Sample records for constant node degree

  1. Network structures sustained by internal links and distributed lifetime of old nodes in stationary state of number of nodes

    NASA Astrophysics Data System (ADS)

    Ikeda, Nobutoshi

    2017-12-01

    In network models that take into account growth properties, deletion of old nodes has a serious impact on degree distributions, because old nodes tend to become hub nodes. In this study, we aim to provide a simple explanation for why hubs can exist even in conditions where the number of nodes is stationary due to the deletion of old nodes. We show that an exponential increase in the degree of nodes is a natural consequence of the balance between the deletion and addition of nodes as long as a preferential attachment mechanism holds. As a result, the largest degree is determined by the magnitude relationship between the time scale of the exponential growth of degrees and lifetime of old nodes. The degree distribution exhibits a power-law form ˜ k -γ with exponent γ = 1 when the lifetime of nodes is constant. However, various values of γ can be realized by introducing distributed lifetime of nodes.

  2. Scale-free behavior of networks with the copresence of preferential and uniform attachment rules

    NASA Astrophysics Data System (ADS)

    Pachon, Angelica; Sacerdote, Laura; Yang, Shuyi

    2018-05-01

    Complex networks in different areas exhibit degree distributions with a heavy upper tail. A preferential attachment mechanism in a growth process produces a graph with this feature. We herein investigate a variant of the simple preferential attachment model, whose modifications are interesting for two main reasons: to analyze more realistic models and to study the robustness of the scale-free behavior of the degree distribution. We introduce and study a model which takes into account two different attachment rules: a preferential attachment mechanism (with probability 1 - p) that stresses the rich get richer system, and a uniform choice (with probability p) for the most recent nodes, i.e. the nodes belonging to a window of size w to the left of the last born node. The latter highlights a trend to select one of the last added nodes when no information is available. The recent nodes can be either a given fixed number or a proportion (αn) of the total number of existing nodes. In the first case, we prove that this model exhibits an asymptotically power-law degree distribution. The same result is then illustrated through simulations in the second case. When the window of recent nodes has a constant size, we herein prove that the presence of the uniform rule delays the starting time from which the asymptotic regime starts to hold. The mean number of nodes of degree k and the asymptotic degree distribution are also determined analytically. Finally, a sensitivity analysis on the parameters of the model is performed.

  3. Coupling of link- and node-ordering in the coevolving voter model.

    PubMed

    Toruniewska, J; Kułakowski, K; Suchecki, K; Hołyst, J A

    2017-10-01

    We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state dynamics, where a node can copy a state from a random neighbor with probabilty 1-p and link dynamics, where a node can rewire its link to another node of the same state with probability p. That exhibits an absorbing transition to a frozen phase above a critical value of rewiring probability. Our analytical and numerical studies show that in the active phase mean values of magnetization of nodes n and links m tend to the same value that depends on initial conditions. In a similar way mean degrees of spins up and spins down become equal. The system obeys a special statistical conservation law since a linear combination of both types magnetizations averaged over many realizations starting from the same initial conditions is a constant of motion: Λ≡(1-p)μm(t)+pn(t)=const., where μ is the mean node degree. The final mean magnetization of nodes and links in the active phase is proportional to Λ while the final density of active links is a square function of Λ. If the rewiring probability is above a critical value and the system separates into disconnected domains, then the values of nodes and links magnetizations are not the same and final mean degrees of spins up and spins down can be different.

  4. A growth model for directed complex networks with power-law shape in the out-degree distribution

    PubMed Central

    Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.

    2015-01-01

    Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141

  5. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Liu, Jian-Guo; Bai, Wen-Jie; Chen, Guanrong; Wang, Bing-Hong

    2006-11-01

    In this paper, we propose a susceptible-infected model with identical infectivity, in which, at every time step, each node can only contact a constant number of neighbors. We implemented this model on scale-free networks, and found that the infected population grows in an exponential form with the time scale proportional to the spreading rate. Furthermore, by numerical simulation, we demonstrated that the targeted immunization of the present model is much less efficient than that of the standard susceptible-infected model. Finally, we investigate a fast spreading strategy when only local information is available. Different from the extensively studied path-finding strategy, the strategy preferring small-degree nodes is more efficient than that preferring large-degree nodes. Our results indicate the existence of an essential relationship between network traffic and network epidemic on scale-free networks.

  6. Hopping in the Crowd to Unveil Network Topology.

    PubMed

    Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2018-04-13

    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

  7. Hopping in the Crowd to Unveil Network Topology

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2018-04-01

    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

  8. Maximizing synchronizability of duplex networks

    NASA Astrophysics Data System (ADS)

    Wei, Xiang; Emenheiser, Jeffrey; Wu, Xiaoqun; Lu, Jun-an; D'Souza, Raissa M.

    2018-01-01

    We study the synchronizability of duplex networks formed by two randomly generated network layers with different patterns of interlayer node connections. According to the master stability function, we use the smallest nonzero eigenvalue and the eigenratio between the largest and the second smallest eigenvalues of supra-Laplacian matrices to characterize synchronizability on various duplexes. We find that the interlayer linking weight and linking fraction have a profound impact on synchronizability of duplex networks. The increasingly large inter-layer coupling weight is found to cause either decreasing or constant synchronizability for different classes of network dynamics. In addition, negative node degree correlation across interlayer links outperforms positive degree correlation when most interlayer links are present. The reverse is true when a few interlayer links are present. The numerical results and understanding based on these representative duplex networks are illustrative and instructive for building insights into maximizing synchronizability of more realistic multiplex networks.

  9. CONSIDERATIONS ON ANATOMY AND PHYSIOLOGY OF LYMPH VESSELS OF UPPER AERO DIGESTIVE ORGANS AND CERVICAL SATELLITE LYMPH NODE GROUP.

    PubMed

    Ciupilan, Corina; Stan, C I

    2016-01-01

    The almost constant local regional development of the cancers of upper aero digestive organs requires the same special attention to cervical lymph node metastases, as well as to the primary neoplastic burning point. The surgical therapy alone or associated has a mutilating, damaging character, resulting in loss of an organ and function, most of the times with social implications, involving physical distortions with aesthetic consequences, which make the reintegration of the individual into society questionable. The problem of cervical lymph node metastases is vast and complex, reason why we approached several anatomical and physiological aspects of lymph vessels of the aero digestive organs. Among the available elements during treatment, the headquarters of the tumour, its histologic degree, and its infiltrative nature, each of them significantly influences the possibility of developing metastases.

  10. Enhancement of large fluctuations to extinction in adaptive networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.

    2018-01-01

    During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.

  11. Exact sampling of graphs with prescribed degree correlations

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán

    2015-08-01

    Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.

  12. Protograph LDPC Codes with Node Degrees at Least 3

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher

    2006-01-01

    In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  13. Improved targeted immunization strategies based on two rounds of selection

    NASA Astrophysics Data System (ADS)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  14. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer.

    PubMed

    Pujol, P; Daures, J P; Nsakala, N; Baldet, L; Bringer, J; Jaffiol, C

    1996-12-01

    We investigate whether the prognosis of patients with differentiated thyroid cancer is improved by maintaining a greater level of TSH suppression. One hundred and forty-one patients who underwent hormone therapy after thyroidectomy were followed up from 1970 to 1993 (mean, 95 months). Patients received levothyroxine (L-T4; mean dose, 2.6 micrograms/kg-day). TSH suppression was evaluated by TRH stimulation test until 1986 and thereafter by a second generation immunoradiometric assay. As TSH underwent fluctuation over time in most patients, we focused on subgroups of patients with relatively constant TSH levels during the follow-up. The relapse-free survival (RFS) was longer in the group with constantly suppressed TSH (all TSH values, < or = 0.05 mU/L; n = 18) than in the group with nonsuppressed TSH (all TSH values, > or = 1 mU/L; n = 15; P < 0.01). Age, sex, tumor node metastasis stage, and initial therapy were not different between the suppressed and nonsuppressed TSH groups. In the overall population, we analyzed the level of TSH suppression by studying the percentage of undetectable TSH values (< or = 0.05 mU/L) during the follow-up. The patients with a greater degree of TSH suppression (> 90% of undetectable TSH values; n = 19) had a trend toward a longer RFS than the remaining population (n = 102; P = 0.14). The patients with a lesser degree of TSH suppression (< 10% of undetectable TSH values; n = 27) had a shorter RFS than the remaining patients (n = 94; P < 0.01). In multivariate analysis that included TSH suppression, age, sex, histology, and tumor node metastasis stage, the degree of TSH suppression predicted RFS independently of other factors (P = 0.02). This study shows that a lesser degree of TSH suppression is associated with an increased incidence of relapse, supporting the hypothesis that a high level of TSH suppression is required for the endocrine management of thyroid cancer.

  15. Smoluchowski Equation for Networks: Merger Induced Intermittent Giant Node Formation and Degree Gap

    NASA Astrophysics Data System (ADS)

    Goto, Hayato; Viegas, Eduardo; Jensen, Henrik Jeldtoft; Takayasu, Hideki; Takayasu, Misako

    2018-06-01

    The dynamical phase diagram of a network undergoing annihilation, creation, and coagulation of nodes is found to exhibit two regimes controlled by the combined effect of preferential attachment for initiator and target nodes during coagulation and for link assignment to new nodes. The first regime exhibits smooth dynamics and power law degree distributions. In the second regime, giant degree nodes and gaps in the degree distribution are formed intermittently. Data for the Japanese firm network in 1994 and 2014 suggests that this network is moving towards the intermittent switching region.

  16. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    PubMed

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  17. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    PubMed Central

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  18. A 4-node assumed-stress hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    An assumed-stress hybrid/mixed 4-node quadrilateral shell element is introduced that alleviates most of the deficiencies associated with such elements. The formulation of the element is based on the assumed-stress hybrid/mixed method using the Hellinger-Reissner variational principle. The membrane part of the element has 12 degrees of freedom including rotational or drilling degrees of freedom at the nodes. The bending part of the element also has 12 degrees of freedom. The bending part of the element uses the Reissner-Mindlin plate theory which takes into account the transverse shear contributions. The element formulation is derived from an 8-node isoparametric element. This process is accomplished by assuming quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields along the edges of the element. In addition, the degrees of freedom at midside nodes are approximated in terms of the degrees of freedom at corner nodes. During this process the rotational degrees of freedom at the corner nodes enter into the formulation of the element. The stress field are expressed in the element natural-coordinate system such that the element remains invariant with respect to node numbering.

  19. Improvement of the SEP protocol based on community structure of node degree

    NASA Astrophysics Data System (ADS)

    Li, Donglin; Wei, Suyuan

    2017-05-01

    Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.

  20. Growing optimal scale-free networks via likelihood

    NASA Astrophysics Data System (ADS)

    Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin

    2015-04-01

    Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.

  1. Nonlinear Dynamic Responses of Composite Rotor Blades

    DTIC Science & Technology

    1988-08-01

    models. QHD40 is an eight-noded plate element with seven degrees of freedom (three midsurface displacements, two rotations and two higher order terms for...in-plane displacements) per corner node and three degrees of freedom (transverse midsurface displacement and two rotations) per mid-state node. QHD48...and QHD48S are eight-noded plate and shell elements respectively, with six degrees of freedom (three midsurface displacements and three rotations

  2. Cartographic generalization of urban street networks based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei

    2014-05-01

    The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.

  3. Dense power-law networks and simplicial complexes

    NASA Astrophysics Data System (ADS)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  4. Value of peripheral nodes in controlling multilayer scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Garas, Antonios; Schweitzer, Frank

    2016-01-01

    We analyze the controllability of a two-layer network, where driver nodes can be chosen randomly only from one layer. Each layer contains a scale-free network with directed links and the node dynamics depends on the incoming links from other nodes. We combine the in-degree and out-degree values to assign an importance value w to each node, and distinguish between peripheral nodes with low w and central nodes with high w . Based on numerical simulations, we find that the controllable part of the network is larger when choosing low w nodes to connect the two layers. The control is as efficient when peripheral nodes are driver nodes as it is for the case of more central nodes. However, if we assume a cost to utilize nodes that is proportional to their overall degree, utilizing peripheral nodes to connect the two layers or to act as driver nodes is not only the most cost-efficient solution, it is also the one that performs best in controlling the two-layer network among the different interconnecting strategies we have tested.

  5. Node property of weighted networks considering connectability to nodes within two degrees of separation.

    PubMed

    Amano, Sun-Ichi; Ogawa, Ken-Ichiro; Miyake, Yoshihiro

    2018-05-31

    Weighted networks have been extensively studied because they can represent various phenomena in which the diversity of edges is essential. To investigate the properties of weighted networks, various centrality measures have been proposed, such as strength, weighted clustering coefficients, and weighted betweenness centrality. In such measures, only direct connections or entire network connectivity from arbitrary nodes have been used to calculate the connectivity of each node. However, in weighted networks composed of autonomous elements such as humans, middle ranges from each node are also considered to be meaningful for characterizing each node's connectability. In this study, we define a new node property in weighted networks to consider connectability to nodes within a range of two degrees of separation, then apply this new centrality to face-to-face human communication networks in corporate organizations. Our results show that the proposed centrality distinguishes inherent communities corresponding to the job types in each organization with a high degree of accuracy. This indicates the possibility that connectability to nodes within two degrees of separation reveals potential trends of weighted networks that are not apparent from conventional measures.

  6. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  7. The Spin-Orbit Resonant Rotation of Mercury: A Two Degree of Freedom Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    D'Hoedt, Sandrine; Lemaitre, Anne

    2004-04-01

    The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381 393].

  8. A New Measure of Centrality for Brain Networks

    PubMed Central

    Joyce, Karen E.; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru

    2010-01-01

    Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network. PMID:20808943

  9. Construction of Protograph LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  10. Predicting Node Degree Centrality with the Node Prominence Profile

    PubMed Central

    Yang, Yang; Dong, Yuxiao; Chawla, Nitesh V.

    2014-01-01

    Centrality of a node measures its relative importance within a network. There are a number of applications of centrality, including inferring the influence or success of an individual in a social network, and the resulting social network dynamics. While we can compute the centrality of any node in a given network snapshot, a number of applications are also interested in knowing the potential importance of an individual in the future. However, current centrality is not necessarily an effective predictor of future centrality. While there are different measures of centrality, we focus on degree centrality in this paper. We develop a method that reconciles preferential attachment and triadic closure to capture a node's prominence profile. We show that the proposed node prominence profile method is an effective predictor of degree centrality. Notably, our analysis reveals that individuals in the early stage of evolution display a distinctive and robust signature in degree centrality trend, adequately predicted by their prominence profile. We evaluate our work across four real-world social networks. Our findings have important implications for the applications that require prediction of a node's future degree centrality, as well as the study of social network dynamics. PMID:25429797

  11. GFT centrality: A new node importance measure for complex networks

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Chakraborty, Abhishek; Manoj, B. S.

    2017-12-01

    Identifying central nodes is very crucial to design efficient communication networks or to recognize key individuals of a social network. In this paper, we introduce Graph Fourier Transform Centrality (GFT-C), a metric that incorporates local as well as global characteristics of a node, to quantify the importance of a node in a complex network. GFT-C of a reference node in a network is estimated from the GFT coefficients derived from the importance signal of the reference node. Our study reveals the superiority of GFT-C over traditional centralities such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and Google PageRank centrality, in the context of various arbitrary and real-world networks with different degree-degree correlations.

  12. Understanding the influence of all nodes in a network

    PubMed Central

    Lawyer, Glenn

    2015-01-01

    Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the expected force, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large. PMID:25727453

  13. Weighted compactness function based label propagation algorithm for community detection

    NASA Astrophysics Data System (ADS)

    Zhang, Weitong; Zhang, Rui; Shang, Ronghua; Jiao, Licheng

    2018-02-01

    Community detection in complex networks, is to detect the community structure with the internal structure relatively compact and the external structure relatively sparse, according to the topological relationship among nodes in the network. In this paper, we propose a compactness function which combines the weight of nodes, and use it as the objective function to carry out the node label propagation. Firstly, according to the node degree, we find the sets of core nodes which have great influence on the network. The more the connections between the core nodes and the other nodes are, the larger the amount of the information these kernel nodes receive and transform. Then, according to the similarity of the nodes between the core nodes sets and the nodes degree, we assign weights to the nodes in the network. So the label of the nodes with great influence will be the priority in the label propagation process, which effectively improves the accuracy of the label propagation. The compactness function between nodes and communities in this paper is based on the nodes influence. It combines the connections between nodes and communities with the degree of the node belongs to its neighbor communities based on calculating the node weight. The function effectively uses the information of nodes and connections in the network. The experimental results show that the proposed algorithm can achieve good results in the artificial network and large-scale real networks compared with the 8 contrast algorithms.

  14. An assumed-stress hybrid 4-node shell element with drilling degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, M. A.

    1992-01-01

    An assumed-stress hybrid/mixed 4-node quadrilateral shell element is introduced that alleviates most of the deficiencies associated with such elements. The formulation of the element is based on the assumed-stress hybrid/mixed method using the Hellinger-Reissner variational principle. The membrane part of the element has 12 degrees of freedom including rotational or 'drilling' degrees of freedom at the nodes. The bending part of the element also has 12 degrees of freedom. The bending part of the element uses the Reissner-Mindlin plate theory which takes into account the transverse shear contributions. The element formulation is derived from an 8-node isoparametric element by expressing the midside displacement degrees of freedom in terms of displacement and rotational degrees of freedom at corner nodes. The element passes the patch test, is nearly insensitive to mesh distortion, does not 'lock', possesses the desirable invariance properties, has no hidden spurious modes, and for the majority of test cases used in this paper produces more accurate results than the other elements employed herein for comparison.

  15. Parameters affecting the resilience of scale-free networks to random failures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran

    2005-09-01

    It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degreemore » of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.« less

  16. Direct formulation of a 4-node hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    A simple 4-node assumed-stress hybrid quadrilateral shell element with rotational or drilling degrees of freedom is formulated. The element formulation is based directly on a 4-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 8-node isoparametric element in which the midside degrees of freedom are eliminated in favor of rotational degree of freedom at the corner nodes. The formulation is based on the principle of minimum complementary energy. The membrane part of the element has 12 degrees of freedom including rotational degrees of freedom. The bending part of the element also has 12 degrees of freedom. The bending part of the quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields are assumed along the edges of the element. The element Cartesian-coordinate system is chosen such as to make the stress field invariant with respect to node numbering. The membrane part of the stress field is based on a 9-parameter equilibrating stress field, while the bending part is based on a 13-parameter equilibrating stress field. The element passes the patch test, is nearly insensitive to mesh distortion, does not lock, possesses the desirable invariance properties, has no spurious modes, and produces accurate and reliable results.

  17. A Constant-Factor Approximation Algorithm for the Link Building Problem

    NASA Astrophysics Data System (ADS)

    Olsen, Martin; Viglas, Anastasios; Zvedeniouk, Ilia

    In this work we consider the problem of maximizing the PageRank of a given target node in a graph by adding k new links. We consider the case that the new links must point to the given target node (backlinks). Previous work [7] shows that this problem has no fully polynomial time approximation schemes unless P = NP. We present a polynomial time algorithm yielding a PageRank value within a constant factor from the optimal. We also consider the naive algorithm where we choose backlinks from nodes with high PageRank values compared to the outdegree and show that the naive algorithm performs much worse on certain graphs compared to the constant factor approximation scheme.

  18. Reverse preferential spread in complex networks

    NASA Astrophysics Data System (ADS)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  19. Infectious disease control using contact tracing in random and scale-free networks

    PubMed Central

    Kiss, Istvan Z; Green, Darren M; Kao, Rowland R

    2005-01-01

    Contact tracing aims to identify and isolate individuals that have been in contact with infectious individuals. The efficacy of contact tracing and the hierarchy of traced nodes—nodes with higher degree traced first—is investigated and compared on random and scale-free (SF) networks with the same number of nodes N and average connection K. For values of the transmission rate larger than a threshold, the final epidemic size on SF networks is smaller than that on corresponding random networks. While in random networks new infectious and traced nodes from all classes have similar average degrees, in SF networks the average degree of nodes that are in more advanced stages of the disease is higher at any given time. On SF networks tracing removes possible sources of infection with high average degree. However a higher tracing effort is required to control the epidemic than on corresponding random networks due to the high initial velocity of spread towards the highly connected nodes. An increased latency period fails to significantly improve contact tracing efficacy. Contact tracing has a limited effect if the removal rate of susceptible nodes is relatively high, due to the fast local depletion of susceptible nodes. PMID:16849217

  20. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.

    PubMed

    Sendiña-Nadal, I; Danziger, M M; Wang, Z; Havlin, S; Boccaletti, S

    2016-02-18

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  1. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.

    2016-02-01

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  2. Structural and functional properties of spatially embedded scale-free networks.

    PubMed

    Emmerich, Thorsten; Bunde, Armin; Havlin, Shlomo

    2014-06-01

    Scale-free networks have been studied mostly as non-spatially embedded systems. However, in many realistic cases, they are spatially embedded and these constraints should be considered. Here, we study the structural and functional properties of a model of scale-free (SF) spatially embedded networks. In our model, both the degree and the length of links follow power law distributions as found in many real networks. We show that not all SF networks can be embedded in space and that the largest degree of a node in the network is usually smaller than in nonembedded SF networks. Moreover, the spatial constraints (each node has only few neighboring nodes) introduce degree-degree anticorrelations (disassortativity) since two high degree nodes cannot stay close in space. We also find significant effects of space embedding on the hopping distances (chemical distance) and the vulnerability of the networks.

  3. Locating multiple diffusion sources in time varying networks from sparse observations.

    PubMed

    Hu, Zhao-Long; Shen, Zhesi; Cao, Shinan; Podobnik, Boris; Yang, Huijie; Wang, Wen-Xu; Lai, Ying-Cheng

    2018-02-08

    Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

  4. Revisiting node-based SIR models in complex networks with degree correlations

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde; Alofi, Abdulaziz; AL-Mazrooei, Abdullah; Elaiw, Ahmed

    2015-11-01

    In this paper, we consider two growing networks which will lead to the degree-degree correlations between two nearest neighbors in the network. When the network grows to some certain size, we introduce an SIR-like disease such as pandemic influenza H1N1/09 to the population. Due to its rapid spread, the population size changes slowly, and thus the disease spreads on correlated networks with approximately fixed size. To predict the disease evolution on correlated networks, we first review two node-based SIR models incorporating degree correlations and an edge-based SIR model without considering degree correlation, and then compare the predictions of these models with stochastic SIR simulations, respectively. We find that the edge-based model, even without considering degree correlations, agrees much better than the node-based models incorporating degree correlations with stochastic SIR simulations in many respects. Moreover, simulation results show that for networks with positive correlation, the edge-based model provides a better upper bound of the cumulative incidence than the node-based SIR models, whereas for networks with negative correlation, it provides a lower bound of the cumulative incidence.

  5. Elastic gauge fields and Hall viscosity of Dirac magnons

    NASA Astrophysics Data System (ADS)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  6. Empirical study on a directed and weighted bus transport network in China

    NASA Astrophysics Data System (ADS)

    Feng, Shumin; Hu, Baoyu; Nie, Cen; Shen, Xianghao

    2016-01-01

    Bus transport networks are directed complex networks that consist of routes, stations, and passenger flow. In this study, the concept of duplication factor is introduced to analyze the differences between uplinks and downlinks for the bus transport network of Harbin (BTN-H). Further, a new representation model for BTNs is proposed, named as directed-space P. Two empirical characteristics of BTN-H are reported in this paper. First, the cumulative distributions of weighted degree, degree, number of routes that connect to each station, and node weight (peak-hour trips at a station) uniformly follow the exponential law. Meanwhile, the node weight shows positive correlations with the corresponding weighted degree, degree, and number of routes that connect to a station. Second, a new richness parameter of a node is explored by its node weight and the connectivity, weighted connectivity, average shortest path length and efficiency between rich nodes can be fitted by composite exponential functions to demonstrate the rich-club phenomenon.

  7. Maximizing the Spread of Influence via Generalized Degree Discount.

    PubMed

    Wang, Xiaojie; Zhang, Xue; Zhao, Chengli; Yi, Dongyun

    2016-01-01

    It is a crucial and fundamental issue to identify a small subset of influential spreaders that can control the spreading process in networks. In previous studies, a degree-based heuristic called DegreeDiscount has been shown to effectively identify multiple influential spreaders and has severed as a benchmark method. However, the basic assumption of DegreeDiscount is not adequate, because it treats all the nodes equally without any differences. To consider a general situation in real world networks, a novel heuristic method named GeneralizedDegreeDiscount is proposed in this paper as an effective extension of original method. In our method, the status of a node is defined as a probability of not being influenced by any of its neighbors, and an index generalized discounted degree of one node is presented to measure the expected number of nodes it can influence. Then the spreaders are selected sequentially upon its generalized discounted degree in current network. Empirical experiments are conducted on four real networks, and the results show that the spreaders identified by our approach are more influential than several benchmark methods. Finally, we analyze the relationship between our method and three common degree-based methods.

  8. Maximizing the Spread of Influence via Generalized Degree Discount

    PubMed Central

    Wang, Xiaojie; Zhang, Xue; Zhao, Chengli; Yi, Dongyun

    2016-01-01

    It is a crucial and fundamental issue to identify a small subset of influential spreaders that can control the spreading process in networks. In previous studies, a degree-based heuristic called DegreeDiscount has been shown to effectively identify multiple influential spreaders and has severed as a benchmark method. However, the basic assumption of DegreeDiscount is not adequate, because it treats all the nodes equally without any differences. To consider a general situation in real world networks, a novel heuristic method named GeneralizedDegreeDiscount is proposed in this paper as an effective extension of original method. In our method, the status of a node is defined as a probability of not being influenced by any of its neighbors, and an index generalized discounted degree of one node is presented to measure the expected number of nodes it can influence. Then the spreaders are selected sequentially upon its generalized discounted degree in current network. Empirical experiments are conducted on four real networks, and the results show that the spreaders identified by our approach are more influential than several benchmark methods. Finally, we analyze the relationship between our method and three common degree-based methods. PMID:27732681

  9. Continuous time limits of the utterance selection model

    NASA Astrophysics Data System (ADS)

    Michaud, Jérôme

    2017-02-01

    In this paper we derive alternative continuous time limits of the utterance selection model (USM) for language change [G. J. Baxter et al., Phys. Rev. E 73, 046118 (2006), 10.1103/PhysRevE.73.046118]. This is motivated by the fact that the Fokker-Planck continuous time limit derived in the original version of the USM is only valid for a small range of parameters. We investigate the consequences of relaxing these constraints on parameters. Using the normal approximation of the multinomial approximation, we derive a continuous time limit of the USM in the form of a weak-noise stochastic differential equation. We argue that this weak noise, not captured by the Kramers-Moyal expansion, cannot be neglected. We then propose a coarse-graining procedure, which takes the form of a stochastic version of the heterogeneous mean field approximation. This approximation groups the behavior of nodes of the same degree, reducing the complexity of the problem. With the help of this approximation, we study in detail two simple families of networks: the regular networks and the star-shaped networks. The analysis reveals and quantifies a finite-size effect of the dynamics. If we increase the size of the network by keeping all the other parameters constant, we transition from a state where conventions emerge to a state where no convention emerges. Furthermore, we show that the degree of a node acts as a time scale. For heterogeneous networks such as star-shaped networks, the time scale difference can become very large, leading to a noisier behavior of highly connected nodes.

  10. Node degree distribution in spanning trees

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2016-03-01

    A method is presented for computing the number of spanning trees involving one link or a specified group of links, and excluding another link or a specified group of links, in a network described by a simple graph in terms of derivatives of the spanning-tree generating function defined with respect to the eigenvalues of the Kirchhoff (weighted Laplacian) matrix. The method is applied to deduce the node degree distribution in a complete or randomized set of spanning trees of an arbitrary network. An important feature of the proposed method is that the explicit construction of spanning trees is not required. It is shown that the node degree distribution in the spanning trees of the complete network is described by the binomial distribution. Numerical results are presented for the node degree distribution in square, triangular, and honeycomb lattices.

  11. Correlation between centrality metrics and their application to the opinion model

    NASA Astrophysics Data System (ADS)

    Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan

    2015-03-01

    In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.

  12. Analysis of complex network performance and heuristic node removal strategies

    NASA Astrophysics Data System (ADS)

    Jahanpour, Ehsan; Chen, Xin

    2013-12-01

    Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.

  13. Flight parameter estimation using instantaneous frequency and direction of arrival measurements from a single acoustic sensor node.

    PubMed

    Lo, Kam W

    2017-03-01

    When an airborne sound source travels past a stationary ground-based acoustic sensor node in a straight line at constant altitude and constant speed that is not much less than the speed of sound in air, the movement of the source during the propagation of the signal from the source to the sensor node (commonly referred to as the "retardation effect") enables the full set of flight parameters of the source to be estimated by measuring the direction of arrival (DOA) of the signal at the sensor node over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the sensor node to improve the precision of the flight parameter estimates when the source spectrum contains a harmonic line of constant frequency. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the flight parameters can be reduced when IF measurements are used together with DOA measurements. Two flight parameter estimation algorithms that utilize both IF and DOA measurements are described and their performances are evaluated using both simulated data and real data.

  14. Constrained target controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Guo, Wei-Feng; Zhang, Shao-Wu; Wei, Ze-Gang; Zeng, Tao; Liu, Fei; Zhang, Jingsong; Wu, Fang-Xiang; Chen, Luonan

    2017-06-01

    It is of great theoretical interest and practical significance to study how to control a system by applying perturbations to only a few driver nodes. Recently, a hot topic of modern network researches is how to determine driver nodes that allow the control of an entire network. However, in practice, to control a complex network, especially a biological network, one may know not only the set of nodes which need to be controlled (i.e. target nodes), but also the set of nodes to which only control signals can be applied (i.e. constrained control nodes). Compared to the general concept of controllability, we introduce the concept of constrained target controllability (CTC) of complex networks, which concerns the ability to drive any state of target nodes to their desirable state by applying control signals to the driver nodes from the set of constrained control nodes. To efficiently investigate the CTC of complex networks, we further design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more efficiently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can efficiently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.

  15. Rumor spreading in online social networks by considering the bipolar social reinforcement

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Li, Dandan; Tian, Zihao

    2016-04-01

    Considering the bipolar social reinforcement which includes positive and negative effects, in this paper we explore the rumor spreading dynamics in online social networks. By means of the generation function and cavity method developed from statistical physics of disordered system, the rumor spreading threshold can be theoretically drawn. Simulation results indicate that decreasing the positive reinforcement factor or increasing the negative reinforcement factor can suppress the rumor spreading effectively. By analyzing the topological properties of the real world social network, we find that the nodes with lower degree usually have smaller weight. However, the nodes with lower degree may have larger k-shell. In order to curb rumor spreading, some control strategies that are based on the nodes' degree, k-shell and weight are presented. By comparison, we show that controlling those nodes that have larger degree or weight are two effective strategies to prevent the rumor spreading.

  16. Effects of maximum node degree on computer virus spreading in scale-free networks

    NASA Astrophysics Data System (ADS)

    Bamaarouf, O.; Ould Baba, A.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.

    2017-10-01

    The increase of the use of the Internet networks favors the spread of viruses. In this paper, we studied the spread of viruses in the scale-free network with different topologies based on the Susceptible-Infected-External (SIE) model. It is found that the network structure influences the virus spreading. We have shown also that the nodes of high degree are more susceptible to infection than others. Furthermore, we have determined a critical maximum value of node degree (Kc), below which the network is more resistible and the computer virus cannot expand into the whole network. The influence of network size is also studied. We found that the network with low size is more effective to reduce the proportion of infected nodes.

  17. Analysis of interphase node proteins in fission yeast by quantitative and superresolution fluorescence microscopy

    PubMed Central

    Akamatsu, Matthew; Lin, Yu; Bewersdorf, Joerg; Pollard, Thomas D.

    2017-01-01

    We used quantitative confocal microscopy and FPALM superresolution microscopy of live fission yeast to investigate the structures and assembly of two types of interphase nodes—multiprotein complexes associated with the plasma membrane that merge together and mature into the precursors of the cytokinetic contractile ring. During the long G2 phase of the cell cycle, seven different interphase node proteins maintain constant concentrations as they accumulate in proportion to cell volume. During mitosis, the total numbers of type 1 node proteins (cell cycle kinases Cdr1p, Cdr2p, Wee1p, and anillin Mid1p) are constant even when the nodes disassemble. Quantitative measurements provide strong evidence that both types of nodes have defined sizes and numbers of constituent proteins, as observed for cytokinesis nodes. Type 1 nodes assemble in two phases—a burst at the end of mitosis, followed by steady increase during interphase to double the initial number. Type 2 nodes containing Blt1p, Rho-GEF Gef2p, and kinesin Klp8p remain intact throughout the cell cycle and are constituents of the contractile ring. They are released from the contractile ring as it disassembles and then associate with type 1 nodes around the equator of the cell during interphase. PMID:28539404

  18. Degree and wealth distribution in a network induced by wealth

    NASA Astrophysics Data System (ADS)

    Lee, Gyemin; Kim, Gwang Il

    2007-09-01

    A network induced by wealth is a social network model in which wealth induces individuals to participate as nodes, and every node in the network produces and accumulates wealth utilizing its links. More specifically, at every time step a new node is added to the network, and a link is created between one of the existing nodes and the new node. Innate wealth-producing ability is randomly assigned to every new node, and the node to be connected to the new node is chosen randomly, with odds proportional to the accumulated wealth of each existing node. Analyzing this network using the mean value and continuous flow approaches, we derive a relation between the conditional expectations of the degree and the accumulated wealth of each node. From this relation, we show that the degree distribution of the network induced by wealth is scale-free. We also show that the wealth distribution has a power-law tail and satisfies the 80/20 rule. We also show that, over the whole range, the cumulative wealth distribution exhibits the same topological characteristics as the wealth distributions of several networks based on the Bouchaud-Mèzard model, even though the mechanism for producing wealth is quite different in our model. Further, we show that the cumulative wealth distribution for the poor and middle class seems likely to follow by a log-normal distribution, while for the richest, the cumulative wealth distribution has a power-law behavior.

  19. Geometric evolution of complex networks with degree correlations

    NASA Astrophysics Data System (ADS)

    Murphy, Charles; Allard, Antoine; Laurence, Edward; St-Onge, Guillaume; Dubé, Louis J.

    2018-03-01

    We present a general class of geometric network growth mechanisms by homogeneous attachment in which the links created at a given time t are distributed homogeneously between a new node and the existing nodes selected uniformly. This is achieved by creating links between nodes uniformly distributed in a homogeneous metric space according to a Fermi-Dirac connection probability with inverse temperature β and general time-dependent chemical potential μ (t ) . The chemical potential limits the spatial extent of newly created links. Using a hidden variable framework, we obtain an analytical expression for the degree sequence and show that μ (t ) can be fixed to yield any given degree distributions, including a scale-free degree distribution. Additionally, we find that depending on the order in which nodes appear in the network—its history—the degree-degree correlations can be tuned to be assortative or disassortative. The effect of the geometry on the structure is investigated through the average clustering coefficient 〈c 〉 . In the thermodynamic limit, we identify a phase transition between a random regime where 〈c 〉→0 when β <βc and a geometric regime where 〈c 〉>0 when β >βc .

  20. Conformist-contrarian interactions and amplitude dependence in the Kuramoto model

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2014-11-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.

  1. Optimal cost for strengthening or destroying a given network

    NASA Astrophysics Data System (ADS)

    Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo

    2017-05-01

    Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c (k ) , which is the cost of strengthening or destroying a node with degree k . Using the degrees k in a network and the cost function c (k ) , we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their pc, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.

  2. Optimal cost for strengthening or destroying a given network.

    PubMed

    Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo

    2017-05-01

    Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c(k), which is the cost of strengthening or destroying a node with degree k. Using the degrees k in a network and the cost function c(k), we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their p_{c}, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.

  3. Robustness of networks formed from interdependent correlated networks under intentional attacks

    NASA Astrophysics Data System (ADS)

    Liu, Long; Meng, Ke; Dong, Zhaoyang

    2018-02-01

    We study the problem of intentional attacks targeting to interdependent networks generated with known degree distribution (in-degree oriented model) or distribution of interlinks (out-degree oriented model). In both models, each node's degree is correlated with the number of its links that connect to the other network. For both models, varying the correlation coefficient has a significant effect on the robustness of a system undergoing random attacks or attacks targeting nodes with low degree. For a system with an assortative relationship between in-degree and out-degree, reducing the broadness of networks' degree distributions can increase the resistance of systems against intentional attacks.

  4. Importance of small-degree nodes in assortative networks with degree-weight correlations

    NASA Astrophysics Data System (ADS)

    Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng

    2017-10-01

    It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

  5. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less

  6. Impact of degree heterogeneity on the behavior of trapping in Koch networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongzhi; Gao, Shuyang; Xie, Wenlei

    2010-12-01

    Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k )˜k-γ, which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent γ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of γ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where γ influences qualitatively the MFPT of trapping problem.

  7. Patterns of a spatial exploration under time evolution of the attractiveness: Persistent nodes, degree distribution, and spectral properties

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto

    2018-06-01

    This work explores the features of a graph generated by agents that hop from one node to another node, where the nodes have evolutionary attractiveness. The jumps are governed by Boltzmann-like transition probabilities that depend both on the euclidean distance between the nodes and on the ratio (β) of the attractiveness between them. It is shown that persistent nodes, i.e., nodes that never been reached by this special random walk are possible in the stationary limit differently from the case where the attractiveness is fixed and equal to one for all nodes (β = 1). Simultaneously, one also investigates the spectral properties and statistics related to the attractiveness and degree distribution of the evolutionary network. Finally, a study of the crossover between persistent phase and no persistent phase was performed and it was also observed the existence of a special type of transition probability which leads to a power law behaviour for the time evolution of the persistence.

  8. The Nature of the Nodes, Weights and Degree of Precision in Gaussian Quadrature Rules

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We present a comprehensive proof of the theorem that relates the weights and nodes of a Gaussian quadrature rule to its degree of precision. This level of detail is often absent in modern texts on numerical analysis. We show that the degree of precision is maximal, and that the approximation error in Gaussian quadrature is minimal, in a…

  9. Characterization of topological structure on complex networks.

    PubMed

    Nakamura, Ikuo

    2003-10-01

    Characterizing the topological structure of complex networks is a significant problem especially from the viewpoint of data mining on the World Wide Web. "Page rank" used in the commercial search engine Google is such a measure of authority to rank all the nodes matching a given query. We have investigated the page-rank distribution of the real Web and a growing network model, both of which have directed links and exhibit a power law distributions of in-degree (the number of incoming links to the node) and out-degree (the number of outgoing links from the node), respectively. We find a concentration of page rank on a small number of nodes and low page rank on high degree regimes in the real Web, which can be explained by topological properties of the network, e.g., network motifs, and connectivities of nearest neighbors.

  10. Cascade phenomenon against subsequent failures in complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng

    2018-06-01

    Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.

  11. Densification and structural transitions in networks that grow by node copying

    NASA Astrophysics Data System (ADS)

    Bhat, U.; Krapivsky, P. L.; Lambiotte, R.; Redner, S.

    2016-12-01

    We introduce a growing network model, the copying model, in which a new node attaches to a randomly selected target node and, in addition, independently to each of the neighbors of the target with copying probability p . When p <1/2 , this algorithm generates sparse networks, in which the average node degree is finite. A power-law degree distribution also arises, with a nonuniversal exponent whose value is determined by a transcendental equation in p . In the sparse regime, the network is "normal," e.g., the relative fluctuations in the number of links are asymptotically negligible. For p ≥1/2 , the emergent networks are dense (the average degree increases with the number of nodes N ), and they exhibit intriguing structural behaviors. In particular, the N dependence of the number of m cliques (complete subgraphs of m nodes) undergoes m -1 transitions from normal to progressively more anomalous behavior at an m -dependent critical values of p . Different realizations of the network, which start from the same initial state, exhibit macroscopic fluctuations in the thermodynamic limit: absence of self-averaging. When linking to second neighbors of the target node can occur, the number of links asymptotically grows as N2 as N →∞ , so that the network is effectively complete as N →∞ .

  12. Percolation of spatially constrained Erdős-Rényi networks with degree correlations.

    PubMed

    Schmeltzer, C; Soriano, J; Sokolov, I M; Rüdiger, S

    2014-01-01

    Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.

  13. IT product competition Network

    NASA Astrophysics Data System (ADS)

    Xu, Xiu-Lian; Zhou, Lei; Shi, Jian-Jun; Wang, Yong-Li; Feng, Ai-Xia; He, Da-Ren

    2008-03-01

    Along with the technical development, the IT product competition becomes increasingly fierce in recent years. The factories, which produce the same IT product, have to improve continuously their own product quality for taking a large piece of cake in the product sale market. We suggest using a complex network description for the IT product competition. In the network the factories are defined as nodes, and two nodes are connected by a link if they produce a common IT product. The edge represents the sale competition relationship. 2121 factories and 265 products have been investigated. Some statistical properties, such as the degree distribution, node strength distribution, assortativity, and node degree correlation have been empirically obtained.

  14. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    PubMed Central

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network. PMID:27754405

  15. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.

    PubMed

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-10-14

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  16. A spread willingness computing-based information dissemination model.

    PubMed

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  17. A Spread Willingness Computing-Based Information Dissemination Model

    PubMed Central

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  18. Degree Distribution of Position-Dependent Ball-Passing Networks in Football Games

    NASA Astrophysics Data System (ADS)

    Narizuka, Takuma; Yamamoto, Ken; Yamazaki, Yoshihiro

    2015-08-01

    We propose a simple stochastic model describing the position-dependent ball-passing network in football (soccer) games. In this network, a player in a certain area in a divided field is a node, and a pass between two nodes corresponds to an edge. Our stochastic process model is characterized by the consecutive choice of a node depending on its intrinsic fitness. We derive an explicit expression for the degree distribution and find that the derived distribution reproduces that for actual data reasonably well.

  19. Characterizing the topology of probabilistic biological networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.

  20. A Stirling engine analysis method based upon moving gas nodes

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1986-01-01

    A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.

  1. A Markovian model of evolving world input-output network

    PubMed Central

    Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money. PMID:29065145

  2. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng

    2011-01-01

    In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.

  3. Structure, Function, and Propagation of Information across Living Two, Four, and Eight Node Degree Topologies.

    PubMed

    Alagapan, Sankaraleengam; Franca, Eric; Pan, Liangbin; Leondopulos, Stathis; Wheeler, Bruce C; DeMarse, Thomas B

    2016-01-01

    In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.

  4. Extreme events and event size fluctuations in biased random walks on networks.

    PubMed

    Kishore, Vimal; Santhanam, M S; Amritkar, R E

    2012-05-01

    Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.

  5. The degree-related clustering coefficient and its application to link prediction

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Zhao, Chengli; Wang, Xiaojie; Huang, Qiangjuan; Zhang, Xue; Yi, Dongyun

    2016-07-01

    Link prediction plays a significant role in explaining the evolution of networks. However it is still a challenging problem that has been addressed only with topological information in recent years. Based on the belief that network nodes with a great number of common neighbors are more likely to be connected, many similarity indices have achieved considerable accuracy and efficiency. Motivated by the natural assumption that the effect of missing links on the estimation of a node's clustering ability could be related to node degree, in this paper, we propose a degree-related clustering coefficient index to quantify the clustering ability of nodes. Unlike the classical clustering coefficient, our new coefficient is highly robust when the observed bias of links is considered. Furthermore, we propose a degree-related clustering ability path (DCP) index, which applies the proposed coefficient to the link prediction problem. Experiments on 12 real-world networks show that our proposed method is highly accurate and robust compared with four common-neighbor-based similarity indices (Common Neighbors(CN), Adamic-Adar(AA), Resource Allocation(RA), and Preferential Attachment(PA)), and the recently introduced clustering ability (CA) index.

  6. Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method

    NASA Astrophysics Data System (ADS)

    Al-garadi, Mohammed Ali; Varathan, Kasturi Dewi; Ravana, Sri Devi

    2017-02-01

    Online social networks (OSNs) have become a vital part of everyday living. OSNs provide researchers and scientists with unique prospects to comprehend individuals on a scale and to analyze human behavioral patterns. Influential spreaders identification is an important subject in understanding the dynamics of information diffusion in OSNs. Targeting these influential spreaders is significant in planning the techniques for accelerating the propagation of information that is useful for various applications, such as viral marketing applications or blocking the diffusion of annoying information (spreading of viruses, rumors, online negative behaviors, and cyberbullying). Existing K-core decomposition methods consider links equally when calculating the influential spreaders for unweighted networks. Alternatively, the proposed link weights are based only on the degree of nodes. Thus, if a node is linked to high-degree nodes, then this node will receive high weight and is treated as an important node. Conversely, the degree of nodes in OSN context does not always provide accurate influence of users. In the present study, we improve the K-core method for OSNs by proposing a novel link-weighting method based on the interaction among users. The proposed method is based on the observation that the interaction of users is a significant factor in quantifying the spreading capability of user in OSNs. The tracking of diffusion links in the real spreading dynamics of information verifies the effectiveness of our proposed method for identifying influential spreaders in OSNs as compared with degree centrality, PageRank, and original K-core.

  7. Complex network structure of musical compositions: Algorithmic generation of appealing music

    NASA Astrophysics Data System (ADS)

    Liu, Xiao Fan; Tse, Chi K.; Small, Michael

    2010-01-01

    In this paper we construct networks for music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurring connections. We analyze classical music from Bach, Mozart, Chopin, as well as other types of music such as Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. We conjecture that preserving the universal network properties is a necessary step in artificial composition of music. Power-law exponents of node degree, node strength and/or edge weight distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be composed artificially using a controlled random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. By generating a large number of compositions, we find that this algorithm generates music which has the necessary qualities to be subjectively judged as appealing.

  8. Database Design for Structural Analysis and Design Optimization.

    DTIC Science & Technology

    1984-10-01

    2) . Element number of nodes IELT NPAR(2) " Stress printing flag IPST NPAR(2) Element material angle BETA NPAR(2) Element thickness THICK NPAR(2...number LM 3*NPAR(17)*NPAR(2) Element nodal coordinates XYZ 3*NPAR(17)*NPAR(2) Element number of nodes IELT NPAR(2) Element geometry number of nodes IELTX...D.O.F. number LM 6*NPAR(7)*NPAR(2) Element number of nodes IELT NPAR(2) Material property set number MATP NPAR(2) Material constants PROP NPAR(17

  9. Empirical investigation of topological and weighted properties of a bus transport network from China

    NASA Astrophysics Data System (ADS)

    Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci

    2016-03-01

    Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).

  10. Corner-corrected diagonal-norm summation-by-parts operators for the first derivative with increased order of accuracy

    NASA Astrophysics Data System (ADS)

    Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.

    2017-02-01

    Combined with simultaneous approximation terms, summation-by-parts (SBP) operators offer a versatile and efficient methodology that leads to consistent, conservative, and provably stable discretizations. However, diagonal-norm operators with a repeating interior-point operator that have thus far been constructed suffer from a loss of accuracy. While on the interior, these operators are of degree 2p, at a number of nodes near the boundaries, they are of degree p, and therefore of global degree p - meaning the highest degree monomial for which the operators are exact at all nodes. This implies that for hyperbolic problems and operators of degree greater than unity they lead to solutions with a global order of accuracy lower than the degree of the interior-point operator. In this paper, we develop a procedure to construct diagonal-norm first-derivative SBP operators that are of degree 2p at all nodes and therefore can lead to solutions of hyperbolic problems of order 2 p + 1. This is accomplished by adding nonzero entries in the upper-right and lower-left corners of SBP operator matrices with a repeating interior-point operator. This modification necessitates treating these new operators as elements, where mesh refinement is accomplished by increasing the number of elements in the mesh rather than increasing the number of nodes. The significant improvements in accuracy of this new family, for the same repeating interior-point operator, are demonstrated in the context of the linear convection equation.

  11. Visibility graphs and symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Just, Wolfram

    2018-07-01

    Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.

  12. A method to model latent heat for transient analysis using NASTRAN

    NASA Technical Reports Server (NTRS)

    Harder, R. L.

    1982-01-01

    A sample heat transfer analysis is demonstrated which includes the heat of fusion. The method can be used to analyze a system with nonconstant specific heat. The enthalpy is introduced as an independent degree of freedom at each node. The user input consists of a curve of temperature as a function of enthalpy, which may include a constant temperature phase change. The basic NASTRAN heat transfer capability is used to model the effects of latent heat with existing direct matrix output and nonlinear load data cards. Although some user care is required, the numerical stability of the integration is quite good when the given recommendations are followed. The theoretical equations used and the NASTRAN techniques are shown.

  13. A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.

    PubMed

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-03-07

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  14. LPA-CBD an improved label propagation algorithm based on community belonging degree for community detection

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing

    In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.

  15. Effects of multiple spreaders in community networks

    NASA Astrophysics Data System (ADS)

    Hu, Zhao-Long; Ren, Zhuo-Ming; Yang, Guang-Yong; Liu, Jian-Guo

    2014-12-01

    Human contact networks exhibit the community structure. Understanding how such community structure affects the epidemic spreading could provide insights for preventing the spreading of epidemics between communities. In this paper, we explore the spreading of multiple spreaders in community networks. A network based on the clustering preferential mechanism is evolved, whose communities are detected by the Girvan-Newman (GN) algorithm. We investigate the spreading effectiveness by selecting the nodes as spreaders in the following ways: nodes with the largest degree in each community (community hubs), the same number of nodes with the largest degree from the global network (global large-degree) and randomly selected one node within each community (community random). The experimental results on the SIR model show that the spreading effectiveness based on the global large-degree and community hubs methods is the same in the early stage of the infection and the method of community random is the worst. However, when the infection rate exceeds the critical value, the global large-degree method embodies the worst spreading effectiveness. Furthermore, the discrepancy of effectiveness for the three methods will decrease as the infection rate increases. Therefore, we should immunize the hubs in each community rather than those hubs in the global network to prevent the outbreak of epidemics.

  16. Prioritized Degree Distribution in Wireless Sensor Networks with a Network Coded Data Collection Method

    PubMed Central

    Wan, Jan; Xiong, Naixue; Zhang, Wei; Zhang, Qinchao; Wan, Zheng

    2012-01-01

    The reliability of wireless sensor networks (WSNs) can be greatly affected by failures of sensor nodes due to energy exhaustion or the influence of brutal external environment conditions. Such failures seriously affect the data persistence and collection efficiency. Strategies based on network coding technology for WSNs such as LTCDS can improve the data persistence without mass redundancy. However, due to the bad intermediate performance of LTCDS, a serious ‘cliff effect’ may appear during the decoding period, and source data are hard to recover from sink nodes before sufficient encoded packets are collected. In this paper, the influence of coding degree distribution strategy on the ‘cliff effect’ is observed and the prioritized data storage and dissemination algorithm PLTD-ALPHA is presented to achieve better data persistence and recovering performance. With PLTD-ALPHA, the data in sensor network nodes present a trend that their degree distribution increases along with the degree level predefined, and the persistent data packets can be submitted to the sink node according to its degree in order. Finally, the performance of PLTD-ALPHA is evaluated and experiment results show that PLTD-ALPHA can greatly improve the data collection performance and decoding efficiency, while data persistence is not notably affected. PMID:23235451

  17. Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.

    PubMed

    Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai

    2008-03-15

    A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  18. Identifying Node Role in Social Network Based on Multiple Indicators

    PubMed Central

    Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao

    2014-01-01

    It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role. PMID:25089823

  19. Dynamic Contrast-enhanced Magnetic Resonance Imaging for Differentiating Between Primary Tumor, Metastatic Node and Normal Tissue in Head and Neck Cancer.

    PubMed

    Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng

    2018-06-01

    To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.

  20. Effect of node attributes on the temporal dynamics of network structure

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2017-03-01

    Many natural and social networks evolve in time and their structures are dynamic. In most networks, nodes are heterogeneous, and their roles in the evolution of structure differ. This paper focuses on the role of individual attributes on the temporal dynamics of network structure. We focus on a basic model for growing networks that incorporates node attributes (which we call "quality"), and we focus on the problem of forecasting the structural properties of the network in arbitrary times for an arbitrary initial network. That is, we address the following question: If we are given a certain initial network with given arbitrary structure and known node attributes, then how does the structure change in time as new nodes with given distribution of attributes join the network? We solve the model analytically and obtain the quality-degree joint distribution and degree correlations. We characterize the role of individual attributes in the position of individual nodes in the hierarchy of connections. We confirm the theoretical findings with Monte Carlo simulations.

  1. Analysis of laminated plates under thermal environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyenger, N.G.R.; Shankara, C.A.

    1995-12-31

    Use of composites in advanced aircrafts and spacecraft structures calls for a thorough understanding of their behaviour under various types of loads. In the present paper, an attempt has been made to study the effect of thermal loads on the flexural response of composite laminated plates. Most of the studies in this area are either based on Classical Lamination Theory or First Order Shear Deformation Theory. In the present investigation, analysis has been carried out using a Higher Order Shear Deformation Theory, that allows for a parabolic variation of transverse shear stress through the thickness. The displacement model presented bymore » Reddy has been transformed so that only C{degrees} continuous element is required. This, however, increases the Degree of freedom per node from 5 to 7. Nine-noded isoparametric Legrangian elements are used for computing the results. The results were found to be very stable and comparable with those of exact elasticity solutions. The temperature is assumed to remain constant or vary linearly through the thickness. However, it varies sinusoidally in the plane of the plate. Effect of various parameters like material, fiber orientation, number of layers and boundary conditions on the response of the laminate has been investigated. The present study indicates that the flexural behaviour of laminates under thermal loads is very much different from that when subjected only to mechanical loads. Further, the variation of plate deflection with increase in temperature is not linear.« less

  2. Percolation on bipartite scale-free networks

    NASA Astrophysics Data System (ADS)

    Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.

    2010-08-01

    Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.

  3. Fighting for resources: Two leaders in the money addicted social hierarchies

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej

    Building of hierarchy is inevitably associated with the constant competition for resources and attention. Here, we show how presence of two favored (leading) nodes affects properties of the network connecting individuals. In particular, we study how nodes characteristics depend on relative asymmetry between two leading nodes. It is shown that without strong and rigorous avoidance mechanism, individuals can support both dominating nodes. Slow redistribution of resources enhances this effect. Moreover, slow redistribution of resources results in development of social networks with a very limited number of layers.

  4. A Comparison of Two Tree Construction Methods for Obtaining Proximity Measures among Words. Number 47.

    ERIC Educational Resources Information Center

    Rapoport, Amnon

    The prediction that two different methods of constructing linear, tree graphs will yield the same formal structure of semantic space and measurement of word proximity was tested by comparing the distribution of node degree, the distribution of the number of pairs of nodes connected y times, and the distribution of adjective degree in trees…

  5. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  6. Epidemic dynamics on a risk-based evolving social network

    NASA Astrophysics Data System (ADS)

    Antwi, Shadrack; Shaw, Leah

    2013-03-01

    Social network models have been used to study how behavior affects the dynamics of an infection in a population. Motivated by HIV, we consider how a trade-off between benefits and risks of sexual connections determine network structure and disease prevalence. We define a stochastic network model with formation and breaking of links as changes in sexual contacts. Each node has an intrinsic benefit its neighbors derive from connecting to it. Nodes' infection status is not apparent to others, but nodes with more connections (higher degree) are assumed more likely to be infected. The probability to form and break links is determined by a payoff computed from the benefit and degree-dependent risk. The disease is represented by a SI (susceptible-infected) model. We study network and epidemic evolution via Monte Carlo simulation and analytically predict the behavior with a heterogeneous mean field approach. The dependence of network connectivity and infection threshold on parameters is determined, and steady state degree distribution and epidemic levels are obtained. We also study a situation where system-wide infection levels alter perception of risk and cause nodes to adjust their behavior. This is a case of an adaptive network, where node status feeds back to change network geometry.

  7. Identification of influential nodes in complex networks: Method from spreading probability viewpoint

    NASA Astrophysics Data System (ADS)

    Bao, Zhong-Kui; Ma, Chuang; Xiang, Bing-Bing; Zhang, Hai-Feng

    2017-02-01

    The problem of identifying influential nodes in complex networks has attracted much attention owing to its wide applications, including how to maximize the information diffusion, boost product promotion in a viral marketing campaign, prevent a large scale epidemic and so on. From spreading viewpoint, the probability of one node propagating its information to one other node is closely related to the shortest distance between them, the number of shortest paths and the transmission rate. However, it is difficult to obtain the values of transmission rates for different cases, to overcome such a difficulty, we use the reciprocal of average degree to approximate the transmission rate. Then a semi-local centrality index is proposed to incorporate the shortest distance, the number of shortest paths and the reciprocal of average degree simultaneously. By implementing simulations in real networks as well as synthetic networks, we verify that our proposed centrality can outperform well-known centralities, such as degree centrality, betweenness centrality, closeness centrality, k-shell centrality, and nonbacktracking centrality. In particular, our findings indicate that the performance of our method is the most significant when the transmission rate nears to the epidemic threshold, which is the most meaningful region for the identification of influential nodes.

  8. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  9. Color Filtering Localization for Three-Dimensional Underwater Acoustic Sensor Networks

    PubMed Central

    Liu, Zhihua; Gao, Han; Wang, Wuling; Chang, Shuai; Chen, Jiaxing

    2015-01-01

    Accurate localization of mobile nodes has been an important and fundamental problem in underwater acoustic sensor networks (UASNs). The detection information returned from a mobile node is meaningful only if its location is known. In this paper, we propose two localization algorithms based on color filtering technology called PCFL and ACFL. PCFL and ACFL aim at collaboratively accomplishing accurate localization of underwater mobile nodes with minimum energy expenditure. They both adopt the overlapping signal region of task anchors which can communicate with the mobile node directly as the current sampling area. PCFL employs the projected distances between each of the task projections and the mobile node, while ACFL adopts the direct distance between each of the task anchors and the mobile node. The proportion factor of distance is also proposed to weight the RGB values. By comparing the nearness degrees of the RGB sequences between the samples and the mobile node, samples can be filtered out. The normalized nearness degrees are considered as the weighted standards to calculate the coordinates of the mobile nodes. The simulation results show that the proposed methods have excellent localization performance and can localize the mobile node in a timely way. The average localization error of PCFL is decreased by about 30.4% compared to the AFLA method. PMID:25774706

  10. A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks

    PubMed Central

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-01-01

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008

  11. Constraints and entropy in a model of network evolution

    NASA Astrophysics Data System (ADS)

    Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.

    2017-11-01

    Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.

  12. Measuring and modeling correlations in multiplex networks.

    PubMed

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  13. Robustness of networks with assortative dependence groups

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Ming; Deng, Lin; Wang, Bing-Hong

    2018-07-01

    Assortativity is one of the important characteristics in real networks. To study the effects of this characteristic on the robustness of networks, we propose a percolation model on networks with assortative dependence group. The assortativity in this model means that the nodes with the same or similar degrees form dependence groups, for which one node fails, other nodes in the same group are very likely to fail. We find that the assortativity makes the nodes with large degrees easier to survive from the cascading failure. In this way, such networks are more robust than that with random dependence group, which also proves the assortative network is robust in another perspective. Furthermore, we also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulation results well.

  14. Communication Dynamics in Finite Capacity Social Networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim

    2012-10-01

    In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.

  15. Characterizing Topology of Probabilistic Biological Networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-09-06

    Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.

  16. Evolving network with different edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Jie; Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699; Ge Yizhi

    2007-10-15

    We propose a scale-free network similar to Barabasi-Albert networks but with two different types of edges. This model is based on the idea that in many cases there are more than one kind of link in a network and when a new node enters the network both old nodes and different kinds of links compete to obtain it. The degree distribution of both the total degree and the degree of each type of edge is analyzed and found to be scale-free. Simulations are shown to confirm these results.

  17. Features and heterogeneities in growing network models

    NASA Astrophysics Data System (ADS)

    Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2012-06-01

    Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

  18. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient

    NASA Astrophysics Data System (ADS)

    Li, Mengtian; Zhang, Ruisheng; Hu, Rongjing; Yang, Fan; Yao, Yabing; Yuan, Yongna

    2018-03-01

    Identifying influential spreaders is a crucial problem that can help authorities to control the spreading process in complex networks. Based on the classical degree centrality (DC), several improved measures have been presented. However, these measures cannot rank spreaders accurately. In this paper, we first calculate the sum of the degrees of the nearest neighbors of a given node, and based on the calculated sum, a novel centrality named clustered local-degree (CLD) is proposed, which combines the sum and the clustering coefficients of nodes to rank spreaders. By assuming that the spreading process in networks follows the susceptible-infectious-recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performances between the CLD centrality and other six measures. The results show that the CLD centrality has a competitive performance in distinguishing the spreading ability of nodes, and exposes the best performance to identify influential spreaders accurately.

  19. Spatial search on a two-dimensional lattice with long-range interactions

    NASA Astrophysics Data System (ADS)

    Osada, Tomo; Sanaka, Kaoru; Munro, William J.; Nemoto, Kae

    2018-06-01

    Quantum-walk-based algorithms that search a marked location among N locations on a d -dimensional lattice succeeds in time O (√{N }) for d >2 , while this is not found to be possible when d =2 . In this paper, we consider a spatial search algorithm using continuous-time quantum walk on a two-dimensional square lattice with the existence of additional long-range edges. We examined such a search on a probabilistic graph model where an edge connecting non-nearest-neighbor lattice points i and j apart by a distance |i -j | is added by probability pi j=|i-j | -α(α ≥0 ) . Through numerical analysis, we found that the search succeeds in time O (√{N }) when α ≤αc=2.4 ±0.1 . For α >2 , the expectation value of the additional long-range edges on each node scales as a constant when N →∞ , which means that search time of O (√{N }) is achieved on a graph with average degree scaling as a constant.

  20. Composing Music with Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  1. Exploring anti-community structure in networks with application to incompatibility of traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajing; Liu, Yongguo; Zhang, Yun; Liu, Xiaofeng; Xiao, Yonghua; Wang, Shidong; Wu, Xindong

    2017-11-01

    Community structure is one of the most important properties in networks, in which a node shares its most connections with the others in the same community. On the contrary, the anti-community structure means the nodes in the same group have few or no connections with each other. In Traditional Chinese Medicine (TCM), the incompatibility problem of herbs is a challenge to the clinical medication safety. In this paper, we propose a new anti-community detection algorithm, Random non-nEighboring nOde expansioN (REON), to find anti-communities in networks, in which a new evaluation criterion, anti-modularity, is designed to measure the quality of the obtained anti-community structure. In order to establish anti-communities in REON, we expand the node set by non-neighboring node expansion and regard the node set with the highest anti-modularity as an anti-community. Inspired by the phenomenon that the node with higher degree has greater contribution to the anti-modularity, an improved algorithm called REONI is developed by expanding node set by the non-neighboring node with the maximum degree, which greatly enhances the efficiency of REON. Experiments on synthetic and real-world networks demonstrate the superiority of the proposed algorithms over the existing methods. In addition, by applying REONI to the herb network, we find that it can discover incompatible herb combinations.

  2. Optimal allocation of resources for suppressing epidemic spreading on networks

    NASA Astrophysics Data System (ADS)

    Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai

    2017-07-01

    Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 / , where is the average degree of the underlying network. For a weak infection region (λ ≳λcopt ), we combine perturbation theory with the Lagrange multiplier method (LMM) to derive the analytical expression of optimal allocation of the curing rates and the corresponding minimized prevalence. For a general infection region (λ >λcopt ), the high-dimensional optimization problem is converted into numerically solving low-dimensional nonlinear equations by the HMF theory and LMM. Counterintuitively, in the strong infection region the low-degree nodes should be allocated more medical resources than the high-degree nodes to minimize prevalence. Finally, we use simulated annealing to validate the theoretical results.

  3. Temporal effects in trend prediction: identifying the most popular nodes in the future.

    PubMed

    Zhou, Yanbo; Zeng, An; Wang, Wei-Hong

    2015-01-01

    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail.

  4. Distinguishing manipulated stocks via trading network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qian; Cheng, Xue-Qi; Shen, Hua-Wei; Wang, Zhao-Yang

    2011-10-01

    Manipulation is an important issue for both developed and emerging stock markets. For the study of manipulation, it is critical to analyze investor behavior in the stock market. In this paper, an analysis of the full transaction records of over a hundred stocks in a one-year period is conducted. For each stock, a trading network is constructed to characterize the relations among its investors. In trading networks, nodes represent investors and a directed link connects a stock seller to a buyer with the total trade size as the weight of the link, and the node strength is the sum of all edge weights of a node. For all these trading networks, we find that the node degree and node strength both have tails following a power-law distribution. Compared with non-manipulated stocks, manipulated stocks have a high lower bound of the power-law tail, a high average degree of the trading network and a low correlation between the price return and the seller-buyer ratio. These findings may help us to detect manipulated stocks.

  5. Topology Property and Dynamic Behavior of a Growing Spatial Network

    NASA Astrophysics Data System (ADS)

    Cao, Xian-Bin; Du, Wen-Bo; Hu, Mao-Bin; Rong, Zhi-Hai; Sun, Peng; Chen, Cai-Long

    In this paper, we propose a growing spatial network (GSN) model and investigate its topology properties and dynamical behaviors. The model is generated by adding one node i with m links into a square lattice at each time step and the new node i is connected to the existing nodes with probabilities proportional to: ({kj})α /dij2, where kj is the degree of node j, α is the tunable parameter and dij is the Euclidean distance between i and j. It is found that both the degree heterogeneity and the clustering coefficient monotonously increase with the increment of α, while the average shortest path length monotonously decreases. Moreover, the evolutionary game dynamics and network traffic dynamics are investigated. Simulation results show that the value of α can also greatly influence the dynamic behaviors.

  6. Scaling Limits and Generic Bounds for Exploration Processes

    NASA Astrophysics Data System (ADS)

    Bermolen, Paola; Jonckheere, Matthieu; Sanders, Jaron

    2017-12-01

    We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.

  7. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  8. Constant Price of Anarchy in Network Creation Games via Public Service Advertising

    NASA Astrophysics Data System (ADS)

    Demaine, Erik D.; Zadimoghaddam, Morteza

    Network creation games have been studied in many different settings recently. These games are motivated by social networks in which selfish agents want to construct a connection graph among themselves. Each node wants to minimize its average or maximum distance to the others, without paying much to construct the network. Many generalizations have been considered, including non-uniform interests between nodes, general graphs of allowable edges, bounded budget agents, etc. In all of these settings, there is no known constant bound on the price of anarchy. In fact, in many cases, the price of anarchy can be very large, namely, a constant power of the number of agents. This means that we have no control on the behavior of network when agents act selfishly. On the other hand, the price of stability in all these models is constant, which means that there is chance that agents act selfishly and we end up with a reasonable social cost.

  9. Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures.

    PubMed

    Fernández, A S; Larsen, M; Wolstrup, J; Grønvold, J; Nansen, P; Bjørn, H

    1999-08-01

    The effect of temperature on radial growth and predatory activity of different isolates of nematode-trapping fungi was assessed. Four isolates of Duddingtonia flagrans and one isolate of Arthrobotrys oligospora were inoculated on petri dishes containing either cornmeal agar (CMA) or faecal agar and then incubated for 14 days under three different constant and fluctuating temperature regimes. The radial growth was similar on the two substrates at each temperature regime. All fungal isolates showed a higher growth rate at a constant 20 degrees C. At 10 degrees and 15 degrees C, all D. flagrans isolates showed very similar patterns of radial growth at both constant and fluctuating temperatures. At 20 degrees C, they grew significantly faster at constant than at fluctuating temperatures. A. oligospora grew significantly faster than all D. flagrans isolates except when incubated at a fluctuating 20 degrees C. Spores of each fungal isolate were added to faecal cultures containing eggs of Cooperia oncophora at a concentration of 6250 spores/g faeces. The cultures were incubated for 14 days at the same temperature regimes described above. Control faeces (without fungal material) were also cultured. More larvae were recovered from the fungus-treated cultures incubated at a constant 10 degrees or 15 degrees C than from those incubated at the respective fluctuating temperatures, except for one D. flagrans isolate. Incubation at 20 degrees C showed the opposite effect. The general reduction observed in the number of nematode larvae due to fungal trapping was 18-25% and 48-80% for a constant and fluctuating 10 degrees C, 70-96% and 93-95% for a constant and fluctuating 15 degrees C, and 63-98% and 0-25% for a constant and fluctuating 20 degrees C, respectively.

  10. Dynamics of epidemic diseases on a growing adaptive network

    PubMed Central

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-01-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146

  11. Dynamics of epidemic diseases on a growing adaptive network.

    PubMed

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-10

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  12. Dynamics of epidemic diseases on a growing adaptive network

    NASA Astrophysics Data System (ADS)

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  13. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  14. Control range: a controllability-based index for node significance in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-04-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.

  15. Stability and Topology of Scale-Free Networks under Attack and Defense Strategies

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Cohen, Reuven; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo

    2005-05-01

    We study tolerance and topology of random scale-free networks under attack and defense strategies that depend on the degree k of the nodes. This situation occurs, for example, when the robustness of a node depends on its degree or in an intentional attack with insufficient knowledge of the network. We determine, for all strategies, the critical fraction pc of nodes that must be removed for disintegrating the network. We find that, for an intentional attack, little knowledge of the well-connected sites is sufficient to strongly reduce pc. At criticality, the topology of the network depends on the removal strategy, implying that different strategies may lead to different kinds of percolation transitions.

  16. THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikpati, Mausumi; Gilman, Peter A., E-mail: dikpati@ucar.edu, E-mail: gilman@ucar.edu

    2012-02-10

    We build a hydrodynamic model for computing and understanding the Sun's large-scale high-latitude flows, including Coriolis forces, turbulent diffusion of momentum, and gyroscopic pumping. Side boundaries of the spherical 'polar cap', our computational domain, are located at latitudes {>=} 60 Degree-Sign . Implementing observed low-latitude flows as side boundary conditions, we solve the flow equations for a Cartesian analog of the polar cap. The key parameter that determines whether there are nodes in the high-latitude meridional flow is {epsilon} = 2{Omega}n{pi}H{sup 2}/{nu}, where {Omega} is the interior rotation rate, n is the radial wavenumber of the meridional flow, H ismore » the depth of the convection zone, and {nu} is the turbulent viscosity. The smaller the {epsilon} (larger turbulent viscosity), the fewer the number of nodes in high latitudes. For all latitudes within the polar cap, we find three nodes for {nu} = 10{sup 12} cm{sup 2} s{sup -1}, two for 10{sup 13}, and one or none for 10{sup 15} or higher. For {nu} near 10{sup 14} our model exhibits 'node merging': as the meridional flow speed is increased, two nodes cancel each other, leaving no nodes. On the other hand, for fixed flow speed at the boundary, as {nu} is increased the poleward-most node migrates to the pole and disappears, ultimately for high enough {nu} leaving no nodes. These results suggest that primary poleward surface meridional flow can extend from 60 Degree-Sign to the pole either by node merging or by node migration and disappearance.« less

  17. Robustness of network of networks under targeted attack.

    PubMed

    Dong, Gaogao; Gao, Jianxi; Du, Ruijin; Tian, Lixin; Stanley, H Eugene; Havlin, Shlomo

    2013-05-01

    The robustness of a network of networks (NON) under random attack has been studied recently [Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to targeted attacks is a major challenge when designing resilient infrastructures. We address here the question how the robustness of a NON is affected by targeted attack on high- or low-degree nodes. We introduce a targeted attack probability function that is dependent upon node degree and study the robustness of two types of NON under targeted attack: (i) a tree of n fully interdependent Erdős-Rényi or scale-free networks and (ii) a starlike network of n partially interdependent Erdős-Rényi networks. For any tree of n fully interdependent Erdős-Rényi networks and scale-free networks under targeted attack, we find that the network becomes significantly more vulnerable when nodes of higher degree have higher probability to fail. When the probability that a node will fail is proportional to its degree, for a NON composed of Erdős-Rényi networks we find analytical solutions for the mutual giant component P(∞) as a function of p, where 1-p is the initial fraction of failed nodes in each network. We also find analytical solutions for the critical fraction p(c), which causes the fragmentation of the n interdependent networks, and for the minimum average degree k[over ¯](min) below which the NON will collapse even if only a single node fails. For a starlike NON of n partially interdependent Erdős-Rényi networks under targeted attack, we find the critical coupling strength q(c) for different n. When q>q(c), the attacked system undergoes an abrupt first order type transition. When q≤q(c), the system displays a smooth second order percolation transition. We also evaluate how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases. The limit of q=0 represents no dependency, and the results are consistent with the classical percolation theory of a single network under targeted attack.

  18. General formulation of long-range degree correlations in complex networks

    NASA Astrophysics Data System (ADS)

    Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke

    2018-06-01

    We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.

  19. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less

  20. Lambda network having 2.sup.m-1 nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, Jr., Leonard M.

    1995-01-01

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.

  1. Link prediction based on local community properties

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao

    2016-09-01

    The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.

  2. Synchronization in node of complex networks consist of complex chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  3. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  4. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  5. Node Ranking Tool - NoRT

    DTIC Science & Technology

    2018-03-23

    Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 23 Ira S. Moskowitz (202) 404-7930 This paper gives a description of the Node Ranking Tool...Disease, Virus, Expectation, Pandemic, Close- ness, Graph, Degree, Spectrum. I. INTRODUCTION THis paper gives a description of the Node Ranking Tool...is very much dependent upon which centrality measure we use. Therefore, following [6] and [3], we use TOPSIS to evaluate our decisions about the

  6. High-temperature langatate elastic constants and experimental validation up to 900 degrees C.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2010-01-01

    This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.

  7. The role of CEUS in characterization of superficial lymph nodes: a single center prospective study

    PubMed Central

    de Stefano, Giorgio; Scognamiglio, Umberto; Di Martino, Filomena; Parrella, Roberto; Scarano, Francesco; Signoriello, Giuseppe; Farella, Nunzia

    2016-01-01

    Accurate lymph node characterization is important in a large number of clinical settings. We evaluated the usefulness of Contrast Enhanced Ultrasound (CEUS) in distinguishing between benign and malignant lymph nodes compared with conventional ultrasonography in the differential diagnosis of superficial lymphadenopathy. We present our experience for 111 patients enrolled in a single center. 111 superficial lymph nodes were selected and only 1 lymph node per patient underwent CEUS. A definitive diagnosis for all lymph nodes was obtained by ultrasonographically guided biopsy and/or excision biopsy. The size of the lymph nodes, the site (neck, axilla, inguinal region) being easily accessible for biopsy, and the US and color Doppler US characteristics guided us in selecting the nodes to be evaluated by CEUS. In our study we identified different enhancement patterns in benign and malignant lymph nodes, with a high degree of diagnostic accuracy for superficial lymphadenopathy in comparison with conventional US. PMID:27191746

  8. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.

  9. A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology

    NASA Astrophysics Data System (ADS)

    Al-Husseini, Amal

    In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.

  10. Tabu Search enhances network robustness under targeted attacks

    NASA Astrophysics Data System (ADS)

    Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi

    2016-03-01

    We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.

  11. Link prediction based on nonequilibrium cooperation effect

    NASA Astrophysics Data System (ADS)

    Li, Lanxi; Zhu, Xuzhen; Tian, Hui

    2018-04-01

    Link prediction in complex networks has become a common focus of many researchers. But most existing methods concentrate on neighbors, and rarely consider degree heterogeneity of two endpoints. Node degree represents the importance or status of endpoints. We describe the large-degree heterogeneity as the nonequilibrium between nodes. This nonequilibrium facilitates a stable cooperation between endpoints, so that two endpoints with large-degree heterogeneity tend to connect stably. We name such a phenomenon as the nonequilibrium cooperation effect. Therefore, this paper proposes a link prediction method based on the nonequilibrium cooperation effect to improve accuracy. Theoretical analysis will be processed in advance, and at the end, experiments will be performed in 12 real-world networks to compare the mainstream methods with our indices in the network through numerical analysis.

  12. Improved assumed-stress hybrid shell element with drilling degrees of freedom for linear stress, buckling, and free vibration analyses

    NASA Technical Reports Server (NTRS)

    Rengarajan, Govind; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    An improved four-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger-Reissner variational principle and the shape functions are formulated directly for the four-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has nine independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling, and linear free vibration problems. The element is validated with standard tests cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.

  13. Competing contact processes in the Watts-Strogatz network

    NASA Astrophysics Data System (ADS)

    Rybak, Marcin; Malarz, Krzysztof; Kułakowski, Krzysztof

    2016-06-01

    We investigate two competing contact processes on a set of Watts-Strogatz networks with the clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N sites, where each site i is directly linked to nodes labelled as i ± 1 and i ± 2. So initially, each node has the same degree k i = 4. The periodic boundary conditions are assumed as well. For each node i the links to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An increase of the rewiring probability q influences the nodes degree distribution and the network clusterization coefficient 𝓒. For given values of rewiring probability q the set 𝓝(q)={𝓝1,𝓝2,...,𝓝 M } of M networks is generated. The network's nodes are decorated with spin-like variables s i ∈ { S,D }. During simulation each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely, a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S final density n S T on initial nodes S fraction n S 0. Then, we construct the surface of the unstable fixed points in (𝓒, p, n S 0) space. The system evolves more often toward n S T for (𝓒, p, n S 0) points situated above this surface while starting simulation with (𝓒, p, n S 0) parameters situated below this surface leads system to n S T =0. The points on this surface correspond to such value of initial fraction n S * of S nodes (for fixed values 𝓒 and p) for which their final density is n S T=1/2.

  14. Scale-free Graphs for General Aviation Flight Schedules

    NASA Technical Reports Server (NTRS)

    Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.

    2003-01-01

    In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.

  15. Ferromagnetic transition in a simple variant of the Ising model on multiplex networks

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2018-02-01

    Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.

  16. A Systems Analysis of Strike Naval Aviation Training

    DTIC Science & Technology

    2013-06-01

    from external nodes (yellow) and flows through the model design (gray nodes). Arrows represent information flow direction and identify what...multiple times need to be established as external functions accessible by all subroutines • Variables and constants must be defined up-front, and...Downloaded Figure 37. Blocks In Figure 38, proficiency threshold breeches are highlighted to indicate when the resulting skill proficiency drops below the

  17. Degree-constrained multicast routing for multimedia communications

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugeng; Li, Guidan

    2005-02-01

    Multicast services have been increasingly used by many multimedia applications. As one of the key techniques to support multimedia applications, the rational and effective multicast routing algorithms are very important to networks performance. When switch nodes in networks have different multicast capability, multicast routing problem is modeled as the degree-constrained Steiner problem. We presented two heuristic algorithms, named BMSTA and BSPTA, for the degree-constrained case in multimedia communications. Both algorithms are used to generate degree-constrained multicast trees with bandwidth and end to end delay bound. Simulations over random networks were carried out to compare the performance of the two proposed algorithms. Experimental results show that the proposed algorithms have advantages in traffic load balancing, which can avoid link blocking and enhance networks performance efficiently. BMSTA has better ability in finding unsaturated links and (or) unsaturated nodes to generate multicast trees than BSPTA. The performance of BMSTA is affected by the variation of degree constraints.

  18. Lambda network having 2{sup m{minus}1} nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, L.M. Jr.

    1995-11-28

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.

  19. Molecular mechanisms of lymphocyte extravasation. II. Studies of in vitro lymphocyte adherence to high endothelial venules.

    PubMed

    Braaten, B A; Spangrude, G J; Daynes, R A

    1984-07-01

    Lymphocyte migration from the blood into the lymph nodes in most species occurs across post-capillary high endothelial venules (HEV). In a previous study, we proposed that lymphocyte extravasation involves receptor-mediated binding followed by adenylate cyclase-dependent activation of lymphocyte motility. This hypothesis was, in part, based on observations of in vitro lymphocyte adherence to HEV by employing pertussigen, which is a known inhibitor of lymphocyte recirculation. In vitro lymphocyte-HEV binding requires a cold (6 degrees C) incubation step and binding is poor to nil if the assay is attempted at room (23 degrees C) or physiologic temperature. We decided to investigate why this assay is temperature restricted, because of the possibility that pertussigen or fucoidin -treated lymphocytes might interact with HEV differently at higher temperatures. We now report that O.C.T. compound (OCT), the embedding matrix generally used to cut frozen lymph node sections, is toxic to lymphocytes at temperatures above 6 degrees C. Exclusion of OCT from the assay system will allow lymphocyte-HEV binding to occur at 23 degrees C and to a lesser extent at 37 degrees C. With this modified protocol, lymphocytes treated with either pertussigen, fucoidin , or neuraminidase were tested for adherence to HEV at 23 degrees C. No essential difference in binding properties was observed from what had been reported at 6 degrees C. In contrast, trypsin-treated lymphocytes that did not bind to HEV with the standard technique at 6 degrees C did adhere to a minimal extent to HEV at 23 degrees C using the modified procedure. We also report some preliminary work, using the modified assay, on in vitro lymphocyte-HEV binding of rat, rabbit, and guinea pig lymphocytes to sections of lymph nodes from the respective species.

  20. Complex Network Analysis of CA3 Transcriptome Reveals Pathogenic and Compensatory Pathways in Refractory Temporal Lobe Epilepsy

    PubMed Central

    Bando, Silvia Yumi; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre V.; Pimentel-Silva, Luciana R.; Castro, Luiz HM.; Wen, Hung-Tzu; Amaro, Edson; Moreira-Filho, Carlos Alberto

    2013-01-01

    We previously described – studying transcriptional signatures of hippocampal CA3 explants – that febrile (FS) and afebrile (NFS) forms of refractory mesial temporal lobe epilepsy constitute two distinct genomic phenotypes. That network analysis was based on a limited number (hundreds) of differentially expressed genes (DE networks) among a large set of valid transcripts (close to two tens of thousands). Here we developed a methodology for complex network visualization (3D) and analysis that allows the categorization of network nodes according to distinct hierarchical levels of gene-gene connections (node degree) and of interconnection between node neighbors (concentric node degree). Hubs are highly connected nodes, VIPs have low node degree but connect only with hubs, and high-hubs have VIP status and high overall number of connections. Studying the whole set of CA3 valid transcripts we: i) obtained complete transcriptional networks (CO) for FS and NFS phenotypic groups; ii) examined how CO and DE networks are related; iii) characterized genomic and molecular mechanisms underlying FS and NFS phenotypes, identifying potential novel targets for therapeutic interventions. We found that: i) DE hubs and VIPs are evenly distributed inside the CO networks; ii) most DE hubs and VIPs are related to synaptic transmission and neuronal excitability whereas most CO hubs, VIPs and high hubs are related to neuronal differentiation, homeostasis and neuroprotection, indicating compensatory mechanisms. Complex network visualization and analysis is a useful tool for systems biology approaches to multifactorial diseases. Network centrality observed for hubs, VIPs and high hubs of CO networks, is consistent with the network disease model, where a group of nodes whose perturbation leads to a disease phenotype occupies a central position in the network. Conceivably, the chance for exerting therapeutic effects through the modulation of particular genes will be higher if these genes are highly interconnected in transcriptional networks. PMID:24278214

  1. Temporal Effects in Trend Prediction: Identifying the Most Popular Nodes in the Future

    PubMed Central

    Zhou, Yanbo; Zeng, An; Wang, Wei-Hong

    2015-01-01

    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes’ recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail. PMID:25806810

  2. Understanding the implementation of evidence-based care: a structural network approach.

    PubMed

    Parchman, Michael L; Scoglio, Caterina M; Schumm, Phillip

    2011-02-24

    Recent study of complex networks has yielded many new insights into phenomenon such as social networks, the internet, and sexually transmitted infections. The purpose of this analysis is to examine the properties of a network created by the 'co-care' of patients within one region of the Veterans Health Affairs. Data were obtained for all outpatient visits from 1 October 2006 to 30 September 2008 within one large Veterans Integrated Service Network. Types of physician within each clinic were nodes connected by shared patients, with a weighted link representing the number of shared patients between each connected pair. Network metrics calculated included edge weights, node degree, node strength, node coreness, and node betweenness. Log-log plots were used to examine the distribution of these metrics. Sizes of k-core networks were also computed under multiple conditions of node removal. There were 4,310,465 encounters by 266,710 shared patients between 722 provider types (nodes) across 41 stations or clinics resulting in 34,390 edges. The number of other nodes to which primary care provider nodes have a connection (172.7) is 42% greater than that of general surgeons and two and one-half times as high as cardiology. The log-log plot of the edge weight distribution appears to be linear in nature, revealing a 'scale-free' characteristic of the network, while the distributions of node degree and node strength are less so. The analysis of the k-core network sizes under increasing removal of primary care nodes shows that about 10 most connected primary care nodes play a critical role in keeping the k-core networks connected, because their removal disintegrates the highest k-core network. Delivery of healthcare in a large healthcare system such as that of the US Department of Veterans Affairs (VA) can be represented as a complex network. This network consists of highly connected provider nodes that serve as 'hubs' within the network, and demonstrates some 'scale-free' properties. By using currently available tools to explore its topology, we can explore how the underlying connectivity of such a system affects the behavior of providers, and perhaps leverage that understanding to improve quality and outcomes of care.

  3. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    PubMed

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  4. Focus-based filtering + clustering technique for power-law networks with small world phenomenon

    NASA Astrophysics Data System (ADS)

    Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz

    2006-01-01

    Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.

  5. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  6. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    NASA Astrophysics Data System (ADS)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  7. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  8. Topological properties of a self-assembled electrical network via ab initio calculation

    NASA Astrophysics Data System (ADS)

    Stephenson, C.; Lyon, D.; Hübler, A.

    2017-02-01

    Interacting electrical conductors self-assemble to form tree like networks in the presence of applied voltages or currents. Experiments have shown that the degree distribution of the steady state networks are identical over a wide range of network sizes. In this work we develop a new model of the self-assembly process starting from the underlying physical interaction between conductors. In agreement with experimental results we find that for steady state networks, our model predicts that the fraction of endpoints is a constant of 0.252, and the fraction of branch points is 0.237. We find that our model predicts that these scaling properties also hold for the network during the approach to the steady state as well. In addition, we also reproduce the experimental distribution of nodes with a given Strahler number for all steady state networks studied.

  9. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-07-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  10. Research on centrality of urban transport network nodes

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Fu, Xiufen

    2017-05-01

    Based on the actual data of urban transport in Guangzhou, 19,150 bus stations in Guangzhou (as of 2014) are selected as nodes. Based on the theory of complex network, the network model of Guangzhou urban transport is constructed. By analyzing the degree centrality index, betweenness centrality index and closeness centrality index of nodes in the network, the level of centrality of each node in the network is studied. From a different point of view to determine the hub node of Guangzhou urban transport network, corresponding to the city's key sites and major transfer sites. The reliability of the network is determined by the stability of some key nodes (transport hub station). The research of network node centralization can provide a theoretical basis for the rational allocation of urban transport network sites and public transport system planning.

  11. Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng

    2018-01-01

    We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.

  12. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes.

    PubMed

    Gao, Jianxi; Buldyrev, S V; Havlin, S; Stanley, H E

    2012-06-01

    Many real-world networks interact with and depend upon other networks. We develop an analytical framework for studying a network formed by n fully interdependent randomly connected networks, each composed of the same number of nodes N. The dependency links connecting nodes from different networks establish a unique one-to-one correspondence between the nodes of one network and the nodes of the other network. We study the dynamics of the cascades of failures in such a network of networks (NON) caused by a random initial attack on one of the networks, after which a fraction p of its nodes survives. We find for the fully interdependent loopless NON that the final state of the NON does not depend on the dynamics of the cascades but is determined by a uniquely defined mutual giant component of the NON, which generalizes both the giant component of regular percolation of a single network (n=1) and the recently studied case of the mutual giant component of two interdependent networks (n=2). We also find that the mutual giant component does not depend on the topology of the NON and express it in terms of generating functions of the degree distributions of the network. Our results show that, for any n≥2 there exists a critical p=p(c)>0 below which the mutual giant component abruptly collapses from a finite nonzero value for p≥p(c) to zero for p2, a RR NON is stable for any n with p(c)<1). This results arises from the critical role played by singly connected nodes which exist in an ER NON and enhance the cascading failures, but do not exist in a RR NON.

  13. Effect of homophily on network formation

    NASA Astrophysics Data System (ADS)

    Kim, Kibae; Altmann, Jörn

    2017-03-01

    Although there is much research on network formation based on the preferential attachment rule, the research did not come up with a formula that, on the one hand, can reproduce shapes of cumulative degree distributions of empirical complex networks and, on the other hand, can represent intuitively theories on individual behavior. In this paper, we propose a formula that closes this gap by integrating into the formula for the preferential attachment rule (i.e., a node with higher degree is more likely to gain a new link) a representation of the theory of individual behavior with respect to nodes preferring to connect to other nodes with similar attributes (i.e., homophily). Based on this formula, we simulate the shapes of cumulative degree distributions for different levels of homophily and five different seed networks. Our simulation results suggest that homophily and the preferential attachment rule interact for all five types of seed networks. Surprisingly, the resulting cumulative degree distribution in log-log scale always shifts from a concave shape to a convex shape, as the level of homophily gets larger. Therefore, our formula can explain intuitively why some of the empirical complex networks show a linear cumulative degree distribution in log-log scale while others show either a concave or convex shape. Furthermore, another major finding indicates that homophily makes people of a group richer than people outside this group, which is a surprising and significant finding.

  14. Optimal resource diffusion for suppressing disease spreading in multiplex networks

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Wang, Wei; Cai, Shimin; Stanley, H. Eugene; Braunstein, Lidia A.

    2018-05-01

    Resource diffusion is a ubiquitous phenomenon, but how it impacts epidemic spreading has received little study. We propose a model that couples epidemic spreading and resource diffusion in multiplex networks. The spread of disease in a physical contact layer and the recovery of the infected nodes are both strongly dependent upon resources supplied by their counterparts in the social layer. The generation and diffusion of resources in the social layer are in turn strongly dependent upon the state of the nodes in the physical contact layer. Resources diffuse preferentially or randomly in this model. To quantify the degree of preferential diffusion, a bias parameter that controls the resource diffusion is proposed. We conduct extensive simulations and find that the preferential resource diffusion can change phase transition type of the fraction of infected nodes. When the degree of interlayer correlation is below a critical value, increasing the bias parameter changes the phase transition from double continuous to single continuous. When the degree of interlayer correlation is above a critical value, the phase transition changes from multiple continuous to first discontinuous and then to hybrid. We find hysteresis loops in the phase transition. We also find that there is an optimal resource strategy at each fixed degree of interlayer correlation under which the threshold reaches a maximum and the disease can be maximally suppressed. In addition, the optimal controlling parameter increases as the degree of inter-layer correlation increases.

  15. Collective almost synchronisation in complex networks.

    PubMed

    Baptista, Murilo S; Ren, Hai-Peng; Swarts, Johen C M; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso

    2012-01-01

    This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

  16. Collective Almost Synchronisation in Complex Networks

    PubMed Central

    Baptista, Murilo S.; Ren, Hai-Peng; Swarts, Johen C. M.; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso

    2012-01-01

    This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it. PMID:23144851

  17. Stress concentrations for straight-shank and countersunk holes in plates subjected to tension, bending, and pin loading

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1992-01-01

    A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.

  18. Zealotry effects on opinion dynamics in the adaptive voter model

    NASA Astrophysics Data System (ADS)

    Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.

    2017-11-01

    The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.

  19. First Evaluation of the New Thin Convex Probe Endobronchial Ultrasound Scope: A Human Ex Vivo Lung Study.

    PubMed

    Patel, Priya; Wada, Hironobu; Hu, Hsin-Pei; Hirohashi, Kentaro; Kato, Tatsuya; Ujiie, Hideki; Ahn, Jin Young; Lee, Daiyoon; Geddie, William; Yasufuku, Kazuhiro

    2017-04-01

    Endobronchial ultrasonography (EBUS)-guided transbronchial needle aspiration allows for sampling of mediastinal lymph nodes. The external diameter, rigidity, and angulation of the convex probe EBUS renders limited accessibility. This study compares the accessibility and transbronchial needle aspiration capability of the prototype thin convex probe EBUS against the convex probe EBUS in human ex vivo lungs rejected for transplant. The prototype thin convex probe EBUS (BF-Y0055; Olympus, Tokyo, Japan) with a thinner tip (5.9 mm), greater upward angle (170 degrees), and decreased forward oblique direction of view (20 degrees) was compared with the current convex probe EBUS (6.9-mm tip, 120 degrees, and 35 degrees, respectively). Accessibility and transbronchial needle aspiration capability was assessed in ex vivo human lungs declined for lung transplant. The distance of maximum reach and sustainable endoscopic limit were measured. Transbronchial needle aspiration capability was assessed using the prototype 25G aspiration needle in segmental lymph nodes. In all evaluated lungs (n = 5), the thin convex probe EBUS demonstrated greater reach and a higher success rate, averaging 22.1 mm greater maximum reach and 10.3 mm further endoscopic visibility range than convex probe EBUS, and could assess selectively almost all segmental bronchi (98% right, 91% left), demonstrating nearly twice the accessibility as the convex probe EBUS (48% right, 47% left). The prototype successfully enabled cytologic assessment of subsegmental lymph nodes with adequate quality using the dedicated 25G aspiration needle. Thin convex probe EBUS has greater accessibility to peripheral airways in human lungs and is capable of sampling segmental lymph nodes using the aspiration needle. That will allow for more precise assessment of N1 nodes and, possibly, intrapulmonary lesions normally inaccessible to the conventional convex probe EBUS. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  1. Synchronization in Random Pulse Oscillator Networks

    NASA Astrophysics Data System (ADS)

    Brown, Kevin; Hermundstad, Ann

    Motivated by synchronization phenomena in neural systems, we study synchronization of random networks of coupled pulse oscillators. We begin by considering binomial random networks whose nodes have intrinsic linear dynamics. We quantify order in the network spiking dynamics using a new measure: the normalized Lev-Zimpel complexity (LZC) of the nodes' spike trains. Starting from a globally-synchronized state, we see two broad classes of behaviors. In one (''temporally random''), the LZC is high and nodes spike independently with no coherent pattern. In another (''temporally regular''), the network does not globally synchronize but instead forms coherent, repeating population firing patterns with low LZC. No topological feature of the network reliably predicts whether an individual network will show temporally random or regular behavior; however, we find evidence that degree heterogeneity in binomial networks has a strong effect on the resulting state. To confirm these findings, we generate random networks with independently-adjustable degree mean and variance. We find that the likelihood of temporally-random behavior increases as degree variance increases. Our results indicate the subtle and complex relationship between network structure and dynamics.

  2. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes.

    PubMed

    Schumm, Phillip; Scoglio, Caterina; Zhang, Qian; Balcan, Duygu

    2015-02-21

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The second threshold defines the criteria that permit an epidemic to move out of the giant strongly connected component and to invade the populations of the sink nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence of an epidemic among the sink nodes is a serious threat to food security. We find that the relationship between these two thresholds depends on the relative proportions of transit and sink nodes in the system and the distributions of the in-degrees of both node types. These analytic results are verified through numerical realizations of the metapopulation cattle model. Published by Elsevier Ltd.

  3. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.

    PubMed

    Guo, Wei-Feng; Zhang, Shao-Wu; Shi, Qian-Qian; Zhang, Cheng-Ming; Zeng, Tao; Chen, Luonan

    2018-01-19

    The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.

  4. Acoustic ranging of small arms fire using a single sensor node collocated with the target.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2015-06-01

    A ballistic model-based method, which builds upon previous work by Lo and Ferguson [J. Acoust. Soc. Am. 132, 2997-3017 (2012)], is described for ranging small arms fire using a single acoustic sensor node collocated with the target, without a priori knowledge of the muzzle speed and ballistic constant of the bullet except that they belong to a known two-dimensional parameter space. The method requires measurements of the differential time of arrival and differential angle of arrival of the muzzle blast and ballistic shock wave at the sensor node. Its performance is evaluated using both simulated and real data.

  5. Scaling of load in communications networks.

    PubMed

    Narayan, Onuttom; Saniee, Iraj

    2010-09-01

    We show that the load at each node in a preferential attachment network scales as a power of the degree of the node. For a network whose degree distribution is p(k)∼k{-γ} , we show that the load is l(k)∼k{η} with η=γ-1 , implying that the probability distribution for the load is p(l)∼1/l{2} independent of γ . The results are obtained through scaling arguments supported by finite size scaling studies. They contradict earlier claims, but are in agreement with the exact solution for the special case of tree graphs. Results are also presented for real communications networks at the IP layer, using the latest available data. Our analysis of the data shows relatively poor power-law degree distributions as compared to the scaling of the load versus degree. This emphasizes the importance of the load in network analysis.

  6. Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation

    NASA Astrophysics Data System (ADS)

    Joo, Jaewook; Lebowitz, Joel L.

    2004-06-01

    We investigate saturation effects in susceptible-infected-susceptible models of the spread of epidemics in heterogeneous populations. The structure of interactions in the population is represented by networks with connectivity distribution P(k) , including scale-free (SF) networks with power law distributions P(k)˜ k-γ . Considering cases where the transmission of infection between nodes depends on their connectivity, we introduce a saturation function C(k) which reduces the infection transmission rate λ across an edge going from a node with high connectivity k . A mean-field approximation with the neglect of degree-degree correlation then leads to a finite threshold λc >0 for SF networks with 2<γ⩽3 . We also find, in this approximation, the fraction of infected individuals among those with degree k for λ close to λc . We investigate via computer simulation the contact process on a heterogeneous regular lattice and compare the results with those obtained from mean-field theory with and without neglect of degree-degree correlations.

  7. Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires

    2008-01-01

    The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.

  8. Percolation of localized attack on isolated and interdependent random networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Percolation properties of isolated and interdependent random networks have been investigated extensively. The focus of these studies has been on random attacks where each node in network is attacked with the same probability or targeted attack where each node is attacked with a probability being a function of its centrality, such as degree. Here we discuss a new type of realistic attacks which we call a localized attack where a group of neighboring nodes in the networks are attacked. We attack a randomly chosen node, its neighbors, and its neighbor of neighbors and so on, until removing a fraction (1 - p) of the network. This type of attack reflects damages due to localized disasters, such as earthquakes, floods and war zones in real-world networks. We study, both analytically and by simulations the impact of localized attack on percolation properties of random networks with arbitrary degree distributions and discuss in detail random regular (RR) networks, Erdős-Rényi (ER) networks and scale-free (SF) networks. We extend and generalize our theoretical and simulation results of single isolated networks to networks formed of interdependent networks.

  9. Some scale-free networks could be robust under selective node attacks

    NASA Astrophysics Data System (ADS)

    Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei

    2011-04-01

    It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.

  10. An enhanced performance through agent-based secure approach for mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Bisen, Dhananjay; Sharma, Sanjeev

    2018-01-01

    This paper proposes an agent-based secure enhanced performance approach (AB-SEP) for mobile ad hoc network. In this approach, agent nodes are selected through optimal node reliability as a factor. This factor is calculated on the basis of node performance features such as degree difference, normalised distance value, energy level, mobility and optimal hello interval of node. After selection of agent nodes, a procedure of malicious behaviour detection is performed using fuzzy-based secure architecture (FBSA). To evaluate the performance of the proposed approach, comparative analysis is done with conventional schemes using performance parameters such as packet delivery ratio, throughput, total packet forwarding, network overhead, end-to-end delay and percentage of malicious detection.

  11. Optimization of robustness of interdependent network controllability by redundant design

    PubMed Central

    2018-01-01

    Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426

  12. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  13. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  14. Network reconstruction via graph blending

    NASA Astrophysics Data System (ADS)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  15. Information slows down hierarchy growth

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A.

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  16. Information slows down hierarchy growth.

    PubMed

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  17. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  18. Limited static and dynamic delivering capacity allocations in scale-free networks

    NASA Astrophysics Data System (ADS)

    Haddou, N. Ben; Ez-Zahraouy, H.; Rachadi, A.

    In traffic networks, it is quite important to assign proper packet delivering capacities to the routers with minimum cost. In this respect, many allocation models based on static and dynamic properties have been proposed. In this paper, we are interested in the impact of limiting the packet delivering capacities already allocated to the routers; each node is assigned a packet delivering capacity limited by the maximal capacity Cmax of the routers. To study the limitation effect, we use two basic delivering capacity allocation models; static delivering capacity allocation (SDCA) and dynamic delivering capacity allocation (DDCA). In the SDCA, the capacity allocated is proportional to the node degree, and for DDCA, it is proportional to its queue length. We have studied and compared the limitation of both allocation models under the shortest path (SP) routing strategy as well as the efficient path (EP) routing protocol. In the SP case, we noted a similarity in the results; the network capacity increases with increasing Cmax. For the EP scheme, the network capacity stops increasing for relatively small packet delivering capability limit Cmax for both allocation strategies. However, it reaches high values under the limited DDCA before the saturation. We also find that in the DDCA case, the network capacity remains constant when the traffic information available to each router was updated after long period times τ.

  19. Modeling Dynamic Evolution of Online Friendship Network

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ren; Yan, Qiang

    2012-10-01

    In this paper, we study the dynamic evolution of friendship network in SNS (Social Networking Site). Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community, but also on the friendship network generated by those friends. In addition, we propose a model which is based on two processes: first, connecting nearest neighbors; second, strength driven attachment mechanism. The model reflects two facts: first, in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor; second, new nodes connect more likely to nodes which have larger weights and interactions, a phenomenon called strength driven attachment (also called weight driven attachment). From the simulation results, we find that degree distribution P(k), strength distribution P(s), and degree-strength correlation are all consistent with empirical data.

  20. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2010-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.

  1. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    PubMed

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  2. Network analysis of translocated Takahe populations to identify disease surveillance targets.

    PubMed

    Grange, Zoë L; VAN Andel, Mary; French, Nigel P; Gartrell, Brett D

    2014-04-01

    Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final network in 2011. Likewise, the wild Murchison Mountains population was consistently the sink of the network. Other nodes, such as the offshore islands and the wildlife hospital, varied in importance over time. Common network descriptors and measures of centrality identified key locations for targeting disease surveillance. The visual representation of movements of animals in a population that this technique provides can aid decision makers when they evaluate translocation proposals or attempt to control a disease outbreak. © 2014 Society for Conservation Biology.

  3. The Dichotomy in Degree Correlation of Biological Networks

    PubMed Central

    Hao, Dapeng; Li, Chuanxing

    2011-01-01

    Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled. PMID:22164269

  4. Perceptual grouping effects on cursor movement expectations.

    PubMed

    Dorneich, Michael C; Hamblin, Christopher J; Lancaster, Jeff A; Olofinboba, Olu

    2014-05-01

    Two studies were conducted to develop an understanding of factors that drive user expectations when navigating between discrete elements on a display via a limited degree-of-freedom cursor control device. For the Orion Crew Exploration Vehicle spacecraft, a free-floating cursor with a graphical user interface (GUI) would require an unachievable level of accuracy due to expected acceleration and vibration conditions during dynamic phases of flight. Therefore, Orion program proposed using a "caged" cursor to "jump" from one controllable element (node) on the GUI to another. However, nodes are not likely to be arranged on a rectilinear grid, and so movements between nodes are not obvious. Proximity between nodes, direction of nodes relative to each other, and context features may all contribute to user cursor movement expectations. In an initial study, we examined user expectations based on the nodes themselves. In a second study, we examined the effect of context features on user expectations. The studies established that perceptual grouping effects influence expectations to varying degrees. Based on these results, a simple rule set was developed to support users in building a straightforward mental model that closely matches their natural expectations for cursor movement. The results will help designers of display formats take advantage of the natural context-driven cursor movement expectations of users to reduce navigation errors, increase usability, and decrease access time. The rules set and guidelines tie theory to practice and can be applied in environments where vibration or acceleration are significant, including spacecraft, aircraft, and automobiles.

  5. Does a String-Particle Dualism Indicate the Uncertainty Principle's Philosophical Dichotomy?

    NASA Astrophysics Data System (ADS)

    Mc Leod, David; Mc Leod, Roger

    2007-04-01

    String theory may allow resonances of neutrino-wave-strings to account for all experimentally detected phenomena. Particle theory logically, and physically, provides an alternate, contradictory dualism. Is it contradictory to symbolically and simultaneously state that λp = h, but, the product of position and momentum must be greater than, or equal to, the same (scaled) Plank's constant? Our previous electron and positron models require `membrane' vibrations of string-linked neutrinos, in closed loops, to behave like traveling waves, Tws, intermittently metamorphosing into alternately ascending and descending standing waves, Sws, between the nodes, which advance sequentially through 360 degrees. Accumulated time passages as Tws detail required ``loop currents'' supplying magnetic moments. Remaining time partitions into the Sws' alternately ascending and descending phases: the physical basis of the experimentally established 3D modes of these ``particles.'' Waves seem to indicate that point mass cannot be required to exist instantaneously at one point; Mott's and Sneddon's Wave Mechanics says that a constant, [mass], is present. String-like resonances may also account for homeopathy's efficacy, dark matter, and constellations' ``stick-figure projections,'' as indicated by some traditional cultures, all possibly involving neutrino strings. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.5

  6. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 1: Dynamic models and computer simulations for the ERBE nonscanner, scanner and solar monitor sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.

    1987-01-01

    Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.

  7. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  8. Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks.

    PubMed

    Wu, Guowei; Lin, Chi; Xia, Feng; Yao, Lin; Zhang, He; Liu, Bing

    2010-01-01

    In time-critical wireless sensor network (WSN) applications, a high degree of reliability is commonly required. A dynamical jumping real-time fault-tolerant routing protocol (DMRF) is proposed in this paper. Each node utilizes the remaining transmission time of the data packets and the state of the forwarding candidate node set to dynamically choose the next hop. Once node failure, network congestion or void region occurs, the transmission mode will switch to jumping transmission mode, which can reduce the transmission time delay, guaranteeing the data packets to be sent to the destination node within the specified time limit. By using feedback mechanism, each node dynamically adjusts the jumping probabilities to increase the ratio of successful transmission. Simulation results show that DMRF can not only efficiently reduce the effects of failure nodes, congestion and void region, but also yield higher ratio of successful transmission, smaller transmission delay and reduced number of control packets.

  9. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  10. Preferential attachment in evolutionary earthquake networks

    NASA Astrophysics Data System (ADS)

    Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein

    2018-04-01

    Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.

  11. L-hop percolation on networks with arbitrary degree distributions and its applications

    NASA Astrophysics Data System (ADS)

    Shang, Yilun; Luo, Weiliang; Xu, Shouhuai

    2011-09-01

    Site percolation has been used to help understand analytically the robustness of complex networks in the presence of random node deletion (or failure). In this paper we move a further step beyond random node deletion by considering that a node can be deleted because it is chosen or because it is within some L-hop distance of a chosen node. Using the generating functions approach, we present analytic results on the percolation threshold as well as the mean size, and size distribution, of nongiant components of complex networks under such operations. The introduction of parameter L is both conceptually interesting because it accommodates a sort of nonindependent node deletion, which is often difficult to tackle analytically, and practically interesting because it offers useful insights for cybersecurity (such as botnet defense).

  12. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  13. Sentinel Lymph Node Biopsy in Early Breast Cancer.

    PubMed

    Kühn, Thorsten

    2011-01-01

    The role of axillary surgery for the treatment of primary breast cancer is in a process of constant change. During the last decade, axillary dissection with removal of at least 10 lymph nodes (ALD) was replaced by sentinel lymph node biopsy (SLNB) as a staging procedure. Since then, the indication for SLNB rapidly expanded. Today's surgical strategies aim to minimize the rate of patients with a negative axillary status who undergo ALD. For some subgroups of patients, the indication for SLNB (e.g. multicentric disease, large tumors) or its implication for treatment planning (micrometastatic involvement, neoadjuvant chemotherapy) is being discussed. Although the indication for ALD is almost entirely restricted to patients with positive axillary lymph nodes today, the therapeutic effect of completion ALD is more and more questioned. On the other hand, the diagnostic value of ALD in node-positive patients is discussed. This article reflects today's standards in axillary surgery and discusses open issues on the diagnostic and therapeutic role of SLNB and ALD in the treatment of early breast cancer.

  14. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    PubMed

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  16. Relationships between Perron-Frobenius eigenvalue and measurements of loops in networks

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Chang, Yizhe

    2018-07-01

    The Perron-Frobenius eigenvalue (PFE) is widely used as measurement of the number of loops in networks, but what exactly the relationship between the PFE and the number of loops in networks is has not been researched yet, is it strictly monotonically increasing? And what are the relationships between the PFE and other measurements of loops in networks? Such as the average loop degree of nodes, and the distribution of loop ranks. We make researches on these questions based on samples of ER random network, NW small-world network and BA scale-free network, and the results confirm that, both the number of loops in network and the average loop degree of nodes of all samples do increase with the increase of the PFE in general trend, but neither of them are strictly monotonically increasing, so the PFE is capable to be used as a rough estimative measurement of the number of loops in networks and the average loop degree of nodes. Furthermore, we find that a majority of the loop ranks of all samples obey Weibull distribution, of which the scale parameter A and the shape parameter B have approximate power-law relationships with the PFE of the samples.

  17. Sampling networks with prescribed degree correlations

    NASA Astrophysics Data System (ADS)

    Del Genio, Charo; Bassler, Kevin; Erdos, Péter; Miklos, István; Toroczkai, Zoltán

    2014-03-01

    A feature of a network known to affect its structural and dynamical properties is the presence of correlations amongst the node degrees. Degree correlations are a measure of how much the connectivity of a node influences the connectivity of its neighbours, and they are fundamental in the study of processes such as the spreading of information or epidemics, the cascading failures of damaged systems and the evolution of social relations. We introduce a method, based on novel mathematical results, that allows the exact sampling of networks where the number of connections between nodes of any given connectivity is specified. Our algorithm provides a weight associated to each sample, thereby allowing network observables to be measured according to any desired distribution, and it is guaranteed to always terminate successfully in polynomial time. Thus, our new approach provides a preferred tool for scientists to model complex systems of current relevance, and enables researchers to precisely study correlated networks with broad societal importance. CIDG acknowledges support by the European Commission's FP7 through grant No. 288021. KEB acknowledges support from the NSF through grant DMR?1206839. KEB, PE, IM and ZT acknowledge support from AFSOR and DARPA through grant FA?9550-12-1-0405.

  18. A predictive index of axillary nodal involvement in operable breast cancer.

    PubMed Central

    De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.

    1996-01-01

    We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286

  19. Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent.

    PubMed

    Rubaltelli, Leopoldo; Khadivi, Yeganeh; Tregnaghi, Alberto; Stramare, Roberto; Ferro, Federica; Borsato, Simonetta; Fiocco, Ugo; Adami, Fausto; Rossi, Carlo Riccardo

    2004-06-01

    To evaluate the contribution of continuous mode contrast-enhanced harmonic ultrasonography (CE-HUS) with a second-generation contrast agent to the characterization of superficial lymphadenopathies with respect to conventional ultrasonographic techniques (B-mode and power Doppler). Fifty-six lymph nodes from 45 patients were studied both by conventional techniques and by CE-HUS. The dimensions, intranodal architecture, margins, and location of vessels were evaluated. Subsequently, all the lymph nodes were examined by CE-HUS, and enhancement of echogenicity was evaluated. The diagnoses obtained by means of fine-needle aspiration cytologic examination, surgical biopsy, or both were compared with those obtained by ultrasonography. Of the lymph nodes examined, 30 were benign and 26 were malignant (18 metastases and 8 non-Hodgkin lymphomas). The study using CE-HUS showed intense homogeneous enhancement in 28 of 30 reactive lymph nodes; perfusion defects in 17, of which 15 were neoplastic and 2 were inflammatory; intense but inhomogeneous speckled enhancement in the early arterial phase in 5 cases of lymphoma; and, last, scarce or absent intranodal enhancement in 4 metastases. The specificity, sensitivity, and accuracy of conventional techniques in differentiation between benign and malignant lymph nodes were 76%, 80%, and 78% versus 93%, 92%, and 92.8% for CE-HUS. The increase in correct diagnoses was significant (P = .05) when conventional ultrasonography was tested against CE-HUS. Superficial lymph nodes can be characterized as being neoplastic or benign with a high degree of diagnostic accuracy on the basis of the perfusion characteristics evaluated by CE-HUS. This technique has been shown to afford a higher degree of accuracy than currently obtainable by any other ultrasonographic technique.

  20. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes.

    PubMed

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree k_{max} of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large k_{max}. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  1. Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2016-07-01

    We investigate the effect of network architecture on burst and spike synchronization in a directed scale-free network (SFN) of bursting neurons, evolved via two independent α- and β-processes. The α-process corresponds to a directed version of the Barabási-Albert SFN model with growth and preferential attachment, while for the β-process only preferential attachments between pre-existing nodes are made without addition of new nodes. We first consider the "pure" α-process of symmetric preferential attachment (with the same in- and out-degrees), and study emergence of burst and spike synchronization by varying the coupling strength J and the noise intensity D for a fixed attachment degree. Characterizations of burst and spike synchronization are also made by employing realistic order parameters and statistical-mechanical measures. Next, we choose appropriate values of J and D where only burst synchronization occurs, and investigate the effect of the scale-free connectivity on the burst synchronization by varying (1) the symmetric attachment degree and (2) the asymmetry parameter (representing deviation from the symmetric case) in the α-process, and (3) the occurrence probability of the β-process. In all these three cases, changes in the type and the degree of population synchronization are studied in connection with the network topology such as the degree distribution, the average path length Lp, and the betweenness centralization Bc. It is thus found that just taking into consideration Lp and Bc (affecting global communication between nodes) is not sufficient to understand emergence of population synchronization in SFNs, but in addition to them, the in-degree distribution (affecting individual dynamics) must also be considered to fully understand for the effective population synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhanced reconstruction of weighted networks from strengths and degrees

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Rossana; Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego

    2014-04-01

    Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate information available. For binary networks, the relevant ensemble is one where the degree (number of links) of each node is constrained to its observed value. However, for weighted networks the problem is much more complicated. While the naïve approach prescribes to constrain the strengths (total link weights) of all nodes, recent counter-intuitive results suggest that in weighted networks the degrees are often more informative than the strengths. This implies that the reconstruction of weighted networks would be significantly enhanced by the specification of both strengths and degrees, a computationally hard and bias-prone procedure. Here we solve this problem by introducing an analytical and unbiased maximum-entropy method that works in the shortest possible time and does not require the explicit generation of reconstructed samples. We consider several real-world examples and show that, while the strengths alone give poor results, the additional knowledge of the degrees yields accurately reconstructed networks. Information-theoretic criteria rigorously confirm that the degree sequence, as soon as it is non-trivial, is irreducible to the strength sequence. Our results have strong implications for the analysis of motifs and communities and whenever the reconstructed ensemble is required as a null model to detect higher-order patterns.

  3. Temporal-varying failures of nodes in networks

    NASA Astrophysics Data System (ADS)

    Knight, Georgie; Cristadoro, Giampaolo; Altmann, Eduardo G.

    2015-08-01

    We consider networks in which random walkers are removed because of the failure of specific nodes. We interpret the rate of loss as a measure of the importance of nodes, a notion we denote as failure centrality. We show that the degree of the node is not sufficient to determine this measure and that, in a first approximation, the shortest loops through the node have to be taken into account. We propose approximations of the failure centrality which are valid for temporal-varying failures, and we dwell on the possibility of externally changing the relative importance of nodes in a given network by exploiting the interference between the loops of a node and the cycles of the temporal pattern of failures. In the limit of long failure cycles we show analytically that the escape in a node is larger than the one estimated from a stochastic failure with the same failure probability. We test our general formalism in two real-world networks (air-transportation and e-mail users) and show how communities lead to deviations from predictions for failures in hubs.

  4. Structural and functional networks in complex systems with delay.

    PubMed

    Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex

    2011-05-01

    Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society

  5. Node Deployment Algorithm Based on Connected Tree for Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Wang, Xingmin; Jiang, Lurong

    2015-01-01

    Designing an efficient deployment method to guarantee optimal monitoring quality is one of the key topics in underwater sensor networks. At present, a realistic approach of deployment involves adjusting the depths of nodes in water. One of the typical algorithms used in such process is the self-deployment depth adjustment algorithm (SDDA). This algorithm mainly focuses on maximizing network coverage by constantly adjusting node depths to reduce coverage overlaps between two neighboring nodes, and thus, achieves good performance. However, the connectivity performance of SDDA is irresolute. In this paper, we propose a depth adjustment algorithm based on connected tree (CTDA). In CTDA, the sink node is used as the first root node to start building a connected tree. Finally, the network can be organized as a forest to maintain network connectivity. Coverage overlaps between the parent node and the child node are then reduced within each sub-tree to optimize coverage. The hierarchical strategy is used to adjust the distance between the parent node and the child node to reduce node movement. Furthermore, the silent mode is adopted to reduce communication cost. Simulations show that compared with SDDA, CTDA can achieve high connectivity with various communication ranges and different numbers of nodes. Moreover, it can realize coverage as high as that of SDDA with various sensing ranges and numbers of nodes but with less energy consumption. Simulations under sparse environments show that the connectivity and energy consumption performances of CTDA are considerably better than those of SDDA. Meanwhile, the connectivity and coverage performances of CTDA are close to those depth adjustment algorithms base on connected dominating set (CDA), which is an algorithm similar to CTDA. However, the energy consumption of CTDA is less than that of CDA, particularly in sparse underwater environments. PMID:26184209

  6. A dynamic routing strategy with limited buffer on scale-free network

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Liu, Feng

    2016-04-01

    In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.

  7. Voter model with arbitrary degree dependence: clout, confidence and irreversibility

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2014-03-01

    The voter model is widely used to model opinion dynamics in society. In this paper, we propose three modifications to incorporate heterogeneity into the model. We address the corresponding oversimplifications of the conventional voter model which are unrealistic. We first consider the voter model with popularity bias. The influence of each node on its neighbors depends on its degree. We find the consensus probabilities and expected consensus times for each of the states. We also find the fixation probability, which is the probability that a single node whose state differs from every other node imposes its state on the entire system. In addition, we find the expected fixation time. Then two other extensions to the model are proposed and the motivations behind them are discussed. The first one is confidence, where in addition to the states of neighbors, nodes take their own state into account at each update. We repeat the calculations for the augmented model and investigate the effects of adding confidence to the model. The second proposed extension is irreversibility, where one of the states is given the property that once nodes adopt it, they cannot switch back. This is motivated by applications where, agents take an irreversible action such as seeing a movie, purchasing a music album online, or buying a new product. The dynamics of densities, fixation times and consensus times are obtained.

  8. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less

  9. Efficient sampling of complex network with modified random walk strategies

    NASA Astrophysics Data System (ADS)

    Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei

    2018-02-01

    We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.

  10. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  11. A new axi-symmetric element for thin walled structures

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Yoon, Jeong Whan; Dick, Robert E.

    2010-03-01

    A new axi-symmetric finite element for thin walled structures is presented in this work. It uses the solid-shell element’s concept with only a single element and multiple integration points along the thickness direction. The cross-section of the element is composed of four nodes with two degrees of freedom each. The proposed formulation overcomes many locking pathologies including transverse shear locking, Poisson’s locking and volumetric locking. For transverse shear locking, the formulation uses the selective reduced integration technique, for Poisson’s locking it uses the enhanced assumed strain (EAS) method with only one enhancing variable. The B-bar approach is used to eliminate the isochoric deformations in the hourglass field while the EAS method is used to alleviate the volumetric locking in the constant part of the deformation tensor. Several examples are shown to demonstrate the performance and accuracy of the proposed element with special focus on the numerical simulations for the beverage can industry.

  12. DEVELOPMENT OF THE “RICH CLUB” IN BRAIN CONNECTIVITY NETWORKS FROM 438 ADOLESCENTS & ADULTS AGED 12 TO 30

    PubMed Central

    Dennis, Emily L.; Jahanshad, Neda; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Hickie, Ian; Wright, Margaret J.; Thompson, Paul M.

    2014-01-01

    The ‘rich club’ coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development. PMID:24827471

  13. Chinese Mainland Movie Network

    NASA Astrophysics Data System (ADS)

    Liu, Ai-Fen; Xue, Yu-Hua; He, Da-Ren

    2008-03-01

    We propose describing a large kind of cooperation-competition networks by bipartite graphs and their unipartite projections. In the graphs the topological structure describe the cooperation-competition configuration of the basic elements, and the vertex weight describe their different roles in cooperation or results of competition. This complex network description may be helpful for finding and understanding common properties of cooperation-competition systems. In order to show an example, we performed an empirical investigation on the movie cooperation-competition network within recent 80 years in the Chinese mainland. In the net the movies are defined as nodes, and two nodes are connected by a link if a common main movie actor performs in them. The edge represents the competition relationship between two movies for more audience among a special audience colony. We obtained the statistical properties, such as the degree distribution, act degree distribution, act size distribution, and distribution of the total node weight, and explored the influence factors of Chinese mainland movie competition intensity.

  14. Association of tuberculosis with multimorbidity and social networks

    PubMed Central

    Valenzuela-Jiménez, Hiram; Manrique-Hernández, Edgar Fabian; Idrovo, Alvaro Javier

    2017-01-01

    ABSTRACT The combination of tuberculosis with other diseases can affect tuberculosis treatment within populations. In the present study, social network analysis of data retrieved from the Mexican National Epidemiological Surveillance System was used in order to explore associations between the number of contacts and multimorbidity. The node degree was calculated for each individual with tuberculosis and included information from 242 contacts without tuberculosis. Multimorbidity was identified in 49.89% of individuals. The node degrees were highest for individuals with tuberculosis + HIV infection (p < 0.04) and lowest for those with tuberculosis + pulmonary edema (p < 0.07). Social network analysis should be used as a standard method for monitoring tuberculosis and tuberculosis-related syndemics. PMID:28125153

  15. Emergence of scale-free close-knit friendship structure in online social networks.

    PubMed

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks.

  16. Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks

    PubMed Central

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks. PMID:23272067

  17. Node-node correlations and transport properties in scale-free networks

    NASA Astrophysics Data System (ADS)

    Obregon, Bibiana; Guzman, Lev

    2011-03-01

    We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model

  18. Ranking the spreading ability of nodes in network core

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Lei; Liu, Jian-Guo; Wang, Jiang-Pan; Guo, Qiang; Ni, Jing

    2015-11-01

    Ranking nodes by their spreading ability in complex networks is of vital significance to better understand the network structure and more efficiently spread information. The k-shell decomposition method could identify the most influential nodes, namely network core, with the same ks values regardless to their different spreading influence. In this paper, we present an improved method based on the k-shell decomposition method and closeness centrality (CC) to rank the node spreading influence of the network core. Experiment results on the data from the scientific collaboration network and U.S. aviation network show that the accuracy of the presented method could be increased by 31% and 45% than the one obtained by the degree k, 32% and 31% than the one by the betweenness.

  19. Limits on relief through constrained exchange on random graphs

    NASA Astrophysics Data System (ADS)

    LaViolette, Randall A.; Ellebracht, Lory A.; Gieseler, Charles J.

    2007-09-01

    Agents are represented by nodes on a random graph (e.g., “small world”). Each agent is endowed with a zero-mean random value that may be either positive or negative. All agents attempt to find relief, i.e., to reduce the magnitude of that initial value, to zero if possible, through exchanges. The exchange occurs only between the agents that are linked, a constraint that turns out to dominate the results. The exchange process continues until Pareto equilibrium is achieved. Only 40-90% of the agents achieved relief on small-world graphs with mean degree between 2 and 40. Even fewer agents achieved relief on scale-free-like graphs with a truncated power-law degree distribution. The rate at which relief grew with increasing degree was slow, only at most logarithmic for all of the graphs considered; viewed in reverse, the fraction of nodes that achieve relief is resilient to the removal of links.

  20. Surname complex network for Brazil and Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira, G. D.; Viswanathan, G. M.; da Silva, L. R.; Herrmann, H. J.

    2018-06-01

    We present a study of social networks based on the analysis of Brazilian and Portuguese family names (surnames). We construct networks whose nodes are names of families and whose edges represent parental relations between two families. From these networks we extract the connectivity distribution, clustering coefficient, shortest path and centrality. We find that the connectivity distribution follows an approximate power law. We associate the number of hubs, centrality and entropy to the degree of miscegenation in the societies in both countries. Our results show that Portuguese society has a higher miscegenation degree than Brazilian society. All networks analyzed lead to approximate inverse square power laws in the degree distribution. We conclude that the thermodynamic limit is reached for small networks (3 or 4 thousand nodes). The assortative mixing of all networks is negative, showing that the more connected vertices are connected to vertices with lower connectivity. Finally, the network of surnames presents some small world characteristics.

  1. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    PubMed

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  2. Using LTI Dynamics to Identify the Influential Nodes in a Network

    PubMed Central

    Jorswieck, Eduard; Scheunert, Christian

    2016-01-01

    Networks are used for modeling numerous technical, social or biological systems. In order to better understand the system dynamics, it is a matter of great interest to identify the most important nodes within the network. For a large set of problems, whether it is the optimal use of available resources, spreading information efficiently or even protection from malicious attacks, the most important node is the most influential spreader, the one that is capable of propagating information in the shortest time to a large portion of the network. Here we propose the Node Imposed Response (NiR), a measure which accurately evaluates node spreading power. It outperforms betweenness, degree, k-shell and h-index centrality in many cases and shows the similar accuracy to dynamics-sensitive centrality. We utilize the system-theoretic approach considering the network as a Linear Time-Invariant system. By observing the system response we can quantify the importance of each node. In addition, our study provides a robust tool set for various protective strategies. PMID:28030548

  3. Opinion formation on adaptive networks with intensive average degree

    NASA Astrophysics Data System (ADS)

    Schmittmann, B.; Mukhopadhyay, Abhishek

    2010-12-01

    We study the evolution of binary opinions on a simple adaptive network of N nodes. At each time step, a randomly selected node updates its state (“opinion”) according to the majority opinion of the nodes that it is linked to; subsequently, all links are reassigned with probability p˜ (q˜) if they connect nodes with equal (opposite) opinions. In contrast to earlier work, we ensure that the average connectivity (“degree”) of each node is independent of the system size (“intensive”), by choosing p˜ and q˜ to be of O(1/N) . Using simulations and analytic arguments, we determine the final steady states and the relaxation into these states for different system sizes. We find two absorbing states, characterized by perfect consensus, and one metastable state, characterized by a population split evenly between the two opinions. The relaxation time of this state grows exponentially with the number of nodes, N . A second metastable state, found in the earlier studies, is no longer observed.

  4. Rapid identifying high-influence nodes in complex networks

    NASA Astrophysics Data System (ADS)

    Song, Bo; Jiang, Guo-Ping; Song, Yu-Rong; Xia, Ling-Ling

    2015-10-01

    A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method (RIM) to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered (SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness, and eigenvector centrality methods. Project supported by the National Natural Science Foundation of China (Grant Nos. 61374180 and 61373136), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund Project, China (Grant No. 12YJAZH120), and the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. RLD201212).

  5. Measures of node centrality in mobile social networks

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxiang; Shi, Yan; Chen, Shanzhi

    2015-02-01

    Mobile social networks exploit human mobility and consequent device-to-device contact to opportunistically create data paths over time. While links in mobile social networks are time-varied and strongly impacted by human mobility, discovering influential nodes is one of the important issues for efficient information propagation in mobile social networks. Although traditional centrality definitions give metrics to identify the nodes with central positions in static binary networks, they cannot effectively identify the influential nodes for information propagation in mobile social networks. In this paper, we address the problems of discovering the influential nodes in mobile social networks. We first use the temporal evolution graph model which can more accurately capture the topology dynamics of the mobile social network over time. Based on the model, we explore human social relations and mobility patterns to redefine three common centrality metrics: degree centrality, closeness centrality and betweenness centrality. We then employ empirical traces to evaluate the benefits of the proposed centrality metrics, and discuss the predictability of nodes' global centrality ranking by nodes' local centrality ranking. Results demonstrate the efficiency of the proposed centrality metrics.

  6. Short paths in expander graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinberg, J.; Rubinfeld, R.

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less

  7. Statistical mechanics of scale-free gene expression networks

    NASA Astrophysics Data System (ADS)

    Gross, Eitan

    2012-12-01

    The gene co-expression networks of many organisms including bacteria, mice and man exhibit scale-free distribution. This heterogeneous distribution of connections decreases the vulnerability of the network to random attacks and thus may confer the genetic replication machinery an intrinsic resilience to such attacks, triggered by changing environmental conditions that the organism may be subject to during evolution. This resilience to random attacks comes at an energetic cost, however, reflected by the lower entropy of the scale-free distribution compared to the more homogenous, random network. In this study we found that the cell cycle-regulated gene expression pattern of the yeast Saccharomyces cerevisiae obeys a power-law distribution with an exponent α = 2.1 and an entropy of 1.58. The latter is very close to the maximal value of 1.65 obtained from linear optimization of the entropy function under the constraint of a constant cost function, determined by the average degree connectivity . We further show that the yeast's gene expression network can achieve scale-free distribution in a process that does not involve growth but rather via re-wiring of the connections between nodes of an ordered network. Our results support the idea of an evolutionary selection, which acts at the level of the protein sequence, and is compatible with the notion of greater biological importance of highly connected nodes in the protein interaction network. Our constrained re-wiring model provides a theoretical framework for a putative thermodynamically driven evolutionary selection process.

  8. Joint estimation of preferential attachment and node fitness in growing complex networks

    NASA Astrophysics Data System (ADS)

    Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi

    2016-09-01

    Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.

  9. The robustness of multiplex networks under layer node-based attack

    PubMed Central

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-01-01

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870

  10. The robustness of multiplex networks under layer node-based attack.

    PubMed

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-04-14

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.

  11. Joint estimation of preferential attachment and node fitness in growing complex networks

    PubMed Central

    Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi

    2016-01-01

    Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314

  12. Optimal navigation for characterizing the role of the nodes in complex networks

    NASA Astrophysics Data System (ADS)

    Cajueiro, Daniel O.

    2010-05-01

    In this paper, we explore how the approach of optimal navigation (Cajueiro (2009) [33]) can be used to evaluate the centrality of a node and to characterize its role in a network. Using the subway network of Boston and the London rapid transit rail as proxies for complex networks, we show that the centrality measures inherited from the approach of optimal navigation may be considered if one desires to evaluate the centrality of the nodes using other pieces of information beyond the geometric properties of the network. Furthermore, evaluating the correlations between these inherited measures and classical measures of centralities such as the degree of a node and the characteristic path length of a node, we have found two classes of results. While for the London rapid transit rail, these inherited measures can be easily explained by these classical measures of centrality, for the Boston underground transportation system we have found nontrivial results.

  13. Modeling Citation Networks Based on Vigorousness and Dormancy

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Wen; Zhang, Li-Jie; Yang, Guo-Hong; Xu, Xin-Jian

    2013-08-01

    In citation networks, the activity of papers usually decreases with age and dormant papers may be discovered and become fashionable again. To model this phenomenon, a competition mechanism is suggested which incorporates two factors: vigorousness and dormancy. Based on this idea, a citation network model is proposed, in which a node has two discrete stage: vigorous and dormant. Vigorous nodes can be deactivated and dormant nodes may be activated and become vigorous. The evolution of the network couples addition of new nodes and state transitions of old ones. Both analytical calculation and numerical simulation show that the degree distribution of nodes in generated networks displays a good right-skewed behavior. Particularly, scale-free networks are obtained as the deactivated vertex is target selected and exponential networks are realized for the random-selected case. Moreover, the measurement of four real-world citation networks achieves a good agreement with the stochastic model.

  14. A biologically inspired immunization strategy for network epidemiology.

    PubMed

    Liu, Yang; Deng, Yong; Jusup, Marko; Wang, Zhen

    2016-07-07

    Well-known immunization strategies, based on degree centrality, betweenness centrality, or closeness centrality, either neglect the structural significance of a node or require global information about the network. We propose a biologically inspired immunization strategy that circumvents both of these problems by considering the number of links of a focal node and the way the neighbors are connected among themselves. The strategy thus measures the dependence of the neighbors on the focal node, identifying the ability of this node to spread the disease. Nodes with the highest ability in the network are the first to be immunized. To test the performance of our method, we conduct numerical simulations on several computer-generated and empirical networks, using the susceptible-infected-recovered (SIR) model. The results show that the proposed strategy largely outperforms the existing well-known strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Efficient packet transportation on complex networks with nonuniform node capacity distribution

    NASA Astrophysics Data System (ADS)

    He, Xuan; Niu, Kai; He, Zhiqiang; Lin, Jiaru; Jiang, Zhong-Yuan

    2015-03-01

    Provided that node delivery capacity may be not uniformly distributed in many realistic networks, we present a node delivery capacity distribution in which each node capacity is composed of uniform fraction and degree related proportion. Based on the node delivery capacity distribution, we construct a novel routing mechanism called efficient weighted routing (EWR) strategy to enhance network traffic capacity and transportation efficiency. Compared with the shortest path routing and the efficient routing strategies, the EWR achieves the highest traffic capacity. After investigating average path length, network diameter, maximum efficient betweenness, average efficient betweenness, average travel time and average traffic load under extensive simulations, it indicates that the EWR appears to be a very effective routing method. The idea of this routing mechanism gives us a good insight into network science research. The practical use of this work is prospective in some real complex systems such as the Internet.

  16. Autonomous solutions for powering wireless sensor nodes in rivers

    NASA Astrophysics Data System (ADS)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  17. Decision-Tree Formulation With Order-1 Lateral Execution

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive-disjunctive paths to a flattened conjunctive form composed only of equality checks when possible. If each reduced conjunctive form contains only equality checks and all of these forms use the same variables, then the decision tree can be reduced to an order-one operation through a table lookup. The speedup to order one is accomplished by distributing each decision variable over a surface of a multidimensional object by mapping the equality constant to an index

  18. A Six-Node Curved Triangular Element and a Four-Node Quadrilateral Element for Analysis of Laminated Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Martin, C. Wayne; Breiner, David M.; Gupta, Kajal K. (Technical Monitor)

    2004-01-01

    Mathematical development and some computed results are presented for Mindlin plate and shell elements, suitable for analysis of laminated composite and sandwich structures. These elements use the conventional 3 (plate) or 5 (shell) nodal degrees of freedom, have no communicable mechanisms, have no spurious shear energy (no shear locking), have no spurious membrane energy (no membrane locking) and do not require arbitrary reduction of out-of-plane shear moduli or under-integration. Artificial out-of-plane rotational stiffnesses are added at the element level to avoid convergence problems or singularity due to flat spots in shells. This report discusses a 6-node curved triangular element and a 4-node quadrilateral element. Findings show that in regular rectangular meshes, the Martin-Breiner 6-node triangular curved shell (MB6) is approximately equivalent to the conventional 8-node quadrilateral with integration. The 4-node quadrilateral (MB4) has very good accuracy for a 4-node element, and may be preferred in vibration analysis because of narrower bandwidth. The mathematical developments used in these elements, those discussed in the seven appendices, have been applied to elements with 3, 4, 6, and 10 nodes and can be applied to other nodal configurations.

  19. Arterial spin labeling perfusion-weighted MR imaging: correlation of tumor blood flow with pathological degree of tumor differentiation, clinical stage and nodal metastasis of head and neck squamous cell carcinoma.

    PubMed

    Abdel Razek, Ahmed Abdel Khalek; Nada, Nadia

    2018-05-01

    The prognostic parameters of head and neck squamous cell carcinoma (HNSCC) include the pathological degree of tumor differentiation, clinical staging, and presence of metastatic cervical lymph nodes. To correlate tumor blood flow (TBF) acquired from arterial spin labeling (ASL) perfusion-weighted MR imaging with pathological degree of tumor differentiation, clinical stage, and nodal metastasis of HNSCC. Retrospective analysis of 43 patients (31 male, 12 female with a mean age of 65 years) with HNSCC that underwent ASL of head and neck and TBF of HNSCC was calculated. Tumor staging and metastatic lymph nodes were determined. The stages of HNSCC were stage 1 (n = 7), stage II (n = 12), stage III (n = 11) and stage IV (n = 13). Metastatic cervical lymph nodes were seen in 24 patients. The degree of tumor differentiation was determined through pathological examination. The mean TBF of poorly and undifferentiated HNSCC (157.4 ± 6.7 mL/100 g/min) was significantly different (P = 0.001) than that of well-to-moderately differentiated (142.5 ± 5.7 mL/100 g/min) HNSCC. The cut-off TBF used to differentiate well-moderately differentiated from poorly and undifferentiated HNSCC was 152 mL/100 g/min with an area under the curve of 0.658 and accuracy of 88.4%. The mean TBF of stages I, II (146.10 ± 9.1 mL/100 g/min) was significantly different (P = 0.014) than that of stages III, IV (153.33 ± 9.3 mL/100 g/min) HNSCC. The cut-off TBF used to differentiate stages I, II from stages III and IV was 148 mL/100 g/min with an area under the curve of 0.701 and accuracy of 69.8%. The TBF was higher in patients with metastatic cervical lymph nodes. The cut-off TBF suspect metastatic node was 147 mL/100 g/min with an area under the curve of 0.671 and accuracy of 67.4%. TBF is a non-invasive imaging parameter that well correlated with pathological degree of tumor differentiation, clinical stage of tumor and nodal metastasis of HNSCC.

  20. Identifying influential spreaders in complex networks based on kshell hybrid method

    NASA Astrophysics Data System (ADS)

    Namtirtha, Amrita; Dutta, Animesh; Dutta, Biswanath

    2018-06-01

    Influential spreaders are the key players in maximizing or controlling the spreading in a complex network. Identifying the influential spreaders using kshell decomposition method has become very popular in the recent time. In the literature, the core nodes i.e. with the largest kshell index of a network are considered as the most influential spreaders. We have studied the kshell method and spreading dynamics of nodes using Susceptible-Infected-Recovered (SIR) epidemic model to understand the behavior of influential spreaders in terms of its topological location in the network. From the study, we have found that every node in the core area is not the most influential spreader. Even a strategically placed lower shell node can also be a most influential spreader. Moreover, the core area can also be situated at the periphery of the network. The existing indexing methods are only designed to identify the most influential spreaders from core nodes and not from lower shells. In this work, we propose a kshell hybrid method to identify highly influential spreaders not only from the core but also from lower shells. The proposed method comprises the parameters such as kshell power, node's degree, contact distance, and many levels of neighbors' influence potential. The proposed method is evaluated using nine real world network datasets. In terms of the spreading dynamics, the experimental results show the superiority of the proposed method over the other existing indexing methods such as the kshell method, the neighborhood coreness centrality, the mixed degree decomposition, etc. Furthermore, the proposed method can also be applied to large-scale networks by considering the three levels of neighbors' influence potential.

  1. Optimal topology to minimizing congestion in connected communication complex network

    NASA Astrophysics Data System (ADS)

    Benyoussef, M.; Ez-Zahraouy, H.; Benyoussef, A.

    In this paper, a new model of the interdependent complex network is proposed, based on two assumptions that (i) the capacity of a node depends on its degree, and (ii) the traffic load depends on the distribution of the links in the network. Based on these assumptions, the presented model proposes a method of connection not based on the node having a higher degree but on the region containing hubs. It is found that the final network exhibits two kinds of degree distribution behavior, depending on the kind and the way of the connection. This study reveals a direct relation between network structure and traffic flow. It is found that pc the point of transition between the free flow and the congested phase depends on the network structure and the degree distribution. Moreover, this new model provides an improvement in the traffic compared to the results found in a single network. The same behavior of degree distribution found in a BA network and observed in the real world is obtained; except for this model, the transition point between the free phase and congested phase is much higher than the one observed in a network of BA, for both static and dynamic protocols.

  2. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.

  3. Influence maximization in complex networks through optimal percolation

    NASA Astrophysics Data System (ADS)

    Morone, Flaviano; Makse, Hernán A.

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  4. Influence maximization in complex networks through optimal percolation.

    PubMed

    Morone, Flaviano; Makse, Hernán A

    2015-08-06

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  5. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    NASA Astrophysics Data System (ADS)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  6. A generalized approach to complex networks

    NASA Astrophysics Data System (ADS)

    Costa, L. Da F.; da Rocha, L. E. C.

    2006-03-01

    This work describes how the formalization of complex network concepts in terms of discrete mathematics, especially mathematical morphology, allows a series of generalizations and important results ranging from new measurements of the network topology to new network growth models. First, the concepts of node degree and clustering coefficient are extended in order to characterize not only specific nodes, but any generic subnetwork. Second, the consideration of distance transform and rings are used to further extend those concepts in order to obtain a signature, instead of a single scalar measurement, ranging from the single node to whole graph scales. The enhanced discriminative potential of such extended measurements is illustrated with respect to the identification of correspondence between nodes in two complex networks, namely a protein-protein interaction network and a perturbed version of it.

  7. Cascading failures mechanism based on betweenness-degree ratio distribution with different connecting preferences

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo

    We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that we use the connection between the node ability coefficient and distribution of betweenness-degree ratio to explain the cascading failure mechanism. In simulations, we verify the correctness of our derivations. By changing connecting preferences, we find scale free networks with a slight assortativity, which performs better both in robust area and vulnerable area.

  8. Community Detection on the GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    We present and evaluate a new GPU algorithm based on the Louvain method for community detection. Our algorithm is the first for this problem that parallelizes the access to individual edges. In this way we can fine tune the load balance when processing networks with nodes of highly varying degrees. This is achieved by scaling the number of threads assigned to each node according to its degree. Extensive experiments show that we obtain speedups up to a factor of 270 compared to the sequential algorithm. The algorithm consistently outperforms other recent shared memory implementations and is only one order ofmore » magnitude slower than the current fastest parallel Louvain method running on a Blue Gene/Q supercomputer using more than 500K threads.« less

  9. Assortative Mating: Encounter-Network Topology and the Evolution of Attractiveness

    PubMed Central

    Dipple, S.; Jia, T.; Caraco, T.; Korniss, G.; Szymanski, B. K.

    2017-01-01

    We model a social-encounter network where linked nodes match for reproduction in a manner depending probabilistically on each node’s attractiveness. The developed model reveals that increasing either the network’s mean degree or the “choosiness” exercised during pair formation increases the strength of positive assortative mating. That is, we note that attractiveness is correlated among mated nodes. Their total number also increases with mean degree and selectivity during pair formation. By iterating over the model’s mapping of parents onto offspring across generations, we study the evolution of attractiveness. Selection mediated by exclusion from reproduction increases mean attractiveness, but is rapidly balanced by skew in the offspring distribution of highly attractive mated pairs. PMID:28345625

  10. Dynamic weight evolution network with preferential attachment

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Xie, Qi; Li, Lei

    2014-12-01

    A dynamic weight evolution network with preferential attachment is introduced. The network includes two significant characteristics. (i) Topological growth: triggered by newly added node with M links at each time step, each new edge carries an initial weight growing nonlinearly with time. (ii) Weight dynamics: the weight between two existing nodes experiences increasing or decreasing in a nonlinear way. By using continuum theory and mean-field method, we study the strength, the degree, the weight and their distributions. We find that the distributions exhibit a power-law feature. In particular, the relationship between the degree and the strength is nonlinear, and the power-law exponents of the three are the same. All the theoretical predictions are successfully contrasted with numerical simulations.

  11. Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney

    2018-01-01

    Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) {KQ}≈ 1.3× {10}5 per node and error threshold 1.1× {10}-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

  12. 3D Model of Cytokinetic Contractile Ring Assembly: Node-Mediated and Backup Pathways

    NASA Astrophysics Data System (ADS)

    Bidone, Tamara; Vavylonis, Dimitrios

    Cytokinetic ring assembly in model organism fission yeast is a dynamic process, involving condensation of a network of actin filaments and myosin motors bound to the cell membrane through cortical nodes. A 3D computational model of ring assembly illustrates how the combined activities of myosin motors, filament crosslinkers and actin turnover lead to robust ring formation [Bidone et al. Biophys. J, 2014]. We modeled the importance of the physical properties of node movement along the cell membrane and of myosin recruitment to nodes. Experiments by D. Zhang (Temasek Life Sciences) show that tethering of the cortical endoplasmic reticulum (ER) to the plasma membrane modulates the speed of node condensation and the degree of node clumping. We captured the trend observed in these experiments by changes in the node drag coefficient and initial node distribution in simulations PM. The model predicted that reducing crosslinking activities in ER tethering mutants with faster node speed enhances actomyosin clumping. We developed a model of how tilted and/or misplaced rings assemble in cells that lack the node structural component anillin-like Mid1 and thus fail to recruit myosin II to nodes independently of actin. If actin-dependent binding of diffusive myosin to the cortex is incorporated into the model, it generates progressively elongating cortical actomyosin strands with fluctuating actin bundles at the tails. These stands often close into a ring, similar to observations by the group of J.Q. Wu (The Ohio State University). NIH R01GM098430.

  13. A Benes-like theorem for the shuffle-exchange graph

    NASA Technical Reports Server (NTRS)

    Schwabe, Eric J.

    1992-01-01

    One of the first theorems on permutation routing, proved by V. E. Beness (1965), shows that given a set of source-destination pairs in an N-node butterfly network with at most a constant number of sources or destinations in each column of the butterfly, there exists a set of paths of lengths O(log N) connecting each pair such that the total congestion is constant. An analogous theorem yielding constant-congestion paths for off-line routing in the shuffle-exchange graph is proved here. The necklaces of the shuffle-exchange graph play the same structural role as the columns of the butterfly in Beness' theorem.

  14. Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment

    NASA Astrophysics Data System (ADS)

    Small, Michael; Tse, C. K.

    2005-06-01

    We propose a new four state model for disease transmission and illustrate the model with data from the 2003 SARS epidemic in Hong Kong. The critical feature of this model is that the community is modelled as a small-world network of interconnected nodes. Each node is linked to a fixed number of immediate neighbors and a random number of geographically remote nodes. Transmission can only propagate between linked nodes. This model exhibits two features typical of SARS transmission: geographically localized outbreaks and “super-spreaders”. Neither of these features are evident in standard susceptible-infected-removed models of disease transmission. Our analysis indicates that “super-spreaders” may occur even if the infectiousness of all infected individuals is constant. Moreover, we find that nosocomial transmission in Hong Kong directly contributed to the severity of the outbreak and that by limiting individual exposure time to 3-5 days the extent of the SARS epidemic would have been minimal.

  15. A bipartite fitness model for online music streaming services

    NASA Astrophysics Data System (ADS)

    Pongnumkul, Suchit; Motohashi, Kazuyuki

    2018-01-01

    This paper proposes an evolution model and an analysis of the behavior of music consumers on online music streaming services. While previous studies have observed power-law degree distributions of usage in online music streaming services, the underlying behavior of users has not been well understood. Users and songs can be described using a bipartite network where an edge exists between a user node and a song node when the user has listened that song. The growth mechanism of bipartite networks has been used to understand the evolution of online bipartite networks Zhang et al. (2013). Existing bipartite models are based on a preferential attachment mechanism László Barabási and Albert (1999) in which the probability that a user listens to a song is proportional to its current popularity. This mechanism does not allow for two types of real world phenomena. First, a newly released song with high quality sometimes quickly gains popularity. Second, the popularity of songs normally decreases as time goes by. Therefore, this paper proposes a new model that is more suitable for online music services by adding fitness and aging functions to the song nodes of the bipartite network proposed by Zhang et al. (2013). Theoretical analyses are performed for the degree distribution of songs. Empirical data from an online streaming service, Last.fm, are used to confirm the degree distribution of the object nodes. Simulation results show improvements from a previous model. Finally, to illustrate the application of the proposed model, a simplified royalty cost model for online music services is used to demonstrate how the changes in the proposed parameters can affect the costs for online music streaming providers. Managerial implications are also discussed.

  16. Conformation and Dynamics of a Flexible Sheet in Solvent Media by Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Anderson, Kelly; Heinz, Hendrik; Farmer, Barry

    2005-03-01

    Flexibility of the clay sheet is limited even in the ex-foliated state in some solvent media. A coarse grained model is used to investigate dynamics and conformation of a flexible sheet to model such a clay platelet in an effective solvent medium on a cubic lattice of size L^3 with lattice constant a. The undeformed sheet is described by a square lattice of size Ls^2, where, each node of the sheet is represented by the unit cube of the cubic lattice and 2a is the minimum distance between the nearest neighbor nodes to incorporate the excluded volume constraints. Additionally, each node interacts with neighboring nodes and solvent (empty) sites within a range ri. Each node execute their stochastic motion with the Metropolis algorithm subject to bond length fluctuation and excluded volume constraints. Mean square displacements of the center node and that of its center of mass are investigated as a function of time step for a set of these parameters. The radius of gyration (Rg) is also examined concurrently to understand its relaxation. Multi-scale segmental dynamics of the sheet is studied by identifying the power-law dependence in various time regimes. Relaxation of Rg and its dependence of temperature are planned to be discussed.

  17. Multi-attribute integrated measurement of node importance in complex networks.

    PubMed

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  18. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  19. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  20. Eradicating catastrophic collapse in interdependent networks via reinforced nodes

    PubMed Central

    Yuan, Xin; Hu, Yanqing; Havlin, Shlomo

    2017-01-01

    In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter—the functioning component—comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdős–Rényi (ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks. PMID:28289204

  1. Node Survival in Networks under Correlated Attacks

    PubMed Central

    Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten

    2015-01-01

    We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635

  2. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system.

    PubMed

    Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N

    2005-03-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.

  3. Spreading dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  4. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  5. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    PubMed Central

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899

  6. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    PubMed

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  7. Implementation of the glacial rebound prestress advection correction in general-purpose finite element analysis software: Springs versus foundations

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Lund, Björn; Hieronymus, Christoph

    2012-03-01

    When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.

  8. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  9. A new measure based on degree distribution that links information theory and network graph analysis

    PubMed Central

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  10. Finding influential nodes for integration in brain networks using optimal percolation theory.

    PubMed

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  11. Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs

    NASA Astrophysics Data System (ADS)

    Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han

    2018-01-01

    A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.

  12. Node-based measures of connectivity in genetic networks.

    PubMed

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.

  13. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  14. Link prediction based on local weighted paths for complex networks

    NASA Astrophysics Data System (ADS)

    Yao, Yabing; Zhang, Ruisheng; Yang, Fan; Yuan, Yongna; Hu, Rongjing; Zhao, Zhili

    As a significant problem in complex networks, link prediction aims to find the missing and future links between two unconnected nodes by estimating the existence likelihood of potential links. It plays an important role in understanding the evolution mechanism of networks and has broad applications in practice. In order to improve prediction performance, a variety of structural similarity-based methods that rely on different topological features have been put forward. As one topological feature, the path information between node pairs is utilized to calculate the node similarity. However, many path-dependent methods neglect the different contributions of paths for a pair of nodes. In this paper, a local weighted path (LWP) index is proposed to differentiate the contributions between paths. The LWP index considers the effect of the link degrees of intermediate links and the connectivity influence of intermediate nodes on paths to quantify the path weight in the prediction procedure. The experimental results on 12 real-world networks show that the LWP index outperforms other seven prediction baselines.

  15. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search

    PubMed Central

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-01-01

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659

  16. Complex networks repair strategies: Dynamic models

    NASA Astrophysics Data System (ADS)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.

  17. Penile Cancer: Contemporary Lymph Node Management.

    PubMed

    O'Brien, Jonathan S; Perera, Marlon; Manning, Todd; Bozin, Mike; Cabarkapa, Sonja; Chen, Emily; Lawrentschuk, Nathan

    2017-06-01

    In penile cancer, the optimal diagnostics and management of metastatic lymph nodes are not clear. Advances in minimally invasive staging, including dynamic sentinel lymph node biopsy, have widened the diagnostic repertoire of the urologist. We aimed to provide an objective update of the recent trends in the management of penile squamous cell carcinoma, and inguinal and pelvic lymph node metastases. We systematically reviewed several medical databases, including the Web of Science® (with MEDLINE®), Embase® and Cochrane databases, according to PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines. The search terms used were penile cancer, lymph node, sentinel node, minimally invasive, surgery and outcomes, alone and in combination. Articles pertaining to the management of lymph nodes in penile cancer were reviewed, including original research, reviews and clinical guidelines published between 1980 and 2016. Accurate and minimally invasive lymph node staging is of the utmost importance in the surgical management of penile squamous cell carcinoma. In patients with clinically node negative disease, a growing body of evidence supports the use of sentinel lymph node biopsies. Dynamic sentinel lymph node biopsy exposes the patient to minimal risk, and results in superior sensitivity and specificity profiles compared to alternate nodal staging techniques. In the presence of locoregional disease, improvements in inguinal or pelvic lymphadenectomy have reduced morbidity and improved oncologic outcomes. A multimodal approach of chemotherapy and surgery has demonstrated a survival benefit for patients with advanced disease. Recent developments in lymph node management have occurred in penile cancer, such as minimally invasive lymph node diagnosis and intervention strategies. These advances have been met with a degree of controversy in the contemporary literature. Current data suggest that dynamic sentinel lymph node biopsy provides excellent sensitivity and specificity for detecting lymph node metastases. More robust long-term data on multicenter patient cohorts are required to determine the optimal management of lymph nodes in penile cancer. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Multiple-predators-based capture process on complex networks

    NASA Astrophysics Data System (ADS)

    Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi

    2017-03-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.

  19. A Scalable Heuristic for Viral Marketing Under the Tipping Model

    DTIC Science & Technology

    2013-09-01

    removal of high-degree nodes. The rest of the paper is organized as follows. In Section 2, we provide formal definitions of the tipping model. This is...that must be activated for it to become activate as well. A Scalable Heuristic for Viral Marketing Under the Tipping Model 3 Definition 1 (Threshold...returns a set of active nodes after one time step. Definition 2 (Activation Function) Given a threshold function, θ, an ac- tivation function Aθ maps

  20. Interacting epidemics on overlay networks

    NASA Astrophysics Data System (ADS)

    Funk, Sebastian; Jansen, Vincent A. A.

    2010-03-01

    The interaction between multiple pathogens spreading on networks connecting a given set of nodes presents an ongoing theoretical challenge. Here, we aim to understand such interactions by studying bond percolation of two different processes on overlay networks of arbitrary joint degree distribution. We find that an outbreak of a first pathogen providing immunity to another one spreading subsequently on a second network connecting the same set of nodes does so most effectively if the degrees on the two networks are positively correlated. In that case, the protection is stronger the more heterogeneous the degree distributions of the two networks are. If, on the other hand, the degrees are uncorrelated or negatively correlated, increasing heterogeneity reduces the potential of the first process to prevent the second one from reaching epidemic proportions. We generalize these results to cases where the edges of the two networks overlap to arbitrary amount, or where the immunity granted is only partial. If both processes grant immunity to each other, we find a wide range of possible situations of coexistence or mutual exclusion, depending on the joint degree distribution of the underlying networks and the amount of immunity granted mutually. These results generalize the concept of a coexistence threshold and illustrate the impact of large-scale network structure on the interaction between multiple spreading agents.

  1. Leaves as composites of latent developmental and evolutionary shapes

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Additionally, plants may also produce leaves with different shapes at successive nodes. Because leaf shape can vary in many different ways, theoretically the effects of distinct proces...

  2. Heterogeneous delivering capability promotes traffic efficiency in complex networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Bo; Guan, Xiang-Min; Zhang, Xue-Jun

    2015-12-01

    Traffic is one of the most fundamental dynamical processes in networked systems. With the homogeneous delivery capability of nodes, the global dynamic routing strategy proposed by Ling et al. [Phys. Rev. E81, 016113 (2010)] adequately uses the dynamic information during the process and thus it can reach a quite high network capacity. In this paper, based on the global dynamic routing strategy, we proposed a heterogeneous delivery allocation strategy of nodes on scale-free networks with consideration of nodes degree. It is found that the network capacity as well as some other indexes reflecting transportation efficiency are further improved. Our work may be useful for the design of more efficient routing strategies in communication or transportation systems.

  3. Winding numbers of nodal points in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Chichinadze, Dmitry V.; Chubukov, Andrey V.

    2018-03-01

    We analyze the nodal points in multiorbital Fe-based superconductors from a topological perspective. We consider the s+- gap structure with accidental nodes, and the d -wave gap with nodes along the symmetry directions. In both cases, the nodal points can be moved by varying an external parameter, e.g., a degree of interpocket pairing. Eventually, the nodes merge and annihilate via a Lifshitz-type transition. We discuss the Lifshitz transition in Fe-based superconductors from a topological point of view. We show, both analytically and numerically, that the merging nodal points have winding numbers of opposite sign. This is consistent with the general reasoning that the total winding number is a conserved quantity in the Lifshitz transition.

  4. Identifying the starting point of a spreading process in complex networks.

    PubMed

    Comin, Cesar Henrique; Costa, Luciano da Fontoura

    2011-11-01

    When dealing with the dissemination of epidemics, one important question that can be asked is the location where the contamination began. In this paper, we analyze three spreading schemes and propose and validate an effective methodology for the identification of the source nodes. The method is based on the calculation of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world network, the email network of the University Rovira i Virgili.

  5. Prediction model of sinoatrial node field potential using high order partial least squares.

    PubMed

    Feng, Yu; Cao, Hui; Zhang, Yanbin

    2015-01-01

    High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).

  6. High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafti, D.

    1995-12-01

    The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.

  7. Randomizing growing networks with a time-respecting null model

    NASA Astrophysics Data System (ADS)

    Ren, Zhuo-Ming; Mariani, Manuel Sebastian; Zhang, Yi-Cheng; Medo, Matúš

    2018-05-01

    Complex networks are often used to represent systems that are not static but grow with time: People make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the statistical significance of measurements made on such networks, we propose a randomization methodology—a time-respecting null model—that preserves both the network's degree sequence and the time evolution of individual nodes' degree values. By preserving the temporal linking patterns of the analyzed system, the proposed model is able to factor out the effect of the system's temporal patterns on its structure. We apply the model to the citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the important implications of this finding on the information provided by paradigmatic node centrality metrics such as indegree and Google's PageRank. The randomization methodology proposed here can be used to assess the significance of any structural property in growing networks, which could bring new insights into the problems where null models play a critical role, such as the detection of communities and network motifs.

  8. Statistics of Weighted Brain Networks Reveal Hierarchical Organization and Gaussian Degree Distribution

    PubMed Central

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable. PMID:22761649

  9. Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution.

    PubMed

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable.

  10. Latent developmental and evolutionary shapes embedded within the grapevine leaf

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processe...

  11. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  12. Effectiveness of closure of public places with time delay in disease control.

    PubMed

    Wang, Zhenggang; Szeto, Kwok Yip; Leung, Frederick Chi-Ching

    2008-08-25

    A theoretical basis for the evaluation of the effciency of quarantine measure is developed in a SIR model with time delay. In this model, the effectiveness of the closure of public places such as schools in disease control, modeled as a high degree node in a social network, is evaluated by considering the effect of the time delay in the identification of the infected. In the context of the SIR model, the relation between the number of infectious individuals who are identified with time delay and then quarantined and those who are not identified and continue spreading the virus are investigated numerically. The social network for the simulation is modeled by a scale free network. Closure measures are applied to those infected nodes with high degrees. The effectiveness of the measure can be controlled by the present value of the critical degree K(C): only those nodes with degree higher than K(C) will be quarantined. The cost C(Q) incurred for the closure measure is assumed to be proportional to the total links rendered inactive as a result of the measure, and generally decreases with K(C), while the medical cost C(Q) incurred for virus spreading increases with K(C). The total social cost (C(M) + C(Q)) will have a minimum at a critical K(*), which depends on the ratio of medical cost coeffcient alpha(M) and closure cost coeffcient alpha(Q). Our simulation results demonstrate a mathematical procedure to evaluate the effciency of quarantine measure. Although the numerical work is based on a scale free network, the procedure can be readily generalized and applied to a more realistic social network to determine the proper closure measure in future epidemics.

  13. The fastest spreader in SIS epidemics on networks

    NASA Astrophysics Data System (ADS)

    He, Zhidong; Van Mieghem, Piet

    2018-05-01

    Identifying the fastest spreaders in epidemics on a network helps to ensure an efficient spreading. By ranking the average spreading time for different spreaders, we show that the fastest spreader may change with the effective infection rate of a SIS epidemic process, which means that the time-dependent influence of a node is usually strongly coupled to the dynamic process and the underlying network. With increasing effective infection rate, we illustrate that the fastest spreader changes from the node with the largest degree to the node with the shortest flooding time. (The flooding time is the minimum time needed to reach all other nodes if the process is reduced to a flooding process.) Furthermore, by taking the local topology around the spreader and the average flooding time into account, we propose the spreading efficiency as a metric to quantify the efficiency of a spreader and identify the fastest spreader, which is adaptive to different infection rates in general networks.

  14. Structural Transitions in Densifying Networks

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S.

    2016-11-01

    We introduce a minimal generative model for densifying networks in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability p . The networks that emerge from this copying mechanism are sparse for p <1/2 and dense (average degree increasing with number of nodes N ) for p ≥1/2 . The behavior in the dense regime is especially rich; for example, individual network realizations that are built by copying are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at p =2/3 , 3/4 , 4/5 , etc., where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as N →∞ .

  15. Weak signal transmission in complex networks and its application in detecting connectivity.

    PubMed

    Liang, Xiaoming; Liu, Zonghua; Li, Baowen

    2009-10-01

    We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.

  16. Modelling students' knowledge organisation: Genealogical conceptual networks

    NASA Astrophysics Data System (ADS)

    Koponen, Ismo T.; Nousiainen, Maija

    2018-04-01

    Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.

  17. Inference for dynamics of continuous variables: the extended Plefka expansion with hidden nodes

    NASA Astrophysics Data System (ADS)

    Bravi, B.; Sollich, P.

    2017-06-01

    We consider the problem of a subnetwork of observed nodes embedded into a larger bulk of unknown (i.e. hidden) nodes, where the aim is to infer these hidden states given information about the subnetwork dynamics. The biochemical networks underlying many cellular and metabolic processes are important realizations of such a scenario as typically one is interested in reconstructing the time evolution of unobserved chemical concentrations starting from the experimentally more accessible ones. We present an application to this problem of a novel dynamical mean field approximation, the extended Plefka expansion, which is based on a path integral description of the stochastic dynamics. As a paradigmatic model we study the stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings. The resulting joint distribution is known to be Gaussian and this allows us to fully characterize the posterior statistics of the hidden nodes. In particular the equal-time hidden-to-hidden variance—conditioned on observations—gives the expected error at each node when the hidden time courses are predicted based on the observations. We assess the accuracy of the extended Plefka expansion in predicting these single node variances as well as error correlations over time, focussing on the role of the system size and the number of observed nodes.

  18. Traffic-driven epidemic spreading on scale-free networks with tunable degree distribution

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Bing-Hong

    2016-04-01

    We study the traffic-driven epidemic spreading on scale-free networks with tunable degree distribution. The heterogeneity of networks is controlled by the exponent γ of power-law degree distribution. It is found that the epidemic threshold is minimized at about γ=2.2. Moreover, we find that nodes with larger algorithmic betweenness are more likely to be infected. We expect our work to provide new insights in to the effect of network structures on traffic-driven epidemic spreading.

  19. Connectivity, Coverage and Placement in Wireless Sensor Networks

    PubMed Central

    Li, Ji; Andrew, Lachlan L.H.; Foh, Chuan Heng; Zukerman, Moshe; Chen, Hsiao-Hwa

    2009-01-01

    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes. PMID:22408474

  20. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    PubMed

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program.

  1. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program. PMID:27873953

  2. Controlling the self-organizing dynamics in a sandpile model on complex networks by failure tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Pfenninger, Stefan

    In this paper, we propose a strategy to control the self-organizing dynamics of the Bak-Tang-Wiesenfeld (BTW) sandpile model on complex networks by allowing some degree of failure tolerance for the nodes and introducing additional active dissipation while taking the risk of possible node damage. We show that the probability for large cascades significantly increases or decreases respectively when the risk for node damage outweighs the active dissipation and when the active dissipation outweighs the risk for node damage. By considering the potential additional risk from node damage, a non-trivial optimal active dissipation control strategy which minimizes the total cost inmore » the system can be obtained. Under some conditions the introduced control strategy can decrease the total cost in the system compared to the uncontrolled model. Moreover, when the probability of damaging a node experiencing failure tolerance is greater than the critical value, then no matter how successful the active dissipation control is, the total cost of the system will have to increase. This critical damage probability can be used as an indicator of the robustness of a network or system. Copyright (C) EPLA, 2015« less

  3. Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan

    2018-01-01

    In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.

  4. Kinetics of Social Contagion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János

    2015-11-01

    Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters.

  5. Electrophysiology of Axonal Constrictions

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  6. Dynamic model of time-dependent complex networks.

    PubMed

    Hill, Scott A; Braha, Dan

    2010-10-01

    The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.

  7. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  8. Direct trust-based security scheme for RREQ flooding attack in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Dutta, Kamlesh

    2017-06-01

    The routing algorithms in MANETs exhibit distributed and cooperative behaviour which makes them easy target for denial of service (DoS) attacks. RREQ flooding attack is a flooding-type DoS attack in context to Ad hoc On Demand Distance Vector (AODV) routing protocol, where the attacker broadcasts massive amount of bogus Route Request (RREQ) packets to set up the route with the non-existent or existent destination in the network. This paper presents direct trust-based security scheme to detect and mitigate the impact of RREQ flooding attack on the network, in which, every node evaluates the trust degree value of its neighbours through analysing the frequency of RREQ packets originated by them over a short period of time. Taking the node's trust degree value as the input, the proposed scheme is smoothly extended for suppressing the surplus RREQ and bogus RREQ flooding packets at one-hop neighbours during the route discovery process. This scheme distinguishes itself from existing techniques by not directly blocking the service of a normal node due to increased amount of RREQ packets in some unusual conditions. The results obtained throughout the simulation experiments clearly show the feasibility and effectiveness of the proposed defensive scheme.

  9. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  10. Community-Based Social Networks: Generation of Power Law Degree Distribution and IP Solutions to the KPP

    ERIC Educational Resources Information Center

    Wu, Wentao

    2012-01-01

    The objective of this thesis is two-fold: (1) to investigate the degree distribution property of community-based social networks (CSNs) and (2) to provide solutions to a pertinent problem, the Key Player Problem. In the first part of this thesis, we consider a growing community-based network in which the ability of nodes competing for links to new…

  11. Effect of early pregnancy on the expression of progesterone receptor and progesterone-induced blocking factor in ovine lymph node.

    PubMed

    Yang, Ling; Zang, Shengqin; Bai, Ying; Yao, Xiaolei; Zhang, Leying

    2017-04-15

    Lymph nodes are the sites where the immune reaction or suppression takes place. Progesterone (P4) exerts an essential effect of the immunomodulation on the maternal uterus during early pregnancy in ruminants. At present study, the inguinal lymph nodes were obtained at day 16 of non-pregnancy, days 13, 16 and 25 of pregnancy (n = 3 for each group) in ewes, and RT-PCR assay, western blot and immunohistochemistry analysis were used to analyze to the effect of early pregnancy on the expression of P4 receptor (PGR) and progesterone-induced blocking factor (PIBF) in the lymph nodes. Our results showed that the PGR and PIBF mRNA were up-regulated in the lymph nodes in pregnant ewes, and the PGR isoform (60 kDa) and the PIBF variant (75 kDa) were expressed constantly in the lymph nodes. However, there was no expression of the PGR isoform (40 kDa) and the PIBF variant (48 kDa) at day 16 of the estrous cycle. The immunohistochemistry results confirmed that the PGR and PIBF proteins were limited to the subcapsular sinus and trabeculae in the cortex, medullary sinuses, and were localized in the cytoplasm of the specific cells. This paper reports for the first time that early pregnancy exerts its effect on the specific cells in the lymph nodes through P4, which results in the up-regulated expression of the PGR mRNA and 40 kDa isoform, the PIBF mRNA and 48 kDa variant, and is involved in the immunoregulation of the lymph nodes through a cytosolic pathway in ewes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Jammer Localization Using Wireless Devices with Mitigation by Self-Configuration

    PubMed Central

    Ashraf, Qazi Mamoon; Habaebi, Mohamed Hadi; Islam, Md. Rafiqul

    2016-01-01

    Communication abilities of a wireless network decrease significantly in the presence of a jammer. This paper presents a reactive technique, to detect and locate the position of a jammer using a distributed collection of wireless sensor devices. We employ the theory of autonomic computing as a framework to design the same. Upon detection of a jammer, the affected nodes self-configure their power consumption which stops unnecessary waste of battery resources. The scheme then proceeds to determine the approximate location of the jammer by analysing the location of active nodes as well as the affected nodes. This is done by employing a circular curve fitting algorithm. Results indicate a high degree of accuracy in localizing a jammer has been achieved. PMID:27583378

  13. The surgical significance of the atrial branches of the coronary arteries.

    PubMed

    Busquet, J; Fontan, F; Anderson, R H; Ho, S Y; Davies, M J

    1984-08-01

    The great number of open heart operations now performed via the right atrium, makes knowledge of the arrangement of the atrial arteries, particularly the sinus node artery, every important for the surgeon. Although studied by anatomists, little attention has been paid to the surgical significance of these arteries. We have therefore examined the distribution of the right atrial arteries and the course of the sinus node artery in 50 normal adult hearts by classic dissection following, in 30 cases, postmortem angiographic studies. Two major arteries of the right atrium were found to be nearly constant. The anterior artery was present in 96% of the cases and supplied the sinus node artery in 32 cases. Of most surgical significance was the lateral artery found in 90% of the cases. This lateral artery was the principal artery to the free atrial wall and in one case gave rise to the sinus node artery. The well-established preponderance of origin of the sinus node artery from the right coronary system (66%) as opposed to the left (30%) was confirmed. Infrequently, a double supply (4%) was seen. Variability was found in the course of the nodal artery relative to the cavoatrial junction - precaval (58%), retrocaval (36%) or encircling (6%).

  14. Malignant melanoma (non-metastatic): sentinel lymph node biopsy.

    PubMed

    Pay, Andy

    2016-01-19

    The incidence of malignant melanoma has increased over the past 25 years in the UK, but death rates have remained fairly constant. The 5-year survival rate ranges from 20% to 95%, depending on disease stage. Risks are greater in white populations and in people with higher numbers of skin naevi. We conducted a systematic overview, aiming to answer the following clinical question: What is the evidence for performing a sentinel lymph node biopsy in people with malignant melanoma with clinically uninvolved lymph nodes? We searched: Medline, Embase, The Cochrane Library and other important databases up to October 2014 (Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview). At this update, searching of electronic databases retrieved 221 studies. After deduplication and removal of conference abstracts, 99 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 58 studies and the further review of 41 full publications. Of the 41 full articles evaluated, one systematic review and three RCTs were added at this update. We performed a GRADE evaluation for two PICO combinations. In this systematic overview, we evaluated the evidence for performing sentinel lymph node biopsy in people with malignant melanoma with clinically uninvolved lymph nodes.

  15. The vascularized groin lymph node flap (VGLN): Anatomical study and flap planning using multi-detector CT scanner. The golden triangle for flap harvesting.

    PubMed

    Zeltzer, Assaf A; Anzarut, Alexander; Braeckmans, Delphine; Seidenstuecker, Katrin; Hendrickx, Benoit; Van Hedent, Eddy; Hamdi, Moustapha

    2017-09-01

    A growing number of surgeons perform lymph node transfers for the treatment of lymphedema. When harvesting a vascularized lymph node groin flap (VGLNF) one of the major concerns is the potential risk of iatrogenic lymphedema of the donor-site. This article helps understanding of the lymph node distribution of the groin in order to minimize this risk. Fifty consecutive patients undergoing abdominal mapping by multi-detector CT scanner were included and 100 groins analyzed. The groin was divided in three zones (of which zone II is the safe zone) and lymph nodes were counted and mapped with their distances to anatomic landmarks. Further node units were plotted and counted. The average age was 48 years. A mean number of nodes of 6.5/groin was found. In zone II, which is our zone of interest a mean of 3.1 nodes were counted with a mean size of 7.8 mm. In three patients no nodes were found in zone II. In five patients nodes were seen in zone II but were not sufficient in size or number to be considered a lymph node unit. On average the lymph node unit in zone II was found to be 48.3 mm from the pubic tubercle when projected on a line from the pubic tubercle to the anterior superior iliac spine, 16.0 mm caudal to this line, and 20.4 mm above the groin crease. On average the lymph node unit was a mean of 41.7 mm lateral to the SCIV-SIEV confluence. This study provides increased understanding of the lymphatic anatomy in zone II of the groin flap and suggests a refined technique for designing the VGLNF. As with any flap there is a degree of individual patient variability. However, having information on the most common anatomy and flap design is of great value. © 2017 Wiley Periodicals, Inc.

  16. Uncovering Randomness and Success in Society

    PubMed Central

    Jalan, Sarika; Sarkar, Camellia; Madhusudanan, Anagha; Dwivedi, Sanjiv Kumar

    2014-01-01

    An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, “Bollywood”, can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry) in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations. PMID:24533073

  17. A framework for detecting communities of unbalanced sizes in networks

    NASA Astrophysics Data System (ADS)

    Žalik, Krista Rizman; Žalik, Borut

    2018-01-01

    Community detection in large networks has been a focus of recent research in many of fields, including biology, physics, social sciences, and computer science. Most community detection methods partition the entire network into communities, groups of nodes that have many connections within communities and few connections between them and do not identify different roles that nodes can have in communities. We propose a community detection model that integrates more different measures that can fast identify communities of different sizes and densities. We use node degree centrality, strong similarity with one node from community, maximal similarity of node to community, compactness of communities and separation between communities. Each measure has its own strength and weakness. Thus, combining different measures can benefit from the strengths of each one and eliminate encountered problems of using an individual measure. We present a fast local expansion algorithm for uncovering communities of different sizes and densities and reveals rich information on input networks. Experimental results show that the proposed algorithm is better or as effective as the other community detection algorithms for both real-world and synthetic networks while it requires less time.

  18. Uncovering randomness and success in society.

    PubMed

    Jalan, Sarika; Sarkar, Camellia; Madhusudanan, Anagha; Dwivedi, Sanjiv Kumar

    2014-01-01

    An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, "Bollywood", can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry) in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations.

  19. Attack Vulnerability of Network Controllability

    PubMed Central

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941

  20. Attack Vulnerability of Network Controllability.

    PubMed

    Lu, Zhe-Ming; Li, Xin-Feng

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability.

  1. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  2. Power iteration ranking via hybrid diffusion for vital nodes identification

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Xian, Xingping; Zhong, Linfeng; Xiong, Xi; Stanley, H. Eugene

    2018-09-01

    One of the most interesting challenges in network science is to understand the relation between network structure and dynamics on it, and many topological properties, including degree distribution, community strength and clustering coefficient, have been proposed in the last decade. Prominent in this context is the centrality measures, which aim at quantifying the relative importance of individual nodes in the overall topology with regard to network organization and function. However, most of the previous centrality measures have been proposed based on different concepts and each of them focuses on a specific structural feature of networks. Thus, the straightforward and standard methods may lead to some bias against node importance measure. In this paper, we introduce two physical processes with potential complementarity between them. Then we propose to combine them as an elegant integration with the classic eigenvector centrality framework to improve the accuracy of node ranking. To test the produced power iteration ranking (PIRank) algorithm, we apply it to the selection of attack targets in network optimal attack problem. Extensive experimental results on synthetic networks and real-world networks suggest that the proposed centrality performs better than other well-known measures. Moreover, comparing with the eigenvector centrality, the PIRank algorithm can achieve about thirty percent performance improvement while keeping similar running time. Our experiment on random networks also shows that PIRank algorithm can avoid the localization phenomenon of eigenvector centrality, in particular for the networks with high-degree hubs.

  3. Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks

    PubMed Central

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R.

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a “rich club” of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931

  4. Network-based study of Lagrangian transport and mixing

    NASA Astrophysics Data System (ADS)

    Padberg-Gehle, Kathrin; Schneide, Christiane

    2017-10-01

    Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational methods or transfer-operator-based schemes require full knowledge of the flow field or at least high-resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, that is, numerical or measured time series of particle positions in a fluid flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree, the average degree of neighboring nodes, and the clustering coefficient serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows - the Bickley jet as well as the Antarctic stratospheric polar vortex.

  5. [The effect of mammographic screening on tumor size, axillary node status and the degree of histologic anaplasia].

    PubMed

    Garami, Zoltán; Benkó, Klára; Kósa, Csaba; Fülöp, Balázs; Lukács, Géza

    2006-10-01

    Breast cancer is the most frequent malignant tumor in women in Hungary. Significant reduction of mortality has been brought about not only by the increasing efficiency of complex therapy but also by regular mammographic screening. Of the histopathological data of 633 patients operated with primary breast tumor at the 1st Surgical Clinic of the Debrecen Medical University between January 1st 2000 and December 31st 2004, the authors analyzed tumor diameter, axillary node status and the degree of histologic anaplasia and compared them with the data of mammographic screening. Of the "screened"patients, 70.7% were diagnosed with T1 size tumors, 28.5% with T2 size, and 0.8% with tumors bigger than that. In the "unscreened" patients, our findings were 44.3%, 45.9% and 9.8% respectively. Within T1 tumors, Tla tumors were found in 11%, TIb in 37.6% and T1c in 51.4% in the "screened" group of patients, while the "unscreened" group's results were 2.3%, 12.6% and 85% respectively. 72.7% of the "screened" patients and 56.2% of the "unscreened" patients were found to be axillary node-negative. A study of the degree of histologic anaplasia showed G-I tumors in 15.6%, G-IIs in 62.1% and G-IIIs in 22.3% of the "screened" patients. The corresponding values for the "unscreened" patients were 6.1%, 53.8% and 40.1%, respectively. The differences were highly significant (p < 0.001) in all the parameters investigated. The authors have found a significant increase in the proportion of node-negative patients and patients with smaller tumors even after the first round of mammographic screening and at less than 50% participation. It is to be hoped that a 20% reduction in mortality can be achieved by further increasing the rate of participation.

  6. Near infrared imaging to identify sentinel lymph nodes in invasive urinary bladder cancer

    NASA Astrophysics Data System (ADS)

    Knapp, Deborah W.; Adams, Larry G.; Niles, Jacqueline D.; Lucroy, Michael D.; Ramos-Vara, Jose; Bonney, Patty L.; deGortari, Amalia E.; Frangioni, John V.

    2006-02-01

    Approximately 12,000 people are diagnosed with invasive transitional cell carcinoma of the urinary bladder (InvTCC) each year in the United States. Surgical removal of the bladder (cystectomy) and regional lymph node dissection are considered frontline therapy. Cystectomy causes extensive acute morbidity, and 50% of patients with InvTCC have occult metastases at the time of diagnosis. Better staging procedures for InvTCC are greatly needed. This study was performed to evaluate an intra-operative near infrared fluorescence imaging (NIRF) system (Frangioni laboratory) for identifying sentinel lymph nodes draining InvTCC. NIRF imaging was used to map lymph node drainage from specific quadrants of the urinary bladder in normal dogs and pigs, and to map lymph node drainage from naturally-occurring InvTCC in pet dogs where the disease closely mimics the human condition. Briefly, during surgery NIR fluorophores (human serum albumen-fluorophore complex, or quantum dots) were injected directly into the bladder wall, and fluorescence observed in lymphatics and regional nodes. Conditions studied to optimize the procedure including: type of fluorophore, depth of injection, volume of fluorophore injected, and degree of bladder distention at the time of injection. Optimal imaging occurred with very superficial injection of the fluorophore in the serosal surface of the moderately distended bladder. Considerable variability was noted from dog to dog in the pattern of lymph node drainage. NIR fluorescence was noted in lymph nodes with metastases in dogs with InvTCC. In conclusion, intra-operative NIRF imaging is a promising approach to improve sentinel lymph node mapping in invasive urinary bladder cancer.

  7. Learning about knowledge: A complex network approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontoura Costa, Luciano da

    2006-08-15

    An approach to modeling knowledge acquisition in terms of walks along complex networks is described. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchicalmore » networks--i.e., networks composed of successive interconnected layers--are related to compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks--i.e., unreachable nodes--the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barabasi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges.« less

  8. The genomic heritage of lymph node metastases: implications for clinical management of patients with breast cancer.

    PubMed

    Becker, Tyson E; Ellsworth, Rachel E; Deyarmin, Brenda; Patney, Heather L; Jordan, Rick M; Hooke, Jeffrey A; Shriver, Craig D; Ellsworth, Darrell L

    2008-04-01

    Metastatic breast cancer is an aggressive disease associated with recurrence and decreased survival. To improve outcomes and develop more effective treatment strategies for patients with breast cancer, it is important to understand the molecular mechanisms underlying metastasis. We used allelic imbalance (AI) to determine the molecular heritage of primary breast tumors and corresponding metastases to the axillary lymph nodes. Paraffin-embedded samples from primary breast tumors and matched metastases (n = 146) were collected from 26 patients with node-positive breast cancer involving multiple axillary nodes. Hierarchical clustering was used to assess overall differences in the patterns of AI, and phylogenetic analysis inferred the molecular heritage of axillary lymph node metastases. Overall frequencies of AI were significantly higher (P < 0.01) in primary breast tumors (23%) than in lymph node metastases (15%), and there was a high degree of discordance in patterns of AI between primary breast carcinomas and the metastases. Metastatic tumors in the axillary nodes showed different patterns of chromosomal changes, suggesting that multiple molecular mechanisms may govern the process of metastasis in individual patients. Some metastases progressed with few genomic alterations, while others harbored many chromosomal alterations present in the primary tumor. The extent of genomic heterogeneity in axillary lymph node metastases differs markedly among individual patients. Genomic diversity may be associated with response to adjuvant therapy, recurrence, and survival, and thus may be important in improving clinical management of breast cancer patients.

  9. Optimizing treatment for children and adolescents with papillary thyroid carcinoma in post-Chernobyl exposed region: The roles of lymph node dissections in the central and lateral neck compartments.

    PubMed

    Fridman, Mikhail; Krasko, Olga; Lam, Alfred King-Yin

    2018-06-01

    There is lack of data to predict lymph node metastases in pediatric thyroid cancer. The aims are to study (1) the factors affecting the lymph node metastases in children and adolescence with papillary thyroid carcinoma in region exposed to radiation and (2) to evaluate the predictive significance of these factors for lateral compartment lymphadenectomy. Five hundred and nine patients with papillary thyroid carcinoma underwent total thyroidectomy and lymph nodes resection (central and lateral compartments of the neck) surgery during the period of 1991-2010 in Belarus were recruited. The factors related to lymph node metastases were studied in these patients. In the patients with papillary thyroid carcinoma, increase number of cancer-positive lymph nodes in the central neck compartment were associated with a risk to develop lateral nodal disease as well as bilateral nodal disease. Futhermore, positive lateral compartment nodal metastases are associated with age and gender of the patients, tumour size, minimal extra-thyroidal extension, solid architectonic, extensive desmoplasia in carcinoma, presence of psammoma bodies, extensive involvement of the thyroid and metastatic ratio index revealed after examination of the central cervical chain lymph nodes. The presence of nodal disease, degree of lymph node involvement and the distribution of lymph node metastases significantly increase the recurrence rates of patients with papillary thyroid carcinoma. To conclude, the lymph nodes metastases in young patients with papillary thyroid carcinoma in post-Chernobyl exposed region are common and the pattern could be predicted by many clinical and pathological factors. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  10. Fast sparsely synchronized brain rhythms in a scale-free neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp> ( : ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D

  11. Influence of Lymphatic Invasion on Locoregional Recurrence Following Mastectomy: Indication for Postmastectomy Radiotherapy for Breast Cancer Patients With One to Three Positive Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunuma, Ryoichi, E-mail: r-matsunuma@nifty.com; First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka; Oguchi, Masahiko

    2012-07-01

    Purpose: The indication for postmastectomy radiotherapy (PMRT) in breast cancer patients with one to three positive lymph nodes has been in discussion. The purpose of this study was to identify patient groups for whom PMRT may be indicated, focusing on varied locoregional recurrence rates depending on lymphatic invasion (ly) status. Methods and Materials: Retrospective analysis of 1,994 node-positive patients who had undergone mastectomy without postoperative radiotherapy between January 1990 and December 2000 at our hospital was performed. Patient groups for whom PMRT should be indicated were assessed using statistical tests based on the relationship between locoregional recurrence rate and lymore » status. Results: Multivariate analysis showed that the ly status affected the locoregional recurrence rate to as great a degree as the number of positive lymph nodes (p < 0.001). Especially for patients with one to three positive nodes, extensive ly was a more significant factor than stage T3 in the TNM staging system for locoregional recurrence (p < 0.001 vs. p = 0.295). Conclusion: Among postmastectomy patients with one to three positive lymph nodes, patients with extensive ly seem to require local therapy regimens similar to those used for patients with four or more positive nodes and also seem to require consideration of the use of PMRT.« less

  12. Control of continuous irradiation injury on potatoes with daily temperature cycling

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bennett, S. M.; Cao, W.

    1990-01-01

    Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.

  13. Community detection in networks with unequal groups.

    PubMed

    Zhang, Pan; Moore, Cristopher; Newman, M E J

    2016-01-01

    Recently, a phase transition has been discovered in the network community detection problem below which no algorithm can tell which nodes belong to which communities with success any better than a random guess. This result has, however, so far been limited to the case where the communities have the same size or the same average degree. Here we consider the case where the sizes or average degrees differ. This asymmetry allows us to assign nodes to communities with better-than-random success by examining their local neighborhoods. Using the cavity method, we show that this removes the detectability transition completely for networks with four groups or fewer, while for more than four groups the transition persists up to a critical amount of asymmetry but not beyond. The critical point in the latter case coincides with the point at which local information percolates, causing a global transition from a less-accurate solution to a more-accurate one.

  14. Scale-free networks which are highly assortative but not small world

    NASA Astrophysics Data System (ADS)

    Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An

    2008-06-01

    Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).

  15. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  16. Critical temperatures of hybrid laminates using finite elements

    NASA Astrophysics Data System (ADS)

    Chockalingam, S.; Mathew, T. C.; Singh, G.; Rao, G. V.

    1992-06-01

    Thermal buckling of antisymmetric cross-ply hybrid laminates is investigated. A one-dimensional finite element based on first-order shear deformation theory, having two nodes and six degrees of freedom per node, namely axial displacement, transverse displacements and rotation of the normal to the beam axis and their derivatives with respect to beam coordinate axis, is employed for this purpose. Various types of hybrid laminates with different combination of glass/epoxy, Kevlar/epoxy and carbon/epoxy are considered. Effects of slenderness ratio, boundary conditions and lay-ups are studied in detail.

  17. Local or distributed activation? The view from biology

    NASA Astrophysics Data System (ADS)

    Reimers, Mark

    2011-06-01

    There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.

  18. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  19. Chimera-like states in structured heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2017-04-01

    Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.

  20. On the interpretation of kernels - Computer simulation of responses to impulse pairs

    NASA Technical Reports Server (NTRS)

    Hung, G.; Stark, L.; Eykhoff, P.

    1983-01-01

    A method is presented for the use of a unit impulse response and responses to impulse pairs of variable separation in the calculation of the second-degree kernels of a quadratic system. A quadratic system may be built from simple linear terms of known dynamics and a multiplier. Computer simulation results on quadratic systems with building elements of various time constants indicate reasonably that the larger time constant term before multiplication dominates in the envelope of the off-diagonal kernel curves as these move perpendicular to and away from the main diagonal. The smaller time constant term before multiplication combines with the effect of the time constant after multiplication to dominate in the kernel curves in the direction of the second-degree impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful in recognizing essential aspects of (second-degree) kernels; they may be used in simplifying the model structure and, perhaps, add to the physical/physiological understanding of the underlying processes.

  1. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks.

    PubMed

    Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le

    2016-07-14

    Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don't discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.

  2. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks

    PubMed Central

    Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le

    2016-01-01

    Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability. PMID:27428970

  3. An optimal routing strategy on scale-free networks

    NASA Astrophysics Data System (ADS)

    Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin

    Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.

  4. Control of epidemics on complex networks: Effectiveness of delayed isolation

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago; Young, Lai-Sang

    2015-08-01

    We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.

  5. Rate-compatible protograph LDPC code families with linear minimum distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.

  6. Critical tipping point distinguishing two types of transitions in modular network structures

    NASA Astrophysics Data System (ADS)

    Shai, Saray; Kenett, Dror Y.; Kenett, Yoed N.; Faust, Miriam; Dobson, Simon; Havlin, Shlomo

    2015-12-01

    Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse interactions between modules are critical to the functionality of the system and are often the first to fail. We model such failures as site percolation targeting interconnected nodes, those connecting between modules. We find, using percolation theory and simulations, that they lead to a "tipping point" between two distinct regimes. In one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse. In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we briefly consider its implications on recent advances in the understanding of several neurocognitive processes and diseases.

  7. Percolation of networks with directed dependency links

    NASA Astrophysics Data System (ADS)

    Niu, Dunbiao; Yuan, Xin; Du, Minhui; Stanley, H. Eugene; Hu, Yanqing

    2016-04-01

    The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how directed dependency links impact criticality, we employ this approach to study the percolation properties of networks with both undirected connectivity links and directed dependency links. We find that when a random network with a given degree distribution undergoes a second-order phase transition, the critical point and the unstable regime surrounding the second-order phase transition regime are determined by the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and the boundary between first- and second-order transitions are determined by the proportion of nodes that depend on no more than one node. This implies that it is maybe general for multiplex network systems, some important properties of phase transitions can be determined only by a few parameters. We illustrate our findings using Erdős-Rényi networks.

  8. [Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service].

    PubMed

    Kim, Minji; Choi, Mona; Youm, Yoosik

    2017-12-01

    As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies. © 2017 Korean Society of Nursing Science

  9. Scaling the CERN OpenStack cloud

    NASA Astrophysics Data System (ADS)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  10. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  11. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  12. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  13. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    PubMed Central

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-01-01

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623

  14. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.

    PubMed

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-12-23

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  15. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  16. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  17. Adaptive random walks on the class of Web graphs

    NASA Astrophysics Data System (ADS)

    Tadić, B.

    2001-09-01

    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.

  18. Social network analysis for assessment of avian influenza spread and trading patterns of backyard chickens in Nakhon Pathom, Suphan Buri and Ratchaburi, Thailand.

    PubMed

    Poolkhet, C; Chairatanayuth, P; Thongratsakul, S; Yatbantoong, N; Kasemsuwan, S; Damchoey, D; Rukkwamsuk, T

    2013-09-01

    The aim of this study is to explain the social networks of the backyard chicken in Ratchaburi, Suphan Buri and Nakhon Pathom Provinces. In this study, we designed the nodes as groups of persons or places involved in activities relating to backyard chickens. The ties are all activities related to the nodes. The study applied a partial network approach to assess the spreading pattern of avian influenza. From 557 questionnaires collected from the nodes, the researchers found that the degree (the numbers of ties that a node has) and closeness (the distance from one node to the others) centralities of Nakhon Pathom were significantly higher than those of the others (P<0.001). The results show that compared with the remaining areas, this area is more quickly connected to many links. If the avian influenza virus subtype H5N1 was released into the network, the disease would spread throughout this province more rapidly than in Ratchaburi and Suphan Buri. The betweenness centrality in each of these provinces showed no differences (P>0.05). In this study, the nodes that play an important role in all networks are farmers who raise consumable chicken, farmers who raise both consumable chicken and fighting cocks, farmers' households that connect with dominant nodes, and the owners and observers of fighting cocks at arenas and training fields. In this study, we did not find cut points or blocks in the network. Moreover, we detected a random network in all provinces. Thus, connectivity between the nodes covers long or short distances, with less predictable behaviour. Finally, this study suggests that activities between the important nodes must receive special attention for disease control during future disease outbreaks. © 2012 Blackwell Verlag GmbH.

  19. A Family of Algorithms for Computing Consensus about Node State from Network Data

    PubMed Central

    Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.

    2013-01-01

    Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. PMID:23874167

  20. Combining a popularity-productivity stochastic block model with a discriminative-content model for general structure detection.

    PubMed

    Chai, Bian-fang; Yu, Jian; Jia, Cai-Yan; Yang, Tian-bao; Jiang, Ya-wen

    2013-07-01

    Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.

  1. Combining a popularity-productivity stochastic block model with a discriminative-content model for general structure detection

    NASA Astrophysics Data System (ADS)

    Chai, Bian-fang; Yu, Jian; Jia, Cai-yan; Yang, Tian-bao; Jiang, Ya-wen

    2013-07-01

    Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.

  2. Exploring the topological sources of robustness against invasion in biological and technological networks.

    PubMed

    Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro

    2016-02-10

    For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent's rule are applied to show a subtle trade-off between topological and wiring complexity.

  3. The data-driven null models for information dissemination tree in social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Wang, Zhenyu

    2017-10-01

    For the purpose of detecting relatedness and co-occurrence between users, as well as the distribution features of nodes in spreading path of a social network, this paper explores topological characteristics of information dissemination trees (IDT) that can be employed indirectly to probe the information dissemination laws within social networks. Hence, three different null models of IDT are presented in this article, including the statistical-constrained 0-order IDT null model, the random-rewire-broken-edge 0-order IDT null model and the random-rewire-broken-edge 2-order IDT null model. These null models firstly generate the corresponding randomized copy of an actual IDT; then the extended significance profile, which is developed by adding the cascade ratio of information dissemination path, is exploited not only to evaluate degree correlation of two nodes associated with an edge, but also to assess the cascade ratio of different length of information dissemination paths. The experimental correspondences of the empirical analysis for several SinaWeibo IDTs and Twitter IDTs indicate that the IDT null models presented in this paper perform well in terms of degree correlation of nodes and dissemination path cascade ratio, which can be better to reveal the features of information dissemination and to fit the situation of real social networks.

  4. Exploring the topological sources of robustness against invasion in biological and technological networks

    PubMed Central

    Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro

    2016-01-01

    For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent’s rule are applied to show a subtle trade-off between topological and wiring complexity. PMID:26861189

  5. Malignant melanoma (non-metastatic): sentinel lymph node biopsy

    PubMed Central

    2016-01-01

    Introduction The incidence of malignant melanoma has increased over the past 25 years in the UK, but death rates have remained fairly constant. The 5-year survival rate ranges from 20% to 95%, depending on disease stage. Risks are greater in white populations and in people with higher numbers of skin naevi. Methods and outcomes We conducted a systematic overview, aiming to answer the following clinical question: What is the evidence for performing a sentinel lymph node biopsy in people with malignant melanoma with clinically uninvolved lymph nodes? We searched: Medline, Embase, The Cochrane Library and other important databases up to October 2014 (BMJ Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview). Results At this update, searching of electronic databases retrieved 221 studies. After deduplication and removal of conference abstracts, 99 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 58 studies and the further review of 41 full publications. Of the 41 full articles evaluated, one systematic review and three RCTs were added at this update. We performed a GRADE evaluation for two PICO combinations. Conclusions In this systematic overview, we evaluated the evidence for performing sentinel lymph node biopsy in people with malignant melanoma with clinically uninvolved lymph nodes. PMID:26788739

  6. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  7. Assessing localized skin-to-fat water in arms of women with breast cancer via tissue dielectric constant measurements in pre- and post-surgery patients.

    PubMed

    Mayrovitz, Harvey N; Weingrad, Daniel N; Lopez, Lidice

    2015-05-01

    Skin-to-fat tissue dielectric constant (TDC) values at 300 MHz largely depend on tissue water and provide a rapid way to assess skin water by touching skin with a probe for approximately 10 s. This method has been used to investigate lymphedema features accompanying breast cancer (BC), but relationships between TDC and nodes removed or symptoms is unclear. Our goals were: (1) to compare TDC values in BC patients prior to surgery (group A) and in patients who had BC-related surgery (group B) to determine if TDC of group B were related to nodes removed and reported symptoms and (2) to develop tentative lymphedema-detection thresholds. Arm volumes and TDC values of at-risk and contralateral forearms and biceps were determined in 103 women awaiting surgery for BC and 104 women who had BC-related surgery 26.3 ± 17.5 months prior to evaluation. Inter-arm ratios (at-risk/contralateral) were determined and patients answered questions about lymphedema-related symptoms. Inter-arm TDC ratios for group A forearm and biceps were respectively 1.003 ± 0.096 and 1.012 ± 0.143. Group B forearm ratios were significantly greater, and among group B patients who reported at least one symptom there was a significant correlation between TDC ratios and symptom burden and nodes removed. Inter-arm TDC ratios are significantly related to symptoms and nodes removed. Ratios increase with increasing symptom score and might be used to detect pre-clinical unilateral lymphedema using TDC ratio thresholds of 1.30 for forearm and 1.45 for biceps. Threshold confirmation awaits targeted prospective studies but can serve as guideposts to provide quantitative and easily done tracking assessments during follow-up visits.

  8. Efficient weighting strategy for enhancing synchronizability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan

    2018-04-01

    Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.

  9. Resource-Efficient, Hierarchical Auto-Tuning of a Hybrid Lattice Boltzmann Computation on the Cray XT4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Computational Research Division, Lawrence Berkeley National Laboratory; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Berkeley

    2009-05-04

    We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads permore » MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications.« less

  10. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  11. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements.

    PubMed

    Sturtevant, Blake T; Pereira da Cunha, Mauricio

    2010-03-01

    This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

  12. Cervical lymph node diseases in children

    PubMed Central

    Lang, Stephan; Kansy, Benjamin

    2014-01-01

    The lymph nodes are an essential part of the body’s immune system and as such are affected in many infectious, autoimmune, metabolic and malignant diseases. The cervical lymph nodes are particularly important because they are the first drainage stations for key points of contact with the outside world (mouth/throat/nose/eyes/ears/respiratory system) – a critical aspect especially among children – and can represent an early clinical sign in their exposed position on a child’s slim neck. Involvement of the lymph nodes in multiple conditions is accompanied by a correspondingly large number of available diagnostic procedures. In the interests of time, patient wellbeing and cost, a careful choice of these must be made to permit appropriate treatment. The basis of diagnostic decisions is a detailed anamnesis and clinical examination. Sonography also plays an important role in differential diagnosis of lymph node swelling in children and is useful in answering one of the critical diagnostic questions: is there a suspicion of malignancy? If so, full dissection of the most conspicuous lymph node may be necessary to obtain histological confirmation. Diagnosis and treatment of childhood cervical lymph node disorders present the attending pediatric and ENT physicians with some particular challenges. The spectrum of differential diagnoses and the varying degrees of clinical relevance – from banal infections to malignant diseases – demand a clear and considered approach to the child’s individual clinical presentation. Such an approach is described in the following paper. PMID:25587368

  13. Network geometry inference using common neighbors

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-08-01

    We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.

  14. Effects in the network topology due to node aggregation: Empirical evidence from the domestic maritime transportation in Greece

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Polyzos, Serafeim

    2018-02-01

    This article studies the topological consistency of spatial networks due to node aggregation, examining the changes captured between different network representations that result from nodes' grouping and they refer to the same socioeconomic system. The main purpose of this study is to evaluate what kind of topological information remains unalterable due to node aggregation and, further, to develop a framework for linking the data of an empirical network with data of its socioeconomic environment, when the latter are available for hierarchically higher levels of aggregation, in an effort to promote the interdisciplinary research in the field of complex network analysis. The research question is empirically tested on topological and socioeconomic data extracted from the Greek Maritime Network (GMN) that is modeled as a non-directed multilayer (bilayer) graph consisting of a port-layer, where nodes represent ports, and a prefecture-layer, where nodes represent coastal and insular prefectural groups of ports. The analysis highlights that the connectivity (degree) of the GMN is the most consistent aspect of this multilayer network, which preserves both the topological and the socioeconomic information through node aggregation. In terms of spatial analysis and regional science, such effects illustrate the effectiveness of the prefectural administrative division for the functionality of the Greek maritime transportation system. Overall, this approach proposes a methodological framework that can enjoy further applications about the grouping effects induced on the network topology, providing physical, technical, socioeconomic, strategic or political insights.

  15. LaAlO{sub 3}/Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloquin, Sylvain; Baboux, Nicolas; Albertini, David

    2013-01-21

    A study of the structural and electrical properties of amorphous LaAlO{sub 3} (LAO)/Si thin films fabricated by molecular beam deposition (MBD) is presented. Two substrate preparation procedures have been explored namely a high temperature substrate preparation technique-leading to a step and terraces surface morphology-and a chemical HF-based surface cleaning. The LAO deposition conditions were improved by introducing atomic plasma-prepared oxygen instead of classical molecular O{sub 2} in the chamber. An Au/Ni stack was used as the top electrode for its electrical characteristics. The physico-chemical properties (surface topography, thickness homogeneity, LAO/Si interface quality) and electrical performance (capacitance and current versus voltagemore » and TunA current topography) of the samples were systematically evaluated. Deposition conditions (substrate temperature of 550 Degree-Sign C, oxygen partial pressure settled at 10{sup -6} Torr, and 550 W of power applied to the O{sub 2} plasma) and post-depositions treatments were investigated to optimize the dielectric constant ({kappa}) and leakage currents density (J{sub Gate} at Double-Vertical-Line V{sub Gate} Double-Vertical-Line = Double-Vertical-Line V{sub FB}- 1 Double-Vertical-Line ). In the best reproducible conditions, we obtained a LAO/Si layer with a dielectric constant of 16, an equivalent oxide thickness of 8.7 A, and J{sub Gate} Almost-Equal-To 10{sup -2}A/cm{sup 2}. This confirms the importance of LaAlO{sub 3} as an alternative high-{kappa} for ITRS sub-22 nm technology node.« less

  16. Error and attack tolerance of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Jeong, Hawoong; Barabási, Albert-László

    2000-07-01

    Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network. Complex communication networks display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web, the Internet, social networks and cells. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

  17. Using high hydraulic conductivity nodes to simulate seepage lakes

    USGS Publications Warehouse

    Anderson, Mary P.; Hunt, Randall J.; Krohelski, James T.; Chung, Kuopo

    2002-01-01

    In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10−3 m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.

  18. [Late arrhythmias in the operated interatrial communication. Analysis of sinus node function and the conduction pathways by His bundle electrocardiography].

    PubMed

    Ramírez, A; Gil, M; Martínez Ríos, M A; Cárdenas, M; Pliego, J; Zamora, C; Mata, L A

    1982-01-01

    Four hundred patients with atrial septal defect treated surgically were reviewed. Thirty five (8.7%) developed arrhytmias post-surgery which persisted for over a year. Sinus bradycardia was found in 10 patients, nodal rhythm in 21, and atrial fibrilation and flutter in 4 patients. Thirty five per cent of the patients with late arrhythmias developed related symptomatology. In 14 patients the function of the sinus node was studied with electrical stimulation of the atrium and with His registry. The interatrial conduction time, AV node and His Purkinje were analized employing various stimulation frequencies. All the cases studied had normal intra-atrial conduction; the response of the atrio-ventricular node to increasing frequencies was normal, an the intraventricular conduction remained constant. In 8 patients (52%), alterations of the sinus node were found; these consisted of prolonged post-stimulation pauses, Wenckebach's type sinoatrial block and suppression of sinus automatism employing vagal procedures or through electrical stimulation. A patient with severe bradycardia detected by dynamic electrocardiography had to be treated with a permanent pacemaker. We confirm that these arrhytmias are not produced by lesions of the internodal tracts, and that an alteration of the sinus node is frequent without a concomitant lesion of the intraventricular pathway. The lesion to the nutrient artery could be due to trauma and/or surgically induced. The response to anticholinergic drugs was good. Prolonged observation of these patients could increase the morbility of these arrythmias and raise doubts of the surgical indications in cases with moderate hemodynamic repercussion.

  19. a Weighted Local-World Evolving Network Model Based on the Edge Weights Preferential Selection

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhao, Qingzhen; Wang, Haitang

    2013-05-01

    In this paper, we use the edge weights preferential attachment mechanism to build a new local-world evolutionary model for weighted networks. It is different from previous papers that the local-world of our model consists of edges instead of nodes. Each time step, we connect a new node to two existing nodes in the local-world through the edge weights preferential selection. Theoretical analysis and numerical simulations show that the scale of the local-world affect on the weight distribution, the strength distribution and the degree distribution. We give the simulations about the clustering coefficient and the dynamics of infectious diseases spreading. The weight dynamics of our network model can portray the structure of realistic networks such as neural network of the nematode C. elegans and Online Social Network.

  20. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  1. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunet, M.; Sabourin, F.

    2005-08-05

    This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of amore » beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements.« less

  2. Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konjevod, Goran; Richa, Andréa W.; Xia, Donglin

    In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less

  3. Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension

    DOE PAGES

    Konjevod, Goran; Richa, Andréa W.; Xia, Donglin

    2016-06-15

    In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less

  4. On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents

    PubMed Central

    Esquivel-Gómez, J.; Arjona-Villicaña, P. D.; Stevens-Navarro, E.; Pineda-Rico, U.; Balderas-Navarro, R. E.; Acosta-Elias, J.

    2015-01-01

    The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has a behavior similar to a power-law distribution, therefore some network growth models have been proposed to approximate this behavior. This paper introduces a new growth model that allows to produce out-degree distributions that decay as a power-law with an exponent in the range from 1 to ∞. PMID:25765763

  5. Reciprocity and the Emergence of Power Laws in Social Networks

    NASA Astrophysics Data System (ADS)

    Schnegg, Michael

    Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.

  6. In-plane elastic properties of auxetic multilattices

    NASA Astrophysics Data System (ADS)

    Berinskii, Igor E.

    2018-07-01

    Numerous studies proposed the possible use of auxetic periodic structures in engineering applications. The regular cellular structures with several nodes in a unit cell of the lattice are referred to as multilattices. In this work, a homogenization procedure was applied to three types of plane multilattices: conventional and re-entrant honeycombs (REH), double arrowheads, and semi REH constructed from elastic ribs. It was shown, that for all considered lattices the components of effective tensors of elasticity can be obtained in an explicit way in the frames of the same approach taking stretching, bending and shear of the ribs into account. As a result, equivalent elastic in-plane properties were found analytically as the functions of geometrical parameters of the lattices and the elastic parameters of the ribs. The estimation of the limits for the elastic properties was also performed. It was investigated how the condition of constant density changes the dependence of the elastic constants on the angles between the nodes. Also, different lattices were investigated at the same reference density taken equal to the density of the honeycomb lattice. The most typical cases from the practical point of view were considered and the corresponding elastic parameters were calculated for them.

  7. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations. Part 1; Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2009-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.

  8. Fast sparsely synchronized brain rhythms in a scale-free neural network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D

  9. Degree-based statistic and center persistency for brain connectivity analysis.

    PubMed

    Yoo, Kwangsun; Lee, Peter; Chung, Moo K; Sohn, William S; Chung, Sun Ju; Na, Duk L; Ju, Daheen; Jeong, Yong

    2017-01-01

    Brain connectivity analyses have been widely performed to investigate the organization and functioning of the brain, or to observe changes in neurological or psychiatric conditions. However, connectivity analysis inevitably introduces the problem of mass-univariate hypothesis testing. Although, several cluster-wise correction methods have been suggested to address this problem and shown to provide high sensitivity, these approaches fundamentally have two drawbacks: the lack of spatial specificity (localization power) and the arbitrariness of an initial cluster-forming threshold. In this study, we propose a novel method, degree-based statistic (DBS), performing cluster-wise inference. DBS is designed to overcome the above-mentioned two shortcomings. From a network perspective, a few brain regions are of critical importance and considered to play pivotal roles in network integration. Regarding this notion, DBS defines a cluster as a set of edges of which one ending node is shared. This definition enables the efficient detection of clusters and their center nodes. Furthermore, a new measure of a cluster, center persistency (CP) was introduced. The efficiency of DBS with a known "ground truth" simulation was demonstrated. Then they applied DBS to two experimental datasets and showed that DBS successfully detects the persistent clusters. In conclusion, by adopting a graph theoretical concept of degrees and borrowing the concept of persistence from algebraic topology, DBS could sensitively identify clusters with centric nodes that would play pivotal roles in an effect of interest. DBS is potentially widely applicable to variable cognitive or clinical situations and allows us to obtain statistically reliable and easily interpretable results. Hum Brain Mapp 38:165-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Semantic text relatedness on Al-Qur’an translation using modified path based method

    NASA Astrophysics Data System (ADS)

    Irwanto, Yudi; Arif Bijaksana, Moch; Adiwijaya

    2018-03-01

    Abdul Baquee Muhammad [1] have built Corpus that contained AlQur’an domain, WordNet and dictionary. He has did initialisation in the development of knowledges about AlQur’an and the knowledges about relatedness between texts in AlQur’an. The Path based measurement method that proposed by Liu, Zhou and Zheng [3] has never been used in the AlQur’an domain. By using AlQur’an translation dataset in this research, the path based measurement method proposed by Liu, Zhou and Zheng [3] will be used to test this method in AlQur’an domain to obtain similarity values and to measure its correlation value. In this study the degree value is proposed to be used in modifying the path based method that proposed in previous research. Degree Value is the number of links that owned by a lcs (lowest common subsumer) node on a taxonomy. The links owned by a node on the taxonomy represent the semantic relationship that a node has in the taxonomy. By using degree value to modify the path-based method that proposed in previous research is expected that the correlation value obtained will increase. After running some experiment by using proposed method, the correlation measurement value can obtain fairly good correlation ties with 200 Word Pairs derive from Noun POS SimLex-999. The correlation value that be obtained is 93.3% which means their bonds are strong and they have very strong correlation. Whereas for the POS other than Noun POS vocabulary that owned by WordNet is incomplete therefore many pairs of words that the value of its similarity is zero so the correlation value is low.

  11. A network perspective on the topological importance of enzymes and their phylogenetic conservation

    PubMed Central

    Liu, Wei-chung; Lin, Wen-hsien; Davis, Andrew J; Jordán, Ferenc; Yang, Hsih-te; Hwang, Ming-jing

    2007-01-01

    Background A metabolic network is the sum of all chemical transformations or reactions in the cell, with the metabolites being interconnected by enzyme-catalyzed reactions. Many enzymes exist in numerous species while others occur only in a few. We ask if there are relationships between the phylogenetic profile of an enzyme, or the number of different bacterial species that contain it, and its topological importance in the metabolic network. Our null hypothesis is that phylogenetic profile is independent of topological importance. To test our null hypothesis we constructed an enzyme network from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. We calculated three network indices of topological importance: the degree or the number of connections of a network node; closeness centrality, which measures how close a node is to others; and betweenness centrality measuring how frequently a node appears on all shortest paths between two other nodes. Results Enzyme phylogenetic profile correlates best with betweenness centrality and also quite closely with degree, but poorly with closeness centrality. Both betweenness and closeness centralities are non-local measures of topological importance and it is intriguing that they have contrasting power of predicting phylogenetic profile in bacterial species. We speculate that redundancy in an enzyme network may be reflected by betweenness centrality but not by closeness centrality. We also discuss factors influencing the correlation between phylogenetic profile and topological importance. Conclusion Our analysis falsifies the hypothesis that phylogenetic profile of enzymes is independent of enzyme network importance. Our results show that phylogenetic profile correlates better with degree and betweenness centrality, but less so with closeness centrality. Enzymes that occur in many bacterial species tend to be those that have high network importance. We speculate that this phenomenon originates in mechanisms driving network evolution. Closeness centrality reflects phylogenetic profile poorly. This is because metabolic networks often consist of distinct functional modules and some are not in the centre of the network. Enzymes in these peripheral parts of a network might be important for cell survival and should therefore occur in many bacterial species. They are, however, distant from other enzymes in the same network. PMID:17425808

  12. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    PubMed

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  13. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.

  14. Charged rotating black holes in Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2017-03-01

    We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant λ . Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally anti-de Sitter background. We find that the generic solutions share a number of basic properties with the known Cvetič, Lü, and Pope black holes which have λ =1 . New features occur as well; for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of λ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-horizon solutions are associated with global solutions.

  15. The prognostic value of p53 positive in colorectal cancer: A retrospective cohort study.

    PubMed

    Wang, Peng; Liang, Jianwei; Wang, Zheng; Hou, Huirong; Shi, Lei; Zhou, Zhixiang

    2017-05-01

    This retrospective cohort study aimed to discuss the prognostic value of p53 positive in colorectal cancer. A total of 124 consecutive patients diagnosed with colorectal cancer were evaluated at the National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College from 1 January 2009 to 31 December 2010. The expression of p53 in colorectal cancer was examined by immunohistochemistry. Based on the expression levels of p53, the 124 patients were divided into a p53 positive group and a p53 negative group. In this study, 72 patients were in the p53 positive group and 52 in the p53 negative group. The two groups were well balanced in gender, age, body mass index, American Society of Anesthesiologists scores, and number of lymph nodes harvested. p53 positive was associated with carcinoembryonic antigen ≥5 ng/mL ( p = 0.036), gross type ( p = 0.037), degree of tumor differentiation ( p = 0.026), pathological tumor stage ( p = 0.019), pathological node stage ( p = 0.004), pathological tumor-node-metastasis stage ( p = 0.017), nerve invasion ( p = 0.008), and vessel invasion ( p = 0.018). Tumor site, tumor size, and pathological pattern were not significantly different between these two groups. Disease-free survival and overall survival in the p53 positive group were significantly shorter than the p53 negative group ( p = 0.021 and 0.025, respectively). Colorectal cancer patients with p53 positive tended to be related to a higher degree of malignancy, advanced tumor-node-metastasis stage, and shorter disease-free survival and overall survival. p53 positive was independently an unfavorable prognostic marker for colorectal cancer patients.

  16. Effect of rich-club on diffusion in complex networks

    NASA Astrophysics Data System (ADS)

    Berahmand, Kamal; Samadi, Negin; Sheikholeslami, Seyed Mahmood

    2018-05-01

    One of the main issues in complex networks is the phenomenon of diffusion in which the goal is to find the nodes with the highest diffusing power. In diffusion, there is always a conflict between accuracy and efficiency time complexity; therefore, most of the recent studies have focused on finding new centralities to solve this problem and have offered new ones, but our approach is different. Using one of the complex networks’ features, namely the “rich-club”, its effect on diffusion in complex networks has been analyzed and it is demonstrated that in datasets which have a high rich-club, it is better to use the degree centrality for finding influential nodes because it has a linear time complexity and uses the local information; however, this rule does not apply to datasets which have a low rich-club. Next, real and artificial datasets with the high rich-club have been used in which degree centrality has been compared to famous centrality using the SIR standard.

  17. Spectral analysis of Chinese language: Co-occurrence networks from four literary genres

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Chen, Guanrong

    2016-05-01

    The eigenvalues and eigenvectors of the adjacency matrix of a network contain essential information about its topology. For each of the Chinese language co-occurrence networks constructed from four literary genres, i.e., essay, popular science article, news report, and novel, it is found that the largest eigenvalue depends on the network size N, the number of edges, the average shortest path length, and the clustering coefficient. Moreover, it is found that their node-degree distributions all follow a power-law. The number of different eigenvalues, Nλ, is found numerically to increase in the manner of Nλ ∝ log N for novel and Nλ ∝ N for the other three literary genres. An ;M; shape or a triangle-like distribution appears in their spectral densities. The eigenvector corresponding to the largest eigenvalue is mostly localized to a node with the largest degree. For the above observed phenomena, mathematical analysis is provided with interpretation from a linguistic perspective.

  18. [Fluctuant pulmonary nodules as presentation of a MALT lymphoma].

    PubMed

    Dolz Aspas, R; Toyas Miazza, C; Ruiz Ruiz, F; Morales Rull, J L; Pérez Calvo, J I

    2003-11-01

    Mucosa associated lymphoid tissue (MALT) lymphomas are a group of non- Hodgkin"s lymphomas of low malignancy degree. The most frequent location is the gastrointestinal tract. Its primary pulmonary presentation is unusual and heterogeneous from point of view radiological. Woman 61 years old with antecedents of vitiligo, gastric ulcus, cirrhosis by VHC, that go into the hospital by sudden disnea, thoracic paint with pleural characterises and fever of 38.5 degrees C, Her thorax radiography and thoracic TAC showed nodes that affect to different pulmonary lobes. The cytology by PAAF confirms their malignant nature. In subsequent radiological controls it was notice the nodels took away completely and returns in different pulmonary place in each recurrence. The presentation like fluctuant pulmonary nodes is exceptional in a MALT lymphoma. It was described a higher incidence of VHC infection and tumour. The evidence of chronic hepatitis by virus C disease, and local chronic inflammatory process as well as autoimmune disorders may be considerate like a factor that contribute to MALT lymphoma.

  19. Empirical study on human acupuncture point network

    NASA Astrophysics Data System (ADS)

    Li, Jian; Shen, Dan; Chang, Hui; He, Da-Ren

    2007-03-01

    Chinese medical theory is ancient and profound, however is confined by qualitative and faint understanding. The effect of Chinese acupuncture in clinical practice is unique and effective, and the human acupuncture points play a mysterious and special role, however there is no modern scientific understanding on human acupuncture points until today. For this reason, we attend to use complex network theory, one of the frontiers in the statistical physics, for describing the human acupuncture points and their connections. In the network nodes are defined as the acupuncture points, two nodes are connected by an edge when they are used for a medical treatment of a common disease. A disease is defined as an act. Some statistical properties have been obtained. The results certify that the degree distribution, act degree distribution, and the dependence of the clustering coefficient on both of them obey SPL distribution function, which show a function interpolating between a power law and an exponential decay. The results may be helpful for understanding Chinese medical theory.

  20. Fast modal extraction in NASTRAN via the FEER computer program. [based on automatic matrix reduction method for lower modes of structures with many degrees of freedom

    NASA Technical Reports Server (NTRS)

    Newman, M. B.; Pipano, A.

    1973-01-01

    A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes.

  1. Unimodular lattice triangulations as small-world and scale-free random graphs

    NASA Astrophysics Data System (ADS)

    Krüger, B.; Schmidt, E. M.; Mecke, K.

    2015-02-01

    Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.

  2. Shock waves on complex networks

    NASA Astrophysics Data System (ADS)

    Mones, Enys; Araújo, Nuno A. M.; Vicsek, Tamás; Herrmann, Hans J.

    2014-05-01

    Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.

  3. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  4. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.

    PubMed

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-21

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  5. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  6. Exploring novel key regulators in breast cancer network.

    PubMed

    Ali, Shahnawaz; Malik, Md Zubbair; Singh, Soibam Shyamchand; Chirom, Keilash; Ishrat, Romana; Singh, R K Brojen

    2018-01-01

    The breast cancer network constructed from 70 experimentally verified genes is found to follow hierarchical scale free nature with heterogeneous modular organization and diverge leading hubs. The topological parameters (degree distributions, clustering co-efficient, connectivity and centralities) of this network obey fractal rules indicating absence of centrality lethality rule, and efficient communication among the components. From the network theoretical approach, we identified few key regulators out of large number of leading hubs, which are deeply rooted from top to down of the network, serve as backbone of the network, and possible target genes. However, p53, which is one of these key regulators, is found to be in low rank and keep itself at low profile but directly cross-talks with important genes BRCA2 and BRCA3. The popularity of these hubs gets changed in unpredictable way at various levels of organization thus showing disassortive nature. The local community paradigm approach in this network shows strong correlation of nodes in majority of modules/sub-modules (fast communication among nodes) and weak correlation of nodes only in few modules/sub-modules (slow communication among nodes) at various levels of network organization.

  7. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller †

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  8. From epidemics to information propagation: Striking differences in structurally similar adaptive network models

    NASA Astrophysics Data System (ADS)

    Trajanovski, Stojan; Guo, Dongchao; Van Mieghem, Piet

    2015-09-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.

  9. Looking into the crystal ball: future device learning using hybrid e-beam and optical lithography (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    Steen, S. E.; McNab, S. J.; Sekaric, L.; Babich, I.; Patel, J.; Bucchignano, J.; Rooks, M.; Fried, D. M.; Topol, A. W.; Brancaccio, J. R.; Yu, R.; Hergenrother, J. M.; Doyle, J. P.; Nunes, R.; Viswanathan, R. G.; Purushothaman, S.; Rothwell, M. B.

    2005-05-01

    Semiconductor process development teams are faced with increasing process and integration complexity while the time between lithographic capability and volume production has remained more or less constant over the last decade. Lithography tools have often gated the volume checkpoint of a new device node on the ITRS roadmap. The processes have to be redeveloped after the tooling capability for the new groundrule is obtained since straight scaling is no longer sufficient. In certain cases the time window that the process development teams have is actually decreasing. In the extreme, some forecasts are showing that by the time the 45nm technology node is scheduled for volume production, the tooling vendors will just begin shipping the tools required for this technology node. To address this time pressure, IBM has implemented a hybrid-lithography strategy that marries the advantages of optical lithography (high throughput) with electron beam direct write lithography (high resolution and alignment capability). This hybrid-lithography scheme allows for the timely development of semiconductor processes for the 32nm node, and beyond. In this paper we will describe how hybrid lithography has enabled early process integration and device learning and how IBM applied e-beam & optical hybrid lithography to create the world's smallest working SRAM cell.

  10. Distribution of shortest path lengths in a class of node duplication network models

    NASA Astrophysics Data System (ADS)

    Steinbock, Chanania; Biham, Ofer; Katzav, Eytan

    2017-09-01

    We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .

  11. Modeling the Webgraph: How Far We Are

    NASA Astrophysics Data System (ADS)

    Donato, Debora; Laura, Luigi; Leonardi, Stefano; Millozzi, Stefano

    The following sections are included: * Introduction * Preliminaries * WebBase * In-degree and out-degree * PageRank * Bipartite cliques * Strongly connected components * Stochastic models of the webgraph * Models of the webgraph * A multi-layer model * Large scale simulation * Algorithmic techniques for generating and measuring webgraphs * Data representation and multifiles * Generating webgraphs * Traversal with two bits for each node * Semi-external breadth first search * Semi-external depth first search * Computation of the SCCs * Computation of the bow-tie regions * Disjoint bipartite cliques * PageRank * Summary and outlook

  12. Synergistic effects in threshold models on networks.

    PubMed

    Juul, Jonas S; Porter, Mason A

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can-depending on a parameter-either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  13. Synergistic effects in threshold models on networks

    NASA Astrophysics Data System (ADS)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  14. The relationship between structure and function in locally observed complex networks

    NASA Astrophysics Data System (ADS)

    Comin, Cesar H.; Viana, Matheus P.; Costa, Luciano da F.

    2013-01-01

    Recently, studies looking at the small scale interactions taking place in complex networks have started to unveil the wealth of interactions that occur between groups of nodes. Such findings make the claim for a new systematic methodology to quantify, at node level, how dynamics are influenced (or differentiated) by the structure of the underlying system. Here we define a new measure that, based on the dynamical characteristics obtained for a large set of initial conditions, compares the dynamical behavior of the nodes present in the system. Through this measure, we find that the geographic and Barabási-Albert models have a high capacity for generating networks that exhibit groups of nodes with distinct dynamics compared to the rest of the network. The application of our methodology is illustrated with respect to two real systems. In the first we use the neuronal network of the nematode Caenorhabditis elegans to show that the interneurons of the ventral cord of the nematode present a very large dynamical differentiation when compared to the rest of the network. The second application concerns the SIS epidemic model on an airport network, where we quantify how different the distribution of infection times of high and low degree nodes can be, when compared to the expected value for the network.

  15. Failure tolerance of spike phase synchronization in coupled neural networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2011-09-01

    Neuronal synchronization plays an important role in the various functionality of nervous system such as binding, cognition, information processing, and computation. In this paper, we investigated how random and intentional failures in the nodes of a network influence its phase synchronization properties. We considered both artificially constructed networks using models such as preferential attachment, Watts-Strogatz, and Erdős-Rényi as well as a number of real neuronal networks. The failure strategy was either random or intentional based on properties of the nodes such as degree, clustering coefficient, betweenness centrality, and vulnerability. Hindmarsh-Rose model was considered as the mathematical model for the individual neurons, and the phase synchronization of the spike trains was monitored as a function of the percentage/number of removed nodes. The numerical simulations were supplemented by considering coupled non-identical Kuramoto oscillators. Failures based on the clustering coefficient, i.e., removing the nodes with high values of the clustering coefficient, had the least effect on the spike synchrony in all of the networks. This was followed by errors where the nodes were removed randomly. However, the behavior of the other three attack strategies was not uniform across the networks, and different strategies were the most influential in different network structure.

  16. DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.

    PubMed

    Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang

    2018-05-25

    Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.

  17. Diversity Driven Coexistence: Collective Stability in the Cyclic Competition of Three Species

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Frey, Erwin; Zia, R. K. P.

    2015-03-01

    The basic physics of collective behavior are often difficult to quantify and understand, particularly when the system is driven out of equilibrium. Many complex systems are usefully described as complex networks, consisting of nodes and links. The nodes specify individual components of the system and the links describe their interactions. When both nodes and links change dynamically, or `co-evolve', as happens in many realistic systems, complex mathematical structures are encountered, posing challenges to our understanding. In this context, we introduce a minimal system of node and link degrees of freedom, co-evolving with stochastic rules. Specifically, we show that diversity of social temperament (intro- or extroversion) can produce collective stable coexistence when three species compete cyclically. It is well-known that when only extroverts exist in a stochastic rock-paper-scissors game, or in a conserved predator-prey, Lotka-Volterra system, extinction occurs at times of O(N), where N is the number of nodes. We find that when both introverts and extroverts exist, where introverts sever social interactions and extroverts create them, collective coexistence prevails in long-living, quasi-stationary states. Work supported by the NSF through Grants DMR-1206839 (KEB) and DMR-1244666 (RKPZ), and by the AFOSR and DARPA through Grant FA9550-12-1-0405 (KEB).

  18. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  19. Generalized friendship paradox in complex networks: The case of scientific collaboration

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2014-04-01

    The friendship paradox states that your friends have on average more friends than you have. Does the paradox ``hold'' for other individual characteristics like income or happiness? To address this question, we generalize the friendship paradox for arbitrary node characteristics in complex networks. By analyzing two coauthorship networks of Physical Review journals and Google Scholar profiles, we find that the generalized friendship paradox (GFP) holds at the individual and network levels for various characteristics, including the number of coauthors, the number of citations, and the number of publications. The origin of the GFP is shown to be rooted in positive correlations between degree and characteristics. As a fruitful application of the GFP, we suggest effective and efficient sampling methods for identifying high characteristic nodes in large-scale networks. Our study on the GFP can shed lights on understanding the interplay between network structure and node characteristics in complex networks.

  20. Generalized friendship paradox in complex networks: The case of scientific collaboration

    PubMed Central

    Eom, Young-Ho; Jo, Hang-Hyun

    2014-01-01

    The friendship paradox states that your friends have on average more friends than you have. Does the paradox “hold” for other individual characteristics like income or happiness? To address this question, we generalize the friendship paradox for arbitrary node characteristics in complex networks. By analyzing two coauthorship networks of Physical Review journals and Google Scholar profiles, we find that the generalized friendship paradox (GFP) holds at the individual and network levels for various characteristics, including the number of coauthors, the number of citations, and the number of publications. The origin of the GFP is shown to be rooted in positive correlations between degree and characteristics. As a fruitful application of the GFP, we suggest effective and efficient sampling methods for identifying high characteristic nodes in large-scale networks. Our study on the GFP can shed lights on understanding the interplay between network structure and node characteristics in complex networks. PMID:24714092

  1. Traffic placement policies for a multi-band network

    NASA Technical Reports Server (NTRS)

    Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael

    1990-01-01

    Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.

  2. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    PubMed

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  3. Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis.

    PubMed

    Fuite, Jim; Vernon, Suzanne D; Broderick, Gordon

    2008-12-01

    This work investigates the significance of changes in association patterns linking indicators of neuroendocrine and immune activity in patients with chronic fatigue syndrome (CFS). Gene sets preferentially expressed in specific immune cell isolates were integrated with neuroendocrine data from a large population-based study. Co-expression patterns linking immune cell activity with hypothalamic-pituitary-adrenal (HPA), thyroidal (HPT) and gonadal (HPG) axis status were computed using mutual information criteria. Networks in control and CFS subjects were compared globally in terms of a weighted graph edit distance. Local re-modeling of node connectivity was quantified by node degree and eigenvector centrality measures. Results indicate statistically significant differences between CFS and control networks determined mainly by re-modeling around pituitary and thyroid nodes as well as an emergent immune sub-network. Findings align with known mechanisms of chronic inflammation and support possible immune-mediated loss of thyroid function in CFS exacerbated by blunted HPA axis responsiveness.

  4. Selection of test paths for solder joint intermittent connection faults under DC stimulus

    NASA Astrophysics Data System (ADS)

    Huakang, Li; Kehong, Lv; Jing, Qiu; Guanjun, Liu; Bailiang, Chen

    2018-06-01

    The test path of solder joint intermittent connection faults under direct-current stimulus is examined in this paper. According to the physical structure of the circuit, a network model is established first. A network node is utilised to represent the test node. The path edge refers to the number of intermittent connection faults in the path. Then, the selection criteria of the test path based on the node degree index are proposed and the solder joint intermittent connection faults are covered using fewer test paths. Finally, three circuits are selected to verify the method. To test if the intermittent fault is covered by the test paths, the intermittent fault is simulated by a switch. The results show that the proposed method can detect the solder joint intermittent connection fault using fewer test paths. Additionally, the number of detection steps is greatly reduced without compromising fault coverage.

  5. Diagnostic value of inflammatory cell infiltrates, tumor stroma percentage and disease-free survival in patients with colorectal cancer

    PubMed Central

    Jakubowska, Katarzyna; Kisielewski, Wojciech; Kańczuga-Koda, Luiza; Koda, Mariusz; Famulski, Waldemar

    2017-01-01

    The anticancer immune defense mechanism involves humoral and cellular responses. The main effector mechanisms of antitumor responses involve the following: the activity of cytotoxic T cells; the activation of macrophages and neutrophils; the activity of cytokines secreted by T cells; and natural killer cell activity. Selected cell populations are responsible for the stimulation or suppression of the immune system against tumor cells. Therefore, the aim of the present study was to evaluate the location, extent and composition of the cellular inflammatory infiltration of tumors in patients with colorectal cancer (CRC). In addition, the correlation between cellular inflammatory infiltration, and anatomoclinical and histopathological features of patients was evaluated. The study involved 160 patients diagnosed with primary operable CRC. The local inflammatory infiltrate was assessed in the invasive front and center of the tumor using light microscopy with hematoxylin and eosin (H&E) staining, according to the Klintrup-Makinen criteria, tumor stroma percentage, and Glasgow microenvironment score. The inflammatory infiltrate in the invasive front of the tumor was correlated with gender (P=0.018), the invasion of blood vessels (P=0.020) and lymph vessels (P=0.038), the presence of tumor-infiltrating lymphocytes in the invasive front (P=0.033) and center (P<0.001) of the tumor, fibrosis (P<0.001), and the degree of desmoplasmic stroma (P=0.004). In contrast, inflammatory infiltration in the center of the tumor was associated with the tumor node metastasis stage (P=0.012), Dukes' stage (P=0.009), primary tumor stage (P=0.036), lymph node status (P=0.005), number of lymph nodes (P=0.006), invasion of lymph node pouches (P=0.021), size of lymph node metastasis (P=0.025) and the degree of desmoplasmic stroma (P=0.002). The low-group, who demonstrated an absent or weak inflammatory cell infiltrate in the invasive front of the tumor, had a statistically significant shorter disease-free survival (DFS) time (P=0.004). Inflammatory cell infiltrate in the invasive front was identified as an independent predictive factor in CRC (P=0.041). In conclusion, the degree of inflammatory cell infiltration in the invasive front of the primary tumor significantly affects various variables that determine disease progression and DFS rates of patients with CRC. Furthermore, the routine histopathological assessment of this parameter in tissue stained with H&E may have potential prognostic value. PMID:28927159

  6. A character network study of two Sci-Fi TV series

    NASA Astrophysics Data System (ADS)

    Tan, M. S. A.; Ujum, E. A.; Ratnavelu, K.

    2014-03-01

    This work is an analysis of the character networks in two science fiction television series: Stargate and Star Trek. These networks are constructed on the basis of scene co-occurrence between characters to indicate the presence of a connection. Global network structure measures such as the average path length, graph density, network diameter, average degree, median degree, maximum degree, and average clustering coefficient are computed as well as individual node centrality scores. The two fictional networks constructed are found to be quite similar in structure which is astonishing given that Stargate only ran for 18 years in comparison to the 48 years for Star Trek.

  7. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    PubMed

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  8. The importance of centralities in dark network value chains

    NASA Astrophysics Data System (ADS)

    Toth, Noemi; Gulyás, László; Legendi, Richard O.; Duijn, Paul; Sloot, Peter M. A.; Kampis, George

    2013-09-01

    This paper introduces three novel centrality measures based on the nodes' role in the operation of a joint task, i.e., their position in a criminal network value chain. For this, we consider networks where nodes have attributes describing their "capabilities" or "colors", i.e., the possible roles they may play in a value chain. A value chain here is understood as a series of tasks to be performed in a specific order, each requiring a specific capability. The first centrality notion measures how many value chain instances a given node participates in. The other two assess the costs of replacing a node in the value chain in case the given node is no longer available to perform the task. The first of them considers the direct distance (shortest path length) between the node in question and its nearest replacement, while the second evaluates the actual replacement process, assuming that preceding and following nodes in the network should each be able to find and contact the replacement. In this report, we demonstrate the properties of the new centrality measures using a few toy examples and compare them to classic centralities, such as betweenness, closeness and degree centrality. We also apply the new measures to randomly colored empirical networks. We find that the newly introduced centralities differ sufficiently from the classic measures, pointing towards different aspects of the network. Our results also pinpoint the difference between having a replacement node in the network and being able to find one. This is the reason why "introduction distance" often has a noticeable correlation with betweenness. Our studies show that projecting value chains over networks may significantly alter the nodes' perceived importance. These insights might have important implications for the way law enforcement or intelligence agencies look at the effectiveness of dark network disruption strategies over time.

  9. Control Centrality and Hierarchical Structure in Complex Networks

    PubMed Central

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2012-01-01

    We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the network’s degree distribution. We show that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks. PMID:23028542

  10. On the effect of memory in one-dimensional K=4 automata on networks

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Cárdenas, Juan Pablo

    2008-12-01

    The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.

  11. Quantifying uncertainties in the structural response of SSME blades

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.

    1987-01-01

    To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.

  12. A unified degree day model describes survivorship of Copitarsia corruda Pogue & Simmons (Lepidoptera: Noctuidae) at different constant temperatures.

    PubMed

    Gómez, N N; Venette, R C; Gould, J R; Winograd, D F

    2009-02-01

    Predictions of survivorship are critical to quantify the probability of establishment by an alien invasive species, but survival curves rarely distinguish between the effects of temperature on development versus senescence. We report chronological and physiological age-based survival curves for a potentially invasive noctuid, recently described as Copitarsia corruda Pogue & Simmons, collected from Peru and reared on asparagus at six constant temperatures between 9.7 and 34.5 degrees C. Copitarsia spp. are not known to occur in the United States but are routinely intercepted at ports of entry. Chronological age survival curves differ significantly among temperatures. Survivorship at early age after hatch is greatest at lower temperatures and declines as temperature increases. Mean longevity was 220 (+/-13 SEM) days at 9.7 degrees C. Physiological age survival curves constructed with developmental base temperature (7.2 degrees C) did not correspond to those constructed with a senescence base temperature (5.9 degrees C). A single degree day survival curve with an appropriate temperature threshold based on senescence adequately describes survivorship under non-stress temperature conditions (5.9-24.9 degrees C).

  13. A long-term stable power supply µDMFC stack for wireless sensor node applications

    NASA Astrophysics Data System (ADS)

    Wu, Zonglin; Wang, Xiaohong; Li, Xiaozhao; Xu, Manqi; Liu, Litian

    2014-10-01

    In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm-2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc-dc convertor, the stack can realize a stable and optional constant voltage output from 1 V-6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes.

  14. Statistical Mechanics of the Delayed Reward-Based Learning with Node Perturbation

    NASA Astrophysics Data System (ADS)

    Hiroshi Saito,; Kentaro Katahira,; Kazuo Okanoya,; Masato Okada,

    2010-06-01

    In reward-based learning, reward is typically given with some delay after a behavior that causes the reward. In machine learning literature, the framework of the eligibility trace has been used as one of the solutions to handle the delayed reward in reinforcement learning. In recent studies, the eligibility trace is implied to be important for difficult neuroscience problem known as the “distal reward problem”. Node perturbation is one of the stochastic gradient methods from among many kinds of reinforcement learning implementations, and it searches the approximate gradient by introducing perturbation to a network. Since the stochastic gradient method does not require a objective function differential, it is expected to be able to account for the learning mechanism of a complex system, like a brain. We study the node perturbation with the eligibility trace as a specific example of delayed reward-based learning, and analyzed it using a statistical mechanics approach. As a result, we show the optimal time constant of the eligibility trace respect to the reward delay and the existence of unlearnable parameter configurations.

  15. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    PubMed

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  16. The use of nodes attributes in social network analysis with an application to an international trade network

    NASA Astrophysics Data System (ADS)

    de Andrade, Ricardo Lopes; Rêgo, Leandro Chaves

    2018-02-01

    The social network analysis (SNA) studies the interactions among actors in a network formed through some relationship (friendship, cooperation, trade, among others). The SNA is constantly approached from a binary point of view, i.e., it is only observed if a link between two actors is present or not regardless of the strength of this link. It is known that different information can be obtained in weighted and unweighted networks and that the information extracted from weighted networks is more accurate and detailed. Another rarely discussed approach in the SNA is related to the individual attributes of the actors (nodes), because such analysis is usually focused on the topological structure of networks. Features of the nodes are not incorporated in the SNA what implies that there is some loss or misperception of information in those analyze. This paper aims at exploring more precisely the complexities of a social network, initially developing a method that inserts the individual attributes in the topological structure of the network and then analyzing the network in four different ways: unweighted, edge-weighted and two methods for using both edge-weights and nodes' attributes. The international trade network was chosen in the application of this approach, where the nodes represent the countries, the links represent the cash flow in the trade transactions and countries' GDP were chosen as nodes' attributes. As a result, it is possible to observe which countries are most connected in the world economy and with higher cash flows, to point out the countries that are central to the intermediation of the wealth flow and those that are most benefited from being included in this network. We also made a principal component analysis to study which metrics are more influential in describing the data variability, which turn out to be mostly the weighted metrics which include the nodes' attributes.

  17. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.

    PubMed

    Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine

    2016-08-18

    We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.

  18. Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew; Thompson, Paul M.

    2015-01-01

    Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the ‘rich-club’ – a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich-club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich-club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline. PMID:26037224

  19. Role of centrality for the identification of influential spreaders in complex networks.

    PubMed

    de Arruda, Guilherme Ferraz; Barbieri, André Luiz; Rodríguez, Pablo Martín; Rodrigues, Francisco A; Moreno, Yamir; Costa, Luciano da Fontoura

    2014-09-01

    The identification of the most influential spreaders in networks is important to control and understand the spreading capabilities of the system as well as to ensure an efficient information diffusion such as in rumorlike dynamics. Recent works have suggested that the identification of influential spreaders is not independent of the dynamics being studied. For instance, the key disease spreaders might not necessarily be so important when it comes to analyzing social contagion or rumor propagation. Additionally, it has been shown that different metrics (degree, coreness, etc.) might identify different influential nodes even for the same dynamical processes with diverse degrees of accuracy. In this paper, we investigate how nine centrality measures correlate with the disease and rumor spreading capabilities of the nodes in different synthetic and real-world (both spatial and nonspatial) networks. We also propose a generalization of the random walk accessibility as a new centrality measure and derive analytical expressions for the latter measure for simple network configurations. Our results show that for nonspatial networks, the k-core and degree centralities are the most correlated to epidemic spreading, whereas the average neighborhood degree, the closeness centrality, and accessibility are the most related to rumor dynamics. On the contrary, for spatial networks, the accessibility measure outperforms the rest of the centrality metrics in almost all cases regardless of the kind of dynamics considered. Therefore, an important consequence of our analysis is that previous studies performed in synthetic random networks cannot be generalized to the case of spatial networks.

  20. Naming Game with Multiple Hearers

    NASA Astrophysics Data System (ADS)

    Li, Bing; Chen, Guanrong; Chow, Tommy W. S.

    2013-05-01

    A new model called Naming Game with Multiple Hearers (NGMH) is proposed in this paper. A naming game over a population of individuals aims to reach consensus on the name of an object through pair-wise local interactions among all the individuals. The proposed NGMH model describes the learning process of a new word, in a population with one speaker and multiple hearers, at each interaction towards convergence. The characteristics of NGMH are examined on three types of network topologies, namely ER random-graph network, WS small-world network, and BA scale-free network. Comparative analysis on the convergence time is performed, revealing that the topology with a larger average (node) degree can reach consensus faster than the others over the same population. It is found that, for a homogeneous network, the average degree is the limiting value of the number of hearers, which reduces the individual ability of learning new words, consequently decreasing the convergence time; for a scale-free network, this limiting value is the deviation of the average degree. It is also found that a network with a larger clustering coefficient takes longer time to converge; especially a small-word network with smallest rewiring possibility takes longest time to reach convergence. As more new nodes are being added to scale-free networks with different degree distributions, their convergence time appears to be robust against the network-size variation. Most new findings reported in this paper are different from that of the single-speaker/single-hearer naming games documented in the literature.

  1. Trait-Related Cortical-Subcortical Dissociation in Bipolar Disorder: Analysis of Network Degree Centrality.

    PubMed

    Zhou, Qian; Womer, Fay Y; Kong, Lingtao; Wu, Feng; Jiang, Xiaowei; Zhou, Yifang; Wang, Dahai; Bai, Chuan; Chang, Miao; Fan, Guoguang; Xu, Ke; He, Yong; Tang, Yanqing; Wang, Fei

    2017-05-01

    Bipolar disorder is a systemic brain disorder. Accumulated evidence suggested that cortical-subcortical imbalance could be a trait-related pathogenic factor of bipolar disorder. Degree centrality, a robust index of focal connectivity in which the number of direct connections from one node to all nodes is counted, has not previously been studied in bipolar disorder as a whole. Resting state functional magnetic resonance imaging was performed on 52 patients with DSM-IV bipolar I disorder and 70 healthy controls recruited between September 2009 and July 2014. Degree centrality was calculated within cerebral gray matter for each subject and compared between patients with bipolar disorder and healthy controls. Hub distributions of both groups were explored. Effects of medication exposure and mood state on degree centrality, as well as cortical-subcortical degree centrality correlations, were explored. Compared to healthy controls, patients with bipolar disorder exhibited significant decrease in degree centrality in cortical regions, including the middle temporal pole, inferior temporal gyrus, and ventral prefrontal cortex, but showed significant increase in degree centrality mainly in subcortical regions, including caudate, thalamus, parahippocampal gyrus, hippocampi, anterior cingulate, insula, and amygdala, and a small portion of cortical regions, such as superior and middle frontal gyrus (P < .05, corrected). Spatial distributions of the 2 groups were very similar. No significant effects of medication exposure or mood state on degree centrality were found. Patients with bipolar disorder also showed significant decrease in cortical-subcortical degree centrality correlation (P = .003). These findings further contribute to the mounting evidence of cortical-subcortical dissociation in bipolar disorder pathophysiology. In addition, this study supports the continued development and implementation of graph-based techniques to enhance our understanding of the underlying neural mechanisms in mental disorders such as bipolar disorder, which are increasingly viewed as systemic brain disorders rather than disorders arising from disruption within a single structure or a limited number of structures. Due to the heterogeneity of our sample, as well as the small sample size of each medication and mood state subgroups, further investigation is needed to support our findings. © Copyright 2016 Physicians Postgraduate Press, Inc.

  2. Temperature-dependent development of Aleyrodes proletella (Homoptera: Aleyrodidae) on two cultivars of broccoli under constant temperatures.

    PubMed

    Alonso, Daniel; Gómez, Ana Azahara; Nombela, Gloria; Muñiz, Mariano

    2009-02-01

    Laboratory experiments were conducted to estimate developmental rates and nymphal survival of Aleyrodes proletella Linnaeus (Homoptera: Aleyrodidae) on two broccoli Brassica oleracea L. variety italica Plenck cultivars (Marathon and Agripa) at eight constant temperatures (16, 18, 20, 22, 24, 26, 28, and 30 degrees C). The times required to complete development of egg and first instar decreased with increasing temperature, but the developmental times of second, third, fourth instars, all instars, and egg-adult period were greater at 30 degrees C than at 28degrees C. The relationships between developmental rate of A. proletella and temperature were slightly influenced by broccoli cultivar. The optimal temperatures and thermal constant as well as the lower and upper thresholds of development for all immature stages were estimated by fitting the observed developmental rates versus temperature with a nonlinear model and two linear models. For all stages, graphs obtained by plotting the developmental rates against temperature could be described by the modification two of the Logan's model. Overall, developmental times for immature stages and egg-adult periods were similar on both Agripa and Marathon cultivars. The most favorable temperature range for nymphal development seemed to be 28-29 (second and third instars) and 31-33 degrees C (fourth instar). Mean generation times (egg-adult) ranged from 19 d ('Marathon' and 'Agripa') at 28 degrees C to 47 ('Marathon') and 46 d ('Agripa') at 16 degrees C.

  3. Rapid self-organised initiation of ad hoc sensor networks close above the percolation threshold

    NASA Astrophysics Data System (ADS)

    Korsnes, Reinert

    2010-07-01

    This work shows potentials for rapid self-organisation of sensor networks where nodes collaborate to relay messages to a common data collecting unit (sink node). The study problem is, in the sense of graph theory, to find a shortest path tree spanning a weighted graph. This is a well-studied problem where for example Dijkstra’s algorithm provides a solution for non-negative edge weights. The present contribution shows by simulation examples that simple modifications of known distributed approaches here can provide significant improvements in performance. Phase transition phenomena, which are known to take place in networks close to percolation thresholds, may explain these observations. An initial method, which here serves as reference, assumes the sink node starts organisation of the network (tree) by transmitting a control message advertising its availability for its neighbours. These neighbours then advertise their current cost estimate for routing a message to the sink. A node which in this way receives a message implying an improved route to the sink, advertises its new finding and remembers which neighbouring node the message came from. This activity proceeds until there are no more improvements to advertise to neighbours. The result is a tree network for cost effective transmission of messages to the sink (root). This distributed approach has potential for simple improvements which are of interest when minimisation of storage and communication of network information are a concern. Fast organisation of the network takes place when the number k of connections for each node ( degree) is close above its critical value for global network percolation and at the same time there is a threshold for the nodes to decide to advertise network route updates.

  4. Selective sentinel node biopsy after intratumour administration of radiotracer in breast cancer patients treated with neoadjuvant chemotherapy in relation to the level of tumour response.

    PubMed

    Díaz-Expósito, R; Martí-Bonmatí, L; Burgués, O; Casáns-Tormo, I; Bermejo-de Las Heras, B; Julve-Parreño, A; Caballero-Garate, A

    Our objective was to analyse the accuracy of the sentinel node biopsy, taking into consideration the scintigraphy detection rate after the intratumoural administration of the radiopharmaceutical in patients with breast cancer who received neoadjuvant chemotherapy. The study included 60 patients with a diagnosis of invasive breast carcinoma, stage T1-T3, who received treatment with neoadjuvant chemotherapy, and were subsequently subjected to breast surgery and sentinel node biopsy after intra-tumour administration of the radiopharmaceutical. Scintigraphic detection of some sentinel node was achieved in 55/60 patients (91.6%). When those cases that received a second injection of the radiopharmaceutical, performed peri-areolarly due to a lack of tracer migration, were excluded, the detection rate dropped to 70% (42/60). When the detection of sentinel node, or its absence, was compared in those 42 patients, no differences were found with age, laterality-location of the lesion, size pre- and post-neoadjuvant chemotherapy, histological grade, or immunohistochemical profile. There were significant differences when comparing the groups according to the degree of pathological tumour response, both with the Miller-Payne system (non-detection 44.4%-detection 16.7%, p = 0.003) as well as the residual cancer burden (72.2%-28.6%, p<0.01). The scintigraphic detection of the sentinel node after intratumoural administration of the radiopharmaceutical in patients with breast cancer who received neoadjuvant chemotherapy was below the optimal value, and sometimes a further, peri-areolar, injection was necessary, probably in relation to an alteration in the lymphatic drainage pathways. There was a significant inverse relationship between the detection of the sentinel node and level of pathological tumour response. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  5. Empirical and Bayesian approaches to fossil-only divergence times: A study across three reptile clades.

    PubMed

    Turner, Alan H; Pritchard, Adam C; Matzke, Nicholas J

    2017-01-01

    Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a 'smoothed' timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches.

  6. Empirical and Bayesian approaches to fossil-only divergence times: A study across three reptile clades

    PubMed Central

    Turner, Alan H.; Pritchard, Adam C.; Matzke, Nicholas J.

    2017-01-01

    Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a ‘smoothed’ timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches. PMID:28187191

  7. Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition

    Treesearch

    K. Tapily; Joseph E. Jakes; D. S. Stone; P. Shrestha; D. Gu; H. Baumgart; A. A. Elmustafa

    2008-01-01

    The challenges of reducing gate leakage current and dielectric breakdown beyond the 45 nm technology node have shifted engineers’ attention from the traditional and proven dielectric SiO2 to materials of higher dielectric constant also known as high-k materials such as hafnium oxide (HfO2) and aluminum oxide (Al2O3). These high-k materials are projected to...

  8. Coordination sequences and information spreading in small-world networks

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.

    2002-10-01

    We study the spread of information in small-world networks generated from different d-dimensional regular lattices, with d=1, 2, and 3. With this purpose, we analyze by numerical simulations the behavior of the coordination sequence, e.g., the average number of sites C(n) that can be reached from a given node of the network in n steps along its bonds. For sufficiently large networks, we find an asymptotic behavior C(n)~ρn, with a constant ρ that depends on the network dimension d and on the rewiring probability p (which measures the disorder strength of a given network). A simple model of information spreading in these networks is studied, assuming that only a fraction q of the network sites are active. The number of active nodes reached in n steps has an asymptotic form λn, λ being a constant that depends on p and q, as well as on the dimension d of the underlying lattice. The information spreading presents two different regimes depending on the value of λ: For λ>1 the information propagates along the whole system, and for λ<1 the spreading is damped and the information remains confined in a limited region of the network. We discuss the connection of these results with site percolation in small-world networks.

  9. Immunization against East Coast Fever in field cattle with low infectivity Theileria parva stabilate--preliminary assessment.

    PubMed

    Mbassa, G K; Kweka, L E; Dulla, P N

    1998-05-01

    Two Theileria parva sporozoite stabilates stored at -196 degrees C, then at -70 degrees C for six weeks (stabilate 1) and more than six months (stabilate 2) were inoculated into four eight-month old male calves, 1 and 2 (stabilate 1), and 3 and 4 (stabilate 2). Calves 1 and 2 developed pyrexia, enlargement of lymph nodes, and the former died of East Coast Fever. Calves 3 and 4 showed slight enlargement of lymph nodes without fever. Lymph node smears from all calves (from day 10 to 20 post-inoculation) showed lymphoblasts, phagocytic macrophages, and schizonts. Piroplasms were detected in erythrocytes in blood smears from calves 1 and 2 but not in calves 3 and 4. Calves 2, 3 and 4 recovered without any treatment while calf 1 died of East Coast Fever on day 20. Serum samples from recovered calves taken on day 30 of the experiment were positive for antischizont antibodies to T. parva at 1:640 dilution, but pre-inoculation serum samples were negative. Stabilate 2 was used to immunize 64 Boran, Friesian, Ayrshire and crosses with Zebu cattle in four herds with 25% reduction of oxytetracycline dose. All the animals except one calf recovered without any severe reactions. The latter died of disease other than ECF after the monitoring period was over (day 24). Day 30 post-inoculation serum samples were positive for T. parva antischizont antibodies. A follow-up of the remaining animals for over one year revealed no further ECF incidences in these herds. This experiment shows the loss of infectivity of the vaccine stored at temperatures higher than -196 degrees C. dependent on the duration. However, despite the lack of clinical signs in calves 3 and 4, there was cellular response and antibody production, and the stabilate for vaccine against East Coast fever can thus be stored prior to use at higher than -196 degrees C and still maintain capability to produce antibodies in field cattle, eliminating the use of oxytetracycline and monitoring. The vaccine will be cheaper and easier to use and the requirement for liquid nitrogen in the field reduced and the scale of application of the vaccine widened.

  10. Spectral separation of gaseous fluorocarbon mixtures and measurement of diffusion constants by 19F gas phase DOSY NMR.

    PubMed

    Marchione, Alexander A; McCord, Elizabeth F

    2009-11-01

    Diffusion-ordered (DOSY) NMR techniques have for the first time been applied to the spectral separation of mixtures of fluorinated gases by diffusion rates. A mixture of linear perfluoroalkanes from methane to hexane was readily separated at 25 degrees C in an ordinary experimental setup with standard DOSY pulse sequences. Partial separation of variously fluorinated ethanes was also achieved. The constants of self-diffusion of a set of pure perfluoroalkanes were obtained at pressures from 0.25 to 1.34 atm and temperatures from 20 to 122 degrees C. Under all conditions there was agreement within 20% of experimental self-diffusion constant D and values calculated by the semiempirical Fuller method.

  11. Interferon-α acutely impairs whole-brain functional connectivity network architecture - A preliminary study.

    PubMed

    Dipasquale, Ottavia; Cooper, Ella A; Tibble, Jeremy; Voon, Valerie; Baglio, Francesca; Baselli, Giuseppe; Cercignani, Mara; Harrison, Neil A

    2016-11-01

    Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis C infection. Though clinically effective, IFN-α rapidly impairs mood, motivation and cognition, effects that can appear indistinguishable from major depression and provide powerful empirical support for the inflammation theory of depression. Though inflammation has been shown to modulate activity within discrete brain regions, how it affects distributed information processing and the architecture of whole brain functional connectivity networks have not previously been investigated. Here we use a graph theoretic analysis of resting state functional magnetic resonance imaging (rfMRI) to investigate acute effects of systemic interferon-alpha (IFN-α) on whole brain functional connectivity architecture and its relationship to IFN-α-induced mood change. Twenty-two patients with Hepatitis-C infection, initiating IFN-α-based therapy were scanned at baseline and 4h after their first IFN-α dose. The whole brain network was parcellated into 110 cortical and sub-cortical nodes based on the Oxford-Harvard Atlas and effects assessed on higher-level graph metrics, including node degree, betweenness centrality, global and local efficiency. IFN-α was associated with a significant reduction in global network connectivity (node degree) (p=0.033) and efficiency (p=0.013), indicating a global reduction of information transfer among the nodes forming the whole brain network. Effects were similar for highly connected (hub) and non-hub nodes, with no effect on betweenness centrality (p>0.1). At a local level, we identified regions with reduced efficiency of information exchange and a sub-network with decreased functional connectivity after IFN-α. Changes in local and particularly global functional connectivity correlated with associated changes in mood measured on the Profile of Mood States (POMS) questionnaire. IFN-α rapidly induced a profound shift in whole brain network structure, impairing global functional connectivity and the efficiency of parallel information exchange. Correlations with multiple indices of mood change support a role for global changes in brain functional connectivity architecture in coordinated behavioral responses to IFN-α. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. [Comparison of CT findings between gastric cancer and gastric lymphoma].

    PubMed

    Fan, Wei-Jun; Lu, Yan-Chun; Liu, Li-Zhi; Shen, Jing-Xian; Xie, Chuan-Miao; Li, Xian; Zhang, Liang

    2008-05-01

    It is difficult to discriminate progressive gastric cancer and gastric lymphoma by CT imaging, because incrassate gastric wall, lump in gastric cavity, confined gastric cavity, intumescent lymph node, and distant metastasis can be displayed in both of them. This study was to compare the CT findings between gastric cancer and gastric lymphoma to improve diagnosis of gastric tumors, especially for gastric lymphoma. CT images of 27 patients with pathologically proved progressive gastric cancer and 25 patients with pathologically proved gastric lymphoma were reviewed. Tumor location, appearance, scope of involvement, gastric wall thickness, mucous membrane, mucosal fold, serosa membrane, necrosis, enhancement degree and uniformity, involvement of other organs, and abdominal lymph nodes were observed. White line sign was observed in 23 cases (85.2%) of gastric cancer, but not in the 25 cases of gastric lymphoma. The extent of white line sign in gastric cancers was larger in portal vein phase than in arterial phase. Enhancement degree outside the white line was higher in portal vein phase than in arterial phase in 13 cases (48.1%) of gastric cancer. The extent of involved gastric wall was smaller than 50% of the whole gastric wall in all the 27 cases of gastric cancer, while it was larger than 75% in 23 cases (85.2%) of gastric lymphoma. Gastric mucous membrane ulcer was found in all of the 27 cases (100%) of gastric cancer, while it was found in only 1 case (4.0%) of gastric lymphoma. Intumescent lymph nodes in two or more areas were found in 11 cases (40.0%) of gastric lymphoma, but not in gastric cancer. Intumescent lymph nodes in the retroperitoneal space below renal hilum were found in 8 cases (32%) of gastric lymphoma, but not in gastric cancer. There are some different CT features between gastric cancer and gastric lymphoma, such as white line sign, gastric mucous membrane ulcer, extent of involved gastric wall, location of intumescent lymph nodes surrounding the stomach and in retroperitoneal space below renal hilum, and so on, which could be helpful in differential diagnosis of these two diseases.

  13. [On the relation between encounter rate and population density: Are classical models of population dynamics justified?].

    PubMed

    Nedorezov, L V

    2015-01-01

    A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.

  14. Application of the Modified Compaction Material Model to the Analysis of Landmine Detonation in Soil with Various Degrees of Water Saturation

    DTIC Science & Technology

    2007-01-01

    Equation of State R2 – Constant in JWL Equation of State σ – Yield Stress T – Temperature...v – Specific volume w – Constant in JWL Equation of State x – Spatial coordinate y – Spatial coordinate Y – Yield stress Subscripts Comp – Value at...Constant in JWL Equation of State α – Porosity B – Compaction Modulus B1 – Strain Hardening Constant B2 – Constant in JWL Equation of State

  15. Achievable degrees of freedom of MIMO two-way relay interference channel with delayed CSIT

    NASA Astrophysics Data System (ADS)

    Li, Qingyun; Wu, Gang; Li, Shaoqian

    2016-10-01

    In this paper, assuming each node has delayed channel state information at the transmitter (CSIT), we investigate the achievable degrees of freedom (DOF) of MIMO two-way relay interference channel in frequency division duplex (FDD) systems, where there are K user pairs (i.e., 2K users) and each user in a user pair exchanges messages with the other user in the same user pair simultaneously via an intermediate relay. We propose a two-stage transmission scheme and derive the closed-form expressions for its achievable DOF.

  16. Collective effect of personal behavior induced preventive measures and differential rate of transmission on spread of epidemics

    NASA Astrophysics Data System (ADS)

    Sagar, Vikram; Zhao, Yi

    2017-02-01

    In the present work, the effect of personal behavior induced preventive measures is studied on the spread of epidemics over scale free networks that are characterized by the differential rate of disease transmission. The role of personal behavior induced preventive measures is parameterized in terms of variable λ, which modulates the number of concurrent contacts a node makes with the fraction of its neighboring nodes. The dynamics of the disease is described by a non-linear Susceptible Infected Susceptible model based upon the discrete time Markov Chain method. The network mean field approach is generalized to account for the effect of non-linear coupling between the aforementioned factors on the collective dynamics of nodes. The upper bound estimates of the disease outbreak threshold obtained from the mean field theory are found to be in good agreement with the corresponding non-linear stochastic model. From the results of parametric study, it is shown that the epidemic size has inverse dependence on the preventive measures (λ). It has also been shown that the increase in the average degree of the nodes lowers the time of spread and enhances the size of epidemics.

  17. Epidemic outbreaks in growing scale-free networks with local structure

    NASA Astrophysics Data System (ADS)

    Ni, Shunjiang; Weng, Wenguo; Shen, Shifei; Fan, Weicheng

    2008-09-01

    The class of generative models has already attracted considerable interest from researchers in recent years and much expanded the original ideas described in BA model. Most of these models assume that only one node per time step joins the network. In this paper, we grow the network by adding n interconnected nodes as a local structure into the network at each time step with each new node emanating m new edges linking the node to the preexisting network by preferential attachment. This successfully generates key features observed in social networks. These include power-law degree distribution pk∼k, where μ=(n-1)/m is a tuning parameter defined as the modularity strength of the network, nontrivial clustering, assortative mixing, and modular structure. Moreover, all these features are dependent in a similar way on the parameter μ. We then study the susceptible-infected epidemics on this network with identical infectivity, and find that the initial epidemic behavior is governed by both of the infection scheme and the network structure, especially the modularity strength. The modularity of the network makes the spreading velocity much lower than that of the BA model. On the other hand, increasing the modularity strength will accelerate the propagation velocity.

  18. [Brain plastic alterations in subjects with chronic right-sided sensorineural hearing loss: a resting-state MRI study].

    PubMed

    Zhang, L L; Gong, J P; Xu, Y W; Liu, B

    2016-06-21

    To investigate the nodal properties and reorganization of whole-brain functional network in subjects with severe right-sided SNHL. From June 2012 to June 2013, a total of 19 patients with severe right-sided SNHL were collected from Zhongda Hospital or the recruitment advertising along with 31 healthy controls.Based on the graph-theoretical analysis, the whole-brain functional networks were constructed using the BOLD-fMRI data of all subjects.Two sample two-tailed t-tests were used to investigate the differences between two groups in nodal metrics, such as node degree, node betweenness, node global efficiency and node local efficiency.All metrics were corrected by multiple comparisons.Partial correlation analysis was used to estimate the relationship between the significant metrics and the duration or severity of hearing loss. The right-sided SNHL showed significantly increased betweenness centrality in left supramarginal gyrus and right fusiform.However, other nodal parameters showed no statistical difference.Besides, patients exhibited no significant association between the altered metrics and clinical variables. Alterations of local topological properties may underlie cerebral cross-modal plastic reorganization in visual or speech-related regions in severe right-sided SNHL patients.

  19. Competing Contact Processes on Homogeneous Networks with Tunable Clusterization

    NASA Astrophysics Data System (ADS)

    Rybak, Marcin; Kułakowski, Krzysztof

    2013-03-01

    We investigate two homogeneous networks: the Watts-Strogatz network with mean degree ⟨k⟩ = 4 and the Erdös-Rényi network with ⟨k⟩ = 10. In both kinds of networks, the clustering coefficient C is a tunable control parameter. The network is an area of two competing contact processes, where nodes can be in two states, S or D. A node S becomes D with probability 1 if at least two its mutually linked neighbors are D. A node D becomes S with a given probability p if at least one of its neighbors is S. The competition between the processes is described by a phase diagram, where the critical probability pc depends on the clustering coefficient C. For p > pc the rate of state S increases in time, seemingly to dominate in the whole system. Below pc, the majority of nodes is in the D-state. The numerical results indicate that for the Watts-Strogatz network the D-process is activated at the finite value of the clustering coefficient C, close to 0.3. On the contrary, for the Erdös-Rényi network the transition is observed at the whole investigated range of C.

  20. Cacades: A reliable dissemination protocol for data collection sensor network

    USGS Publications Warehouse

    Peng, Y.; Song, W.; Huang, R.; Xu, M.; Shirazi, B.; LaHusen, R.; Pei, G.

    2009-01-01

    In this paper, we propose a fast and reliable data dissemination protocol Cascades to disseminate data from the sink(base station) to all or a subset of nodes in a data collection sensor network. Cascades makes use of the parentmonitor-children analogy to ensure reliable dissemination. Each node monitors whether or not its children have received the broadcast messages through snooping children's rebroadcasts or waiting for explicit ACKs. If a node detects a gap in its message sequences, it can fetch the missing messages from its neighbours reactively. Cascades also considers many practical issues for field deployment, such as dynamic topology, link/node failure, etc.. It therefore guarantees that a disseminated message from the sink will reach all intended receivers and the dissemination is terminated in a short time period. Notice that, all existing dissemination protocols either do not guarantee reliability or do not terminate [1, 2], which does not meet the requirement of real-time command control. We conducted experiment evaluations in both TOSSIM simulator and a sensor network testbed to compare Cascades with those existing dissemination protocols in TinyOS sensor networks, which show that Cascades achieves a higher degree of reliability, lower communication cost, and less delivery delay. ??2009 IEEE.

  1. A new mutually reinforcing network node and link ranking algorithm

    PubMed Central

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-01-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958

  2. Selection Strategies for Social Influence in the Threshold Model

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Szymanski, Boleslaw; Korniss, Gyorgy

    The ubiquity of online social networks makes the study of social influence extremely significant for its applications to marketing, politics and security. Maximizing the spread of influence by strategically selecting nodes as initiators of a new opinion or trend is a challenging problem. We study the performance of various strategies for selection of large fractions of initiators on a classical social influence model, the Threshold model (TM). Under the TM, a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. The strategies we study are of two kinds: strategies based solely on the initial network structure (Degree-rank, Dominating Sets, PageRank etc.) and strategies that take into account the change of the states of the nodes during the evolution of the cascade, e.g. the greedy algorithm. We find that the performance of these strategies depends largely on both the network structure properties, e.g. the assortativity, and the distribution of the thresholds assigned to the nodes. We conclude that the optimal strategy needs to combine the network specifics and the model specific parameters to identify the most influential spreaders. Supported in part by ARL NS-CTA, ARO, and ONR.

  3. Position control of desiccation cracks by memory effect and Faraday waves.

    PubMed

    Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio

    2013-01-01

    Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.

  4. Phylogenetic incongruence in the Drosophila melanogaster species group

    PubMed Central

    Wong, Alex; Jensen, Jeffrey D.; Pool, John E.; Aquadro, Charles F.

    2007-01-01

    Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) The node joining the D. erecta-D. orena, D. melanogaster-D. simulans, and D. yakuba-D. teissieri lineages, and (2) The node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection. PMID:17071113

  5. Escape and evade control policies for ensuring the physical security of nonholonomic, ground-based, unattended mobile sensor nodes

    NASA Astrophysics Data System (ADS)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-06-01

    In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.

  6. Data management routines for reproducible research using the G-Node Python Client library

    PubMed Central

    Sobolev, Andrey; Stoewer, Adrian; Pereira, Michael; Kellner, Christian J.; Garbers, Christian; Rautenberg, Philipp L.; Wachtler, Thomas

    2014-01-01

    Structured, efficient, and secure storage of experimental data and associated meta-information constitutes one of the most pressing technical challenges in modern neuroscience, and does so particularly in electrophysiology. The German INCF Node aims to provide open-source solutions for this domain that support the scientific data management and analysis workflow, and thus facilitate future data access and reproducible research. G-Node provides a data management system, accessible through an application interface, that is based on a combination of standardized data representation and flexible data annotation to account for the variety of experimental paradigms in electrophysiology. The G-Node Python Library exposes these services to the Python environment, enabling researchers to organize and access their experimental data using their familiar tools while gaining the advantages that a centralized storage entails. The library provides powerful query features, including data slicing and selection by metadata, as well as fine-grained permission control for collaboration and data sharing. Here we demonstrate key actions in working with experimental neuroscience data, such as building a metadata structure, organizing recorded data in datasets, annotating data, or selecting data regions of interest, that can be automated to large degree using the library. Compliant with existing de-facto standards, the G-Node Python Library is compatible with many Python tools in the field of neurophysiology and thus enables seamless integration of data organization into the scientific data workflow. PMID:24634654

  7. Soft-core processor study for node-based architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less

  8. Effects of individual popularity on information spreading in complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  9. Network overload due to massive attacks

    NASA Astrophysics Data System (ADS)

    Kornbluth, Yosef; Barach, Gilad; Tuchman, Yaakov; Kadish, Benjamin; Cwilich, Gabriel; Buldyrev, Sergey V.

    2018-05-01

    We study the cascading failure of networks due to overload, using the betweenness centrality of a node as the measure of its load following the Motter and Lai model. We study the fraction of survived nodes at the end of the cascade pf as a function of the strength of the initial attack, measured by the fraction of nodes p that survive the initial attack for different values of tolerance α in random regular and Erdös-Renyi graphs. We find the existence of a first-order phase-transition line pt(α ) on a p -α plane, such that if p pt , pf is large and the giant component of the network is still present. Exactly at pt, the function pf(p ) undergoes a first-order discontinuity. We find that the line pt(α ) ends at a critical point (pc,αc) , in which the cascading failures are replaced by a second-order percolation transition. We find analytically the average betweenness of nodes with different degrees before and after the initial attack, we investigate their roles in the cascading failures, and we find a lower bound for pt(α ) . We also study the difference between localized and random attacks.

  10. Data management routines for reproducible research using the G-Node Python Client library.

    PubMed

    Sobolev, Andrey; Stoewer, Adrian; Pereira, Michael; Kellner, Christian J; Garbers, Christian; Rautenberg, Philipp L; Wachtler, Thomas

    2014-01-01

    Structured, efficient, and secure storage of experimental data and associated meta-information constitutes one of the most pressing technical challenges in modern neuroscience, and does so particularly in electrophysiology. The German INCF Node aims to provide open-source solutions for this domain that support the scientific data management and analysis workflow, and thus facilitate future data access and reproducible research. G-Node provides a data management system, accessible through an application interface, that is based on a combination of standardized data representation and flexible data annotation to account for the variety of experimental paradigms in electrophysiology. The G-Node Python Library exposes these services to the Python environment, enabling researchers to organize and access their experimental data using their familiar tools while gaining the advantages that a centralized storage entails. The library provides powerful query features, including data slicing and selection by metadata, as well as fine-grained permission control for collaboration and data sharing. Here we demonstrate key actions in working with experimental neuroscience data, such as building a metadata structure, organizing recorded data in datasets, annotating data, or selecting data regions of interest, that can be automated to large degree using the library. Compliant with existing de-facto standards, the G-Node Python Library is compatible with many Python tools in the field of neurophysiology and thus enables seamless integration of data organization into the scientific data workflow.

  11. Scaling and correlations in three bus-transport networks of China

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou

    2007-01-01

    We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.

  12. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective, cohort study.

    PubMed

    Rossi, Emma C; Kowalski, Lynn D; Scalici, Jennifer; Cantrell, Leigh; Schuler, Kevin; Hanna, Rabbie K; Method, Michael; Ade, Melissa; Ivanova, Anastasia; Boggess, John F

    2017-03-01

    Sentinel-lymph-node mapping has been advocated as an alternative staging technique for endometrial cancer. The aim of this study was to measure the sensitivity and negative predictive value of sentinel-lymph-node mapping compared with the gold standard of complete lymphadenectomy in detecting metastatic disease for endometrial cancer. In the FIRES multicentre, prospective, cohort study patients with clinical stage 1 endometrial cancer of all histologies and grades undergoing robotic staging were eligible for study inclusion. Patients received a standardised cervical injection of indocyanine green and sentinel-lymph-node mapping followed by pelvic lymphadenectomy with or without para-aortic lymphadenectomy. 18 surgeons from ten centres (tertiary academic and community non-academic) in the USA participated in the trial. Negative sentinel lymph nodes (by haematoxylin and eosin staining on sections) were ultra-staged with immunohistochemistry for cytokeratin. The primary endpoint, sensitivity of the sentinel-lymph-node-based detection of metastatic disease, was defined as the proportion of patients with node-positive disease with successful sentinel-lymph-node mapping who had metastatic disease correctly identified in the sentinel lymph node. Patients who had mapping of at least one sentinel lymph node were included in the primary analysis (per protocol). All patients who received study intervention (injection of dye), regardless of mapping result, were included as part of the assessment of mapping and in the safety analysis in an intention-to-treat manner. The trial was registered with ClinicalTrials.gov, number NCT01673022 and is completed and closed. Between Aug 1, 2012, and Oct 20, 2015, 385 patients were enrolled. Sentinel-lymph-node mapping with complete pelvic lymphadenectomy was done in 340 patients and para-aortic lymphadenectomy was done in 196 (58%) of these patients. 293 (86%) patients had successful mapping of at least one sentinel lymph node. 41 (12%) patients had positive nodes, 36 of whom had at least one mapped sentinel lymph node. Nodal metastases were identified in the sentinel lymph nodes of 35 (97%) of these 36 patients, yielding a sensitivity to detect node-positive disease of 97·2% (95% CI 85·0-100), and a negative predictive value of 99·6% (97·9-100). The most common grade 3-4 adverse events or serious adverse events were postoperative neurological disorders (4 patients) and postoperative respiratory distress or failure (4 patients). 22 patients had serious adverse events, with one related to the study intervention: a ureteral injury incurred during sentinel-lymph-node dissection. Sentinel lymph nodes identified with indocyanine green have a high degree of diagnostic accuracy in detecting endometrial cancer metastases and can safely replace lymphadenectomy in the staging of endometrial cancer. Sentinel lymph node biopsy will not identify metastases in 3% of patients with node-positive disease, but has the potential to expose fewer patients to the morbidity of a complete lymphadenectomy. Indiana University Health, Indiana University Health Simon Cancer Center, and the Indiana University Department of Obstetrics and Gynecology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SEnviro: a sensorized platform proposal using open hardware and open standards.

    PubMed

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-03-06

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

  14. Post place and route design-technology co-optimization for scaling at single-digit nodes with constant ground rules

    NASA Astrophysics Data System (ADS)

    Mattii, Luca; Milojevic, Dragomir; Debacker, Peter; Berekovic, Mladen; Sherazi, Syed Muhammad Yasser; Chava, Bharani; Bardon, Marie Garcia; Schuddinck, Pieter; Rodopoulos, Dimitrios; Baert, Rogier; Gerousis, Vassilios; Ryckaert, Julien; Raghavan, Praveen

    2018-01-01

    Standard-cell design, technology choices, and place and route (P&R) efficiency are deeply interrelated in CMOS technology nodes below 10 nm, where lower number of tracks cells and higher pin densities pose increasingly challenging problems to the router in terms of congestion and pin accessibility. To evaluate and downselect the best solutions, a holistic design-technology co-optimization approach leveraging state-of-the-art P&R tools is thus necessary. We adopt such an approach using the imec N7 technology platform, with contacted poly pitch of 42 nm and tightest metal pitch of 32 nm, by comparing post P&R area of an IP block for different standard cell configurations, technology options, and cell height. Keeping the technology node and the set of ground rules unchanged, we demonstrate that a careful combination of these solutions can enable area gains of up to 50%, comparable with the area benefits of migrating to another node. We further demonstrate that these area benefits can be achieved at isoperformance with >20% reduced power. As at the end of the CMOS roadmap, conventional scaling enacted through pitch reduction is made more and more challenging by constraints imposed by lithography limits, material resistivity, manufacturability, and ultimately wafer cost, the approach shown herein offers a valid, attractive, and low-cost alternative.

  15. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed Sensing and Network Coding.

    PubMed

    Yin, Jun; Yang, Yuwang; Wang, Lei

    2016-04-01

    Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.

  16. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards

    PubMed Central

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-01-01

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented. PMID:25756864

  17. Recruitment and Retention of Mathematics Students in Canadian Universities

    ERIC Educational Resources Information Center

    Fenwick-Sehl, Laura; Fioroni, Marcella; Lovric, Miroslav

    2009-01-01

    Data from Statistics Canada shows that while the number of mathematics degrees at the undergraduate and graduate levels remained relatively constant between 1992 and 2005, the total number of mathematics degrees as a percentage of all degrees awarded has slightly decreased over the same time period. To understand this situation better, we…

  18. Information fusion-based approach for studying influence on Twitter using belief theory.

    PubMed

    Azaza, Lobna; Kirgizov, Sergey; Savonnet, Marinette; Leclercq, Éric; Gastineau, Nicolas; Faiz, Rim

    2016-01-01

    Influence in Twitter has become recently a hot research topic, since this micro-blogging service is widely used to share and disseminate information. Some users are more able than others to influence and persuade peers. Thus, studying most influential users leads to reach a large-scale information diffusion area, something very useful in marketing or political campaigns. In this study, we propose a new approach for multi-level influence assessment on multi-relational networks, such as Twitter . We define a social graph to model the relationships between users as a multiplex graph where users are represented by nodes, and links model the different relations between them (e.g., retweets , mentions , and replies ). We explore how relations between nodes in this graph could reveal about the influence degree and propose a generic computational model to assess influence degree of a certain node. This is based on the conjunctive combination rule from the belief functions theory to combine different types of relations. We experiment the proposed method on a large amount of data gathered from Twitter during the European Elections 2014 and deduce top influential candidates. The results show that our model is flexible enough to to consider multiple interactions combination according to social scientists needs or requirements and that the numerical results of the belief theory are accurate. We also evaluate the approach over the CLEF RepLab 2014 data set and show that our approach leads to quite interesting results.

  19. Monitoring of peri-distal gastrectomy carbohydrate antigen 19-9 level in gastric juice and its significance

    PubMed Central

    Xu, A-Man; Huang, Lei; Han, Wen-Xiu; Wei, Zhi-Jian

    2014-01-01

    Gastric carcinoma is one of the most common and deadly malignancies nowadays, and carbohydrate antigen 19-9 (CA 19-9) in gastric juice has been rarely studied. To compare peri-distal gastrectomy (DG) gastric juice and serum CA 19-9 and reveal its significance, we selected 67 patients diagnosed with gastric carcinoma who underwent DG, and collected their perioperative gastric juice whose CA 19-9 was detected, with serum CA 19-9 monitored as a comparison. We found that: gastric juice CA 19-9 pre-gastrectomy was significantly correlated with tumor TNM classification, regarding tumor size, level of gastric wall invaded, differentiated grade and number of metastatic lymph nodes as influencing factors, while serum CA 19-9 revealed little information; gastric juice CA 19-9 was significantly correlated with radical degree, and regarded number of resected lymph nodes and classification of cutting edge as impact factors; thirteen patients whose gastric juice CA 19-9 rose post-DG showed features indicating poor prognosis; the difference of gastric juice CA 19-9 between pre- and post-gastrectomy was correlated with tumor TNM classification and radical degree, and regarded tumor size, number of resected metastatic and normal lymph nodes, sum of distances from tumor to cutting edges and classification of cutting edge as influential factors. We conclude that peri-DG gastric juice CA 19-9 reveals much information about tumor and radical gastrectomy, and may indicate prognosis; while serum CA 19-9 has limited significance. PMID:24482710

  20. Towards a Methodology for Validation of Centrality Measures in Complex Networks

    PubMed Central

    2014-01-01

    Background Living systems are associated with Social networks — networks made up of nodes, some of which may be more important in various aspects as compared to others. While different quantitative measures labeled as “centralities” have previously been used in the network analysis community to find out influential nodes in a network, it is debatable how valid the centrality measures actually are. In other words, the research question that remains unanswered is: how exactly do these measures perform in the real world? So, as an example, if a centrality of a particular node identifies it to be important, is the node actually important? Purpose The goal of this paper is not just to perform a traditional social network analysis but rather to evaluate different centrality measures by conducting an empirical study analyzing exactly how do network centralities correlate with data from published multidisciplinary network data sets. Method We take standard published network data sets while using a random network to establish a baseline. These data sets included the Zachary's Karate Club network, dolphin social network and a neural network of nematode Caenorhabditis elegans. Each of the data sets was analyzed in terms of different centrality measures and compared with existing knowledge from associated published articles to review the role of each centrality measure in the determination of influential nodes. Results Our empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures, Eigenvector and Eccentricity Centralities were better able to identify important nodes. PMID:24709999

Top