our new method presents improvements in terms of efficiency and convergence over the original DE algorithm and constant stepwise population reduction-based DE algorithm, which would lead to a reduced number of cells and animals required to identify an optimal drug combination. The method continuously adjusts the reduction of the population size in accordance with the stage of the optimization process. Our adaptive scheme limits the population reduction to occur only at the exploitation stage. We believe that continuously adjusting for a more effective population size during the evolutionary process is the major reason for the significant improvement in the convergence speed of the DE algorithm. The performance of the method is evaluated through a set of unimodal and multimodal benchmark functions. In combining with self-adaptive schemes for mutation and crossover constants, this adaptive population reduction method can help shed light on the future direction of a completely parameter tune-free self-adaptive DE algorithm.

  3. A fast, parallel algorithm for distant-dependent calculation of crystal properties

    NASA Astrophysics Data System (ADS)

    Stein, Matthew

    2017-12-01

    A fast, parallel algorithm for distant-dependent calculation and simulation of crystal properties is presented along with speedup results and methods of application. An illustrative example is used to compute the Lennard-Jones lattice constants up to 32 significant figures for 4 ≤ p ≤ 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. In most cases, the known precision of these constants is more than doubled, and in some cases, corrected from previously published figures. The tools and strategies to make this computation possible are detailed along with application to other potentials, including those that model defects.

  4. Coupling Field Theory with Mesoscopic Dynamical Simulations of Multicomponent Lipid Bilayers

    PubMed Central

    McWhirter, J. Liam; Ayton, Gary; Voth, Gregory A.

    2004-01-01

    A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations. PMID:15347594

  5. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    PubMed

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  6. Surface density mapping of natural tissue by a scanning haptic microscope (SHM).

    PubMed

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide

    2013-02-01

    To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffernan, Karina M.; Ross, Nancy L., E-mail: nross@vt.edu; Spencer, Elinor C.

    Accurate elastic constants for gadolinium phosphate (GdPO{sub 4}) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO{sub 4} determined under hydrostatic conditions, 128.1(8) GPa (K′=5.8(2)), is markedly different from that obtained with GdPO{sub 4} under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO{sub 4} tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO{sub 4} structure is facilitated by bending/twisting of the Gd–O–P links that result in increased distortion in themore » GdO{sub 9} polyhedra. - Graphical abstract: A high-pressure single crystal diffraction study of GdPO{sub 4} with the monazite structure is presented. The elastic behaviour of rare-earth phosphates are believed to be sensitive to shear forces. The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. Compression of the structure is facilitated by bending/twisting of the Gd−O−P links that result in increased distortion in the GdO{sub 9} polyhedra. Display Omitted - Highlights: • The elastic responses of rare-earth phosphates are sensitive to shear forces. • The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. • Twisting of the inter-polyhedral links allows compression of the GdPO{sub 4} structure. • Changes to the GdO{sub 9} polyhedra occur in response to pressure (<7.0 GPa).« less

  8. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    NASA Astrophysics Data System (ADS)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  9. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  10. Structural and elastic properties of La{sub 2}Mg{sub 17} from first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Tao-Peng; Ma, Li; Pan, Rong-Kai

    2013-10-15

    Structural and elastic properties of La{sub 2}Mg{sub 17} with layer structure have been investigated within framework of the density functional theory. Different from the general layer-structured materials, the obtained c/a is less than unity. The calculated elastic constants C{sub 33} is larger than C{sub 11}, being novel in comparison with other alloys with layer structure. The calculated bulk, shear and Young’s modulus of La{sub 2}Mg{sub 17} are higher than other Mg–La alloys with higher La content, implying the stronger covalent bonding. Moreover, the elastic isotropies of La{sub 2}Mg{sub 17} are more excellent. The electronic structure within basal plane is highlymore » symmetric, and the electronic interaction within basal plane is slightly weaker than one between basal planes, which reveal the underlying mechanism for the structural and elastic properties of La{sub 2}Mg{sub 17}. - Graphical abstract: The crystal structure (a) and the atomic positions for (b) (0 0 0 2), (c) (0 0 0 4) and (d) (1 2{sup ¯} 1 0) plane of La{sub 2}Mg{sub 17}. Display Omitted - Highlights: • The c/a of La{sub 2}Mg{sub 17} is anomalously less than unity. • It is novel that for La{sub 2}Mg{sub 17} the elastic constants C{sub 33} is larger than C{sub 11}. • The elastic modulus of La{sub 2}Mg{sub 17} is higher than other Mg–La alloys. • The elastic isotropy of La{sub 2}Mg{sub 17} is excellent. • The electronic structure within basal plane is highly symmetric.« less

  11. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    PubMed Central

    Gandyra, Daniel; Gorb, Stanislav; Barthlott, Wilhelm

    2015-01-01

    Summary We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus) for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods. PMID:25671147

  12. Theoretical Investigations of Si-Ge Alloys in P42/ncm Phase: First-Principles Calculations

    PubMed Central

    Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Yan, Fang

    2017-01-01

    The structural, mechanical, anisotropic, electronic and thermal properties of Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are investigated in this work. The calculations have been performed with an ultra-soft pseudopotential by using the generalized gradient approximation and local density approximation in the framework of density functional theory. The achieved results for the lattice constants and band gaps of P42/ncm-Si and P42/ncm-Ge in this research have good accordance with other results. The calculated elastic constants and elastic moduli of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are better than that of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/mnm phase. The Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit varying degrees of mechanical anisotropic properties in Poisson’s ratio, shear modulus, Young’s modulus, and universal anisotropic index. The band structures of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase show that they are all indirect band gap semiconductors with band gap of 1.46 eV, 1.25 eV, 1.36 eV and 1.00 eV, respectively. In addition, we also found that the minimum thermal conductivity κmin of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit different degrees of anisotropic properties in (001), (010), (100) and (01¯0) planes. PMID:28772964

  13. Response to “Comment on ‘Motion of a helical vortex filament in superfluid {sup 4}He under the extrinsic form of the local induction approximation”’ [Phys. Fluids 26, 019101 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu

    2014-01-15

    I agree with the authors regarding their comments on the Donnelly-Glaberson instability for such helical filaments as those obtained in my paper. I also find merit in their derivation of the quantum LIA (local induction approximation) in the manner of the LIA of Boffetta et al. However, I disagree with the primary criticisms of Hietala and Hänninen. In particular, though they suggest LIA and local nonlinear equation modes are not comparable since the former class of models contains superfluid friction parameters, note that since these parameters are small one may take them to zero and consider a qualitative comparison ofmore » the models (which is what was done in my paper). Second, while Hietala and Hänninen criticize certain assumptions made in my paper (and the paper of Shivamoggi where the model comes from) since the results break-down when Ak → ∞, note that in my paper I state that any deviations from the central axis along which the filament is aligned must be sufficiently bounded in variation. Therefore, it was already acknowledged that Ak(=|Φ{sub x}|) should be sufficiently bounded, precluding the Ak → ∞ case. I also show that, despite what Hietala and Hänninen claim, the dispersion relation obtained in my paper is consistent with LIA, where applicable. Finally, while Hietala and Hänninen claim that the dispersion parameter should be complex valued, I show that their dispersion relation is wrong, since it was derived incorrectly (they assume the complex modulus of the potential function is constant, yet then use this to obtain a potential function with non-constant modulus)« less

  14. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.

  15. Creating an Assured Joint DOD and Interagency Interoperable Net-Centric Enterprise. Report of the Defense Science Board Task Force on Achieving Interoperability in a Net-Centric Environment

    DTIC Science & Technology

    2009-03-01

    policy, elliptic curve public key cryptography using the 256 -bit prime modulus elliptic curve as specified in FIPS-186-2 and SHA - 256 are appropriate for...publications/fips/fips186-2/fips186-2-change1.pdf 76 I P ART I . CH A PT E R 5 Hashing via the Secure Hash Algorithm (using SHA - 256 and...lithography and processing techniques. Field programmable gate arrays ( FPGAs ) are a chip design of interest. These devices are extensively used in

  16. Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data

    NASA Technical Reports Server (NTRS)

    Tzikang, Chen

    2000-01-01

    In this study a method of determining the coefficients in a Prony series representation of a viscoelastic modulus from rate dependent data is presented. Load versus time test data for a sequence of different rate loading segments is least-squares fitted to a Prony series hereditary integral model of the material tested. A nonlinear least squares regression algorithm is employed. The measured data includes ramp loading, relaxation, and unloading stress-strain data. The resulting Prony series which captures strain rate loading and unloading effects, produces an excellent fit to the complex loading sequence.

  17. Investigations on structural, elastic, thermodynamic and electronic properties of TiN, Ti2N and Ti3N2 under high pressure by first-principles

    NASA Astrophysics Data System (ADS)

    Yang, Ruike; Zhu, Chuanshuai; Wei, Qun; Du, Zheng

    2016-11-01

    The lattice parameters, cell volume, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio are calculated at zero pressure, and their values are in excellent agreement with the available data, for TiN, Ti2N and Ti3N2. By using the elastic stability criteria, it is shown that the three structures are all stable. The brittle/ductile behaviors are assessed in the pressures from 0 GPa to 50 GPa. Our calculations present that the performances for TiN, Ti2N and Ti3N2 become from brittle to ductile with pressure rise. The Debye temperature rises as pressure increase. With increasing N content, the enhancement of covalent interactions and decline of metallicity lead to the increase of the micro-hardness. Their constant volume heat capacities increase rapidly in the lower temperature, at a given pressure. At higher temperature, the heat capacities are close to the Dulong-Petit limit, and the heat capacities of TiN and Ti2N are larger than that of c-BN. The thermal expansion coefficients of titanium nitrides are slightly larger than that of c-BN. The band structure and the total Density of States (DOS) are calculated at 0 GPa and 50 GPa. The results show that TiN and Ti2N present metallic character. Ti3N2 present semiconducting character. The band structures have some discrepancies between 0 GPa and 50 GPa. The extent of energy dispersion increases slightly at 50 GPa, which means that the itinerant character of electrons becomes stronger at 50 GPa. The main bonding peaks of TiN, Ti2N and Ti3N2 locate in the range from -10 to 10 eV, which originate from the contribution of valance electron numbers of Ti s, Ti p, Ti d, N s and N p orbits. We can also find that the pressure makes that the total DOS decrease at the Fermi level for Ti2N. The bonding behavior of N-Ti compounds is a combination of covalent and ionic nature. As N content increases, valence band broadens, valence electron concentration increases, and covalent interactions become stronger. This is reflected in shortening of Ti-N bonds.

  18. Monitoring the lesion formation during histotripsy treatment using shear wave imaging

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Lee, Wei-Ning; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-11-01

    Monitoring the lesion formation induced by histotripsy has mainly relied on the quantitative change in backscatter intensity using ultrasound B-mode imaging. However, how the mechanical properties of the histotripsy-treated tissue region alter during the procedure is yet to be fully investigated. We thus proposed here to monitor such a therapeutic process based on shear modulus estimated by shear wave imaging (SWI). In the therapeutic procedure, a single-element piezo-composite focused transducer (Imasonic, Besançon, France) with a center frequency of 660 kHz, a focal length of 45 mm, and an fnumber of 1 was driven by a function generator (AFG 3101, Tektronix, Beaverton, OR) and a gated RF power amplifier (GA-2500A, RITEC Inc., USA) to generate ultrasound histotripsy pulses. Histotripsy pulses were delivered for 20 seconds and then followed by a 30-second pause and a rapid monitoring step. Such a treatment and monitoring scheme was repeated for 10 mins. Both the reference measurement and monitoring were realized by SWI, where plane shear waves were generated by an 8 MHz linear array probe connected to a prototype ultrasound scanner, and acquired at a frame rate of 10000 Hz. Shear modulus was estimated and mapped in 2D through a time-of-flight algorithm. Gelatin (8%)-agar (2%) phantoms and ex-vivo porcine liver samples were tested. Regions of interests (ROI's) of 2 mm-by-2 mm in both untreated and treated regions were selected to compute the contrast-to-noise ratio (CNR). In all three scenarios where different PD's and PRF's were implemented, during the first 100 seconds of the treatment, 50% decrease in the shear modulus within the histotripsy-targeted zone was already observed, and the CNR of the shear modulus increased by 18 dB. In contrast, the backscatter intensity began to reduce and the corresponding CNR was found to increase by 6 dB only after 120 seconds of treatment. The results demonstrated that SWI can map quantitatively the change of mechanical properties during histotripsy treatment. Moreover, the shear modulus estimated by SWI was a more sensitive indicator of the lesion formation than the backscatter intensity obtained from B-mode at the early stage of the histotripsy treatment. In-vitro experiments on liver samples have also been carried out.

  19. Body Fat and Muscle Mass as Functions of Body Water

    ERIC Educational Resources Information Center

    Sutton, R. A.; Miller, Carolyn

    2007-01-01

    Hydrostatic weighing and chemical dilution are well accepted methods for measuring body composition. Recently, Dual Energy X-ray Absorptiometry (DEXA) has become the preferred method. The two compartment algorithms used by these methods assume a fixed constant for lean body tissue. This constant has long been suspect of variations due to many…

  20. Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the Knoop Indentation Technique

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Fahad; Wang, James; Berndt, Christopher

    2015-06-01

    The microhardness and elastic modulus of plasma-sprayed hydroxyapatite coatings were evaluated using Knoop indentation on the cross section and on the top surface. The effects of indentation angle, testing direction, measurement location and applied load on the microhardness and elastic modulus were investigated. The variability and distribution of the microhardness and elastic modulus data were statistically analysed using the Weibull modulus distribution. The results indicate that the dependence of microhardness and elastic modulus on the indentation angle exhibits a parabolic shape. Dependence of the microhardness values on the indentation angle follows Pythagoras's theorem. The microhardness, Weibull modulus of microhardness and Weibull modulus of elastic modulus reach their maximum at the central position (175 µm) on the cross section of the coatings. The Weibull modulus of microhardness revealed similar values throughout the thickness, and the Weibull modulus of elastic modulus shows higher values on the top surface compared to the cross section.

  1. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  2. A Self Adaptive Differential Evolution Algorithm for Global Optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Pravesh; Pant, Millie

    This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.

  3. The Canadian Experiment for Freeze/Thaw in 2012 or 2013 CanEx-FT12 or FT13

    NASA Technical Reports Server (NTRS)

    Belair, Stephane; Bernier, Monique; Colliander, Andreas; Jackson, Thomas; McDonald, Kyle; Walker, Anne

    2011-01-01

    General objectives of the experiment are: Pre-launch Calibration/Validation of SMAP Freeze/Thaw products and retrieval algorithms and rehearsal for Soil Moisture Active-Passive (SMAP) post launch validation. The basis of the radar freeze-thaw measurement is the large shift in dielectric constant and backscatter (dB) between predominantly frozen & thawed conditions. The Dielectric constant of liquid water varies with frequency, whereas that of pure ice is constant

  4. An improved NAS-RIF algorithm for image restoration

    NASA Astrophysics Data System (ADS)

    Gao, Weizhe; Zou, Jianhua; Xu, Rong; Liu, Changhai; Li, Hengnian

    2016-10-01

    Space optical images are inevitably degraded by atmospheric turbulence, error of the optical system and motion. In order to get the true image, a novel nonnegativity and support constants recursive inverse filtering (NAS-RIF) algorithm is proposed to restore the degraded image. Firstly the image noise is weaken by Contourlet denoising algorithm. Secondly, the reliable object support region estimation is used to accelerate the algorithm convergence. We introduce the optimal threshold segmentation technology to improve the object support region. Finally, an object construction limit and the logarithm function are added to enhance algorithm stability. Experimental results demonstrate that, the proposed algorithm can increase the PSNR, and improve the quality of the restored images. The convergence speed of the proposed algorithm is faster than that of the original NAS-RIF algorithm.

  5. Application of modern control theory to the design of optimum aircraft controllers

    NASA Technical Reports Server (NTRS)

    Power, L. J.

    1973-01-01

    The synthesis procedure presented is based on the solution of the output regulator problem of linear optimal control theory for time-invariant systems. By this technique, solution of the matrix Riccati equation leads to a constant linear feedback control law for an output regulator which will maintain a plant in a particular equilibrium condition in the presence of impulse disturbances. Two simple algorithms are presented that can be used in an automatic synthesis procedure for the design of maneuverable output regulators requiring only selected state variables for feedback. The first algorithm is for the construction of optimal feedforward control laws that can be superimposed upon a Kalman output regulator and that will drive the output of a plant to a desired constant value on command. The second algorithm is for the construction of optimal Luenberger observers that can be used to obtain feedback control laws for the output regulator requiring measurement of only part of the state vector. This algorithm constructs observers which have minimum response time under the constraint that the magnitude of the gains in the observer filter be less than some arbitrary limit.

  6. Comparison of a discrete steepest ascent method with the continuous steepest ascent method for optimal programing

    NASA Technical Reports Server (NTRS)

    Childs, A. G.

    1971-01-01

    A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.

  7. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    PubMed

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Theoretical study on elastic properties of Si2N2O by ab initio calculation

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiya; Adachi, Kanta; Nagakubo, Akira; Ogi, Hirotsugu

    2018-07-01

    The elastic constants of crystalline Si2N2O remain unknown since it was discovered in the 1960s. We determine the nine independent elastic constants of orthorhombic Si2N2O by ab initio calculations. We applied various deformation modes with strains up to ±0.01 to a unit cell, calculated the energy-strain relationships, and deduced all the elastic constants by fitting the harmonic-oscillation function. Our results are as follows: C 11 = 311.1, C 22 = 238.5, C 33 = 317.9, C 44 = 136.1, C 55 = 57.6, C 66 = 73.9, C 12 = 79.6, C 13 = 52.2, and C 23 = 33.6 GPa. Despite the different crystal structures and symmetries, the direction-over-averaged Young’s modulus of Si2N2O is well explained by the nitrogen content and Young’s moduli of α-SiO2 and β-Si3N4. The anisotropy of sound-wave velocity was investigated, and its origin was examined on the basis of the crystallographic structure. The quasi-isotropic plane for the longitudinal-wave propagation was identified.

  9. Experimental investigation of time dependent behavior of welded Topopah Spring Tuff

    NASA Astrophysics Data System (ADS)

    Ma, Lumin

    Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode. They slowly crumble, collapse, and maintain considerable relative strength beyond the peak. Due to the presence of multiple relatively large lithophysal cavities, they are far weaker and softer than the nonlithophysal specimens.

  10. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  11. Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus

    PubMed Central

    Stender, Michael E.; Raub, Christopher B.; Yamauchi, Kevin A.; Shirazi, Reza; Vena, Pasquale; Sah, Robert L.; Hazelwood, Scott J.; Klisch, Stephen M.

    2013-01-01

    A continuum mixture model with distinct collagen (COL) and glycosaminoglycan (GAG) elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus (Ef) were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, Ef was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted Ef values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-β1 treatment was predicted to increase and decrease Ef values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease Ef values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-β1 and IGF-1 treatments, with modulated values strongly dependent on treatment. PMID:23266906

  12. Elastic moduli of δ-Pu 239 reveal aging in real time

    DOE PAGES

    Maiorov, Boris; Betts, Jonathan B.; Söderlind, Per; ...

    2017-03-28

    We study the time evolution (aging) of the elastic moduli of an eight-year-old polycrystalline δ- Pu 2.0 at % Ga alloy (δ-Pu:Ga ) from 295K to nearly 500K in real time using Resonant Ultrasound Spectroscopy (RUS). After 8 years of aging at 295K, the bulk and shear moduli increase at a normalized rate of 0.2%/year and 0.6%/year respectively. As the temperature is raised, two time dependences are observed, an exponential one of about a week, followed by a linear one (constant rate). The linear rate is thermally activated with an activation energy of 0.33+0.06 eV. Above 420K a qualitative changemore » in the time evolution is observed; the bulk modulus decreases with time while the shear modulus continues to stiffen. No change is observed as the α-β transition temperature is crossed as would be expected if a decomposition of δ-Pu:Ga to α-Pu and Pu 3Ga occurred over the temperature range studied. Our results indicate that the main mechanism of aging is creation of defects that are partially annealed starting at T = 420 K.« less

  13. DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO3 (M  =  Ga, In) perovskites

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali

    2017-10-01

    The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M  =  Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.

  14. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    NASA Astrophysics Data System (ADS)

    Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola

    2018-02-01

    We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.

  15. Performances and impedance spectroscopy of Small-molecule bulk heterojunction solar cells based on PtOEP: PCBM

    NASA Astrophysics Data System (ADS)

    Abuelwafa, A. A.; Dongol, M.; El-Nahass, M. M.; Soga, T.

    2018-03-01

    Small-molecule bulk heterojunction (SBHJ) solar cells based on platinum octaethylporphyrin (PtOEP) as donor material and phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor were fabricated using spin coating techniques with weight ratios from 1:0.1 to 1:9. The formation of charge transfer complex CTC in the PtOEP: PCBM blend was specified from the redshift of the PtOEP absorption peak after blending with PCBM. The photovoltaic performance for PtOEP: PCBM blends were investigated using the external quantum efficiency (EQE) besides the current density-voltage (J-V) characteristics under illumination100 mW/cm2 (AM1.5G). The BHJ solar cell with PtOEP: PCBM ratio of 1:9 exhibited the best performance. The impedance spectroscopy (IS) was examined in the frequency range from 25 Hz to 1 MHz. The equivalent circuit model was evaluated in details to evaluate the impedance spectroscopy parameters. Dielectric constant {ɛ ^' }, dielectric loss {ɛ ^' ' }} and dielectric modulus were included and discussed in terms of dielectric polarization processes. Dielectric modulus displays the non-Debye relaxation in PtOEP: PCBM BHJ solar cells.

  16. Dielectric and magnetic studies of BaTi0.5Fe0.5O3 ceramic materials, synthesized by solid state sintering.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-02-05

    A comparative study of the surface morphology, dielectric and magnetic properties of the BaTi0.5Fe0.5O3 (BTFO) ceramics materials. This has been carried out by synthesizing the samples in different routes. BTFO samples have shown single phased 12R type hexagonal structure with R3m, P4mm space group. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. It has been identified that huge dielectric constant (10(3)-10(6)) at lower frequencies is largely contributed by the heterogeneous electronic microstructure at the interfaces of grains. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in chemical routed samples. The order of grain boundary resistivity suggests the semiconductor/insulator class of the material. The grain boundary resistivity of the mechanical alloyed samples is remarkably lower than the solid state and chemical routed samples. Few samples have of the samples have exhibited signature of ferromagnetism at the room temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at variousmore » temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.« less

  18. The elastic stability, bifurcation and ideal strength of gold under hydrostatic stress: an ab initio calculation.

    PubMed

    Wang, Hao; Li, Mo

    2009-11-11

    In this paper, we employ an ab initio density functional theory calculation to investigate the elastic stability of face-centered cubic Au under hydrostatic deformation. We identify the elastic stiffness constant B(ijkl) as the coefficient in the stress-strain relation for an arbitrary deformed state, and use it to test the stability condition. We show that this criterion bears the same physics as that proposed earlier by Frenkel and Orowan and agrees with the Born-Hill criterion. The results from those two approaches agree well with each other. We show that the stability limit, or instability, of the perfect Au crystal under hydrostatic expansion is not associated with the bulk stiffness modulus as predicted in the previous work; rather it is caused by a shear instability associated with the vanishing rhombohedral shear stiffness modulus. The deviation of the deformation mode from the primary hydrostatic loading path signals a bifurcation or symmetry breaking in the ideal crystal. The corresponding ideal hydrostatic strength for Au is 19.2 GPa at the Lagrangian expansion strain of ∼0.06. In the case of compression, Au remains stable over the entire pressure range in our calculation.

  19. Measurements of vocal fold tissue viscoelasticity: Approaching the male phonatory frequency range

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.

    2004-06-01

    Viscoelastic shear properties of human vocal fold tissues have been reported previously. However, data have only been obtained at very low frequencies (<=15 Hz). This necessitates data extrapolation to the frequency range of phonation based on constitutive modeling and time-temperature superposition. This study attempted to obtain empirical measurements at higher frequencies with the use of a controlled strain torsional rheometer, with a design of directly controlling input strain that introduced significantly smaller system inertial errors compared to controlled stress rheometry. Linear viscoelastic shear properties of the vocal fold mucosa (cover) from 17 canine larynges were quantified at frequencies of up to 50 Hz. Consistent with previous data, results showed that the elastic shear modulus (G'), viscous shear modulus (G''), and damping ratio (ζ) of the vocal fold mucosa were relatively constant across 0.016-50 Hz, whereas the dynamic viscosity (ɛ') decreased monotonically with frequency. Constitutive characterization of the empirical data by a quasilinear viscoelastic model and a statistical network model demonstrated trends of viscoelastic behavior at higher frequencies generally following those observed at lower frequencies. These findings supported the use of controlled strain rheometry for future investigations of the viscoelasticity of vocal fold tissues and phonosurgical biomaterials at phonatory frequencies.

  20. Investigation of conduction and relaxation phenomena in BaZrxTi1-xO3 (x=0.05) by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahajan, Sandeep; Haridas, Divya; Ali, S. T.; Munirathnam, N. R.; Sreenivas, K.; Thakur, O. P.; Prakash, Chandra

    2014-10-01

    In present study we have prepared ferroelectric BaZrxTi1-xO3 (x=0.05) ceramic by conventional solid state reaction route and studied its electrical properties as a function of temperature and frequency. X-ray diffraction (XRD) analysis shows single-phase formation of the compound with orthorhombic crystal structure at room temperature. Impedance and electric modulus spectroscopy analysis in the frequency range of 40 Hz-1 MHz at high temperature (200-600 °C) suggests two relaxation processes with different time constant are involved which are attributed to bulk and grain boundary effects. Frequency dependent dielectric plot at different temperature shows normal variation with frequency while dielectric loss (tanδ) peak was found to obey an Arrhenius law with activation energy of 1.02 eV. The frequency-dependent AC conductivity data were also analyzed in a wide temperature range. In present work we have studied the role of grain and grain boundaries on the electrical behaviour of Zr-doped BaTiO3 and their dependence on temperature and frequency by complex impedance and modulus spectroscopy (CIS) technique in a wide frequency (40 Hz-1 MHz) and high temperature range.

Top